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1. Introduction

Many studies in finance analyze comovement between expected asset returns and various observ-

able quantities, or “predictors.” A question of frequent interest is how xt , a vector of predictors

observed at time t , is related to �t , the conditional expected return defined in the equation

rtC1 D �t C utC1; (1)

where rtC1 denotes the stock return from time t to time t C 1, and the unexpected return utC1

has mean zero conditional on information available at time t . One approach to modeling expected

returns is to use a “predictive regression” in which rtC1 is regressed on xt and the expected return

is given by �t D a C b0xt ; where a and b denote the regression’s intercept and slope coefficients.1

This approach seems too restrictive in modeling expected return as an exact linear function of

the observed predictors. It seems more likely that the predictors are imperfect, in that they are

correlated with �t but cannot deliver it perfectly.

At the same time, the predictive regression approach seems too lax in ignoring a likely eco-

nomic property of the unexpected return—its negative correlation with the innovation in the ex-

pected return. For example, if the expected return obeys the first-order autoregressive process,

�tC1 D ˛ C ˇ�t C wtC1; (2)

then it seems likely that the correlation between the unexpected return and the innovation in the

expected return is negative, or that �uw � �.utC1; wtC1/ < 0. That is, unanticipated increases in

expected future returns (or discount rates) should be accompanied by unexpected negative returns.

While it is possible for �uw < 0 to be violated, we argue that such violations are unlikely. The

likely negativity of �uw , which is not exploited in estimating the predictive regression, emerges as

an important consideration in estimating expected returns when predictors are imperfect.

We develop an approach to estimating expected returns that generalizes the standard predictive

regression approach. The framework we propose, which we term a predictive system, allows the

predictors in xt to be imperfect, in that �t ¤ a C b0xt . The predictive system also allows us

to explore roles for a variety of prior beliefs about the behavior of expected returns, chief among

which is the belief that unexpected returns are negatively correlated with innovations in expected

1Of the many studies that estimate predictive regressions for stock returns, some early examples include Fama and

Schwert (1977), Rozeff (1984), Keim and Stambaugh (1986), Campbell (1987), and Fama and French (1988). There

is also a substantial literature analyzing econometric issues associated with predictive regressions, including Mankiw

and Shapiro (1986), Stambaugh (1986, 1999), Nelson and Kim (1993), Elliott and Stock (1994), Cavanagh, Elliot,

and Stock (1995), Ferson, Sarkissian, and Simin (2003), Lewellen (2004), Campbell and Yogo (2006), Jansson and

Moreira (2006), and Lettau and van Nieuwerburgh (2007).
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returns (�uw < 0). We find that, compared to predictive regressions, predictive systems deliver

different and more precise estimates of expected returns. When predictors are imperfect, their

predictive ability is supplemented by information in lagged returns as well as lags of the predictors,

and the predictive system delivers that information via a parsimonious model. The correlation �uw

plays a key role in determining how that additional sample information is used as well as how

important that information is in explaining variation in expected returns.

The additional information in lagged returns is used in an interesting way. Suppose that recent

returns have been unusually low. On one hand, one might think that the expected return has

declined, since a low mean is more likely to generate low realized returns, and the conditional mean

is likely to be persistent. On the other hand, one might think that the expected return has increased,

since increases in expected future returns tend to produce low realized returns. When �uw is

sufficiently negative, the latter effect outweighs the former and recent returns enter negatively

when estimating the current expected return. At the same time, more distant past returns enter

positively because they are more informative about the level of the unconditional expected return

than about recent changes in the conditional expected return.

We illustrate the role of lagged returns in a simplified setting where historical returns are the

only available sample information (Dt). Suppose, for example, that an investor in January 2000 is

forming an expectation of the stock market return over the following quarter based on the post-war

history of realized market returns. Does the dramatic rise in stock prices in the 1990s increase or

decrease the investor’s expectation of future return? The answer depends on the extent to which

the 1990s’ bull market was caused by unexpected declines in expected returns. The conditional

expected stock return in this simplified setting is just a weighted average of all past realized returns,

E.rtC1jDt / D
t�1X

sD0

�s rt�s ;

and the weights �s depend on �uw . For example, if this investor believes that �uw D �0:85, so

that 72% of the variance in unexpected returns is due to changes in expected returns (the estimates

of Campbell (1991) are in that neighborhood), then returns realized during the most recent decade

receive negative weights, while the returns from the previous four decades receive positive weights.

The investor in this example views the 1990s’ bull market as a bearish indicator.

Imperfection in predictors complicates inference about their relations to expected return. We

show that if predictors are imperfect, the residuals in the predictive regression of rtC1 on xt are

serially correlated. This correlation is often ignored when computing standard errors in predictive

regressions. The serial correlation in residuals joins other features of predictive regressions that are

already well known to complicate inferences, especially in finite samples, such as persistence in the

2



predictors and correlation between the residuals and innovations in the predictors (e.g., Stambaugh,

1999). Using our alternative framework—the predictive system—we develop a Bayesian approach

that allows us to conduct clean finite-sample inference about various properties of the expected

return. This approach also allows us to incorporate prior beliefs about �uw.

A striking example of the importance of such prior beliefs is provided by regressing post-war

U.S. stock market returns on the “bond yield,” defined as minus the yield on the 30-year Treasury

bond in excess of its most recent 12-month moving average. That variable receives a highly signifi-

cant positive slope (with a p-value of 0.001) in the predictive regression, but its AR(1) innovations

are positively correlated with the residuals in that regression. The latter correlation, opposite in sign

to what one would anticipate for �uw , suggests that the bond yield is a rather imperfect predictor

of stock returns. When judged in a predictive system, the bond yield’s importance as a predictor

depends heavily on prior beliefs about �uw . With noninformative beliefs about �uw, the bond yield

appears to be a very useful predictor; for example, the posterior mode of its conditional correlation

with �t is 0.9. However, with a more informative belief that innovations in expected returns are

negatively correlated with unexpected returns and explain at least half of their variance, the bond

yield’s conditional correlation with �t drops to 0.2. With the more informative belief, the current

value of the bond yield explains only 3% of the variance of �t . Adding lagged unexpected returns

allows the system to explain 86% of this variance, and further adding lagged predictor innovations

increases the fraction of explained variance of �t to 95%.

Prior beliefs also affect the predictive system’s advantage in explanatory power over the predic-

tive regression. In the same bond yield example, with noninformative prior beliefs, the predictive

system produces an estimate of �t that is 1.4 times more precise than the estimate from the pre-

dictive regression. With the more informative beliefs, though, the system’s estimate is 12.5 times

more precise. We measure improvements in precision by improvements in explanatory power.

Specifically, we compute the posterior mean of the ratio of the R2 from the predictive regression

to the R2 from the regression of rtC1 on the return forecast from the predictive system.

We also include as predictors two more familiar choices, the market’s dividend yield and the

consumption-wealth variable “CAY” proposed by Lettau and Ludvigson (2001). Prior beliefs

about �uw play a less dramatic role with these predictors than with the bond yield, but differ-

ent prior beliefs can nevertheless produce substantial differences in estimated expected returns.

We assess the economic significance of these expected return differences by comparing average

certainty equivalents for mean-variance investors whose risk aversion would dictate an all-equity

portfolio (i.e., no cash or borrowing) when expected return and volatility equal their long-run sam-

ple values. When all three predictors are included, an investor with the more informative belief
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mentioned above would suffer an average quarterly loss of 1.5% if forced to hold the portfolio

selected each quarter by an investor who estimates expected return by the maximum likelihood

procedure (which reflects noninformative views about all parameters, including �uw).

The predictive system, along with our Bayesian approach, also allows us to compute multi-

period return variances that incorporate imperfect predictors and parameter uncertainty. We find

that prior beliefs about �uw play an important role here as well. In our example, using the div-

idend yield as the predictor, the five-year return variance is about 33 percent higher with a non-

informative prior for �uw than with the more informative prior discussed above. More negative

values of �uw imply stronger mean reversion in stock returns, resulting in lower long-horizon vari-

ances. We also find that the prior for �uw has a much larger effect at longer investment horizons.

Ferson, Sarkissian, and Simin (2003) show that persistent predictors may exhibit spurious pre-

dictive power in finite samples even if they have no such power in population (e.g., if they have

been data-mined). We provide tools that can be helpful in avoiding the spurious regression prob-

lem. A spurious predictor is unlikely to produce expected return estimates whose innovations are

substantially negatively correlated with unexpected returns. Therefore, under an informative prior

about this correlation, a predictive system would likely find the spurious predictor to be almost

uncorrelated with �t . The basic intuition holds also outside the predictive system framework: if a

predictor does not generate a negative correlation between expected and unexpected returns, it is

unlikely to be highly correlated with the true conditional expected return.

This study is clearly related to an extensive literature on return predictability, but it also con-

tributes to a broader agenda of incorporating economically motivated informative prior beliefs in

inference and decision making in finance. Studies in the latter vein include Pástor and Stambaugh

(1999, 2000, 2001, 2002ab), Pástor (2000), Baks, Metrick, and Wachter (2001), and Jones and

Shanken (2005). Studies that employ informative priors in the context of return predictability

include Kandel and Stambaugh (1996), Avramov (2002, 2004), Cremers (2002), Avramov and

Wermers (2006), and Wachter and Warusawitharana (2006).

The paper is organized as follows. Section 2 introduces the predictive system and discusses

its properties. Section 3 explains why �uw is likely to be negative and how it affects expected

returns. Section 4 presents our empirical work, in which we estimate the predictive system with a

Bayesian approach. We compare the explanatory powers of the predictive system and predictive

regression and quantify the differences in expected return estimates. We also assess the degree to

which various predictors are correlated with the expected return, decompose the variation in the

expected return into three components, and analyze the variance of the multiperiod returns. Section

5 reviews our conclusions. Many technical aspects of our analysis are presented in the Appendix.
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2. Predictive System

In the predictive regression approach, the expected return is modeled as a linear combination of the

predictors in xt . This modeling assumption is unlikely to be exact, in that no linear combination of

the predictors is likely to capture perfectly the true unobserved expected return, �t . We relax this

assumption and develop an alternative predictive framework, which we call a predictive system.

The predictive regression is a special case of the predictive system, as we show in Section 2.3.

We define the predictive system in its most general form as a vector autoregression for .�t ;xt /,

with an arbitrary number of lags. We do not analyze this general form here. Given our objective

to provide an initial exploration of predictive systems, simplicity is a virtue. We examine a simple

version of the predictive system, in which �t and xt follow AR(1) processes:

rtC1 D �t C utC1 (3)

xtC1 D � C Axt C vtC1 (4)

�tC1 D ˛ C ˇ�t CwtC1: (5)

The residuals in the system are assumed to be distributed identically and independently across t as

2

4

ut

vt

wt

3

5 � N

0

@

2

4

0

0

0

3

5 ;

2

4

�2
u �uv �uw

�vu ˙vv �vw

�wu �wv �2
w

3

5

1

A : (6)

We assume throughout that 0 < ˇ < 1 and that the eigenvalues of A lie inside the unit circle.

The predictive system is a version of a state space model.2 Equation (3) defines the unobserved

conditional expected return �t . Equation (4) is a standard assumption in the predictability liter-

ature. A special case of the predictive system arises when there are no predictors, in which case

equation (4) is absent and the data include only returns. Equation (5) postulates a simple persistent

process for �t . This reduced-form model could be consistent with a variety of economic models,

rational or behavioral, in which the expected return varies over time in a persistent fashion.

2.1. Conditional Expected Return

The value of �t is unobservable, but the predictive system implies a value for E.�t jDt/ D
E.rtC1jDt /, where Dt denotes the history of returns and predictors observed through time t . Using

2Harvey (1989) provides a textbook treatment of state-space models, including a brief discussion of the case with

non-zero correlations among all of the model’s disturbances, which is the case here. In the Appendix, we provide an

independent treatment specific to the system in (3) through (6). Studies that analyze return predictability using state

space models include Conrad and Kaul (1988), Lamoureux and Zhou (1996), Johannes, Polson, and Stroud (2002),

Ang and Piazzesi (2003), Brandt and Kang (2004), Dangl and Halling (2006), Duffee (2006), and Rytchkov (2007).
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the Kalman filter, we find that this conditional expected return can be written as the unconditional

expected return plus linear combinations of past return forecast errors and innovations in the pre-

dictors. Specifically, if we define the forecast error for the return in each period t as

�t D rt � E.rt jDt�1/; (7)

then the expected return conditional on the history of returns and predictors is given by

E.rtC1jDt/ D E.r/C
1
X

sD0

�

�s�t�s C � 0
svt�s

�

; (8)

where the unconditional mean return E.r/ D ˛=.1 � ˇ/ and, in steady state,

�s D mˇs (9)

�s D nˇs; (10)

where m and n are functions of the parameters in equations (3) through (6).3 The conditional

expected return thus depends on the full history of returns and predictor realizations. We analyze

this dependence in more detail in Section 3.2., where we plot �s as a function of s and �uw.

Since the forecast errors �t in equation (8) are defined relative to conditional expectations that

are updated through time based on the available return histories, part of the effects of past return

realizations are impounded in those earlier conditional expectations. To isolate the full effect of

each past period’s total return, we can subtract the unconditional mean from each return, defining

�U
t D rt � E.r/, and then rewrite the conditional expected return in equation (8) as

E.rtC1jDt / D E.r/C
1X

sD0

�

!s�
U
t�s C ı0

svt�s

�

; (11)

where, again in steady state,

!s D m.ˇ � m/s (12)

ıs D n.ˇ � m/s: (13)

It can be verified that the rate of decay in !s and ıs, ˇ � m, is nonnegative. This alternative

representation of the conditional expected return will also be useful in Section 3.2.

3In general, m and n are also functions of time, but as the length of the history in Dt grows long, they converge

to steady-state values that do not depend on t . That convergence is reached fairly quickly in the settings we consider.

We first present the steady-state expressions, for simplicity, but later employ the finite-sample Kalman filter as well.

The Appendix derives the functions m and n in finite samples as well as in steady state. The Appendix also shows (in

equation A41) that the finite-sample versions of m and n can be interpreted as the slope coefficients from the regression

of �t on rt and xt , respectively, conditional on the sample information at time t � 1.
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2.2. Temporal Dependence in Returns

Returns in the predictive system exhibit interesting temporal dependence. Given the AR(1) process

for �t in equation (5), we can rewrite �t as an MA(1) process (the Wold representation):

�t D E.r/C
1
X

iD0

ˇiwt�i : (14)

Using equations (3) and (14), the return k periods ahead can be written as

rtCk D E.r/C
1X

iD0

ˇiwtCk�1�i C utCk (15)

D .1 � ˇk�1/E.r/C ˇk�1�t C
k�1
X

iD1

ˇk�1�iwtCi C utCk : (16)

This equation implies that the autocovariance of returns is equal to

Cov.rt ; rt�k/ D ˇk�1
�

ˇ�2
� C �uw

�

; (17)

where �2
� D �2

w=.1 � ˇ2/ is the unconditional variance of �t . As a result, the serial correlation in

returns can be positive or negative, depending on the parameter values. The positive component of

(17) is due to persistence in �t ; the negative component is due to �uw < 0, or mean reversion in

stock returns. The knife-edge case of zero autocorrelation obtains for �uw D �ˇ�w=.�u.1 �ˇ2//.

The AR(1) process for �t also implies that returns follow an ARMA(1,1) process,

rtC1 D .1 � ˇ/E.r/C ˇrt C ��
tC1 � ��

t : (18)

When we implement the Kalman filter without using any predictor information, so that Dt includes

only the return history, we obtain equation (8) without the last term (
P1

sD0 �
0
svt�s ). That equation

implies a specification of (18) with ��
t D �t and  D ˇ � m.

2.3. Predictive Regression

The traditional approach to modeling return predictability, a predictive regression,

rtC1 D a C b0xt C etC1; (19)

arises as a special case of the predictive system if the predictors in xt are “perfect” in that �t D
a C b0xt . The predictors are perfect if there exists a b such that wt D b0vt and A0b D ˇb.4

4A0b D ˇb means that ˇ is an eigenvalue of A0 corresponding to the eigenvector b; one example is A D ˇI .
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For example, if xt contains one predictor, this predictor is perfect if its innovations are perfectly

correlated with the innovations in �t (i.e., �vw D ˙1) and if its autocorrelation is the same as that

of �t (i.e., A D ˇ). In general, though, the predictors in xt are imperfect in that �t ¤ a C b0xt .

When the predictors approach perfection, then m ! 0, n ! b, and equation (8) becomes

E.rtC1jDt / D E.r/C b0

1X

sD0

Asvt�s D E.r/C b0Œxt � E.x/� D a C b0xt ; (20)

where E.x/ D .I � A/�1� is the unconditional mean of xt . That is, when the predictors approach

perfection, the system-based conditional expected return approaches the regression-based condi-

tional mean, a C b0xt . When the predictors are imperfect, however, their entire history enters the

conditional expected return, since the weighted sum of their past innovations in equation (8) does

not then reduce to a function of just xt . Moreover, when the predictors are imperfect, the expected

return depends also on the full history of returns in addition to the history of the predictors.

Predictive systems have interesting implications for predictive regressions. All parameters of

the predictive regression in equation (19) can be computed from the parameters of the predictive

system in equations (3) through (6).5 Most interesting, the residual autocovariance is given by

Cov.et ; etC1/ D ˇ.�2
� � V 0

x�V �1
xx Vx�/C �uw � V 0

x�V �1
xx �vu

D ˇVar.�t jxt /C Cov.ut ; wt � b0vt /: (21)

If the predictors are perfect, Var.�t jxt/ D 0 and wt D b0vt , so Cov.et ; etC1/ is zero. With

imperfect predictors, though, Var.�t jxt / > 0, wt ¤ b0vt , and Cov.et ; etC1/ is generally non-zero.

This observation suggests a simple diagnostic for predictor imperfection: if the residuals from the

predictive regression exhibit non-zero autocorrelation, then the predictors xt are imperfect.

The serial correlation in the residuals complicates the calculation of standard errors in the pre-

dictive regression approach. Since the first term in equation (21) is nonnegative, Cov.et; etC1/ is

often positive, in which case assuming uncorrelated predictive regression residuals leads to un-

derstated standard errors. Ferson, Sarkissian, and Simin (2003) make a similar point when the

predictor is “spurious,” or uncorrelated with expected return. Their setting is a special case of (3)–

(6) with one predictor and a diagonal covariance matrix in (6).6 In specifying a diagonal covariance

matrix for the disturbances, they assume not only that the predictor is spurious but also that the

innovations in expected return are uncorrelated with unexpected returns (i.e., �uw D 0). In this

5For example, the regression slope b can be computed from the system’s parameters as b D V �1
xx

Vx�, where Vxx

is given in the Appendix in equation (A10), Vx� D .IK � ˇA/�1�vw , and IK is a K � K identity matrix.
6The objectives of Ferson et al. differ from ours. For example, they do not use this multiple-equation setting to

estimate expected return or to examine its dependence on lagged returns and predictors.
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special case, we see from (21) that Cov.et; etC1/ D ˇ�2
�. Ferson et al. do not report this expression

but do find, using simulations, that the positive residual serial correlation can substantially affect

inference in predictive regressions. Duffee (2006) also uses simulations to make a related point in

the context of bond predictability.

3. Correlation between Expected and Unexpected Returns

A key quantity in this paper is �uw, the correlation between the unexpected return, ut , and the

innovation in the expected return, wt . Henceforth, we refer to �uw simply as the “correlation

between expected and unexpected returns,” a slightly inaccurate but much shorter description.

This correlation is important for return predictability in several ways. First, it determines how

past returns affect the forecasts of future returns, as we show in Section 3.2. Second, economically

motivated prior beliefs about �uw play an important role in various inferences about predictability,

as we show in Section 4. The ability to incorporate prior beliefs about �uw is a key feature of the

predictive system. We begin this section by discussing some theoretical properties of �uw.

3.1. Why �uw Is Likely to Be Negative

The basic motivation behind the belief that �uw < 0 is that asset prices tend to fall when discount

rates rise. More precisely, �uw < 0 means that unanticipated increases in expected returns tend to

be accompanied by unexpected negative returns. This intuition holds perfectly for nominal returns

on Treasury bonds. Since the nominal cash flows of Treasury bonds are fixed, the bond price

variation is driven only by discount rate shocks, and �uw D �1. Stock returns, however, are driven

also by cash flow shocks. It is possible, at least in principle, that positive discount rate shocks could

be accompanied by such large positive cash flow shocks that stock prices rise rather than fall as a

result. In this section, we derive conditions under which �uw < 0, and argue that these conditions

are likely to be satisfied for the aggregate stock market.

Following Campbell (1991), the unexpected return can be decomposed approximately as

utC1 D �C;tC1 � �E;tC1; (22)

where �C;tC1 represents the unanticipated revisions in expected future cash flows and �E;tC1 cap-

tures the revisions in expected future returns. If the expected return follows the process in equation

(2) with 0 < ˇ < 1, then �E;tC1 is equal to wtC1 multiplied by a positive constant, so that

�uw D �.utC1; �E;tC1/: (23)
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Since the partial correlation between utC1 and �E;tC1 is minus one (equation (22)), it seems natural

to believe a priori that the simple correlation between utC1 and �E;tC1, or �uw , is negative. Before

seeing any data, it is not obvious why �C;tC1 and �E;tC1 should be correlated, and a belief that

�C;tC1 and �E;tC1 are uncorrelated translates into a belief that �uw is negative. More precisely, it

follows directly from equations (22) and (23) that �uw < 0 if and only if

�.�C;tC1; �E;tC1/ <
�.�E;tC1/

�.�C;tC1/
; (24)

where the � ’s denote standard deviations. In order for �uw < 0 to be violated, cash flow shocks

would have to be more important than discount rate shocks in explaining the variance of stock

returns, i.e., �.�C;tC1/ > �.�E;tC1/, and the correlation between those shocks, �.�C;tC1; �E;tC1/,

would have to be positive and sufficiently high. It seems difficult to argue that one could expect

such a high correlation a priori. In fact, such a high correlation between the shocks to cash flows

and discount rates seems unlikely because it would make stock returns unrealistically smooth. It is

easy to see from equation (22) that a violation of the condition in (24) would require that

Var.utC1/ < Var.�C;tC1/ � Cov.�C;tC1; �E;tC1/ < Var.�C;tC1/� Var.�E;tC1/ < Var.�C;tC1/:

(25)

That is, for �uw < 0 to be violated, stock returns would have to be less volatile than when the

expected return is constant (i.e., when Var.�E;tC1/ D 0). In reality, though, stock returns appear

to be more volatile than when the expected return is constant. Shiller (1981) and LeRoy and Porter

(1981) find that stock returns are much more volatile than the present value of future dividends

discounted at constant rates. To explain this “excess volatility puzzle,” discount rates must vary

over time in a way that increases stock volatility. But if �uw were positive, discount rate variation

would reduce stock volatility, thereby deepening the puzzle, which seems unappealing a priori.7

The analysis of �uw presented above is somewhat theoretical, but there is also more direct

empirical evidence suggesting that �uw is negative. Campbell (1991) uses a vector-autoregressive

approach to decompose unexpected stock market returns into components due to cash flow shocks,

�C;tC1, and discount rate shocks, �E;tC1, as in our equation (22). He considers two subperiods,

1927–1951 and 1952–1988. Since our empirical sample in Section 4. begins in 1952, we can use

Campbell’s results from the 1927–1951 period as one source of prior information about �uw. Based

on quarterly data (which we also use in our empirical work), Campbell estimates in his Table 2

7Our argument is not fully precise because Shiller and LeRoy and Porter analyze the unconditional variance of

stock returns, whereas Var.utC1/ in equation (25) represents the conditional variance. But the difference between the

two variances is relatively small because the variance of �t is generally agreed to be much smaller than the variance

of utC1 in equation (1). Moreover, we can allow plenty of margin for error on both sides of our argument. On one

side, �uw > 0 implies Var.utC1/ < Var.�C;tC1/ with as many as three inequality signs in equation (25). On the other

side, the evidence of Shiller and others that Var.utC1/ > Var.�C;tC1/ seems quite strong (see Shiller’s Figure 1).
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that �.�E;tC1/ > �.�C;tC1/ in 1927–1951, meaning that discount rate news is more important than

cash flow news in explaining the variance of stock market returns. This result makes the condition

(24) hold trivially, since �.�C;tC1; �E;tC1/ < 1. Moreover, Campbell obtains negative estimates of

�.�C;tC1; �E;tC1/ for the 1927–1951 period, which again makes (24) hold trivially independent of

�.�E;tC1/=�.�C;tC1/. Campbell’s empirical results from a sample period that predates our sample

therefore provide further support to the prior belief that �uw < 0.

In fact, prior empirical evidence points to large negative estimates of �uw. Table 2 of Campbell

(1991) reports estimates of the variance of �E;tC1, �2
�E

, and its covariance with �C;tC1, �.�C ; �E/,

both as fractions of �2
u , from which the implied estimates of �.utC1; �E;tC1/ can be computed as

�

�.�C ; �E/=�
2
u � �2

�E
=�2

u

�

=
�

��E
=�u

�

. Given equation (23), we interpret these values as implied

estimates of �uw. For the 1927–1951 period, Campbell’s results imply values of �uw ranging from

-0.67 to -0.87 across three different specifications. In 1952–1988, the implied estimates of �uw

range from -0.92 to -0.94, and in the full sample, 1927–1988, they range from -0.71 to -0.86.

Campbell’s evidence on �uw is not definitive because it treats VAR-based estimates of expected

returns as the true expected returns. Campbell uses three predictors: the dividend-price ratio (D/P),

the lagged stock return, and the (relative) one-month T-bill rate. He reports that his results are sen-

sitive to the exclusion of D/P, but they are robust as long as D/P is included among the predictors.

Campbell and Ammer (1993) use seven predictors, including D/P, and report estimates in their

Table III that imply even more negative estimates of �uw, ranging from -0.93 to -0.95 in postwar

data. Van Binsbergen and Koijen (2007) estimate �uw ranging from -0.67 to -0.45, with an av-

erage of -0.60, in postwar data. They do not rely on prespecified predictors but instead use data

on dividend growth and returns in the context of a present-value model. They also find a positive

correlation between shocks to expected return and dividend growth, similar to Menzly, Santos, and

Veronesi (2004), Lettau and Ludvigson (2005), and Kothari, Lewellen, and Warner (2006). Note

that �.�C;tC1; �E;tC1/ can be positive without violating the condition in equation (24).

While we believe that �uw < 0 is a sensible prior belief, we entertain three different priors on

�uw, including a noninformative prior, in our empirical work in Section 4.

3.2. The Role of �uw in Determining Expected Returns

The correlation between expected and unexpected returns, �uw , plays a critical role in de-

termining the conditional expected return. To illustrate this role, we consider a special case of

the predictive system in which there are no predictors. With no predictors, Dt includes only

the return history, and the conditional expected return in equation (8) is simply E.rtC1jDt/ D

11



E.r/ C
P1

sD0 �s�t�s ; a weighted sum of past forecast errors in returns (the Wold representation).

Panel A of Figure 1 plots the values of �s in an example with the predictive R-squared (the fraction

of the variance in rtC1 explained by �t ) equal to 0.05, ˇ equal to 0.9, and four different values of

�uw ranging from -0.99 to 0. The figure shows that different values of �uw produce different values

of m, and hence also different behaviors for �s.D mˇs/.

The results in Figure 1 can be understood by noting that there are essentially two effects of

the return history on the current expected return. The first might be termed the “level” effect.

Observing recent realized returns that were higher than expected suggests that they were generated

from a distribution with a higher mean. If the expected return is persistent, as it is in this example

with ˇ D 0:9, then that recent history suggests that the current mean is higher as well. So the level

effect positively associates past forecast errors in returns with expected future returns. The second

effect, which might be termed the “change” effect, operates via the correlation between expected

and unexpected returns. In particular, suppose �uw is negative, as we suggest is reasonable. Then

observing recent realized returns that were higher than expected suggests that expected returns fell

in those periods. That is, part of the reason that realized returns were higher than expected is that

there were price increases associated with negative shocks to expected future returns and thus to

discount rates applied to expected future cash flows. So the change effect negatively associates

past forecast errors in returns with expected future returns. Overall, the net impact of the return

history on the current return depends on the relative strengths of the level and change effects.

The level and change effects can be mapped into the return autocovariance in (17). When �uw

is sufficiently negative, then ˇ�2
� < ��uw, returns are negatively autocorrelated, and the change

effect prevails. Also, m < 0 in that case, so the �s’s in (9) are negative. When ˇ�2
� > ��uw,

returns are positively autocorrelated, the �s’s are positive, and the level effect prevails.

When �uw D 0, there is no change effect and only the level effect is present. For that case,

the �s’s in Figure 1 start at a positive value for the first lag, about 0.04, and then decay toward

zero. The level and change effects offset each other when �uw D �0:47 (this is the knife-edge

case of zero autocorrelation in equation (17)), or when the fraction of the variance in unexpected

returns explained by expected-return shocks, �2
uw , is about 22%. In that case, the �s’s plot as a

flat line at zero. This result is worth emphasizing: for �uw D �0:47, rational investors who know

the unconditional expected return do not update their beliefs about the conditional expected return,

regardless of what realized returns they observe. The change effect dominates when �uw D �0:85,

where the �s’s start around -0.04 at the first lag, and it is even stronger when �uw D �0:99, where

the �s’s start around -0.08. Clearly, the correlation between expected and unexpected returns is a

critical determinant of the relation between the return history and the current expected return.
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The conditional expected return depends on the true unconditional mean, E.r/, which must be

estimated in practice. A natural estimator is the sample mean. Consider again the no-predictor

case where the summation on the right-hand side of equation (11) is truncated at s D t � 1 and

E.r/ is replaced by the sample mean, .1=t/
Pt

lD1 rl . The estimated conditional expected return

then becomes a weighted average of past returns,

E.rtC1jDt / D
t�1X

sD0

�srt�s ; (26)

where

�s D 1

t

 

1 �
t
X

lD1

!l

!

C !s; (27)

and
Pt�1

sD0 �s D 1. The weights (�s’s) are plotted in Panel B of Figure 1 for t D 208, corresponding

to the number of quarters used in our empirical analysis. When �uw D 0, all past returns enter

positively but recent returns are weighted more heavily. In the �uw D �0:47 case, where the

level and change effects exactly offset each other, all of the weights equal 1=t , so the conditional

expected return is then just the historical sample average. For the larger negative �uw values, where

the change effect is stronger, the weights switch from negative at more recent lags to positive at

more distant lags (as the weights must sum to one). For example, when changes in expected returns

explain about 72% of the variance in unexpected returns (�uw D �0:85), the returns from the most

recent 10 years (40 quarters) contribute negatively to the estimated current expected return, while

the returns from the earlier 42 years contribute positively.

An additional perspective on the role of �uw is provided by the time series of conditional

expected returns plotted in Figure 2. In constructing these series, we maintain the same setting

and same parameter values as in Figure 1. The unconditional mean return E.r/ is set equal to the

sample average for our 208-quarter sample period, and then, starting from the first quarter in the

sample, the conditional mean is updated through time using the finite-sample Kalman filter applied

to the realized returns data. As before, the level and change effects exactly offset each other when

�uw D �0:47, so the conditional expected return in that case is simply a flat line at the sample

average for the period. A striking feature of the plot is that the expected return series for �uw D 0

is virtually the mirror image of the series for �uw D �0:85. Moreover, the differences among the

various series of conditional expected returns are large in economic terms, often several percent

per quarter. As before, we see that �uw plays a key role in estimating expected returns.

Figure 3 compares the R2’s from three approaches to predicting rtC1 using some or all of

the information observable at time t , which includes the history of returns and a single predictor

xt . The first approach is the predictive system, which uses all of that available history. The
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second is the predictive regression, which uses only the current value xt . The third approach is the

ARMA(1,1) model in equation (18), which uses only past returns. The four panels correspond to

the values f0; 0:3; 0:6; 0:9g for �vw , the conditional correlation between �t and the single predictor

xt . In all four panels, ˇ D A D 0:9, and the true predictive R2 (from the regression of rtC1 on �t)

is 0.05. We consider two values of �uv, “high” and “low”, which correspond to partial correlations

between ut and vt given wt of �uvjw D 0:9 and �uvjw D �0:9, respectively.8

Since all three approaches compared in Figure 3 use only information observable at time t ,

they all produce R2’s smaller than 0.05. The R2 from the predictive regression rises from 0 to 0.04

as �vw rises from 0 to 0.9 across the four panels. This increase is intuitive: as �t and xt become

more highly correlated, the predictive regression becomes more useful in predicting returns. The

predictive regression R2 is invariant to �uw. In contrast, the R2 from the ARMA(1,1) model,

which summarizes the usefulness of past returns in predicting future returns, is heavily influenced

by �uw. When �uw D �0:47, this R2 is zero: past returns contain no information about future

returns because the level and change effects cancel out. For �uw ¤ �0:47, stock returns are serially

correlated and the ARMA(1,1) R2 is positive; in fact, it can be higher than the predictive regression

R2. For example, when �vw D 0:3 and �uw … .�0:74;�0:13/, past returns are more useful than

xt in predicting rtC1. The highest R2’s are invariably achieved by the predictive system, which

uses more information to predict future returns than do the other two approaches.

4. Empirical Analysis

In this section we use the predictive system to conduct an empirical analysis of return predictability.

We first present evidence from predictive regressions, for benchmark purposes. Then we discuss

identification issues and use the system to estimate expected returns via maximum likelihood.

Finally, we turn to the main analysis, which takes a Bayesian approach.

4.1. Evidence from Predictive Regressions

We begin by estimating predictive regressions on quarterly data in 1952–2003 for three predictors.

The first predictor is the market-wide dividend yield, which is equal to total dividends paid over

the previous 12 months divided by the current total market capitalization. We compute the div-

idend yield from the with-dividend and without-dividend monthly returns on the value-weighted

8We specify the partial correlation �uvjw instead of the simple correlation �uv because our control over �uv is

limited. The permissible range of values for �uv depends on �vw and �uw (see equation (32)) and we vary both �vw

and �uw. By choosing �uvjw of 0.9 and -0.9, we are specifying �uv close to the boundaries of its permissible range.
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portfolio of all NYSE, Amex, and Nasdaq stocks, which we obtain from the Center for Research

in Security Prices (CRSP) at the University of Chicago. The second predictor is CAY from Lettau

and Ludvigson (2001), whose updated quarterly data we obtain from Martin Lettau’s website. The

third predictor is the “bond yield,” which we define as minus the yield on the 30-year Treasury

bond in excess of its most recent 12-month moving average. The bond yield data are from the

Fixed Term Indices in the CRSP Monthly Treasury file. The three predictors are used to predict

quarterly returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks in excess

of the quarterly return on a one-month T-bill, which is also obtained from CRSP.

Whereas the first two predictors have been used extensively, the third predictor appears to

be new. It seems plausible for the long-term T-bond yield to be related to future stock returns

since expected returns on stocks and T-bonds may comove due to discount-rate-related factors.

Subtracting the 12-month average yield is an adjustment that is commonly applied to the short-

term risk-free rate (e.g., Campbell, 1991, and Campbell and Ammer, 1993).

Table I reports, for various predictive regressions, the estimated slope coefficient vector Ob, the

R2, and the estimated correlation between unexpected returns and the innovations in expected

returns. This correlation, which represents the regression-based counterpart of �uw, is computed

as Corr.et ; b
0vt /, following equations (4) and (19). Table I also reports the OLS t -statistics and the

bootstrapped p-values associated with these t -statistics as well as with the R2.9 Panel A reports

the full-sample results covering 1952 Q1 – 2003 Q4. Panels B and C report sub-sample results.10

The results suggest that all three predictors have some forecasting ability. The dividend yield

produces the weakest evidence (highest p-values, lowest R2s) in all three sample periods. When

included as the single predictor, the dividend yield is marginally significant in the full sample (p-

value of 5:7%). It is significant in the first subperiod (p D 1:4%) but not in the second subperiod

(p D 40:9%). The significance of the dividend yield weakens further when the other two predictors

are included in the predictive regression.

In contrast, both the bond yield and CAY are highly significant predictors. When used alone,

9In the bootstrap, we repeat the following procedure 20,000 times: (i) Resample T pairs of . Ovt ; Oet/, with replace-

ment, from the set of OLS residuals from regressions (4) and (19); (ii) Build up the time series of xt , starting from the

unconditional mean and iterating forward on equation (4), using the OLS estimates . O� ; OA/ and the resampled values

of Ovt ; (iii) Construct the time series of returns, rt , by adding the resampled values of Oet to the sample mean (i.e., under

the null that returns are not predictable); (iv) Use the resulting series of xt and rt to estimate regressions (4) and (19)

by OLS. The bootstrapped p-value associated with the reported t-statistic (or R2) is the relative frequency with which

the reported quantity is smaller than its 20,000 counterparts bootstrapped under the null of no predictability.
10Since we use the T-bond and T-bill yields in our analysis, we begin our sample in 1952, after the 1951 Treasury-

Fed accord that made possible the independent conduct of monetary policy. Campbell and Ammer (1993), Campbell

and Yogo (2006), and others also begin their samples in 1952 for this reason.
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both predictors exhibit p-values of 0.1% or less in the full sample, and they are also significant in

both subperiods. If judged by the p-values, CAY is the stronger predictor in the first subperiod but

the bond yield is stronger in the second subperiod. When all three predictors are used together,

both CAY and the bond yield are highly and about equally significant in the full sample.

In addition to the p-values and R2s, it is also informative to examine the correlations between

the expected and unexpected returns, Corr.b0vt ; et/, shown in the fourth column of Table I. When

the single predictor is either the dividend yield or CAY, these correlations are negative and highly

significant: -91.9% for the dividend yield and -53.6% for CAY in the full sample. These negative

correlations are not surprising since both predictors are negatively related to stock prices, by con-

struction. For the bond yield, however, this correlation is positive and highly significant in all three

sample periods, ranging from 21.7% to 25.1%. This positive correlation makes it unlikely that the

bond yield is perfectly correlated with the true conditional expected return.

The correlation between expected and unexpected returns is a useful diagnostic that should be

considered when examining the output of a predictive regression. Since this correlation is likely

to be negative, predictive models in which this correlation is positive seem less plausible.11 The

model in which the bond yield is the single predictor is a good example. Based on the predictive-

regression p-value, the bond yield would appear to be a highly successful predictor whose fore-

casting ability is better than that of the dividend yield and comparable to that of CAY. However,

the bond yield produces expected return estimates whose innovations are positively correlated with

unexpected returns, suggesting that this predictor is imperfect. We suspect that the same statement

can be made about many macroeconomic variables that the literature has related to expected re-

turns. In the rest of the paper, we develop a predictive framework that allows us to incorporate the

prior belief that the correlation between expected and unexpected returns is negative.

4.2. Identification and Maximum Likelihood Estimation

In the absence of any priors or parameter restrictions, not all of the parameters in equations (3)

through (6) are identified. We can nevertheless obtain estimates of conditional expected returns

using equation (4) and the recursive representation for returns,

rtC1 D .1 � ˇ/E.r/C ˇrt C n0vt � .ˇ � m/�t C �tC1; (28)

11Strictly speaking, the arguments based on equations (22) and (24) apply when rtC1 denotes the total stock return,

but they should hold to a close approximation also when rtC1 denotes the excess stock return, as used here. For excess

returns, Campbell (1991) shows that equation (22) has an additional term representing news about future interest rates,

and he estimates the variance of that term to be an order of magnitude smaller than the variances of �C;tC1 and �E;tC1.
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which follows directly from the steady-state representation of the conditional expected return in

(8). The parameters in (4) and (28) are identified and can be estimated using maximum likelihood,

by representing those two equations as a state-space system and applying standard methodology

(e.g., Hamilton, 1994, section 13.4).12 The parameters in those equations, along with the covari-

ance matrix of Œ� v0
t �, identify the parameters appearing in equations (3) through (5) but not all of

the parameters in the covariance matrix in (6). Only ˙vv is identified just by the data. Identifying

the remaining elements of ˙ requires additional information about at least one of them.13

Figure 4 plots the time series of expected returns obtained via maximum likelihood estimation

as well as the expected-return estimates obtained from OLS estimation of the predictive regression.

Panels A and B display results with a single predictor, either the dividend yield or CAY. In Panel

C, those variables are combined with the bond-yield variable in the three-predictor case. First,

observe that the fluctuation of the expected return estimates seems too large to be plausible. In

Panel B, for example, expected returns range from -5% to 8% per quarter, and the range is even

wider in Panel C. Later on, we obtain smoother time series of �t by specifying informative prior

beliefs. Second, observe that although the series of estimated expected returns exhibit marked

differences across the three sets of predictors, the differences between the predictive-regression

estimates and the predictive-system estimates for a given set of predictors are much smaller.14

As the length of the sample grows, posterior beliefs about the parameters in (28) and thus (8)

will converge to values that do not depend on prior beliefs about the parameters in the predictive

system (as long as those priors do not strictly preclude such values). Therefore, after observing a

sufficiently long sample, prior beliefs about �uw , for example, will not impact forecasts of future

returns. (Our actual sample is evidently not long in that sense, as prior beliefs about �uw exert a

substantial effect on estimates of expected returns.) On the other hand, given the lack of full iden-

tification of ˙ , prior beliefs about �uw will matter even in large samples when making inferences

about the correlation between the predictors and the true unobservable expected return �t .

4.3. Bayesian Approach

We develop a Bayesian approach for estimating the predictive system. This approach has sev-

eral advantages over frequentist alternatives such as the maximum likelihood approach. First, the

12The likelihood function is detailed in the Appendix.
13Rytchkov (2007) discusses identification issues in a similar setting.
14We also estimate expected returns from the predictive system under diffuse priors (the discussion of prior beliefs

follows later in the text). We find that the resulting estimates (not plotted here) behave similarly to both the OLS

estimates from the predictive regression and the maximum likelihood estimates from the predictive system.
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Bayesian approach allows us to specify economically motivated prior distributions for the param-

eters of interest. Second, it produces posterior distributions that deliver finite-sample inferences

about relatively complicated functions of the underlying parameters, such as the correlations be-

tween �t and xt and the R2s from the regression of rtC1 on �t . Finally, it incorporates parameter

uncertainty as well as uncertainty about the path of the unobservable expected return �t .

We obtain posterior distributions using Gibbs sampling, a Markov Chain Monte Carlo (MCMC)

technique (e.g., Casella and George, 1992). In each step of the MCMC chain, we first draw the pa-

rameters .�;A; ˛; ˇ;˙/ conditional on the current draw of f�t g, and then we use the forward filter-

ing, backward sampling algorithm developed by Carter and Kohn (1994) and Frühwirth-Schnatter

(1994) to draw the time series of f�t g conditional on the current draw of .�;A; ˛; ˇ;˙/.

We impose informative prior distributions on three quantities: the correlation �uw between ex-

pected and unexpected returns, the persistence ˇ of the true expected return �t , and the predictive

R2 from the regression of rtC1 on �t . These prior distributions are plotted in Figure 5.

The key prior distribution is the one on �uw. We consider three priors on �uw, all of which are

plotted in Panel A of Figure 5. The “noninformative” prior is flat on most of the .�1; 1/ range,

with prior mass tailing off near ˙1 to avoid potential singularity problems. The “less informative”

prior imposes �uw < 0 in that 99.9% of the prior mass of �uw is below zero. As shown in Panel

B, this prior implies a relatively noninformative prior on �2
uw, with most prior mass between 0

and 0.8. Finally, the “more informative” prior on �uw is specified such that the implied prior on

�2
uw has 99.9% of its mass above 0.5, with a mean of about 0.77. Since �2

uw is the R2 from the

regression of unexpected returns on shocks to expected returns, it represents the fraction of market

variance that is due to news about discount rates. Therefore, the more informative prior reflects the

belief that at least half of the variance of market returns is due to discount rate news. This belief is

motivated by empirical evidence. For example, the evidence of Campbell (1991) implies estimates

of �2
uw ranging from 0.50 to 0.74 across three different specifications in his full sample period

1927–1988. Campbell’s evidence from 1927–1951, a sample period that predates ours, implies

estimates of �2
uw ranging from 0.44 to 0.76 (�uw ranging from -0.67 to -0.87). The estimates of

�2
uw implied by the postwar evidence are even larger; they range from 0.84 to 0.88 in 1952–1988,

and the estimates of Campbell and Ammer (1993) in their Table III range from 0.86 to 0.91. All of

these estimates are in line with the more informative prior.

Putting a prior on �uw presents a technical challenge. We do not impose the standard inverted

Wishart prior on the covariance matrix ˙ because such a prior would be informative about all

elements of ˙ , not only about �uw, and we do not wish to be informative about the elements that

involve vt . Instead, we build on Stambaugh (1997) and form the prior on ˙ as the posterior from

18



a hypothetical sample that contains more information about ut and wt than about vt . In addition,

we develop a hyperparameter approach that allows us to change the prior on �uw without changing

the priors on any other parameters. The details are in the Appendix.

In addition to putting a prior on �uw , we also impose a prior belief that the conditional expected

return �t is stable and persistent. To capture the belief that �t is stable, we impose a prior that the

predictive R2 from the regression of rtC1 on �t is not very large, which is equivalent to the belief

that the total variance of �t is not very large. The prior on the R2, which is plotted in Panel C of

Figure 5, has a mode close to 1%, most of its mass is below 5%, and there is very little prior mass

above 10%. To capture the belief that �t is persistent, we impose a prior that ˇ, the slope of the

AR(1) process for �t , is smaller than one but not by much.15 The prior on ˇ, which is plotted in

Panel D of Figure 5, has most of its mass above 0.7 and there is virtually no prior mass below 0.5.

We do not impose a prior belief that �t > 0. Although such a belief is reasonable under a fully

rational view, we do not wish to preclude the possibility that some of the variation in �t is driven

by investor sentiment. The prior distributions on all other parameters (�;A; ˛, and most elements

of ˙ ) are noninformative. Separately, we also consider a “diffuse” prior, which is completely

noninformative about all model parameters, including �uw, ˇ, and R2.

4.4. Predictive System vs. Predictive Regression

In contrast to a predictive regression, the predictive system allows us to conduct finite-sample

inferences that explicitly incorporate predictor imperfection. The predictive system also produces

more precise inferences about expected returns. To demonstrate this, we compare the explanatory

powers of the system and the regression for a broad range of parameter values. Specifically, we

compare the R2 in the regression of rtC1 on xt for the predictive regression with the R2 in the

regression of rtC1 on E.rtC1jDt / � E.�t jDt / for the predictive system. The ratio of these R2

values when rtC1 is the dependent variable is the same as when �t is the dependent variable,

R2.rtC1 on xt/

R2.rtC1 on E.�t jDt//
D R2.�t on xt /

R2.�t on E.�t jDt //
; (29)

since each of the R2 values in the latter ratio is equal to its corresponding value in the first ratio

multiplied by Var.rtC1/=Var.�t/. The parameters in equations (3) through (6) can be used to

obtain the covariance matrix of �t and xt and thereby the R2 in the regression of �t on xt ,

R2.reg/ D VarŒE.�t jxt /�

Var.�t/
: (30)

15Ferson, Sarkissian, and Simin (2003, footnote 2) discuss several reasons to believe expected return is persistent.
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As shown in the Appendix, we can solve analytically for the steady-state value of Var.�t jDt /,

which allows us to compute the R2 in the regression of �t on E.�t jDt / as

R2.sys/ D VarŒE.�t jDt/�

Var.�t/
D 1 � Var.�t jDt /

Var.�t /
: (31)

The ratio in equation (29) is computed as R2.reg/=R2.sys/. Note that this R2 ratio cannot exceed

1 because xt 2 Dt . In other words, the estimates of �t from the predictive system are at least

as precise as the estimates from the predictive regression, simply because the system uses more

information. The smaller the R2 ratio, the larger the advantage of using the predictive system.

We use the R2 ratios to quantify the explanatory advantage of the predictive system, using

the same sample as in Section 4.1. Panel A of Table II shows the posterior means and standard

deviations of the R2 ratios for four different priors and four different sets of predictors. First,

observe that the posterior means of the R2 ratios are all comfortably lower than one, ranging from

0.08 to 0.86 across the 16 cases, and from 0.46 to 0.70 when all three predictors are used jointly.

Second, the R2 ratios are sensitive to the prior on �uw. For example, with the bond yield as the

single predictor, the R2 ratio is estimated to be 0.73 under the diffuse prior. When we impose the

prior belief that �uw is negative, the R2 ratio declines to 0.34 under the less informative prior and

then further to 0.08 under the more informative prior. In other words, under the prior that more

than half of the market variance is due to discount rate news, the expected return estimates from

the predictive system are about 12.5 times more precise than those from the predictive regression.

For the dividend yield, we observe the opposite pattern—the R2 ratio increases from 0.28 to 0.59

to 0.81 for the same priors. The opposite patterns result from the opposite effects that the prior on

�uw has on the adequacy of xt as a predictor in the two cases, as we will see later.

Panel B of Table II shows the posterior means and standard deviations of one minus the ratio

of the mean squared errors from the predictive system and the predictive regression. The mean

squared error is defined as MSE D E
˚

.rtC1 � ft/
2
	

, where ft is a return forecast. All posterior

means in Panel B are positive, ranging from 0.01 to 0.17, confirming that the predictive system

forecasts returns more precisely than the predictive regression does.

Another way of comparing the predictive system with the predictive regression is to compare

their estimates of the slope coefficient b from the predictive regression. Figure 6 plots the pos-

terior distributions of b computed under three scenarios. The dashed line is the posterior of b

computed from the predictive regression under no prior information. This posterior has a Student t

distribution whose mean is equal to the maximum likelihood estimate (MLE) of b (Zellner, 1971,

pp. 65–67). The dashed line thus represents “conventional inference” on predictability. The other
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two lines in Figure 6 plot the implied posteriors of b computed from the predictive system.16 The

dotted line corresponds to the prior that is noninformative about �uw but informative about ˇ and

R2. In all three panels of Figure 6, the dotted line is substantially different from the dashed line,

which means that imposing the prior that �t is stable and persistent significantly affects the in-

ference about predictability. In addition, the dotted line is shifted toward zero compared to the

dashed line, which means that the prior belief that �t is stable and persistent weakens the evidence

of predictability. Finally, the solid line corresponds to the prior that is informative not only about

ˇ and R2 but also about �uw. The prior on �uw clearly affects the inference about predictability.

Consider Panel A, in which the single predictor is the bond yield. Whereas the traditional inference

(dashed line) would conclude with almost 100% certainty that the bond yield is a useful predictor

(b > 0), the system-based inference with the more informative prior on �uw (solid line) concludes

no such thing because almost half of the posterior mass of b is below zero. This prior also slightly

weakens the predictive power of CAY but it strengthens the predictive power of the dividend yield.

4.5. How Imperfect Are Predictors?

The predictive system also allows us to learn about the correlation between the expected return

�t and the predictors. Since �t is not observed, the manner in which one learns about such

correlations merits some discussion. Consider, for simplicity, the case of a single predictor xt

whose autocorrelation A is equal to ˇ. The unconditional correlation between the expected return

and the predictor, �x�, is then equal to �vw, the conditional correlation.17 By virtue of the fact that

the correlation matrix for .ut vt wt/ must be non-negative definite, it is readily verified that

�vw D �uv�uw C ��; where �2
� � .1 � �2

uv/.1 � �2
uw/: (32)

In other words, even though correlations are not transitive (two correlations don’t imply the third),

they become nearly transitive when at least one of them approaches ˙1.

We specify noninformative priors for �vw and �uv. Doing otherwise would most likely involve

priors about each predictor’s usefulness—directly through �vw but indirectly through �uv as well,

given informative priors about �uw. While such an approach could be reasonable, especially in a

forecasting setting, we wish to illustrate here how our framework can deliver inferences about each

16Although b does not appear explicitly in the predictive system, its value can be computed from the system’s

parameters (see footnote 5), so its posterior draws can be constructed from the draws of the system’s parameters.
17More generally,

�x� D �vw

�
.1 � ˇ2/.1 � A2/

.1 � ˇA/2

� 1

2

;

so that �2
x� � �2

vw.
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predictor’s usefulness without making prior judgments about that property. Moreover, we prefer

not to add such complexity to this initial exploration of predictive systems. The data are quite

informative about �uv anyway, in that with only modest predictability in returns, the value of �uv is

close to that of �rv, which can be estimated from the series of rt and xt . (When the predictive R2

is low, �2
ru D .1�R2/ is close to one, and equation (32) then implies that �uv is well approximated

by �rv.) Information about �uw enters largely through the prior. When the prior is concentrated

on large negative values, then the likely values of �� in (32) are small, so the prior information

about �uw and the sample information about �uv get combined to provide information about �vw .

Alternatively, if the data indicate that �uv is close to ˙1 (e.g., in Table I, �uv � �0:9 when the

predictor is the dividend yield), then again �� is likely to be small, so that �uv and �uw are again

jointly informative about �vw.

Figures 7 and 8 analyze the degree to which two of our predictors can capture the unobservable

true expected return �t . We report results for two predictive systems, in which the predictors are

the dividend yield alone (Figure 7) and the bond yield alone (Figure 8). Panel A of each figure

plots the posterior distribution of the R2 from the regression of �t on xt . This R2 is assumed to

be one in a predictive regression, but its posterior in the predictive system has very little mass at

values close to one. In both figures, the R2s larger than 0.8 receive very little posterior probability

and the values larger than 0.9 are deemed almost impossible, regardless of the prior. This evidence

suggests that neither of the two predictors is likely to be perfectly correlated with �t .
18

The R2 depends on the prior for �uw in an interesting way. In Panel A of Figure 7, becoming

increasingly informative about �uw shifts the posterior of the R2 to the right, with the mode shifting

from about 0.3 under the noninformative prior to about 0.6 under the more informative prior. This

makes sense: since the dividend yield exhibits a highly negative contemporaneous correlation with

stock returns, imposing a prior that �t also possesses such negative correlation makes the dividend

yield more closely related to �t . Exactly the opposite happens in Panel A of Figure 8, where

becoming increasingly informative about �uw shifts the posterior of the R2 to the left so that its

mode is close to zero under the more informative prior. This makes sense as well because the bond

yield is positively correlated with stock returns (Table I).

Panel B of both figures plots the posterior of the predictive R2 from the regression of rtC1 on

�t . Putting a more informative prior on �uw increases the R2 in both figures, but these effects are

relatively small. Since we put a fairly informative prior on the predictive R2 (see Panel C of Figure

18Note that even if xt were perfectly correlated with �t in population, the posterior of their correlation would have

nontrivial mass below one in any finite sample. Since we always observe finite samples, we always perceive imperfect

correlation between xt and �t . Also note that in the NBER version of this article, we report results analogous to those

in Figures 8 and 9 for a predictive system that uses three predictors: the dividend yield, bond yield, and CAY.
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5), the posterior is not dramatically different from the prior in either figure.

Panels C and D of both figures plot the posteriors of the correlations between each predictor

and �t , both conditional (�vw) and unconditional (�x�). These correlations are all well below 1

and they are quite sensitive to the prior on �uw. As we become increasingly informative about

�uw, we perceive the dividend yield to be more highly correlated with �t but the bond yield to be

less highly correlated with �t . The effect for the bond yield is dramatic, judging by the posterior

modes in Panel C of Figure 8. Under the noninformative prior, the bond yield has 90% conditional

correlation with �t , but under the more informative prior, this correlation drops to 20%.

Overall, Figures 8 and 9 show that our predictors are imperfectly correlated with �t and that

the inference about this correlation is substantially affected by the prior beliefs about �uw. Prior

beliefs informed by economic principles strengthen the predictive appeal of the dividend yield but

they weaken the predictive appeal of the bond yield.

4.6. Estimates of Expected Return

Figure 9 plots the time series of expected returns estimated by three different approaches. The

dashed line plots the fitted values from the predictive regression. These traditional expected return

estimates seem too volatile to be plausible, as we also observed in Figure 4. For example, in Panel

C, which includes all three predictors, expected returns range from -6% to 9% per quarter. Not

surprisingly, imposing the prior that �t is stable and persistent (dotted line) produces smoother

expected return estimates. Adding the more informative prior on �uw (solid line) further smoothes

the expected return estimates: in Panel C, they range from -1.5% to 3.5% per quarter. The infor-

mative priors have substantial effects on expected returns not only in Panel C but also in Panel B in

which CAY is the single predictor: while the regression-fitted values range from -5.5% to 7.5% per

quarter, the solid line ranges from -1.5% to 2.5%. Only in Panel A, in which the dividend yield is

the single predictor, the effect of the prior is relatively mild. The reason is that the regression-fitted

values in Panel A are already fairly smooth and negatively correlated with stock returns.

While eyeballing the expected return estimates seems informative, we also compute measures

summarizing their differences. Table III compares five different series of expected return estimates.

The first is the series of fitted values from the predictive regression, and the others are produced

by four different approaches to estimating the predictive system. One of the latter approaches

estimates the predictive system by MLE, while the other three impose the prior that�t is stable and

persistent but differ in their prior on �uw . We compare the five series of expected return estimates

in three different ways: pairwise correlations, mean absolute differences, and average utility losses.
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The utility losses are computed for a mean-variance investor allocating between the market and the

T-bill who knows the variance of market returns but must estimate the market’s expected return.

The investor’s risk aversion, 2.54, is such that the optimal portfolio is fully invested in the market,

on average. We compute the investor’s certainty equivalent loss resulting from holding a portfolio

that is optimal under a different approach for estimating expected returns. For example, the 0.11%

per quarter average utility loss in the first row of Panel A is suffered by an investor who wants to

estimate expected return in the predictive system by MLE but is forced to use the fitted values from

the predictive regression. Finally, the three panels consider three different sets of predictors: the

dividend yield, CAY, and the two predictors combined with the bond yield.

Panel A of Table III shows that when the dividend yield is the single predictor, the expected

return estimates are fairly similar across the five estimation approaches, confirming the evidence

from Panel A of Figure 9. No average utility loss exceeds 0.20% per quarter, no mean absolute

difference is larger than 0.65% per quarter, and all correlations exceed 81%. We also observe

that imposing informative priors makes the system-based estimates closer to the regression-based

estimates. For example, the utility losses fall monotonically from 0.11% to 0.03% as move from

column two to column five in the first row of Panel A.

The differences across the five approaches are substantially larger in Panel B where we use

CAY to predict returns. For example, compare the system-based estimates obtained by MLE versus

the more informative prior. The mean absolute difference in expected returns is 1.65% per quarter

and the average certainty equivalent loss from using one estimate in place of the other is 1.38% per

quarter. Both quantities are highly economically significant. In Panel C, where we use all three

predictors, the differences across the five approaches are also large and similar in magnitude.

In all three panels, the smallest differences are obtained for the noninformative versus the less

informative prior on �uw . No average utility loss exceeds 0.06% per quarter, no mean absolute

difference is larger than 0.37% per quarter, and all correlations exceed 95.4%. However, moving

from the less informative to the more informative prior on �uw can produce sizeable differences in

expected returns. For example, the mean absolute difference in Panel C is 1.46% per quarter and

the average utility loss is 0.84% per quarter.

To sum up, when we use the dividend yield as the single predictor, the system-based expected

return estimates are close to the regression-based estimates. In all other cases, the system and the

regression generate substantially different expected returns, and the system-based estimates are

significantly affected by the prior on �uw.
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4.7. Variance Decomposition of Expected Return

In the predictive regression approach, expected return �t is modeled as an exact linear function

of the predictors in xt . In a predictive system, however, the data provide additional information

about �t because the lagged values of unexpected returns and predictor innovations also enter the

expected return estimates (see Section 3.2.). In this section, we decompose the variance of �t to

assess the relative importance of the various sources of information in a predictive system.

We can rewrite the AR(1) process for xt as an MA(1) process, as we did for �t in equation

(14): xt D Ex C
P1

iD0 Aivt�i . Then we project wt linearly on ut and vt :

wt D Œ�wu �wv�

�

�2
u �uv

�vu ˙vv

��1 �
ut

vt

�

C �t D  uut C vvt C �t : (33)

Substituting for wt from equation (33) into equation (14), we obtain

�t D .E.r/�  vE.x//C vxt C u

1
X

iD0

ˇiut�i C v

1
X

iD0

�

ˇiIK � Ai
�

vt�i C
1
X

iD0

ˇi�t�i ; (34)

where K is the number of predictors and IK is a K � K identity matrix. Equation (34) shows

how the lagged values of unexpected returns ut�i and predictor innovations vt�i affect �t in the

presence of the current predictor values in xt . Based on this equation, we can decompose the

variance of �t into the components due to xt , fusgs�t , and fvsgs�t . See the Appendix for details.

Table IV reports the posterior means and standard deviations of the R2s from the regressions

of �t on xt (column 1), �t on xt and fusgs�t (column 2), and �t on xt and fus; vsgs�t (column 3).

We consider four sets of predictors xt : the dividend yield, bond yield, CAY, and the combination

of all three predictors. For each set of predictors, we estimate the predictive system under three

different priors. All three priors assume that �t is stable and persistent but they differ in their

degree of informativeness about �uw.

First, note that xt never accounts for more than 63% of the variance of �t and that it can

account for as little as 3% of this variance. In contrast, xt combined with fus; vsgs�t can account

for as much as 95% of the variance of �t , and those components account for more than 80% of the

variance in 10 of the 12 cases in Table IV. The most striking effect obtains for the bond yield, for

which adding fus; vsgs�t to xt increases the R2 from 0.03 to 0.95. It seems clear that a predictive

regression, which uses only xt to predict returns, does not use the data as effectively as a predictive

system, which also uses fus; vsgs�t in addition to xt .

The R2’s in Table IV are substantially affected by the prior on �uw. For example, consider the

first columns of Panels A and B. Under the noninformative prior on �uw, both the dividend yield
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and the bond yield explain about a third of the variance of �t . As we become more informative

about �uw , this fraction increases from 0.34 to 0.40 to 0.57 for the dividend yield, but it decreases

from 0.33 to 0.24 to 0.03 for the bond yield. These opposite patterns reflect the opposite signs of

the correlations between stock returns and the two predictors, as explained earlier.

The lagged unexpected returns fusgs�t contain a significant amount of information about �t

beyond that included in xt . When fusgs�t is added to xt in estimating �t , the R2’s increase

by anywhere between 7% and 83%. For example, under the more informative prior on �uw, the

R2 increases from 0.03 to 0.86 for the bond yield, from 0.53 to 0.87 for CAY, and from 0.63 to

0.85 when fusgs�t is added to all three predictors. The lagged predictor innovations fvsgs�t also

contain useful information about �t . When fvsgs�t is added to xt and fusgs�t , the R2’s increase

by between 1% and 41%. The smallest increases, of 1% to 5%, obtain for the dividend yield, while

the largest increases, of 9% to 41%, obtain for all three predictors combined.

To summarize, the past values of unexpected returns and predictor innovations contain use-

ful incremental information about the current expected return. This information is used by the

predictive system but not by the standard predictive regression.

4.8. Variance of Multiperiod Returns

In this final section, we analyze the effect of prior beliefs about �uw on the variance of multiperiod

returns. Let rT;T Ck denote the multiperiod log return in periods T through T C k. Consider the

problem of assessing the variance of rT;T Ck conditional on the sample information DT . Stambaugh

(1999) and Barberis (2000) analyze this “predictive” variance in a VAR setting in which expected

return is given by a predictive regression. We examine this variance in our setting with imperfect

predictors, and find that it is substantially affected by prior beliefs about �uw.

From the definition rT;T Ck D rT C1 C rT C2 C � � � C rT CK , the conditional moments are

E.rT;T Ckj�T / D kE.r/C 1 � ˇk

1 � ˇ .�T � E.r// (35)

Var.rT;T Ckj�T / D k�2
u C �2

w

.1 � ˇ/2
�

k � 1 � 2ˇ
1 � ˇk�1

1 � ˇ
C ˇ2 1 � ˇ2.k�1/

1 � ˇ2

�

C 2�uw

1 � ˇ

�

k � 1 � ˇ1 � ˇk�1

1 � ˇ

�

; (36)

where �T comprises �T and the parameters of the predictive system. The predictive variance is

Var.rT;T CkjDT / D EŒVar.rT;T Ckj�T /jDT �C VarŒE.rT;T Ckj�T /jDT �; (37)
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by variance decomposition. We use repeated draws from the posterior distribution of �T to com-

pute the two posterior moments on the right-hand side of equation (37).

Figure 10 plots the predictive k-period variance on a per-period basis (i.e., divided by k), ob-

tained from the predictive system with the dividend yield as the predictor. The figure shows that the

prior for �uw has a large effect on the long-run variance. For example, at the five-year investment

horizon, the variance is 0.0051 under the more informative prior, but it is 0.0068, or 33% larger,

under the noninformative prior. In addition, the effect of �uw increases with the investment hori-

zon. At the one-year horizon, the variance under the noninformative prior exceeds its counterpart

under the more informative prior by 9%, but this difference grows to 33% at the five-year horizon.

The prior for �uw affects the long-run variance by affecting the perceived mean reversion in

stock returns. When �uw is sufficiently negative, high (low) realized returns tend to mean-revert

because they tend to be accompanied by decreases (increases) in expected future returns. The effect

of mean reversion is stronger when �uw takes larger negative values. As a result, the long-horizon

variance in Figure 10 is at its lowest under the more informative prior for �uw.

Figure 10 also shows that the predictive variance is a U-shaped function of the investment

horizon. This pattern is an outcome of several forces, including mean reversion in stock returns,

uncertainty about future values of �t , and parameter uncertainty. Analyzing these forces in detail

is beyond the scope of this study, but we are presently exploring them in separate work.

5. Conclusions

Predictive systems allow predictors to be imperfectly correlated with the conditional expected re-

turn. When predictors are imperfect, expected returns conditional on available data depend not only

on the most recent values of those predictors but also on lagged returns and lags of the predictors.

Recent returns receive negative weights when a significant portion of the variance in unexpected

returns is due to changes in expected returns. The lags of returns and predictors often account for

a large fraction of the variation in estimates of conditional expected returns.

Predictive systems also allow one to incorporate a prior belief that expected and unexpected

returns are negatively correlated. We find that such a belief has an important impact on estimates

of expected returns and various inferences about predictability, including a predictor’s correlation

with expected return as well as the variance of returns over longer investment horizons.

Although our focus is on predictive systems, we also find two implications for predictive re-
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gressions. First, we show that if predictors are imperfect, the predictive regression residuals are

autocorrelated. This autocorrelation should be incorporated when computing standard errors in

predictive regressions. In addition, this autocorrelation provides a simple diagnostic for predic-

tor imperfection: non-zero autocorrelation indicates imperfect predictors. Second, we argue that

researchers running predictive regressions should examine the regression-implied correlation be-

tween expected and unexpected returns. Predictive regressions in which this correlation is positive

are unlikely to perfectly capture time variation in expected stock market returns.

Our initial exploration of predictive systems can be extended in many directions. First, we are

intentionally noninformative about the degree of imperfection in a predictor, but one could instead

incorporate an informative prior belief about a predictor’s correlation with expected return. The

latter approach is likely to be preferable when inference is less the objective than is producing the

best forecast given one’s own prior judgment. Along these lines, one could study the implications

of predictive systems for asset allocation. Second, we assume that the conditional mean return

follows an AR(1) process, but it would also make sense to consider more complicated processes.

For example, if the mean were allowed to have not only a slow-moving persistent component but

also a higher-frequency transient component, the bond yield, which is not very persistent, might be

inferred to be more highly correlated with the conditional mean. Third, we assume that the return

variance is constant, but one could allow it to be time-varying, potentially in a manner correlated

with expected return (e.g., Brandt and Kang, 2004). Fourth, we consider three predictors but it

would also be interesting to examine the degrees of imperfection in various other predictors that

have been proposed in the literature (e.g., Ferson and Harvey (1991), Lamont (1998), Lewellen

(1999), Ang and Bekaert (2007), Santos and Veronesi (2006), etc.). Fifth, we analyze predictabil-

ity in U.S. stock market returns, but it would also be interesting to apply predictive systems to

international markets (e.g., Ferson and Harvey, 1993).

It could also be useful to expand the predictive system to incorporate cash flow news. We have

argued that the innovation in the expected return should be negatively correlated with the unex-

pected return, but if one could account for the portion of the latter that is correlated with cash flow

news, the remaining portion would be driven entirely by news about expected return. These issues

are beyond the scope of this paper but they merit more attention. See Cochrane (2008), Rytchkov

(2007), and van Binsbergen and Koijen (2007) for recent analyses of the interaction between return

predictability and cash flow predictability. Cash flow forecasts also enter the calculations of the

implied cost of capital, which is used by Pástor, Sinha, and Swaminathan (2008) to proxy for the

conditional expected market return.

One might ask whether the predictive system produces out-of-sample forecasts with lower
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mean squared error (MSE) than a simpler approach such as a predictive regression or the sample

average.19 A Bayesian investor with a quadratic (MSE) loss function would prefer a forecast that

combines his priors and the data to estimate the conditional expected return based on the correct

model. The correct model, when estimated using a finite sample, tends to produce out-of-sample

MSEs higher than those from estimates of simpler models when the true degree of predictability is

sufficiently small, as discussed by Clark and West (2006, 2007) and Hjalmarsson (2006). Thus, a

simple comparison of out-of-sample MSEs would not speak directly to the question of whether the

predictive system is the right model from the investor’s perspective. That question, one of model

selection, is beyond the scope of this study but could be an interesting area for future research.

19Goyal and Welch (2003, 2006), Campbell and Thompson (2008), and Rapach, Strauss and Zhou (2007), among

others, investigate the abilities of predictive regressions and sample averages to forecast stock returns out of sample.
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Appendix.

We begin working with a generalized version of the predictive system with more than one asset,

so that rt , xt , and �t are all vectors. To maintain the usual convention that matrices are denoted

by uppercase letters, we replace ˇ by B, the � ’s by the corresponding˙ ’s, etc.

We restate the predictive system from equations (3) through (5) here in the multi-asset case:

rtC1 D �t C utC1 (A1)

xtC1 D � C Axt C vtC1 (A2)

�tC1 D ˛ C B�t C wtC1; (A3)

with the disturbances distributed identically and independently across t as

2

4

ut

vt

wt

3

5 � N

0

@

2

4

0

0

0

3

5 ;

2

4

˙uu ˙uv ˙uw

˙vu ˙vv ˙vw

˙wu ˙wv ˙ww

3

5

1

A : (A4)

Let D0 denote the null information set, so that the unconditional moments are given as

2

4

rt

xt

�t

3

5 jD0 � N

0

@

2

4

Er

Ex

Er

3

5 ;

2

4

Vrr Vrx Vr�

Vxr Vxx Vx�

V�r V�x V��

3

5

1

A : (A5)

Let zt denote the vector of the observed data at time t , zt D .r 0
t x0

t /
0. Denote the data we observe

through time t as Dt D .z1; : : : ; zt /, and note that our complete data consist of DT . Also define

Ez D
�

Er

Ex

�

; Vzz D
�

Vrr Vrx

Vxr Vxx

�

; Vz� D
�

Vr�

Vx�

�

: (A6)

From the above we obtain

Er D .I � B/�1˛; Vrr D V�� C˙uu; Vrx D V�xA0 C˙uv; (A7)

Ex D .I � A/�1�; Vxx D AVxxA0 C˙vv; V�x D BV�xA0 C˙wv; (A8)

V�� D BV��B 0 C˙ww; V�r D BV�� C˙wu: (A9)

Given the well known identity vec .DFG/ D .G0 ˝ D/vec .F /, we can write

vec .Vxx/ D ŒI � .A ˝ A/��1vec .˙vv/ (A10)

vec .V��/ D ŒI � .B ˝ B/��1vec .˙ww/ (A11)

vec .V�x/ D ŒI � .A ˝ B/��1vec .˙wv/: (A12)

Drawing the time series of �t

To draw the time series of the unobservable values of �t conditional on the current parameter

draws, we apply the forward filtering, backward sampling (FFBS) approach developed by Carter

and Kohn (1994) and Frühwirth-Schnatter (1994). See also West and Harrison (1997, chapter 15).
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Filtering

The first stage follows the standard methodology of Kalman filtering. Define

at D E.�t jDt�1/ bt D E.�t jDt/ et D E.zt j�t ;Dt�1/ (A13)

ft D E.zt jDt�1/ Pt D Var.�t jDt�1/ Qt D Var.�t jDt / (A14)

Rt D Var.zt j�t ;Dt�1/ St D Var.zt jDt�1/ Gt D Cov.zt ; �
0
t jDt�1/ (A15)

Conditioning on the (unknown) parameters of the model is assumed throughout but suppressed in

the notation for convenience. First note that

�0jD0 � N.b0;Q0/; (A16)

where b0 D Er and Q0 D V��,

�1jD0 � N.a1;P1/; (A17)

where a1 D Er and P1 D V��, and

z1jD0 � N.f1;S1/; (A18)

where f1 D Ez and S1 D Vzz. Note that

G1 D Vz� (A19)

and that

z1j�1;D0 � N.e1;R1/; (A20)

where

e1 D f1 C G1P�1
1 .�1 � a1/ (A21)

R1 D S1 � G1P�1
1 G0

1: (A22)

Combining this density with equation (A17) using Bayes rule gives

�1jD1 � N.b1;Q1/; (A23)

where

b1 D a1 C P1.P1 C G0
1R�1

1 G1/
�1G0

1R�1
1 .z1 � f1/ (A24)

Q1 D P1.P1 C G0
1R�1

1 G1/
�1P1: (A25)

Continuing in this fashion, we find that all conditional densities are normally distributed, and we

obtain all the required moments for t D 2; : : : ;T :

at D ˛ C Bbt�1 (A26)

Pt D BQt�1B 0 C˙ww (A27)

ft D
�

bt�1

� C Axt�1

�

(A28)
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St D
�

Qt�1 C˙uu ˙uv

˙vu ˙vv

�

(A29)

Gt D
�

Qt�1B 0 C˙uw

˙vw

�

(A30)

et D ft C Gt P
�1
t .�t � at/ (A31)

Rt D St � Gt P
�1
t G0

t (A32)

bt D at C Pt.Pt C G0
tR

�1
t Gt /

�1G0
t R

�1
t .zt � ft / (A33)

D at C G0
tS

�1
t .zt � ft/ (A34)

Qt D Pt .Pt C G0
t R

�1
t Gt/

�1Pt : (A35)

The values of fat ; bt ;Qt ;Pt g for t D 1; : : : ;T are retained for the next stage.

Sampling

Let �t D Œrt xt �t �
0
. We wish to draw .�0; �1; : : : ; �T / conditional on DT . The backward-

sampling approach relies on the Markov property of the evolution of �t and the resulting identity,

p.�0; �1; : : : ; �T jDT / D p.�T jDT /p.�T �1j�T ;DT �1/ � � � p.�1j�2;D1/p.�0j�1;D0/: (A36)

We first sample �T from p.�T jDT /, the normal density obtained in the last step of the filtering.

Then, for t D T � 1;T � 2; : : : ; 1; 0, we sample �t from the conditional density p.�t j�tC1;Dt /.

(Note that the first two subvectors of �t are already observed and thus need not be sampled.) To

obtain that conditional density, first note that

�tC1jDt � N

0

@

2

4

bt

� C Axt

atC1

3

5 ;

2

4

Qt C˙uu ˙uv Qt B
0 C˙uw

˙vu ˙vv ˙vw

BQt C˙wu ˙wv PtC1

3

5

1

A ; (A37)

�t jDt � N

0

@

2

4

rt

xt

bt

3

5 ;

2

4

0 0 0

0 0 0

0 0 Qt

3

5

1

A ; (A38)

and

Cov.�t ; �
0
tC1jDt / D

2

4

0 0 0

0 0 0

Qt 0 Qt B
0

3

5 : (A39)

Therefore,

�t j�tC1;Dt � N.ht ;Ht /; (A40)

where

ht D

2

4

rt

xt

bt

3

5C

2

4

0 0 0

0 0 0

Qt 0 Qt B
0

3

5

2

4

Qt C˙uu ˙uv QtB
0 C˙uw

˙vu ˙vv ˙vw

BQt C˙wu ˙wv PtC1

3

5

�12

4

rtC1 � bt

xtC1 � � � Axt

�tC1 � atC1

3

5
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and

Ht D

2

4

0 0 0

0 0 0

0 0 Qt

3

5�

2

4

0 0 0

0 0 0

Qt 0 Qt B
0

3

5

2

4

Qt C˙uu ˙uv QtB
0 C˙uw

˙vu ˙vv ˙vw

BQt C˙wu ˙wv PtC1

3

5

�12

4

0 0 0

0 0 0

Qt 0 QtB
0

3

5

0

The mean and covariance matrix of �t are taken as the relevant elements of ht and Ht .

Expected returns and past values

In this section, we derive the equations (8), (11), and (26). We still work in the general case

in which rt is a vector of returns rather than a scalar. Therefore, to continue denoting matrices by

uppercase letters, we replace m by M , n by N , � by �, � by ˚ , ı by �, ! by ˝, and � by K.

Below, we express the vector of conditional expected returns, bt D E.rtC1jDt /, as a function

of past returns and predictors. Denote

ŒMt Nt � � Pt .Pt C G0
tR

�1
t Gt /

�1G0
tR

�1
t D G0

tS
�1
t ; (A41)

so that, from equation (A33), for t > 1,

bt D at C ŒMt Nt �.zt � ft/

D ˛ C Bbt�1 C ŒMt Nt �

�

rt � bt�1

xt � � � Axt�1

�

D .I � B/Er C .B � Mt /bt�1 C Mtrt C Ntvt ; (A42)

or

bt � Er D B.bt�1 � Er/C Mt.rt � bt�1/C Ntvt : (A43)

For t D 1, we obtain

b1 � Er D M1.r1 � b0/C N1v1;

where v1 denotes x1 � Ex . Repeated substitution for the lagged values of .bt � Er/ gives

bt D Er C
tX

sD1

�s.rs � bs�1/C
tX

sD1

˚svs ; (A44)

where

�s D Bt�sMs (A45)

˚s D Bt�sNs : (A46)

That is, the expected return conditional on data observed through period t can be written as the

unconditional mean Er plus a linear combination of past return forecast errors, �s D rs � bs�1,

plus a linear combination of past innovations in the predictors. This is equation (8) in the text.
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The conditional expected return bt can be rewritten so that past forecast errors are replaced by

returns in excess of the unconditional mean Er . To do so, modify equation (A42) as

bt � Er D .B � Mt /.bt�1 � Er /C Mt .rt � Er/C Ntvt (A47)

so that repeated substitution for the lagged values of .bt � Er/ then yields

bt D Er C
t
X

sD1

˝s.rs � Er/C
t
X

sD1

�svs (A48)

where

˝s D
�

.B � Mt/.B � Mt�1/ � � � .B � MsC1/Ms for s < t

Ms for s D t
(A49)

�s D
�

.B � Mt/.B � Mt�1/ � � � .B � MsC1/Ns for s < t

Ns for s D t
(A50)

That is, bt is then equal to the unconditional mean return Er plus linear combinations of past

returns in excess of Er and past innovations in the predictors. This is equation (11) in the text.

If Er is replaced by the sample mean in equation (11), then the estimate of bt becomes

Obt D
tX

sD1

Ksrs C
tX

sD1

�svs; (A51)

where

Ks D 1

t

 

I �
tX

lD1

˝l

!

C˝s ; (A52)

and
Pt

sD1 Ks D I . This is a generalized version of equation (26) in the text.

In the rest of the Appendix, we discuss the special case (implemented in the paper) in which

rt is a scalar. This simplification turns �t , ˛, and B into scalars as well. Therefore, we now turn

back to the notation from the text in which B is replaced by ˇ and the relevant˙ ’s by � ’s.

Drawing the parameters

This section describes how we obtain the posterior draws of all parameters conditional on the

current draw of the time series of �t .

Prior distributions

First, we discuss the prior on .�;A; ˛; ˇ/. We require both xt and �t to be stationary, so that

all eigenvalues of A must lie inside the unit circle and ˇ 2 .�1; 1/. Apart from this restriction,

our prior is noninformative about A but informative about ˇ, ˇ � N.0:99; 0:152/ (see Figure

5). We reparameterize the model to replace the intercepts � and ˛ by the unconditional means

of �t and xt , which we denote by E� and Ex, respectively. The equations (4) and (5) then read

xtC1 D Ex CA.xt �Ex/CvtC1 and �tC1 D E� Cˇ.�t �E�/CwtC1. This reparameterization
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allows us to increase the speed of convergence of our MCMC chain by putting a mildly informative

prior on E�, E� � N. N�; �2
E�

/, centered at the sample mean return with a large prior standard

deviation of 1% per quarter. We use a noninformative prior for Ex, Ex � N.0; �2
Ex

IK / with a

large �Ex
. All four parameters, A, ˇ, E�, and Ex , are independent a priori.

The prior on ˙ is more complicated. We divide the elements of ˙ into two subsets: first,

the 2 � 2 submatrix ˙11 � Œ�2
u �uwI �wu �

2
w�, and second, the elements of ˙ that involve v:

˙.v/ � .˙vv; �vu; �vw/. We choose a prior that is informative about˙11 but noninformative about

˙.v/. Such a prior is obtained as a posterior of ˙ when a noninformative prior is updated with a

hypothetical sample in which there are T0 observations of .u; w/ but only S0 � T0 observations of

v (see Stambaugh, 1997). We choose T0 equal to one fifth of the sample size, which makes the prior

on ˙11 informative (five times less informative than the actual sample). We choose S0 D K C 3,

where K is the number of predictors, which makes the prior on ˙.v/ virtually noninformative (as

informative as a sample of only K C 3 observations, where K D 1 or 3).

The prior on ˙11 is inverted Wishart, ˙11 � IW .T0
Ȯ

11;0;T0 � K � 1/, so the prior mean is

E.˙11/ D Ȯ
11;0 .T0=.T0 � K � 4//. Denote the .i; j / element of Ȯ

11;0 by Mij , for i D 1; 2 and

j D 1; 2. The value of M11 is chosen such that the prior mean of �2
u is equal to 95% of the sample

variance of market returns. The value of M22 is chosen to deliver the prior mean of �2
w which, com-

bined with ˇ of 0.97, sets the variance of �t equal to 5% of the sample variance of market returns.

These values of M11 and M22 lead to a prior for the R2 from the regression of rtC1 on �t that we

find plausible (see Figure 5). To be able to put different priors on �uw while keeping the same prior

on �2
u and �2

w, we adopt a hyperparameter approach. We assume that M12 is an unknown hyperpa-

rameter with a uniform prior distribution on the interval .�c
p

M11M22; c
p

M11M22/. Since the

prior mean of �uw is approximately equal to M12=
p

M11M22, this prior mean is approximately

uniformly distributed as U.�c; c/. For all three priors on �uw, we specify c D �0:90 and we vary

c as follows: 0.9 for the noninformative prior, -0.35 for the less informative prior, and -0.87 for the

more informative prior. These choices produce the priors on �uw plotted in Figure 5.

The prior on˙.v/ is obtained by changing variables from (˙vv; �vu; �vw) to the slope C (3�K)

and the residual covariance matrix˝ (K � K) from the regression of vt on .ut ; wt/: C D .0 C2/
0

(zero intercept), C2 D Œ�vu �vw�˙
�1
11

, and˝ D ˙vv�C2˙11C 0
2
. We put a normal-inverted-Wishart

prior on C and ˝: ˝ � IW .S0
Ő

0;S0 � 1/ and vec .C /j˝ � N. Oc0;˝ ˝ .X 0
0X0/

�1/, where Ő
0,

Oc0, and X 0
0X0 represent estimates from the S0 periods in the hypothetical sample in which both vt

and .ut ; wt/ are available. The choices of Ő
0 and Oc0 are inconsequential because they represent

means of distributions with large variances. The prior variances are large, for two reasons. First,

we choose a very small value for S0, as explained above. Second, we choose X 0
0
X0 equal to S0

times a diagonal matrix whose .1; 1/ element is one and the remaining diagonal elements are tiny

positive numbers (so .X 0
0X0/

�1 is large). That is, we choose a hypothetical sample in which v is

much more volatile than .u; w/ in the short overlapping period of S0 observations. As a result, the

priors on C and ˝ are noninformative.

As mentioned above, these priors on ˙11, C , and ˝ can be thought of as posteriors. After

changing variables from˙ to .˙11;C;˝/, the diffuse prior on˙ , p.˙/ / j˙ j�.KC3/=2, translates

into p.˙11;C;˝/ / j˙11j.K�3/=2j˝j�.KC3/=2. When this noninformative prior is updated with
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the hypothetical sample of T0 observations of .u; w/ and S0 observations of v, the posteriors of

˙11, C , and ˝ are exactly the same as the priors described above. See Stambaugh (1997).

Posterior distributions

Drawing .�;A; ˛; ˇ/ given˙

After changing variables from .�; ˛/ into .Ex;E�/, the equations (4) and (5) can be written as
�

xtC1

�tC1

�

„ ƒ‚ …

qtC1

�
�

A 0

0 ˇ

�

„ ƒ‚ …

L1

�

xt

�t

�

„ ƒ‚ …

qt

�
�

IK � A 0

0 1 � ˇ

�

„ ƒ‚ …

L2

�

Ex

E�

�

„ ƒ‚ …

Ex�

D
�

vtC1

wtC1

�

;

where the covariance matrix of the residuals is ˙.vw/ �
�

˙vv �vwI �wv �
2
w

�

. The prior for Ex� is

Ex� � N
�

Ex�0
;Vx�0

�

;

where Ex�0
� .0 N�/0 and Vx�0

�
h

�2
Ex

IK 0I 0 �2
E�

i

. Since both the prior and the likelihood are

normally distributed, the full conditional posterior distribution of Ex� is also normal,

Ex�j� � N
�

QEx�; QVx�

�

; (A53)

where QVx� D .V �1
x�0

CTL0
2
˙�1

.vw/
L2/

�1 and QEx� D QVx�

h

V �1
x�0

Ex�0
C L0

2
˙�1

.vw/

PT
tD1.qtC1 � L1qt/

i

.

Let xk � .xk
2
; : : : ;xk

T
/0 denote the .T � 1/ � 1 vector of realizations of predictor k in periods

2; : : : ;T , for k D 1; : : : ;K. Also, let x.l/ denote the .T � 1/ � K vectors of realizations of all K

predictors in periods 1; : : : ;T � 1. Similarly, let � � .�2; : : : ; �T /
0 and �.l/ � .�1; : : : ; �T �1/

0,

and let Exk be the k-th element of Ex . Denote

z D

0

B
B
B
@

x1 � �T �1Ex1

:::

xK � �T �1ExK

�� �T �1E�

1

C
C
C
A
; Z D

0

B
B
B
@

x.l/ � �T �1E0
x 0 0 0

0
: : : 0 0

0 0 x.l/ � �T �1E0
x 0

0 0 0 �.l/ � �T �1E�

1

C
C
C
A
;

where �T �1 is a .T � 1/ � 1 vector of ones, the dimensions of z are Œ.T � 1/.K C 1/�� 1, and the

dimensions of Z are Œ.T � 1/.K C 1/�� .K2 C 1/. Then we can write the equations (4) and (5) as

z D Zb C errors ;

where b D .vec .A0/0 ˇ/0 and the covariance matrix of the error terms is ˙.vw/ ˝ IT �1. The prior

distribution on b is given by

b � N .b0;Vb0
/ � 1b2S ;

where b0 and Vb0
are chosen as explained earlier and 1b2S is equal to one when xt and �t are

stationary and zero otherwise. Let OVb D
h

Z 0.˙�1
.vw/

˝ IT �1/Z
i�1

and Ob D OVbZ 0.˙�1
.vw/

˝IT �1/z.

The full conditional posterior distribution of b is then given by

bj� � N
�

Qb; QVb

�

� 1b2S ; (A54)
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where QVb D .V �1
b0

C OV �1
b
/�1 and Qb D QVb

�

V �1
b0

b0 C OV �1
b

Ob
�

. We obtain the posterior draws of b

by making draws from N
�

Qb; QVb

�

and retaining only draws that satisfy b 2 S . The posterior draws

of A and ˇ are constructed from the posterior draws of b from the definition b D .vec .A0/0 ˇ/0.

Drawing ˙ given .�;A; ˛; ˇ/

Recall that we change variables from ˙ D
�

�2
u �uv �uwI �vu ˙vv �vwI �wu �wv �

2
w

�

to the set

of .˙11;C;˝/, where ˙11 � Œ�2
u �uwI �wu �

2
w�, and C and ˝ are the slope and the residual

covariance matrix from the regression of v on .u; w/.

The prior for ˙11 is conditional on the hyperparameter M12. This hyperparameter can be

drawn from its full conditional posterior density, p.M12j�;Dt/, which is given by

p.M12j˙11/ / j Ȯ
11;0j

T0�K�1

2 exp

�

�T0

2
tr.˙�1

11
Ȯ

11;0/

�

; M12 2 .�c
p

M11M22; c
p

M11M22/;

(A55)

where M12 is the .1; 2/ element of Ȯ
11;0. Although this is not a density of a well known distri-

bution, we can make posterior draws of M12 easily. We approximate this density by a piecewise

linear function, using a fine (250-point) grid on the interval .�c
p

M11M22; c
p

M11M22/. For a

random draw z � U.0; 1/, we find the points on the grid whose cumulative probability densities

are immediately above and below z, and we compute the value of M12 by linear interpolation.

Conditional on M12, we have the matrix Ȯ
11;0 in the prior distribution for ˙11. In addition,

conditional on .�;A; ˛; ˇ/, we have the sample of the residuals .ut ; vt ; wt/, t D 1; : : : ;T . Let Y1;T

denote the T � 2 matrix of Œut wt �, let Y2;T denote the T � K matrix of vt , and let X D Œ�T Y1;T �.

The sample estimates from the regression of Y2;T on Y1;T are given by OC D .X 0X /�1X 0Y2;T ,
Ő D .Y2;T � X OC /0.Y2;T � X OC /=T , and Ȯ

11 D Y 0
1;T

Y1;T =T . The posterior of ˙11 has an

inverted Wishart distribution:

˙11j� � IW .T0
Ȯ

11;0 C T Ȯ
11;T C T0 � K � 1/: (A56)

In addition, let VC D .X 0
0
X0 C X 0X /�1, QC D VC

h

.X 0
0
X0/ OC0 C .X 0X / OC

i

, Qc D vec . QC /, and

D D OC 0
0
X 0

0
X0

OC0 C OC 0X 0X OC � QC 0V �1
C

QC . The posterior of˝ has an inverted Wishart distribution:

˝j� � IW .S0
Ő

0 C T Ő C D;T C S0 � 1/; (A57)

and the conditional posterior of c D vec .C / is normal:

cj˝; � � N. Qc;˝ ˝ VC /: (A58)

Given the posterior draws of .˙11;C;˝/, we construct the remaining (non-˙11) elements of˙ as

follows: Œ�vu �vw� D C2˙11 and ˙vv D ˝ C C2˙11C 0
2
, where C D .C1 C2/

0.

Our inference is based on 25,000 draws from the posterior distribution. First, we generate a

sequence of 76,000 draws. We discard the first 1,000 draws as a “burn-in” and take every third

draw from the rest to obtain a series of 25,000 draws that exhibit little serial correlation. The

posterior draws of the relevant quantities such as �uw, �x�, R2.�t on xt /, R2.rtC1 on �t /, etc.

are constructed easily from the posterior draws of the basic parameters in the model.
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Maximum likelihood estimation

Denote the variance-covariance matrix of the disturbances in equations (4) and (28) as

Cov.

�

�t

vt

�

;
�

�t vt

�

/ D ˙� D
�

�2
� � 0

v�

�v� ˙vv

�

: (A59)

Maximum likelihood estimates are computed as the values of Ez , ˇ, m, n, A, �2
� , �v� , and ˙vv

that minimize

�2 ln L D
T
X

tD1

�ˇ
ˇVtjt�1

ˇ
ˇC .zt � Oztjt�1/

0V �1
tjt�1.zt � Oztjt�1/

�

; (A60)

where Oz1j0 D Ez,

V1j0 D
�

�2
r � 0

xr

�xr Vxx

�

;

�2
r D .1 � ˇ2/�1

�

n0˙vvn C .1 � ˇ2 C m2/�2
� C 2m� 0

v�n
�

;

�xr D .I � ˇA/�1 ŒA˙vvn C ŒI � .ˇ � m/A��v�� ;

Oztjt�1 D Ez C F11.zt�1 � Ez/C F12˙
�V �1

t�1jt�2

�

zt�1 � Ozt�1jt�2

�

; t D 2; : : : ;T;

Vtjt�1 D F12

�

˙� �˙�V �1
t�1jt�2˙

�
�

F 0
12 C˙�; t D 2; : : : ;T;

F11 D
�

ˇ 0

0 A

�

; F12 D
�

�.ˇ � m/ n0

0 0

�

;

and Vxx is given by (A10).

The R2 ratios.

The numerator of the R2 ratio in equation (29) is computed as

R2.�t on xt / D Var.E.�t jxt //

Var.�t/
D Var.E.�t/C V�xV �1

xx .xt � E.xt///

Var.�t/
D

V�xV �1
xx V 0

�x

V��

;

(A61)

where Vxx, V��, and Vx� are given in equations (A10), (A11), and (A12), respectively.

The denominator of the R2 ratio in equation (29) is computed as

R2.�t on Dt / D Var.E.�t jDt //

Var.�t /
D Var.�t /� Var.�t jDt //

Var.�t/
D 1 � Qt

V��

; (A62)
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where Qt is given in equation (A35). We replace Qt by its steady-state value, Q, which can be

shown to be equal to a solution of a quadratic equation:

Q D

q

�2
1

� 4�2 � �1

2
; (A63)

�1 D .1 � ˇ2/.�2
u � �uv˙

�1
vv �vu/C 2ˇ.�uw � �wv˙

�1
vv �vu/ � .�2

w � �wv˙
�1
vv �vw/

D .1 � ˇ2/Var.ujv/C 2ˇCov.u; wjv/� Var.wjv/
�2 D .�uw � �wv˙

�1
vv �vu/

2 � .�2
u � �uv˙

�1
vv �vu/.�

2
w � �wv˙

�1
vv �vw/

D Cov.u; wjv/2 � Var.ujv/Var.wjv/ < 0

The value of Q is also used in computing the steady-state values of Mt and Nt from equation

(A41), denoted by mt and nt in the scalar case:

m D .ˇQ C Cov.u; wjv//.Q C Var.ujv//�1 (A64)

n D .�wv � m�uv/˙
�1
vv : (A65)

Variance decomposition of expected return.

In equation (34), the conditional expected return �t depends on three time-varying variables:
1. C1 D xt , the current predictor values
2. C2 D

P1
iD0 ˇ

iut�i , an infinite sum of current and lagged unexpected returns
3. C3 D

P1
iD0

�

ˇiIK � Ai
�

vt�i , an infinite sum of current and lagged predictor innovations ,
plus an error term. In the variance decomposition in Table IV, we consider regressions of �t on

various subsets of .C1;C2;C3/. Let C denote a given subset of .C1;C2;C3/. The R2 from the

regression of �t on C is equal to

R2.�t on C / D
V 0

�C
V �1

C
V�C

V��

: (A66)

The matrix VC , the covariance matrix of C , is pieced together from

Var.C1/ D Vxx

Var.C2/ D �2
u .1 � ˇ2/�1

vec .Var.C3// D
�

.1 � ˇ2/�1IK 2 � .IK � ˇA/�1 ˝ IK � IK ˝ .IK � ˇA/�1C
C .IK 2 � A ˝ A/�1

�

vec .˙vv/

Cov.C1, C2/ D .IK � ˇA/�1�vu

Cov.C2, C3/ D
�

.1 � ˇ2/�1IK � .IK � ˇA/�1
�

�vu

vec .Cov.C1, C30// D
�

IK ˝ .IK � ˇA/�1 C .IK 2 � A ˝ A/�1
�

vec .˙vv/;

and V�C , the vector of covariances between �t and C , is built from

Cov.�t ;C10/ D 	vVar.C1/C 	uCov.C1, C2/0 C 	vCov.C1, C30/0

Cov.�t ;C2/ D 	uVar.C2/C 	vCov.C1, C2/C 	vCov.C2, C3/

Cov.�t ;C30/ D 	vVar.C3/C 	vCov.C1, C30/C 	uCov.C2, C3/0:
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Figure 1. The effect of lagged returns on E.rtC1jDt / when no predictors are used. Panel A plots �s ,

the coefficients on lagged forecast errors (�t�s D rt�s � E.rt�s jDt�s�1/) in E.rtC1jDt/. Panel B plots

�s , the weights on lagged total returns in E.rtC1jDt / when the unconditional mean return is estimated

by the sample mean over the previous 208 quarters (which is the length of the sample used in subsequent

analysis). No predictors are used in the predictive system. The steady-state values of all coefficients are

plotted. The different lines correspond to different values of �uw , the correlation between expected and

unexpected returns. The mean reversion coefficient in the AR(1) process for the conditional expected return

�t is set equal to ˇ D 0:9. The predictive R2—the fraction of variation in rtC1 than can be explained by

�t —is set equal to R2 D 0:05.

40



1952 1960 1969 1977 1986 1994 2003

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Year

E
x
p
e
c
te

d
 r

e
tu

rn

 

 

ρ
uw

 = 0

ρ
uw

 = −0.47

ρ
uw

 = −0.85

ρ
uw

 = −0.99

Figure 2. The equity premium E.rtC1jDt/ from the predictive system with no predictors. This figure

plots the time series of the quarterly equity premium estimated for four different values of �uw , the correla-

tion between expected and unexpected returns. The mean reversion coefficient in the AR(1) process for the

conditional expected return �t is set equal to ˇ D 0:9. The predictive R2—the fraction of variation in rtC1

than can be explained by �t—is set equal to R2 D 0:05. The parameters represent quarterly values.
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Figure 3. Predictive R2’s. Each panel plots the R2’s from three approaches to predicting stock returns rtC1

using information observable at time t . The approaches are: the predictive regression of rtC1 on a single

predictor xt (solid line), the ARMA(1,1) model that uses the full history of past returns but no predictor

data (dotted line), and the predictive system, which uses the full history of returns and predictor realizations

(dashed and dash-dot lines). The dashed (dash-dot) line corresponds to a “low” (“high”) value of �uv, which

represents the value obtained when the partial correlation between ut and vt given wt equals �uvjw D �0:9

(0.9). The conditional correlation between �t and xt , �vw , ranges from 0 in Panel A to 0.9 in Panel D. In

all four panels, ˇ D A D 0:9, and the true predictive R2 (from the regression of rtC1 on �t ) is 0.05. In

Panel A, the solid line coincides with the x axis, and the dashed and dash-dot lines overlap.
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Figure 4. The equity premium: Regression vs. system with no prior information. This figure plots the

time series of the quarterly equity premium estimated in two different environments. The dotted line plots

the OLS fitted values from the predictive regression of rtC1 on the given predictor(s). The solid line plots

the maximum likelihood estimates of E.rtC1jDt / from the predictive system. In Panel A, the estimation

uses one predictor, dividend yield. In Panel B, the single predictor is CAY. In Panel C, three predictors are

used: dividend yield, CAY, and the bond yield. The sample period is 1952Q1–2003Q4.
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Figure 5. Prior distributions. Panel A plots three prior distributions for the correlation between expected

and unexpected returns, �uw . The noninformative prior (dotted line) is flat between -0.9 and 0.9, with

tails fading away as �uw approaches ˙1. The less informative prior (dashed line) has 99.9% of its mass

below zero (�uw < 0). The more informative prior (solid line) has 99.9% of its mass below -0.71, so that

�2
uw > 0:5 (i.e., unexpected changes in the discount rate explain over half of the variance of unexpected

market returns). Panel B plots the corresponding implied priors on �2
uw . Panel C plots the prior on the

predictive R2 from the regression of returns rtC1 on expected returns �t . Panel D plots the prior on the

slope coefficient ˇ in the AR(1) process for �t . All parameters correspond to quarterly data.
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Figure 6. Posterior distributions of slope coefficients from predictive regressions. We estimate both the

predictive system and the predictive regression with three predictors: the bond yield, dividend yield, and

CAY. The dashed line plots the posteriors from the standard predictive regression of rtC1 on xt under the

diffuse prior. The dotted line plots the implied posteriors constructed from the results of the predictive sys-

tem under the “noninformative” prior on �uw . The solid line plots the implied posteriors from the predictive

system under the “more informative” prior on �uw (�uw < �0:71). To facilitate comparisons across panels,

all predictors are scaled to have unit variance. The sample period is 1952Q1–2003Q4.
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Figure 7. Posterior distributions for the relations between the dividend yield and expected return.

Panel A plots the posterior of the fraction of variation in the expected return �t that can be explained by

the predictor xt , which is the dividend yield. Panel B plots the posterior of the predictive R2. Panel C

plots the posterior of the conditional correlation �vw between the dividend yield and �t . Panel D plots the

posterior of the unconditional correlation �x� between the dividend yield and �t . The three lines in each

panel represent three different prior distributions. The solid line represents the “more informative” prior on

�uw (�uw < �0:71), the dashed line is the “less informative” prior on �uw (�uw < 0), and the dotted line

is the “noninformative” prior on �uw . The sample period is 1952Q1–2003Q4.
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Figure 8. Posterior distributions for the relations between the bond yield and expected return. Panel

A plots the posterior of the fraction of variation in the expected return �t that can be explained by the

predictor xt , which is the bond yield. Panel B plots the posterior of the predictive R2. Panel C plots the

posterior of the conditional correlation �vw between the bond yield and �t . Panel D plots the posterior of the

unconditional correlation �x� between the bond yield and �t . The three lines in each panel represent three

different prior distributions. The solid line represents the “more informative” prior on �uw (�uw < �0:71),

the dashed line is the “less informative” prior on �uw (�uw < 0), and the dotted line is the “noninformative”

prior on �uw. The sample period is 1952Q1–2003Q4.

47



1952 1965 1978 1991 2004

−0.06

−0.04

−0.02

0

0.02

0.04

Panel A.   Predictor: Dividend Yield

 

 

Regression, fitted values

System, noninformative about ρ
uw

System, more informative about ρ
uw

1952 1965 1978 1991 2004

−0.04

−0.02

0

0.02

0.04

0.06

Panel B.   Predictor: CAY

1952 1965 1978 1991 2004

−0.05

0

0.05

0.1
Panel C.   Predictors: Dividend Yield, CAY, and Bond Yield

Figure 9. The equity premium: Regression vs. system with prior information. This figure plots the time

series of the quarterly equity premium estimated in three different environments. The dashed line plots the

OLS fitted values from the predictive regression of rtC1 on the given predictor(s). The dotted line plots the

posterior means of E.rtC1jDt / from the predictive system under the “noninformative” prior on �uw . The

solid line plots the posterior means of E.rtC1jDt / from the predictive system under the “more informative”

prior on �uw (�uw < �0:71). In Panel A, the estimation uses one predictor, dividend yield. In Panel B, the

single predictor is CAY. In Panel C, three predictors are used: dividend yield, CAY, and bond yield. The

sample period is 1952Q1–2003Q4.
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Figure 10. Variance of multiperiod returns. This figure plots the per-quarter variance of the predictive

distribution of k-period stock returns. The investment horizon k ranges from 1 to 20 quarters. The variances

are estimated in the predictive system using the dividend yield as an imperfect predictor. The solid line

represents the “more informative” prior on �uw (�uw < �0:71), the dashed line is the “less informative”

prior on �uw (�uw < 0), and the dotted line is the “noninformative” prior on �uw . The sample period is

1952Q1–2003Q4.
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Table I

Predictive Regressions

This table summarizes the results from predictive regressions rt D a C b0xt�1 C et , where xt D � C Axt�1 C vt . rt

denotes quarterly excess stock market return and xt�1 denotes the predictors (listed in the column headings) lagged

by one quarter. The table reports the estimated slope coefficients Ob, the correlation Corr.et ; b0vt / between unexpected

returns and shocks to expected returns, and the (unadjusted) R2 from the predictive regression. The correlations

and R2s are reported in percent (i.e., �100). The OLS t-statistics are given in parentheses “( )”. The t-statistic of

Corr.et ; b0vt/ is computed as the t-statistic of the slope from the regression of the sample residuals Oet on Ob Ovt . The

p-values associated with all t-statistics and R2s are computed by bootstrapping and reported in brackets “[ ]”.

Bond Yield Dividend Yield CAY Corr.et ; b0vt/ R2

Panel A. 1952 Q1 – 2003 Q4

2.716 21.735 4.231

(3.024) (3.204) [0.002]

[0.001] [0.001]

1.153 -91.887 2.252

(2.184) (-33.506) [0.059]

[0.057] [1.000]

1.704 -53.556 7.292

(4.035) (-9.124) [0.000]

[0.000] [1.000]

2.573 1.028 1.346 -35.635 11.777

(2.902) (1.966) (3.139) (-5.487) [0.000]

[0.003] [0.058] [0.003] [1.000]

Panel B. 1952 Q1 – 1977 Q4

6.385 25.079 7.080

(2.801) (2.629) [0.007]

[0.004] [0.008]

2.658 -96.531 7.003

(2.785) (-37.522) [0.015]

[0.014] [1.000]

3.028 -47.663 15.024

(4.267) (-5.503) [0.000]

[0.000] [1.000]

3.489 1.345 2.129 -53.153 17.975

(1.490) (1.349) (2.534) (-6.369) [0.000]

[0.090] [0.177] [0.012] [1.000]

Panel C. 1978 Q1 – 2003 Q4

2.073 22.624 3.931

(2.053) (2.357) [0.047]

[0.020] [0.011]

0.784 -88.194 1.273

(1.152) (-18.989) [0.423]

[0.409] [1.000]

1.165 -56.949 4.122

(2.104) (-7.031) [0.045]

[0.037] [1.000]

2.203 0.755 0.968 -18.619 8.828

(2.197) (1.101) (1.734) (-1.923) [0.053]

[0.023] [0.313] [0.118] [0.967]
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Table II

Explanatory Power of the Predictive Regression Relative to the Predictive System:

Empirical Results

Panel A shows the posterior means and standard deviations (the latter in parentheses) of the ratios of two R-squareds,

R2.reg/=R2.sys/. A ratio smaller than one indicates that the predictive system estimates �t more precisely than the

predictive regression does. The smaller the ratio, the larger the advantage of using the predictive system. R2.reg/,

computed as the R-squared from the regression of �t on the given predictors, summarizes the usefulness of the pre-

dictive regression in estimating �t . R2.sys/, computed as 1 � Var.�t jDt /=Var.�t / where Dt contains all historical

market returns and predictor realizations, summarizes the usefulness of the predictive system in estimating �t . Panel B

shows the posterior means and standard deviations of 1 � MSE.sys/=MSE.reg/. MSE.reg/ is the mean squared

error from the predictive regression of rtC1 on the given predictors. MSE.sys/ is the mean squared error from the

predictive system. Positive values of one minus the MSE ratio indicate that the predictive system forecasts returns

more precisely than the predictive regression does. The results are reported for four different prior distributions on

�uw, the correlation between expected and unexpected returns. Four sets of predictors are considered: dividend yield,

bond yield, CAY, and all three predictors combined. The sample period is 1952Q1–2003Q4.

Predictors

Dividend Yield Bond Yield CAY All 3 Predictors

Panel A. The R-squared Ratios, R2.reg/=R2.sys/.

Diffuse 0.28 0.73 0.86 0.59

Prior (0.17) (0.23) (0.16) (0.30)

Noninformative 0.50 0.44 0.61 0.46

Prior on �uw (0.27) (0.25) (0.27) (0.22)

Less Informative 0.59 0.34 0.73 0.50

Prior on �uw (0.22) (0.20) (0.23) (0.22)

More Informative 0.81 0.08 0.64 0.70

Prior on �uw (0.19) (0.08) (0.22) (0.19)

Panel B. The Mean Squared Error Ratios, 1 � MSE.sys/=MSE.reg/.

Diffuse 0.04 0.06 0.03 0.17

Prior (0.07) (0.15) (0.09) (0.22)

Noninformative 0.02 0.02 0.02 0.03

Prior on �uw (0.04) (0.05) (0.04) (0.04)

Less Informative 0.02 0.02 0.01 0.04

Prior on �uw (0.04) (0.06) (0.04) (0.05)

More Informative 0.02 0.03 0.02 0.02

Prior on �uw (0.07) (0.07) (0.06) (0.07)
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Table III

Comparing Estimates of Expected Return.

This table compares the time series of the posterior means of E.rtC1jDt/ obtained in five different environments:

(1) Predictive regression: OLS fitted values

(2) Predictive system: Maximum likelihood estimates

(3) Predictive system: Noninformative prior about �uw

(4) Predictive system: Less informative prior about �uw

(5) Predictive system: More informative prior about �uw

The priors in (3)-(5) are informative about the persistence and volatility of �t . The correlations between the quarterly

series of the posterior means of E.rtC1jDt/ are reported in italics below the main diagonal of each left-panel 5 � 5

matrix. Above the main diagonal of the same matrix are the mean absolute differences between the posterior means

of E.rtC1jDt / in percent per quarter. Each right-panel 5 � 5 matrix reports the average utility losses, in percent per

quarter, of a mean-variance investor who is forced to hold a suboptimal portfolio of the stock market and a risk-free

T-bill: a portfolio that is optimal under the beliefs in the given row when the true beliefs are in the given column.

(For example, the (2,5) cell of the 5 � 5 matrix reports the certainty equivalent loss of an investor who has the more

informative prior but is forced to hold the portfolio that is optimal under the maximum likelihood estimates.) The risk

aversion is chosen such that there is no borrowing or lending given the sample mean and variance of market returns.

The sample period is 1952Q1-2003Q4.

Correlation (%) n Mean Abs Diff (%) Average Utility Loss (%)

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Panel A. Predictor: Dividend Yield

(1) 0.57 0.44 0.41 0.29 0 0.11 0.09 0.07 0.03

(2) 97.49 0.65 0.62 0.49 0.11 0 0.20 0.18 0.10

(3) 90.47 81.11 0.06 0.27 0.09 0.19 0 0.00 0.03

(4) 92.42 83.49 99.78 0.22 0.07 0.17 0.00 0 0.02

(5) 97.67 91.32 95.81 97.41 0.03 0.10 0.03 0.02 0

Panel B. Predictor: CAY

(1) 0.66 1.13 1.22 1.60 0 0.19 0.57 0.65 1.13

(2) 94.82 1.36 1.39 1.65 0.19 0 0.88 0.95 1.38

(3) 86.28 82.02 0.37 0.96 0.57 0.85 0 0.06 0.39

(4) 96.88 93.26 95.43 0.63 0.64 0.92 0.06 0 0.16

(5) 89.71 92.03 59.38 80.11 1.09 1.32 0.38 0.16 0

Panel C. Predictors: Dividend Yield, CAY, Bond Yield

(1) 0.92 1.33 1.27 1.60 0 0.40 0.82 0.74 1.19

(2) 91.06 1.27 1.22 1.62 0.42 0 0.76 0.68 1.16

(3) 80.38 82.36 0.14 1.51 0.80 0.72 0 0.01 0.94

(4) 82.30 84.11 99.79 1.46 0.72 0.64 0.01 0 0.84

(5) 83.42 89.93 80.75 84.00 1.19 1.13 0.96 0.87 0
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Table IV

Variance Decomposition of Expected Return.

This table reports the posterior means and standard deviations (the latter in parentheses) of the R2s from the regressions

of the market’s expected excess return �t on its selected components. The first column of each panel, labeled xt , shows

the fraction of variance of �t that can be explained by the set of predictors listed in the panel heading. Four sets of

predictors are considered: the dividend yield, bond yield, CAY, and the combination of all three of these predictors.

The second column of each panel, labeled xt ; fusgs�t , shows the fraction of variance of �t that can be explained

jointly by the predictors and by the innovations to stock market returns ut ; ut�1; ut�2; : : :. The third column, labeled

xt ; fus; vsgs�t , shows the fraction of variance of �t that can be explained jointly by the predictors, by the innovations

to stock market returns ut ; ut�1; ut�2; : : :, and by the innovations to the predictors vt ; vt�1; vt�2; : : :. For each set of

predictors, the predictive system is estimated under three different priors, which are described in the row labels. The

sample period is 1952Q1-2003Q4.

Components of Expected Return Components of Expected Return

xt xt , fusgs�t xt , fus; vsgs�t xt xt , fusgs�t xt , fus ; vsgs�t

Panel A. Dividend Yield Panel B. Bond Yield

Noninformative 0.34 0.43 0.48 0.33 0.64 0.83

Prior on �uw (0.20) (0.21) (0.21) (0.21) (0.21) (0.13)

Less Informative 0.40 0.49 0.53 0.24 0.73 0.86

Prior on �uw (0.18) (0.18) (0.18) (0.17) (0.16) (0.11)

More Informative 0.57 0.80 0.81 0.03 0.86 0.95

Prior on �uw (0.15) (0.06) (0.06) (0.03) (0.05) (0.04)

Panel C. CAY Panel D. All Three Predictors

Noninformative 0.50 0.59 0.81 0.42 0.49 0.90

Prior on �uw (0.22) (0.22) (0.12) (0.20) (0.22) (0.07)

Less Informative 0.60 0.70 0.83 0.46 0.55 0.90

Prior on �uw (0.20) (0.17) (0.10) (0.20) (0.22) (0.07)

More Informative 0.53 0.87 0.92 0.63 0.85 0.94

Prior on �uw (0.18) (0.07) (0.05) (0.17) (0.12) (0.04)
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