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The study of the macroeconomics of labor markets has been dominated by two in�uential

approaches in recent research: the development of search and matching models (Pissarides,

1985; Mortensen and Pissarides, 1994) and the empirical analysis of establishment dynamics

(Davis and Haltiwanger, 1992). This paper provides an analytical framework that uni�es

these approaches by introducing a notion of �rm size into a search and matching model with

endogenous job destruction. The outcome is a rich, yet analytically tractable framework that

can be used to analyze a broad set of features of both the cross section and the dynamics

of the aggregate labor market. In a set of quantitative applications we show that the model

can provide a coherent account of a) the salient features of the distributions of employer size,

and employment growth across establishments; b) the amplitude and propagation of cyclical

�uctuations in �ows between employment and unemployment; c) the negative comovement

of unemployment and vacancies in the form of the Beveridge curve; and d) the dynamics of

the distribution of employer size over the business cycle.

A notion of �rm size is introduced by relaxing the common assumption that �rms face a

linear production technology.1 Though conceptually simple, incorporating this feature is not

a trivial exercise. The existence of a non-linear production technology, and the associated

presence of multi-worker �rms, complicates wage setting because the surplus generated by

each of the employment relationships within a �rm is not the same� �the�marginal worker

generates less surplus than infra-marginal workers. In section 1, we apply the bargaining

solution of Stole and Zwiebel (1996) to derive a very intuitive wage bargaining solution for

this environment, something that has been considered challenging in recent research (see

Cooper, Haltiwanger and Willis, 2007; and Hobijn and Sahin, 2007). The solution is a

very natural generalization of the wage bargaining solution in standard search and matching

models. The simplicity of our solution is therefore a useful addition to the literature.2

The wage bargaining solution enables us to characterize the properties of the optimal

labor demand policy of an individual �rm in the presence of idiosyncratic �rm heterogeneity.

1In its simplest form, this manifests itself in a one �rm, one job representation, as in Pissarides (1985) and
Mortensen and Pissarides (1994). For the present paper, we remain agnostic on the source of diminishing
returns, which may arise due to decreasing returns to scale, short-run �xed factors of production, or imperfect
product market competition. For a model with the latter feature, but with exogenous separations, see
Rotemberg (2006).

2Bertola and Caballero (1994) solve a related bargaining problem by taking a linear approximation to
the marginal product function and specializing productivity to a two-state Markov process. The present
paper relaxes these restrictions. More recent research that models endogenous separations has set worker
bargaining power to zero in order to derive wages (Cooper et al., 2007; Hobijn and Sahin, 2007). In the
presence of exogenous separations, Acemoglu and Hawkins (2006) characterize wages, but focus instead on
a time to hire aspect to job creation, which leads to a more challenging bargaining problem. The wage
bargaining solution for models with exogenous job destruction has been characterized by Smith (1999),
Cahuc and Wasmer (2001), and Krause and Lubik (2007).
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We demonstrate that the labor demand solution is analogous to that of a model of kinked

hiring costs in the spirit of Bentolila and Bertola (1990), but where the hiring cost is en-

dogenously determined by frictions in the labor market. This yields an analytical solution

for the optimal labor demand policy, summarizing microeconomic behavior in the model.

In section 2, we take on the task of aggregating this behavior to the macroeconomic level.

This is a challenge because the presence of a non-linear production technology and idiosyn-

cratic heterogeneity imply that a representative �rm interpretation of the model doesn�t

exist. To address this, we develop a method that allows us to solve analytically for the equi-

librium distribution of employment across �rms (the �rm size distribution). In turn, this

allows us to determine the level of the aggregate (un)employment stock, which is implied by

the mean of that distribution. We also provide a related method that allows us to solve for

aggregate unemployment �ows (hires and separations) implied by microeconomic behavior.

Together, these characterize the aggregate steady state equilibrium of the model economy.

In section 3 we explore the dynamics of the model by introducing aggregate shocks. A

di¢ culty that arises in the model is that, out of steady state, individual �rms must forecast

future wages, which involves forecasting the future path of the distribution of employment

across �rms, an in�nite-order state variable. A useful feature of our analytical solution for

optimal labor demand is that it allows us to simplify part of this problem. In particular, we

are able to derive an analytical approximation to a �rm�s optimal labor demand policy in

the presence of aggregate shocks, obviating the need for a numerical solution. Using this, we

employ an approach that mirrors the method proposed by Krusell and Smith (1998) to solve

for the transition paths for the unemployment stock and �ows in the presence of aggregate

shocks.

These results form the basis of a series of quantitative applications, which we turn to in

section 4. An attractive feature of the model is that, by incorporating both a notion of �rm

size as well as idiosyncratic heterogeneity, it delivers important cross sectional implications.

We show that the model can be used to match key features of the distribution of �rm size,

and of employment growth across establishments. This is achieved through two aspects

of the model. First, due to the existence of kinked hiring costs, optimal labor demand

features a region of inaction whereby �rms choose neither to hire nor �re workers. This

matches a key property of the distribution of employment growth� the existence of a mass

point at zero establishment growth� noted at least since the work of Davis and Haltiwanger

(1992).3 Second, informed by the well-known shape of the distribution of �rm size, we

3Earlier work by Hamermesh (1989), which analyzed data from seven manufacturing plants, also drew
attention to the �lumpy�nature of establishment-level employment adjustment.
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adopt a Pareto speci�cation for idiosyncratic �rm productivity. A surprising outcome of this

approach is that the Pareto speci�cation also provides a very accurate description of the tails

of the distribution of employment growth, something that cannot be achieved using more

conventional lognormal speci�cations of heterogeneity.

We then use these steady-state features of the model to provide a novel perspective on

the cyclical dynamics of worker �ows implied by the model. It is well-known that the cyclical

amplitude of unemployment, and of the job-�nding rate in particular, relies critically on the

size of the surplus to employment relationships (Shimer, 2005; Hagedorn and Manovskii,

2007). Intuitively, small reductions in aggregate productivity can easily exhaust a small

surplus, and lead �rms to cut back substantially on hiring. The presence of large and

heterogeneous �rms in our model opens up a new approach to calibrating the payo¤ from

unemployment, and thereby the match surplus. Because the model is capable of matching the

observed cross-sectional distribution of employment growth, we obtain a sense of the plausible

size of idiosyncratic shocks facing �rms. Given this, a higher payo¤ from unemployment

implies a smaller surplus, so that jobs will be destroyed more frequently, raising the rate of

worker turnover. We discipline the model by choosing the payo¤ from unemployment that

matches the empirical rate at which employed workers �ow into unemployment.

Applying this approach to an otherwise standard calibration reveals that our general-

ized model can replicate both the observed procyclicality of the job �nding rate, as well as

the countercyclicality of the employment to unemployment transition rate in the U.S.4 We

show that this is a substantial improvement over standard search and matching models. As

shown by Shimer (2005), these are unable to generate enough cyclicality in job creation.

To overcome this, the standard model must reduce the size of the surplus, which in turn

yields excessive employment to unemployment transitions.5 The generalized model does not

face this tension between reproducing the cyclicality of job creation and the rate of worker

turnover. Due to the diminishing marginal product of labor, the model generates simulta-

neously a large average surplus and a small marginal surplus to employment relationships.

The former allows the model to match the rate at which workers �ow into unemployment,

the latter the volatility of the job-�nding rate over the cycle.6

4For evidence on the countercyclicality of employment to unemployment �ows, see Perry (1972); Marston
(1976); Blanchard and Diamond (1990); Elsby, Michaels, and Solon (2007); Fujita and Ramey (2007);
Pissarides (2007); Shimer (2007); and Yashiv (2006).

5This formalizes the intuition of recent research that has argued that the average surplus required for
the standard model to match the observed cyclicality of the job �nding rate is implausibly small (Mortensen
and Nagypal, 2007a). A small average surplus also jars with widespread evidence for the prevalence of long
term employment relationships in the US economy, which researchers have taken to imply substantial rents
to ongoing matches (Hall, 1982; Stevens, 2005).

6One might imagine that a symmetric logic holds on the supply side of the labor market if there is
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A potential concern in models that incorporate countercyclical job destruction, such as

the model in this paper, has been that they often cannot generate the observed procyclicality

of vacancies (Shimer, 2005; Mortensen and Nagypal, 2007b). Importantly, we �nd that our

model makes considerable progress in this regard: Our calibration of the model generates

most of the observed comovement between vacancies and output per worker. As a result, it

reproduces a key stylized fact of the U.S. labor market: the negative comovement between

unemployment and vacancies in the form of the Beveridge curve. The model therefore

provides a coherent and quantitatively accurate picture of the joint cyclical properties of

both �ows of workers in and out of unemployment, as well as the behavior of unemployment

and vacancies.

A less well-documented limitation of the standard search and matching model relates

to the propagation of the response of the job �nding rate to aggregate shocks to labor

productivity. The job �nding rate is a jump variable in the standard model, responding

instantaneously to aggregate shocks, while it exhibits a sluggish response in U.S. data. An

appealing feature of the generalized model is that it delivers a natural propagation mecha-

nism: The job �nding rate is a function of the distribution of employment across �rms, which

we show is a slow-moving state variable in our model. Simulations reveal that this aspect

of the model can help account for the persistence of the decline in job creation following an

adverse shock.

In the closing sections of the paper, we push the model harder by evaluating its im-

plications for a number of additional cross-sectional outcomes. First, recent literature has

emphasized empirical regularities in the cyclical behavior of the cross-sectional distribution

of establishment size: While the share of small establishments with fewer than 20 work-

ers rises during recessions, the shares of larger �rms decline (Moscarini and Postel-Vinay,

2009). The model replicates this observation: For each establishment size class considered,

it broadly matches the comovement with unemployment over the business cycle observed in

U.S. data. Given that these implications of the model are venturing farther a�eld from the

moments it was calibrated to match, we view these results as an important achievement.

In our �nal quantitative application, we evaluate the model�s ability to account for the

observation that workers employed in larger �rms are often paid higher wages� the employer

heterogeneity in workers� valuations of leisure so that �the�marginal worker obtains a low surplus from
employment. Interestingly, Mortensen and Nagypal (2007a) argue that this is not the case. They show
that if �rms cannot di¤erentiate workers�types when making hiring decisions, they will base their decision
on the average, rather than the marginal, valuation of leisure among the unemployed. The same is unlikely
to be true of the model studied here, since �rms presumably know their production technology when making
hiring decisions.
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size-wage e¤ect (Brown and Medo¤, 1989). A distinctive attribute of the model is that, by

incorporating large �rms with heterogeneous productivities, it can speak to this empirical

regularity. The magnitude of the size-wage e¤ect implied by the model is mediated by

two competing forces, as noted by Bertola and Garibaldi (2001). On the one hand, the

existence of diminishing returns in production might lead one to anticipate a negative relation

between employer size and wages. On the other, larger �rms also tend to be more productive.

Quantitatively, the latter dominates, generating one quarter of the empirical size-wage e¤ect.

The remainder of the paper is organized as follows. Section 1 describes the set-up of

the model, and characterizes the wage bargaining solution together with the associated

optimal labor demand policy of an individual �rm. Given this, section 2 develops a method

for aggregating this microeconomic behavior up to the macroeconomic level, and uses it to

characterize the steady state equilibrium of the model. Section 3 introduces aggregate shocks

to the analysis. It presents an approach to computing the out of steady state dynamics of

the model through the use of analytical approximations. We then use the model in section

4 to address a wide range of quantitative applications. Finally, section 5 summarizes our

results, and draws lessons for future research.

1 The Firm�s Problem

In what follows we consider a model in which there is a mass of �rms, normalized to one,

and a mass of potential workers equal to the labor force, .7 In order to hire unemployed

workers, �rms must post vacancies. However, frictions in the labor market limit the rate at

which unemployed workers and hiring �rms can meet. As is conventional in the search and

matching literature, these frictions are embodied in a matching function,  =  (  ),

that regulates the number of hires,  , that the economy can sustain given that there are 

vacancies and  unemployed workers. We assume that  (  ) exhibits constant returns

to scale.8 Vacancies posted by �rms are therefore �lled with probability  =  =

 ( 1) each period. Likewise, unemployed workers �nd jobs with probability  =

7Assuming a �xed number of �rms is important for the model to depart from the standard search model.
Free entry would yield an economy of in�nitesimal �rms that converges to the Mortensen and Pissarides
(1994) limit. In principle, one could allow for costly �rm entry as a middle ground. We abstract from this in
part for simplicity. But our choice is also informed by evidence in Davis and Haltiwanger (1992). They �nd
that, in manufacturing, while births and deaths account for around 15 percent of establishment growth, they
account for a very small fraction of employment growth. The simple reason is that births and deaths are
dominated by the behavior of small establishments that account for a small fraction of total employment.
For models that explore the impact of �rm entry on job creation, see Garibaldi (2006) and Hobijn and Sahin
(2007).

8See Petrongolo and Pissarides (2001) for a summary of empirical evidence that suggests this is reasonable.
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 =  (1 ). Thus, the ratio of aggregate vacancies to aggregate unemployment,

 � �, is a su¢ cient statistic for the job �lling () and job �nding () probabilities in

the model. Taking these �ow probabilities as given, �rms choose their optimal level of

employment, to which we now turn.

1.1 Labor Demand

We consider a discrete time, in�nite horizon model in which �rms use labor, , to produce

output according to the production function,  =  () where  0  0 and  00 � 0. The

latter is a key generalization of the standard search model that we consider: When  00  0,

the marginal product of labor will decline with �rm employment, and thereby will generate

a downward sloped demand for labor at the �rm level.  represents the state of aggregate

labor demand, whereas  represents shocks that are idiosyncratic to an individual �rm.

We assume that the evolution of the latter idiosyncratic shocks is described by the c.d.f.

 (0j).
A typical �rm�s decision problem is completely analogous to that in Mortensen and

Pissarides (1994), and is as follows. Firms observe the realization of their idiosyncratic shock,

, at the beginning of a period. Given this, they then make their employment decision.

Speci�cally, they may choose to separate from part or all of their workforce, which we assume

may be done at zero cost. Any such separated workers then join the unemployment pool in

the subsequent period. Alternatively, �rms may hire workers by posting vacancies,  � 0,

at a �ow cost of  per vacancy. If a �rm posts vacancies, the matching process then matches

these up with unemployed workers inherited from the previous period. After the matching

process is complete, production and wage setting are performed simultaneously.

It follows that we can characterize the expected present discounted value of a �rm�s

pro�ts, � (¬1 ), recursively as:9

� (¬1 ) = max


�
 ()¬  ( )¬  + �

Z
� ( 0)  (0j)

�
 (1)

where  ( ) is the bargained wage in a �rm of size  and productivity . A typical �rm

seeks a level of employment that maximizes its pro�ts subject to a dynamic constraint on

the evolution of a �rm�s employment level. Speci�cally, �rms face frictions that limit the

rate at which vacancies may be �lled: A vacancy posted in a given period will be �lled with

probability   1 prior to production. Thus, the number of hires an individual �rm achieves

9We adopt the convention of denoting lagged values with a subscript, ¬1, and forward values with a
prime, 0.
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is given by:

�1+ =  (2)

where � is the change in employment, and 1+ is an indicator that equals one when the

�rm is hiring, and zero otherwise. Substituting the constraint, (2), into the �rm�s value

function, we obtain:

� (¬1 ) = max


�
 ()¬  ( )¬ 


�1+ + �

Z
� ( 0)  (0j)

�
 (3)

Note that the value function is not fully di¤erentiable in : There is a kink in the value

function around  = ¬1. This re�ects the (partial) irreversibility of separation decisions

in the model. While �rms can shed workers costlessly, it is costly to reverse such a decision

because hiring (posting vacancies) is costly. In this sense, the labor demand side is formally

analogous to the kinked employment adjustment cost model of the form analyzed in Ben-

tolila and Bertola (1990), except that the per�worker hiring cost,  (�), is endogenously

determined.

In order to determine the �rm�s optimal employment policy, we take the �rst-order con-

ditions for hires and separations (i.e. conditional on � 6= 0):

 0 ()¬  ( )¬  ( )¬ 


1+ + � ( ) = 0, if � 6= 0 (4)

where  ( ) �
R
� ( 0)  (0j) re�ects the marginal e¤ect of current employment

decisions on the future value of the �rm. Equation (4) is quite intuitive. It states that

the marginal product of labor ( 0 ()) net of any hiring costs ( 

1+), plus the discounted

expected future marginal bene�ts from an additional unit of labor (� ( )) must equal

the marginal cost of labor ( ( ) +  ( )). To provide a full characterization of the

�rm�s optimal employment policy, it remains to characterize the future marginal bene�ts

from current employment decisions,  ( ), and the wage bargaining solution,  ( ), to

which we now turn.

1.2 Wage Setting

The existence of frictions in the labor market implies that it is costly for �rms and workers

to �nd alternative employment relationships. As a result, there exist quasi-rents over which

the �rm and its workers must bargain. The assumption of constant marginal product in

the standard search model has the tractable implication that these rents are the same for
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all workers within a given �rm. It follows that �rms can bargain with each of their workers

independently, because the rents of each individual employment relationship are independent

of the rents of all other employment relationships.

Allowing for the possibility of diminishing marginal product of labor  00 ()  0, however,

implies that these rents will depend on the number of workers within a �rm. Intuitively,

the rent that a �rm obtains from �the�marginal worker will be lower than the rent obtained

on all infra�marginal hires due to diminishing marginal product. An implication of the

latter is that the multilateral dimension of the �rm�s bargain with its many workers becomes

important: The rents of each individual employment relationship within a �rm are no longer

independent.

To take this into account, we adopt the bargaining solution of Stole and Zwiebel (1996)

which generalizes the Nash solution to a setting with diminishing returns.10 Stole and

Zwiebel present a game where the bargained wage is the same as the outcome of simple

Nash bargaining over the marginal surplus. The game that supports this simple result is

one in which a �rm negotiates with each of its workers in turn, and where the breakdown of a

negotiation with any individual worker leads to the renegotiation of wages with all remaining

workers.11

In accordance with timing of decisions each period, wages are set after employment has

been determined. Thus, hiring costs are sunk at the time of wage setting, and the marginal

surplus, which we denote as  ( ), is equal to the marginal value of labor gross of the costs

of hiring:

 ( ) =  0 ()¬  ( )¬  ( ) + � ( )  (5)

The surplus from an employment relationship for a worker is the additional utility a worker

obtains from working in her current �rm over and above the utility she obtains from un-

employment. The value of employment in a �rm of size  and productivity ,  ( ), is

given by:

 ( ) =  ( ) + �E [ 0 + (1¬ ) (0 0) j ]  (6)

While employed, a worker receives a �ow payo¤ equal to the bargained wage,  ( ). She

10This approach was �rst used by Cahuc and Wasmer (2001) to generate a wage equation for the exogenous
job destruction case.
11The intuition for the Stole and Zwiebel result is as follows. If the �rm has only one worker, the �rm and

worker simply strike a Nash bargain. If a second worker is added, the �rm and the additional worker know
that, if their negotiations break down, the �rm will agree to a Nash bargain with the remaining worker.
In this sense, the second employee regards herself as being on the margin. By induction, then, the �rm
approaches negotiations with the th worker as if that worker were marginal too. Therefore, the wage that
solves the bargaining problem is that which maximizes the marginal surplus.
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loses her job with (endogenous) probability  next period, upon which she �ows into the

unemployment pool and obtains the value of unemployment,  0. With probability (1¬ ),

she retains her job and obtains the expected payo¤ of continued employment in her current

�rm,  (0 0). Likewise, the value of unemployment to a worker is given by:

 =  + �E [(1¬ ) 0 +  (0 0)]  (7)

Unemployed workers receive �ow payo¤ , which represents unemployment bene�ts and/or

the value of leisure to a worker. They �nd a job next period with probability  , upon which

they obtain the expected payo¤ from employment,  (0 0).

Wages are then the outcome of a Nash bargain between a �rm and its workers over the

marginal surplus, with worker bargaining power denoted as �:

(1¬ �) [ ( )¬  ] = � ( )  (8)

Given this, we are able to derive a wage bargaining solution with the following simple struc-

ture:

Proposition 1 The bargained wage,  ( ), solves the di¤erential equation12

 ( ) = �

�
 0 ()¬  ( ) + �





�
+ (1¬ �)  (9)

The intuition for (9) is quite straightforward. As in the standard search model, wages

are increasing in the worker�s bargaining power, �, the marginal product of labor,  0 (),

workers�job �nding probability,  , the marginal costs of hiring for a �rm, , and workers�

�ow value of leisure, . There is an additional term, however, in  ( ). To understand

the intuition for this term, consider a �rm�s negotiations with a given worker. If these

negotiations break down, the �rm will have to pay its remaining workers a higher wage.

The reason is that fewer workers imply that the marginal product of labor will be higher

in the �rm, which will partially spillover into higher wages (  0). The more powerful

this e¤ect is (the more negative is ), the more the �rm loses from a given breakdown

of negotiations with a worker, and the more workers can extract a higher wage from the

bargain.

12An interesting feature of this solution is its similarity to the solution obtained by Cahuc and Wasmer
(2001) for the exogenous job destruction model. It is also consistent with Acemoglu and Hawkins�(2006)
Lemma 2, except that it holds both in and out of steady state.
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In what follows, we will adopt the simple assumption that the production function is of

the Cobb-Douglas form,  () = � with � � 1. Given this, the di¤erential equation for

the wage function, (9), has the following simple solution:

 ( ) = �

�
��¬1

1¬ � (1¬ �)
+ �





�
+ (1¬ �)  (10)

Setting � = 1 yields the discrete time analogue to the familiar wage bargaining solution for

the Mortensen and Pissarides (1994) model.

1.3 The Firm�s Optimal Employment Policy

Now that we have obtained a solution for the bargained wage at a given �rm, we can combine

this with the �rm�s �rst�order condition for employment and thereby characterize the �rms

optimal employment policy, which speci�es the �rm�s optimal employment as a function of

its state,  (¬1 ). Thus, combining (4) and (9) we obtain:

(1¬ �)
�

��¬1

1¬ � (1¬ �)
¬ 

�
¬ ��




¬ 


1+ + � ( ) = 0 (11)

Given (11) we are able to characterize the �rm�s optimal employment policy as follows:

Proposition 2 The optimal employment policy of a �rm is of the form

 (¬1 ) =

8
><

>:

¬1 () if    (¬1) 

¬1 if  2 [ (¬1)   (¬1)] 

¬1 () if    (¬1) 

(12)

where the functions  (�) and  (�) satisfy

(1¬ �)
�
 ()��¬1

1¬ � (1¬ �)
¬ 

�
¬ ��




+ � (  ()) �




 (13)

(1¬ �)
�
 ()��¬1

1¬ � (1¬ �)
¬ 

�
¬ ��




+ � ( ()) � 0 (14)

The �rm�s optimal employment policy will be similar to that depicted in Figure 1. It

is characterized by two reservation values for the �rm�s idiosyncratic shock,  (¬1) and

 (¬1). Speci�cally, for su¢ ciently bad idiosyncratic shocks (   (¬1) in the �gure),

�rms will shed workers until the �rst-order condition in the separation regime, (14), is
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satis�ed. Moreover, for su¢ ciently good idiosyncratic realizations (   (¬1) in the

�gure), �rms will post vacancies and hire workers until the �rst-order condition in the hiring

regime, (13), is satis�ed. Finally, for intermediate values of , �rms freeze employment so

that  = ¬1. This occurs as a result of the kink in the �rm�s pro�ts at  = ¬1, which

arises because hiring is costly to �rms, while separations are costless.

To complete our characterization of the �rm�s optimal employment policy, it remains to

determine the marginal e¤ect of current employment decisions on future pro�ts of the �rm,

 ( ). It turns out that we can show that  ( ) has the following recursive structure:

Proposition 3 The marginal e¤ect of current employment on future pro�ts,  ( ), is

given by

 ( ) =  ( ) + �

Z ()

()

 ( 0)  (0j)  (15)

where

 ( ) �
Z ()

()

�
(1¬ �)

�
0��¬1

1¬ � (1¬ �)
¬ 

�
¬ ��





�
 (0j) +

Z 1

()




 (0j) 

(16)

Equation (15) is a contraction mapping in  ( �), and therefore has a unique �xed point.

The intuition for this result is as follows. Because of the existence of kinked adjustment

costs (costly hiring and costless separations) the �rm�s employment will be frozen next

period with positive probability. In the event that the �rm freezes employment next period

(0 2 [ ()   ()]), the current employment level persists into the next period and so do

the marginal e¤ects of the �rm�s current employment choice. Proposition 3 shows that these

marginal e¤ects persist into the future in a recursive fashion. Propositions 2 and 3 thus

summarize the microeconomic behavior of �rms in the model.13

To get a sense for how the microeconomic behavior of the model works, we next derive

the response of an individual �rm�s employment policy function to changes in (exogenous)

aggregate productivity, , and the (endogenous) aggregate vacancy�unemployment ratio, �.

To do this, we assume that the evolution of idiosyncratic shocks is described by:

0 =

(
 with probability 1¬ �;

~
� ~ (~) with probability �:

(17)

13It is straightforward to show that equations (10) to (16) reduce down to the discrete time analogue to
the Mortensen and Pissarides (1994) model when � = 1.
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Figure 1: Optimal Employment Policy of a Firm

Thus, idiosyncratic shocks display some persistence (�  1) with innovations drawn from

the distribution function ~. Given this, we can establish the following result:

Proposition 4 If idiosyncratic shocks, , evolve according to (17), then the e¤ects of the

aggregate state variables  and � on a �rm�s optimal employment policy are




 0;




 0;



�
 0; and



�
 0 ()  is su¢ ciently large. (18)

The intuition behind these marginal e¤ects is quite simple. First, note that increases in

aggregate productivity, , shift a �rm�s employment policy function downwards in Figure 1.

Thus, unsurprisingly, when labor is more productive, a �rm of a given idiosyncratic produc-

tivity, , is more likely to hire workers, and less likely to shed workers. Second, increases

in the vacancy�unemployment ratio, �, unambiguously reduce the likelihood that a �rm of

a given idiosyncratic productivity will hire workers ( increases for all ). The reason is

that higher � implies a lower job��lling probability, , and thereby raises the marginal cost

of hiring a worker, . Moreover, higher � implies a tighter labor market and therefore

higher wages (from (9)) so that the marginal cost of labor rises as well. Both of these e¤ects

cause �rms to cut back on hiring. Finally, increases in the vacancy�unemployment ratio,

�, will reduce the likelihood of shedding workers for small �rms, but will raise it for large

�rms. This occurs because higher � has countervailing e¤ects on the separation decision of
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�rms. On the one hand, higher � reduces the job��lling probability, , rendering separation

decisions less reversible (since future hiring becomes more costly), so that �rms become less

likely to destroy jobs. On the other hand, higher � implies a tighter labor market, higher

wages, and thereby a higher marginal cost of labor, rendering �rms more likely to shed work-

ers. The former e¤ect is dominant in small �rms because the likelihood of their hiring in

the future is high.

2 Aggregation and Steady State Equilibrium

2.1 Aggregation

Since we are ultimately interested in the equilibrium behavior of the aggregate unemploy-

ment rate, in this section we take on the task of aggregating up the microeconomic behavior

of section 1 to the macroeconomic level. This exercise is non�trivial because each �rm�s

employment is a non�linear function of the �rm�s lagged employment, ¬1, and its idiosyn-

cratic shock realization, . As a result, there is no representative �rm interpretation that

will aid aggregation of the model.

To this end, we are able to derive the following result which characterizes the steady

state aggregate employment stock and �ows in the model:

Proposition 5 If idiosyncratic shocks, , evolve according to (17), the steady state c.d.f. of

employment across �rms is given by

 () =
~ [ ()]

1¬ ~ [ ()] + ~ [ ()]
 (19)

Thus, the steady state aggregate employment stock is given by

 =

Z
 ()  (20)

and the steady state aggregate number of separations, , and hires,  , is equal to

 = �

Z
[1¬  ()] ~ [ ()]  = �

Z
 ()

�
1¬ ~ [ ()]

�
 =  (21)

Proposition 5 is useful because it provides a tight link between the solution for the micro-

economic behavior of an individual �rm and the macroeconomic outcomes of that behavior.
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Speci�cally, it shows that once we know the optimal employment policy function of an indi-

vidual �rm (that is, the functions  () and  ()) then we can directly obtain analytical

solutions for the distribution of �rm size, and the aggregate employment stock and �ows.

The three components of Proposition 5 are also quite intuitive. The steady state distri-

bution of employment across �rms, (19), is obtained by setting the �ows into and out of the

mass  () equal to each other. The in�ow into the mass comes from �rms who reduce their

employment from above  to below . There are [1¬  ()] such �rms, and since they are

reducing their employment, it follows from (12) that each �rm will reduce its employment

below  with probability equal to Pr [   ()] = � ~ [ ()]. Thus, th̀e in�ow into  ()

is equal to � [1¬  ()] ~ [ ()]. Similarly, one can show that the out�ow from the mass is

equal to �H ()
�
1¬ ~ [ ()]

�
. Setting in�ows equal to out�ows yields the expression for

 () in (19).14 Given this, the expression for aggregate employment, (20), follows directly.

The intuition for the �nal expression for aggregate �ows in Proposition 5, (21), is as

follows. Recall that the mass of �rms whose employment switches from above some number

 to below  is equal to � [1¬  ()] ~ [ ()]. Equation (21) states that the aggregate

number of separations in the economy is equal to the cumulative sum of these downward

switches in employment over . To get a sense for this, consider the following simple

discrete example. Imagine an economy with two separating �rms: one that switches from

three employees to one, and another that switches from two employees to one. It follows

that two �rms have switched from  2 employees to � 2 employees, and one �rm switched

from  1 to � 1 employee. Thus, the cumulative sum of downward employment switches is

three, which is also equal to the total number of separations in the economy.

2.2 Steady State Equilibrium

Given (19), (20), and (21), the conditions for aggregate steady state equilibrium can be

obtained as follows. First note that each �rm�s optimal policy function, summarized by the

functions  () and  () in Proposition 2, depends on two aggregate variables: The (ex-

ogenous) state of aggregate productivity, ; and the (endogenous) ratio of aggregate vacancies

to aggregate unemployment,  � �, which uniquely determines the �ow probabilities 

and  .

In the light of Proposition 5, we can characterize the aggregate steady state of the econ-

omy for a given  in terms of two relationships. The �rst, the Job Creation condition, is

simply equation (20), which we re�state here in terms of unemployment, making explicit its

14This mirrors the mass-balance approach used in Burdett and Mortensen (1998) to derive the equilibrium
wage distribution in a search model with wage posting.
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dependence on the aggregate vacancy�unemployment ratio, �:

 (�) = ¬
Z

 (; �)  (22)

(22) simply speci�es the level of aggregate employment that is consistent with the in�ows to

(hires) and out�ows from (separations) aggregate employment being equal as a function of

�. The second steady state condition is the Beveridge Curve relation. This is derived from

the di¤erence equation that governs the evolution of unemployment over time:

� 0 =  (�)¬  (�) (23)

(23) simply states that the change in the unemployment stock over time, � 0, is equal to

the in�ow into the unemployment pool �the number of separations,  �less the out�ow

from the unemployment pool �the job �nding probability,  , times the stock of unemployed

workers,  . In steady state, aggregate unemployment will be stationary, so that we obtain

the steady state unemployment relation:

 (�) =
 (�)

 (�)
 (24)

The steady state value of the vacancy�unemployment ratio, �, is co�determined by (22) and

(24).

3 Introducing Aggregate Shocks

The previous section characterized the determination of steady state equilibrium in the

model. However, in what follows, we are interested in the dynamic response of unemploy-

ment, vacancies and worker �ows to aggregate shocks. To address this, we need to charac-

terize the dynamics of the model out of steady state. The latter is not a trivial exercise in

the context of the present model. Out of steady state, �rms in the model need to forecast

future wages and therefore, from equation (9), future labor market tightness. Inspection

of the steady state equilibrium conditions (22) and (24) reveals that, in order to forecast

future labor market tightness, �rms must predict the evolution of the entire distribution of

employment across �rms,  (), an in�nite order state variable.

Our approach to this problem mirrors the method proposed by Krusell and Smith (1998).

We consider shocks to aggregate labor productivity that evolve according to the simple
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random walk:

0 =

(
 + � w.p. 12

¬ � w.p. 12
(25)

Following Krusell and Smith, we conjecture that a forecast of the mean of the distribution

of employment across �rms,  =
R

 (), provides an accurate forecast of future labor

market tightness. We then exploit the fact that shocks to aggregate labor productivity,

denoted by � in equation (25), are small in U.S. data.15 This allows us to approximate the

evolutions of aggregate employment,  , and labor market tightness, �, around their steady

state values � and �� as follows:

 0 � � + � ( ¬ �) + � (
0 ¬ ) 

�0 � �� + � ( 0 ¬ �) + � (
0 ¬ )  (26)

for � � 0. Under these conditions, we can approximate the optimal employment policy

of an individual �rm out of steady state. To see how this might be done, note from the

�rst order conditions (13) and (14) that to derive optimal employment in the presence of

aggregate shocks, one must characterize the marginal e¤ect of current employment decisions

on future pro�ts,  (�), out of steady state.

Proposition 6 If ) aggregate shocks evolve according to (25); ) a forecast of  provides

an accurate forecast of future �; ) aggregate shocks are small (� � 0); and ) idiosyncratic

shocks evolve according to (17), then the marginal e¤ect of current employment on future

pro�ts is given by

 ( ; �) �  ( ;�  0) + �
 ( ¬ �)  (27)

where �
 is a known function of the parameters of the forecast equation (26) and the steady

state employment policy de�ned in (13) and (14).

Proposition 6 shows that, in the presence of aggregate shocks, the forward looking com-

ponent to the �rm�s decision,  ( ; �), is approximately equal to its value in the

absence of aggregate shocks,  ( ;�  0), plus a known function of the deviation of ag-

gregate employment from steady state, �
 ( ¬ �). Practically, Proposition 6 allows us

to derive analytically an approximate solution for the optimal policy function in the presence

of aggregate shocks, for given values of the parameters of the forecast equation (26).

15Examples of other studies that have exploited the fact that aggregate shocks are small include Mortensen
and Nagypal (2007) and Gertler and Leahy (2008).
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To complete our description of the dynamics of the model, we need to aggregate the mi-

croeconomic behavior summarized in the employment policies of individual �rms. A simple

extension of the result of Proposition 5 implies that the aggregate number of separations

and hires in the economy at a point in time are respectively given by:

 ( ) = �

Z
[1¬ ¬1 (¬1)] ~ [ (¬1; )] ¬1

 ( ) = �

Z
¬1 (¬1)

�
1¬ ~ [ (¬1; )]

�
¬1 (28)

where ¬1 (¬1) is the distribution of lagged employment across �rms. Notice that the

timing is emphasized in the out of steady state case.

A number of observations arise from this. First, the aggregate �ows depend on the level

of aggregate employment,  . Recalling the accumulation equation for  yields:

 = ¬1 +  ( )¬  ( )  (29)

It follows that, to compute aggregate employment, all one need do is �nd the �xed point

value of  that satis�es equation (29). This allows us to compute equilibrium labor market

tightness by noting that

 (�) =  (¬ )  (30)

A second observation from equation (28) is that, in order to compute the path of aggre-

gate unemployment �ows, and hence employment, we need to describe the evolution of the

distribution of employment across �rms,  (). It turns out that the evolution of  () can

be inferred by a simple extension of the discussion following Proposition 5. Recall that the

change in the mass  () over time is simply equal to the in�ows less the out�ows from that

mass. Following the logic of Proposition 5 provides a di¤erence equation for the evolution

of  ():

 () = ¬1 () + � ~ [ (; )] [1¬ ¬1 ()]¬ �
�
1¬ ~ [ (; )]

�
¬1 ()  (31)

This allows us to update the aggregate �ows  ( ) and  ( ) over time, and hence

derive the evolution of equilibrium employment.

The previous results allow us to compute the evolution of aggregate employment and

labor market tightness for a given con�guration of the parameters of the forecast equations

(26). This of course does not guarantee that those parameters are consistent with the

behavior that they induce. To complete our characterization of equilibrium in the presence
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of aggregate shocks, we follow Krusell and Smith and iterate numerically over the parameters

f�  � �  �g to �nd the �xed point. In the simulations of the model that follow, the �xed
point of the conjectured forecast equations in (26) provides a very accurate forecast in the

sense that the 2s of regressions based on (26) exceed 0.999.

4 Quantitative Applications

The model of sections 2 and 3 yields a rich set of predictions for both the dynamics and

the cross-section of the aggregate labor market. In this section we draw out these implica-

tions in a range of quantitative applications, including the cross sectional distributions of

establishment size and employment growth, the amplitude and propagation of unemploy-

ment �uctuations, the relationship between vacancies and unemployment in the form of the

Beveridge curve, the dynamics of the distribution of establishment size, and the employer

size-wage e¤ect.

4.1 Calibration

Our calibration strategy proceeds in two stages. The �rst part is very conventional, and

mirrors the approach taken in much of the literature. The time period is taken to be equal

to one week, which in practice acts as a good approximation to the continuous time nature

of unemployment �ows. The dispersion of the innovation to aggregate labor productivity

� is set to match the standard deviation of the cyclical component of output per worker in

the U.S. economy of 0.02.

We assume that the matching function is of the conventional Cobb-Douglas form,  =

�U� 1¬�, with matching elasticity � set equal to 06, based on the estimates reported in

Petrongolo and Pissarides (2001).16 A weekly job �nding rate of  = 01125 is targeted to

be consistent with a monthly rate of 045. As in Pissarides (2007), we target a mean value

of the vacancy�unemployment ratio of � = 072. Noting from the matching function that

 = ��1¬�, the latter implies that the matching e¢ ciency parameter � = 0129 on a weekly

basis.

Vacancy costs  are targeted to generate per worker hiring costs  equal to 14 percent

of quarterly worker compensation. This is in accordance with the results of Silva and

Toledo (2007), who use the Saratoga Institute�s (2004) estimate of the labor costs of posting

16An issue that can arise when using a Cobb�Douglas matching function in a discrete time setting is that
the �ow probabilities  and  are not necessarily bounded above by one. This issue does not arise here due
to the short time period of one week.
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vacancies. In the context of the model, this implies a value of  approximately equal to 0.27

of the average worker�s wage.17

To pin down worker bargaining power � we target the elasticity of average wages of newly

hired workers with respect to output per worker to be equal to 0.94, based on the results

of Haefke et al. (2007).18 Inspection of the wage bargaining solution in (10) reveals that

increased worker bargaining power leads to greater comovement between the bargained wage

and aggregate labor productivity, and hence more cyclical wages.

The production function parameter � is determined by targeting an aggregate labor share

based on the estimates reported in Gomme and Rupert (2007). These suggest a labor share

for market production of 0.72. To complete the �rst part of our calibration, we choose the

size of the labor force  to match a mean unemployment rate of 6.5 percent. Given the

remainder of the calibration that follows, this is equivalent to choosing the labor force to

match a weekly job-�nding rate of 01125.

Idiosyncratic Shocks and the Value of Unemployment A more distinctive feature of

our strategy is the calibration of the evolution of idiosyncratic �rm productivity and the �ow

payo¤ from unemployment to a worker. For the former, we modify slightly the production

function in sections 2 and 3 to incorporate time invariant �rm speci�c productivity, denoted

by , so that  =  (). Firm speci�c �xed e¤ects  are introduced to re�ect permanent

heterogeneity in �rm productivity that is unrelated to the uncertainty that individual �rms

face over time in the form of the innovation .

An important feature of the model of sections 2 and 3 is that it allows a �exible speci�ca-

tion of the distribution of shocks. This is useful because conventional parameterizations, such

as log-normal shocks, fail to capture the well-known Pareto shape of the cross sectional distri-

bution of �rm size. Reacting to this, we set  �  ( ) and  �  ( ).19

The minimum value of the �xed e¤ect  is chosen to yield a minimum establishment

17We want to equate the per worker hiring cost  to 14 percent of quarterly wages, 014 � [12 � E ()].
Note that the implied weekly job �lling probability is given by  = ��¬� = 0129 � 072¬06 = 016. Piecing
this together yields E () = 016 � 014 � 12 = 027.
18We target the elasticity of the wages of newly hired workers rather than the elasticity of wages of all

workers for two reasons. First, it is well known that it is the �exibility of wages of new hires that is relevant
to the cyclicality of the job �nding rate implied by search and matching models of the labor market (Shimer,
2004; Hall, 2005; Hall and Milgrom, 2008). Second, it is also well known that the wages of workers in ongoing
relationships are rigid (see among others Card and Hyslop, 1997), which is at odds with the assumption of
Nash wage setting that we employ here. Our target of an elasticity of 0.94 lies at the upper end of the range
of estimates presented in Haefke et al. Our choice to target this number is therefore conservative, in the
sense that it limits the amplitude of the cyclicality that the model can generate.
19A Pareto distributed random variable  is parameterized by a minimum value  and a �shape�para-

meter , and has a density function given by 
+1.
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employment level of one worker, and its shape coe¢ cient  is chosen to match a mean

establishment size of 1725, based on data from the Small Business Administration for the

years 1992 to 2006.20 Innovations to idiosyncratic productivity  are normalized so that the

mean innovation is equal to one. This implies that  = 1¬ ¬1 . Given this, we solve for

�rms�optimal employment policy using the results in sections 2 and 3 above (see Appendix

A for details). An important outcome is that we can derive the steady state distribution of

employment growth:

Proposition 7 For a given time-invariant productivity , the steady state density of em-

ployment growth, � = � ln, across �rms is given by:

� (�j) =

8
>><

>>:

�
R

� ~0 �0¬���  (j) if �  0

�
R �

~ [ ()]¬ ~ [ ()]
�

 (j) if � = 0

�
R

� ~0 �0 ¬���  (j) if �  0

(32)

where  (j) is the distribution of employment  conditional on �xed �rm productivity

 derived in Proposition 5. The unconditional employment growth density is � (�) =R
� (�j) � (), where � is the (known) c.d.f. of .

Proposition 7 provides us with a novel approach to calibrating the remaining parame-

ters of the process of idiosyncratic shocks, � and . There is abundant evidence on the

properties of the cross sectional distribution of employment growth � (�) since the seminal

work of Davis and Haltiwanger (1992). Empirically, this distribution is characterized by a

dominant spike at zero employment growth, with relatively symmetric tails corresponding

to job creation and job destruction (see, for example, Figure 1.A in Davis and Haltiwanger,

1992). Note that this is exactly the form of the employment growth distribution implied by

the model in Proposition 7.

In practice, we choose � to match the spike at zero in this distribution, and  to match the

dispersion of employment growth. Intuitively, the cross sectional distribution of employment

growth is a manifestation of the idiosyncratic shocks  across �rms. The more often these

shocks arrive (the higher is � in the model), the more likely a �rm is to alter its employment,

and the smaller is the implied spike at zero employment growth. Likewise, the greater the

dispersion of the innovations  the larger the implied adjustment that �rms will make, hence

determining the tails of the distribution. In practice, we target an annual spike of 37.2

percent and an annual standard deviation of employment growth of 0.416 based on data for

20The data can be obtained from http://www.sba.gov/advo/research.
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continuing establishments from the Longitudinal Business Database for the years 1992 to

2005.21

The latter calibration of the process governing the evolution of idiosyncratic shocks is

crucial for our calibration of workers��ow payo¤ from unemployment . Since the work of

Hagedorn and Manovskii (2007), it has been recognized that the value of  plays a central

role in determining the cyclical volatility of aggregate unemployment, and speci�cally the

job-�nding rate. Intuitively, higher values of  lead to a smaller surplus to employment rela-

tionships. As a consequence, small reductions in aggregate productivity can easily exhaust

that surplus, and lead �rms to cut back substantially on hiring. Since one of the quantitative

applications we consider is the cyclical volatility of worker �ows, the parameterization of 

is key.

Our model suggests a novel approach to calibrating the payo¤ from unemployment: For

a given level of dispersion in idiosyncratic shocks implied by our calibration of the evolution

, a higher value of  reduces the surplus and implies that jobs will be destroyed more

frequently, raising the in�ow rate into unemployment . Thus, we choose  in such a way as

to yield employment rents that match the empirical unemployment in�ow rate of  = 00078

on a weekly basis, consistent with estimates reported in Shimer (2007).

The parameter values implied by our calibration are summarized in Table 1. In what

follows, we summarize the implications of the calibrated model for a range of cross-sectional

and aggregate outcomes.

4.2 Establishment Size and Employment Growth Distributions

An important component of our calibration strategy is to match key properties of the cross-

sectional distributions of employment and employment growth across �rms. The model�s

implications for these two outcomes are summarized in Propositions 5 and 7 above. In this

section, we compare the steady-state distributions implied by the model with their empirical

counterparts.

Figure 2 plots the distribution of establishment size in the calibrated model and recent

data. Both axes are on a log scale to emphasize the Pareto shape of the distributions. The

dots plot the empirical establishment size distribution using pooled data from the Small

Business Administration on employment by �rm size class for the years 1992 to 2006. The

dashed line indicates the analogue implied by the calibrated model. Figure 2 reveals that the

model accounts well for the empirical establishment size distribution. While this outcome is

21Thanks to John Haltiwanger, Ron Jarmin, and Javier Miranda for providing us with the tabulations
from the LBD that allowed us to make these calculations.
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not surprising given the Pareto shocks fed through the model, it does highlight the bene�t

of using a �exible form for the distribution of idiosyncratic productivity in the model of

sections 2 and 3.

What is perhaps more surprising is that the model also does a remarkable job of matching

the distribution of employment growth across establishments. The dotted line in Figure 3

illustrates the empirical employment growth distribution using data for continuing establish-

ments from the Longitudinal Business Database. As noted above, this displays the classic

features of a mass point at zero employment growth, and relatively symmetric tails. The

dashed line overlays the employment growth distribution implied by the calibrated model.

This bears a very close resemblance to the empirical distribution. This is more noteworthy

than it might at �rst appear: While the use of Pareto shocks was informed by the character

of the establishment size distribution in Figure 2, the message of Figure 3 is that it also

provides a remarkably good account of the employment growth distribution, something that

has not been emphasized in the literature on establishment dynamics.

4.3 The Cyclicality of Worker Flows

It is now well-known that standard search models of the aggregate labor market cannot

generate enough cyclical amplitude in unemployment, and in particular the job �nding rate,

to match that observed in U.S. data (Shimer, 2005). A natural question is whether the

generalized model analyzed here can alleviate this problem. To address this, we feed through

a series of shocks to aggregate labor productivity using equation (25), and simulate the

implied dynamic response of the model using the results of section 3. Following Mortensen

and Nagypal (2007a), we then use these simulated time series to compute the model-implied

elasticities of labor market stocks and �ows with respect to output per worker, and compare

them with their empirical counterparts.

Model Outcomes Panel A of Table 2 summarizes the results of this exercise. Outcomes

in brackets are moments that the model is calibrated to match: The mean levels of the

job-�nding rate  , the unemployment in�ow rate , and the vacancy-unemployment ratio �.

The aim of the exercise is to draw out the implications of the model for the outcomes that

the model is not calibrated to match, i.e. the cyclical elasticities of these outcomes with

respect to output per worker.

The results in Table 2.A are remarkably encouraging: On all dimensions, the model-

implied elasticities lie in a neighborhood close to the cyclicality observed in the data. Speci�-

cally, the model implies an elasticity of the job �nding rate of 275, a little above its empirical
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analogue of 265.22 In addition, the model-generated cyclical elasticity of the unemployment

in�ow rate of ¬168 lies only a little below the magnitude observed in the data.

Comparison with Mortensen and Pissarides (1994) These results make substantial

progress relative to the standard Mortensen and Pissarides (1994) model. To see this, panels

B and C of Table 2 provide two comparison exercises.23 First, taking as given the process

for idiosyncratic shocks implied by the distribution of employment growth derived above,

we calibrate the standard model to match the mean levels of the job �nding rate  and

the unemployment in�ow rate , as well as the elasticity of  with respect to output per

worker implied by the generalized model in panel A. This allows the model to speak to the

implied elasticity of the job �nding rate, and thereby the elasticities of vacancies and labor

market tightness. The outcomes in panel B con�rm what Shimer (2005) demonstrated:

that the standard model is unable to generate enough cyclicality in job creation.24 The

model-implied elasticity of the job-�nding rate is 129, less than one half of the empirical

elasticity. In contrast, the generalized model studied in the present paper can account for

all of the observed cyclical comovement between  and output per worker.

The Role of the Payo¤ from Unemployment Panel C of Table 2 provides a new

perspective on the standard model�s inability to match the cyclicality of unemployment

�ows. In this case, we again take as given the process for idiosyncratic shocks implied by

the empirical distribution of employment growth. However, instead of targeting the mean

level of the in�ow rate into unemployment , we now allow the standard model to match the

elasticity of the job �nding rate  generated by the model of sections 2 and 3, and then draw

out the implications for . Panel C reveals that the model must dramatically overstate the

magnitude of unemployment in�ows in order to match the cyclical comovement of  : The

implied weekly in�ow rate of 00185 is more than double that observed in the data.

This result sheds light on a recent debate in the literature. In order to match the cyclical

variation in the job �nding rate, the standard model requires a small surplus to employ-

ment relationships, a point emphasized by Hagedorn and Manovskii (2007) and Mortensen

22The cyclical elasticities reported in Table 2 di¤er slightly from those implied by Shimer (2005) and
Mortensen and Nagypal (2007a) as a result of revisions to U.S. GDP data.
23In practice, we use the version of the Mortensen and Pissarides model developed by Mortensen and

Nagypal (2007b). This modi�es the original model to allow for a distribution of idiosyncratic shocks without
an upper bound, such as the Pareto shocks we use in the generalized model.
24Shimer�s (2005) calibration of the standard model with exogenous job destruction yields an elasticity of

 equal to 0.48. Mortensen and Nagypal (2007a) favor a di¤erent calibration that yields an elasticity of 
equal to 1.56 (see their section 3.2). Pissarides�(2007) calibration of the standard model with endogenous
job destruction obtains an elasticity of  equal to 1.54.
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and Nagypal (2007a).25 Mortensen and Nagypal further argue that the required surplus

is unrealistically small. The results of Table 2 formalize this intuition: For realistic varia-

tion in idiosyncratic shocks to �rms, a surplus small enough to match the cyclicality of 

implies an employment to unemployment transition rate that is more than double what is

observed empirically. Intuitively, a small surplus implies that small idiosyncratic shocks to

employment relationships are enough to exhaust the surplus and lead to destruction of a

match. Consequently, realistic dispersion in idiosyncratic shocks generates excessive worker

turnover.

Thus, the Mortensen and Pissarides model faces a tension: To match plausible levels of

unemployment in�ows, the model must generate a su¢ ciently large surplus at the expense

of matching the cyclicality of the job �nding rate. Conversely, to generate the cyclical

variation in the job �nding rate, the surplus must be small, which in turn yields excessive

employment to unemployment transitions.

Understanding Ampli�cation The results in Table 2 raise the question of why the

generalized model yields ampli�cation of the response of job creation to cyclical shocks. The

following result provides a sense for where this ampli�cation comes from by approximating

the steady-state response of job creation to a change in aggregate labor productivity:

Proposition 8 For small �, the shift in the Job Creation condition (22) induced by a change
in aggregate productivity  is given approximately by

 ln �

 ln 

����


� (1¬ �) ~
� [(1¬ �) (~¬ )¬ ���] + ���

 (33)

where  is the steady state employment share of hiring �rms, and ~ � � + (1¬ �)

where  and  are respectively the average and marginal product of labor of the average�

sized �rm, and � � ��
1¬�(1¬�) .

Corollary 1 The elasticity of the vacancy�unemployment ratio to aggregate productivity in
the � = 1 case (Mortensen and Pissarides, 1994) is approximately equal to

 ln �

 ln 
� (1¬ �) 

� [(1¬ �) (¬ )¬ ���] + ���
 (34)

25A common diagnostic for the size of the �ow surplus is the ratio between worker�s payo¤ from unemploy-
ment, , and the average product of labor. For panel A of Table 2, this ratio equals 0.514; for panel C, it
equals 0.632. Thus, the Mortensen and Pissarides model demands a smaller surplus to match the volatility
of the job �nding rate.
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Equation (34) echoes results presented in Mortensen and Nagypal (2007a,b): The cyclical

response of the vacancy-unemployment ratio � is ampli�ed when the average �ow surplus to

employment relationships, ¬ , is small. Equation (33) generalizes this result to the model

studied here. Inspection of (33) and (34) reveals that there are two channels through which

the generalized model yields ampli�cation of the cyclicality of labor market tightness. First,

the e¤ective surplus that matters for ampli�cation is now given by ~¬ , a weighted average

of the average and marginal �ow surpluses. This lies below the average �ow surplus as a

result of the diminishing marginal product of labor in the model.

This provides a sense for why the generalized model is able simultaneously to match the

rate at which workers �ow into unemployment , as well as the volatility of the job-�nding

rate  over the cycle: The former requires a large average surplus; the latter requires a

small marginal surplus.26 The standard Mortensen and Pissarides model cannot achieve this

because of its inherent linearity.

Equation (33) also suggests that there is an additional e¤ect at work in the form of the

variable , the steady state employment share of hiring �rms. To understand the signi�cance

of this term, note that in the standard Mortensen and Pissarides model where � = 1,  is

equal to one: With a linear technology, a �rm that reduces its employment will shed all of its

workers since, if one worker is unpro�table at a �rm, all workers are unpro�table. As a result,

all surviving �rms at a point in time are hiring �rms in the standard model. In contrast,

in the generalized model, shedding �rms do not reduce their employment to zero because

reducing employment replenishes the marginal product of labor. Hence  will be less than

unity, and inspection of (33) and (34) reveals that this will lead to greater ampli�cation

relative to the standard model.27 Intuitively, it is as if the economy has to rely on a smaller

mass �rms to hire workers from the unemployment pool, which in turn leads to a larger

increase in unemployment in times of recession.

4.4 The Beveridge Curve

Until now, we have been concentrating on the cyclicality of worker �ows implied by the

generalized model. Readers of Shimer (2005), however, will recall that the standard search

26Mortensen and Nagypal (2007a) favor an average �ow match surplus of [ ()]¬1¬ 1 = 1
073 ¬ 1 = 37

percent. The corresponding value implied by our calibration is 1
061¬1 = 64 percent. The worker�s surplus in

our simulation is also substantial: Workers obtain a (E[]¬ )  = 18 percent �ow surplus from employment
over unemployment.
27The reader may worry whether (1¬ �) (~¬ )¬ ��� is positive or not. To see that it is, note that we

can rewrite it as (1¬ �)
�
p�x�¬ 1

1¬�(1¬�) ¬ 
�
¬ ��c�, and observe from equations (13) and (14) that it is, in fact,

the marginal �ow surplus of a �rm, and therefore must be positive.
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and matching model also fails to match the observed cyclical volatility in the vacancy rate

in the U.S., and especially so if one allows job destruction to move countercyclically.

Table 2 reiterates this message: While vacancies are markedly procyclical, with an em-

pirical elasticity with respect to output per worker of 291, calibration of the Mortensen and

Pissarides model yields a countercyclical vacancy elasticity.28 Shimer (2005) has emphasized

that this feature of the standard search and matching model in turn leads to a dramatic

failure to account for a key stylized fact of the U.S. labor market: the negative relation

between vacancies and unemployment, known as the Beveridge curve.

Figure 4 plots the Beveridge curve relation from model-generated data (the hollow cir-

cles), and compares it with the empirical analogue using vacancy data from the Job Openings

and Labor Turnover Survey (the dots). While the model-generated Beveridge curve has a

slightly shallower slope, it nonetheless lies very close to the array of observations witnessed

in recent data. This can be traced to the results in Table 2: The cyclicality of vacancies in

the model lies very close to its empirical counterpart, with a cyclical elasticity of 275 lying

only a little below the value of 291 in the data.

What emerges from Table 2 and Figure 4 is a coherent and quantitatively accurate picture

of the joint cyclical properties of both �ows of workers in and out of unemployment, as well as

the behavior of unemployment and vacancies. In addition to providing a plausible mechanism

for the cyclical amplitude of the job-�nding rate, the model also presents an environment

in which this can be reconciled with the cyclical behavior of job destruction and vacancy

creation.

4.5 Propagation

A less well�documented limitation of the standard search and matching model relates to the

propagation of the response of equilibrium labor market tightness to aggregate shocks to labor

productivity. In the Mortensen and Pissarides model, the vacancy-unemployment ratio is

a jump variable and therefore moves contemporaneously with changes in labor productivity.

Empirically, however, the vacancy�unemployment ratio displays sluggish behavior, and is

much more persistent than aggregate labor productivity, a point emphasized by Shimer

(2005) and Fujita and Ramey (2007).

An appealing feature of the model presented in sections 2 and 3 is that it admits a natural

channel for the propagation of the response of the vacancy-unemployment ratio to aggregate

28This arises because countercyclical job destruction leads to an o¤setting increase in hires in times of reces-
sion to maintain balance between unemployment in�ows and out�ows, and thereby stymies the procyclicality
of vacancies (Shimer, 2005; Mortensen and Nagypal, 2007b).
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shocks. The determination of � over time depends on the evolution of the distribution of

employment across establishments  (). Inspection of equation (31), the law of motion for

the distribution of employment across �rms, reveals that  () is not a jump variable, but

is instead a slow moving state variable in the model. In particular, rewriting (31) yields

 ()¬ ¬1 () = ¬ () [¬1 ()¬ � ()] , (35)

where  () � �
�
1¬ ~ [ ()] + ~ [ ()]

�
,29 and � () is the steady state distribution

that sets  ()¬ ¬1 () = 0.

Equation (35) provides an important source of intuition for what factors are likely to

drive propagation in the model. In particular, the rate of convergence to steady state  ()

is determined by two factors. First, less frequent idiosyncratic shocks, as implied by a lower

value of �, will cause fewer �rms to adjust employment, and thereby slow the reallocation of

employment across �rms. Second, the size of adjustment costs will determine the gap be-

tween  () and  () in a �rm�s optimal employment policy function in Figure 1. Larger

adjustment costs will widen this gap, reducing  () in equation (35), and slowing the dy-

namics of  (). This suggests that the magnitude of labor adjustment costs has important

implications for the propagation of the response of unemployment to aggregate shocks.

Figure 5 plots the dynamic response of unemployment, labor market tightness, the job-

�nding rate, and the unemployment in�ow rate following a permanent one percent decline

in aggregate labor productivity using simulated data from the model. This con�rms that

the generalized model yields some propagation of the response of unemployment and labor

market tightness (and thereby the job-�nding rate). It takes around 20 months for unem-

ployment to adjust to the shock in the model, and 9 months for the response of � and  to

dissipate.

This is a substantial improvement over the instantaneous response of � and  implied

by the standard search model. However, the magnitude of the propagation implied by the

model is not quite enough to account fully for the persistence of the vacancy-unemployment

ratio observed in the data. In their detailed analysis of the empirical dynamics of labor

market tightness, Fujita and Ramey (2007) show that � takes around �ve quarters, or 15

months, to adjust to an impulse to aggregate labor productivity in U.S. data.

An additional message of Figure 5 concerns the dynamics of the unemployment in�ow rate

. Panel D reveals that  spikes upward instantaneously following a reduction in aggregate

29For notational simplicity, we suppress the dependence of , , and  on the aggregate state variables
 and .
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labor productivity, subsides in the immediate aftermath of the shock, and then converges

toward a new steady state value over the course of the next two years. In the wake of a

recessionary shock a discrete mass of jobs becomes unpro�table and is destroyed immediately,

mirroring the implications of the standard Mortensen and Pissarides model (Mortensen,

1994). Following the shock, the in�ow rate begins rising again as �rms receive productivity

shocks at rate �.

Viewed together, the joint dynamics of the job-�nding and in�ow rate in the model bear a

remarkable resemblance to the qualitative features of the response of  and  over the cycle:

Recessions are characterized by a wave of in�ows which then recedes and is accompanied by

persistent declines in rates of job-�nding, just as observed in empirical worker �ows in U.S.

data (see, for example, Elsby, Michaels and Solon, 2009).

4.6 Extensions

The previous sections have shown that the model derived in sections 2 and 3 can account for

many of the cross-sectional and cyclical features of the U.S. labor market. In this section, we

push the model harder. We consider two additional outcomes which the model can speak to,

but was not designed to account for: the cyclical dynamics of the cross-sectional distribution

of establishment size, and the employer size-wage e¤ect.

Cyclical Dynamics of the Employer Size Distribution Until now, we have focused

separately on the implications of the model for the cross section of employers and for the

aggregate dynamics of labor stocks and �ows. Recent literature, however, has sought to

understand the joint dynamics of the cross section. Moscarini and Postel-Vinay (2009) in

particular emphasize empirical regularities in the cyclical behavior of the cross-sectional

distribution of establishment size: The share of small establishments rises during recessions,

while the shares of larger �rms decline. Figure 6 reiterates this �nding. It uses annual data

from County Business Patterns for the years 1986 to 2007 on the number of establishments by

employer size, and plots the log deviations from trend of the establishment size shares against

the unemployment rate. The dots plot the data, and the dot-dashed lines the corresponding

least squares regression lines. The share of establishments with 1 to 19 workers rises with

unemployment, while the shares of establishments with more than 20 employees decline as

unemployment rises.

The blue dashed lines in Figure 6 plot the analogous relationships implied by simulations

of the model of sections 2 and 3. The results are very encouraging: The model replicates

the observation that the share of establishments with fewer than 20 employees increases in
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times of recession, while the shares of the larger size classes decline. In addition, the model

also provides a reasonable account of the magnitude of the cyclicality of the establishment

shares. It comes very close to replicating the cyclical sensitivities for the 20 to 99 employee

and the 1000+ employee groups, and implies around one half of the cyclical sensitivity of

the 1 to 19 and 100 to 999 employer size classes.

The observation that the share of smaller establishments rises in a recession in both the

model and the data is not in itself a surprising fact, since aggregate employment, the mean

of the distribution of establishment size, falls during recessions. What is noteworthy about

the model is that it replicates the position in the distribution� at around 20 employees� at

which this e¤ect takes hold, as well as the magnitude of the cyclicality in some of the size

classes. Given that these implications of the model are venturing even farther a�eld from

the moments it was calibrated to match, we view the results of Figure 6 as an important

achievement.

Employer Size-Wage E¤ect Our �nal application relates to the observation that workers

employed in larger �rms are often paid higher wages� the employer size-wage e¤ect noted

in the in�uential study by Brown and Medo¤ (1989). An attractive feature of the model

is that, by incorporating a notion of employer size, and by modeling the wage bargaining

process between a �rm and its many workers, it can speak to such issues.

Casual inspection of the wage equation (10) is not heartening in this respect, however:

Due to the diminishing marginal product of labor in the model, one might anticipate that

the model predicts a negative correlation between wages and employer size, in direct contrast

to Brown and Medo¤�s observation. Further consideration of equation (10), though, reveals

that such a conclusion would be premature: While the diminishing marginal product of labor

does set in for larger employers, it is also the case that larger employers will be those with

higher idiosyncratic productivity . The implications of the model for the employer size-wage

e¤ect depend on which of these forces dominates.30

Figure 7 illustrates the relationship between average log wages and log employment im-

plied by the model. It takes simulated data based on the calibration in Table 1, and plots the

results of a nonparametric locally weighted (LOWESS) regression of log �rm wages on log

30Bertola and Garibaldi (2001) also include a discussion of this point. Their model is somewhat less general
than that presented in this paper, however. Like Bertola and Caballero (1994), the authors analyze a linear
approximation to the marginal product function. In addition, a more restrictive process for productivity
shocks is used: It is assumed that, if a �rm receives a negative disturbance, its productivity reverts to the
minimum of the distribution�s support. Since these transitions are the only means by which the model
generates in�ows into unemployment, all �rms that receive a negative shock must shed workers; inaction is,
by assumption, never an optimal response for these employers.
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�rm employment. This reveals that the model does in fact predict a positive employer-size

wage e¤ect, qualitatively in line with the results of Brown and Medo¤. As it turns out,

the e¤ect of higher idiosyncratic productivity outweighs the e¤ect of diminishing marginal

product.

Figure 7 also provides a sense of the magnitude of the size-wage e¤ect. Brown and

Medo¤ (1989) report that, controlling for observable and unobservable measures of labor

quality and for di¤erences in workplace conditions, a worker moving from an establishment

with log employment one standard deviation below average to an establishment with log

employment one standard deviation above average would receive a wage increase of around

10 percent. As shown in Figure 7, the counterpart implied by the model is a wage premium

closer to 2.5 percent.

Thus, while the model yields a positive size-wage e¤ect, it generates only around one

quarter of the magnitude of the e¤ect observed in the data. We do not view this necessarily

as a problem, however. The mechanism that accounts for the size-wage e¤ect in the model�

the interaction of surplus sharing with heterogeneity in employer productivity� is only one

of a large number of proposed channels. Oi and Idson (1999) present a summary of these,

including e¢ ciency wages, market power, speci�c human capital, among others. In a model

of wage posting, Burdett and Mortensen (1998) demonstrate that on-the-job search in the

presence of labor market frictions also can generate a positive employer size-wage e¤ect, as

higher-paying �rms recruit and retain more workers. The results of Figure 7 suggest that

the model presented in this paper leaves room for these additional explanations.

5 Summary and Discussion

In this paper, we have introduced a notion of �rm size into a search and matching model

with endogenous job destruction. This yields a rich, yet analytically tractable framework. In

a series of quantitative applications, we show that the model provides a useful laboratory for

analyzing the salient features of both the dynamics and the cross section of the aggregate la-

bor market. Speci�cally, a calibrated version of the model provides a coherent account of the

distributions of establishment size and employment growth; the amplitude and propagation

of the cyclical dynamics of worker �ows; the Beveridge curve relation between unemployment

and vacancies; and the dynamics of the distribution of �rm size over the business cycle.

A number of avenues arise naturally in the light of this. First, the model has a well-

de�ned concept of a �rm and so lends itself to estimation using establishment level data.

As a result, the analytical framework developed here will complement recent research e¤orts
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that have sought to solve and estimate search models using numerical methods (e.g. Cooper,

Haltiwanger and Willis, 2007).

Second, our interpretation of the standard search and matching model as a model of

kinked adjustment costs raises the question of the aggregate implications of other forms of

adjustment costs in the labor market. Recent research has emphasized the importance of

�xed adjustment costs in explaining the empirical properties of labor demand at the micro

level (see for example Caballero, Engel, and Haltiwanger, 1997, and Cooper, Haltiwanger,

and Willis, 2004). Incorporating these adjustment costs into the model will provide a

uni�cation of the joint insights of the two dominant approaches to the modelling of aggregate

labor markets� the search and matching framework, and models of adjustment costs.

A �nal extension relates to the nature of wage setting. An attractive feature of incor-

porating �rm size into models of the labor market is that an assessment of the multilateral

dimension to wage bargaining between a �rm and its many workers becomes feasible. This

has been of particular interest in recent literature that has emphasized the importance of

rigidities in the structure of wages within a �rm, as well as of individual wages over time,

for determining the volatility of unemployment (Bewley, 1999; Hall, 2005). While the wage

bargaining solution derived in the present paper seeks to improve upon approaches in previ-

ous work, it is in many ways an idealized environment in which the wages of all workers can

be renegotiated costlessly. This idealized setting, however, provides a fruitful benchmark

for analyzing the implications of rigidities in renegotiation of wages within a �rm, as well as

across time.
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7 Appendix

A Solution of the Simulated Model

Here we present technical details of the solution to the model in sections 2 and 3 for the
purposes of the quantitative applications in section 4. For simplicity, we present the solution
approach for a given �xed �rm productivity , so we supress this notation in what follows.
Aggregation across  is achieved simply by integrating over the known distribution .

Steady State Optimal Employment Policy Idiosyncratic shocks evolve according to
(17) with  �  (1¬ ¬1  ). Denoting the distribution function of  as ~, we can
rewrite the recursion for the function  ( ) in Proposition 3 as:

 ( ) = (1¬ �)� () + �

Z ()

()

� (0)  ~ (0) + �

Z 1

()




 ~ (0)

+� (1¬ �) ( ) + ��

Z ()

()

 ( 0)  ~ (0)  (36)

where � () � (1¬ �)
h
px�n�¬ 1

1¬�(1¬�) ¬ 
i
¬ �� 


. We conjecture that the function  ( ) is of

the form  ( ) = 0+1� (). Substituting this into the latter, and equating coe¢ cients,
we obtain the following solution for  ( ):

 ( ) =
1¬ �

1¬ � (1¬ �)
� ()

+
�

1¬ � (1¬ �)
~ [ ()]¬ ~ [ ()]

1¬ � (1¬ �)¬ ��
�
~ [ ()]¬ ~ [ ()]

�Q ()

+
1¬ ~ [ ()]

1¬ � (1¬ �)¬ ��
�
~ [ ()]¬ ~ [ ()]

��


 (37)

where Q () � E (� (0) j0 2 [ ()   ()]). Substituting into the �rst order conditions for
hires and separations (13) and (14) yields two nonlinear equations in the optimal employment
policy  () and  () that are straightforward to solve numerically. The aggregate em-
ployment stock and �ows are then obtained directly from applying the results of Proposition
5.

Average Product and Average Marginal Product The average product of labor
implied by the model is given by  = E [�¬1]. Note that:

E
�
�¬1

�
=

Z �Z
 (j)

�
�¬1 () 

36



Moreover, the optimal employment policy implies that, given ,  must lie in the interval
[ ()   ()], but is otherwise independently distributed. Thus:

Z
 (j) =

R ()

()
 ()

 [ ()]¬  [ ()]
=

1

2
[ () +  ()]  (38)

where the last equality follows from the assumption of uniform idiosyncratic shocks in the
simulation. Thus:

 = E
�
�¬1

�
= 

Z
1

2
[ () +  ()]

�¬1 ()  (39)

The average marginal product of labor is simply given by E [] = E [��¬1] = �.

Average Wages It follows from equation (9) that the average wage across �rms is given
by:

� =
�

1¬ � (1¬ �)
E [] + ��




+ (1¬ �)  (40)

To obtain the average wage across workers, which we denote �, note that � = E
h


E() ( )

i

where  ( ) is the wage in a given �rm de�ned in (9). That is, it is the employment-
weighted average of wages across �rms. Thus:

� =
�

1¬ � (1¬ �)
1

E ()
E [��] + ��




+ (1¬ �)  (41)

This has a very similar structure to the average wage across �rms. It follows that:

� =
�p�

1¬ � (1¬ �)
1

E ()

Z
1

2
[ () +  ()]

� () + ��



+ (1¬ �)  (42)

Finally, the average wage of new hires, which we denote �, is equal to a hiring�weighted
average of wages across hiring �rms. Noting from (12) that idiosyncratic productivity of
hiring �rms is given by  =  (), we have that:

� = E [E ( ( ) j  ¬1 ¬1)] =

Z Z

¬ 1

 ( ())
 [ ()]

1¬  [ (¬1)]
 (¬1)  (43)

B Proofs

Conjecture 1 The optimal employment policy function is of the form speci�ed in (12).

We will later verify in the proof of Proposition 2 that the Conjecture is consistent with
the solution for the wage equation obtained in Proposition 1.
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Proof of Proposition 1. Note �rst that, under the Conjecture, we can write the marginal
surplus to a �rm recursively as:

 ( ) =  0 ()¬  ( )¬  ( ) + �

Z 1

()




 (0) + �

Z ()

()

 ( 0)  (0) 

(44)
In addition, we can write the value to a worker of unemployment as:

 =  + �

�
(1¬ ) 0 + 

Z 1

0

Z 1

()


¬
¬1 (0)  0

�  (0)

1¬  ( ())
 ()

�
 (45)

Upon �nding a job, which occurs with probability  , the new job must be in a �rm which is
posting vacancies. This implies that the idiosyncratic productivity of the �rm, 0   (),
and that the level of employment in the hiring �rm, 0 = ¬1 (0). Moreover, since �rms
di¤er in size, there is a distribution of employment levels,  (), over which an unemployed
worker will take expectations when evaluating the expected future bene�ts of being hired.31

It is useful to rewrite the worker�s value of unemployment as:

 =  + �

�
 0 + 

Z 1

0

Z 1

()

�

¬
¬1 (0)  0

�
¬  0

�  (0)

1¬  ( ())
 ()

�
 (46)

Then note that, due to Nash sharing, the worker�s surplus in an expanding �rm, (¬1 (0)  0)¬
 0 = �

1¬� (¬1 (0)  0), and moreover that, by the �rst-order condition for a hiring �rm
(see (4)),  (¬1 (0)  ) = . Thus, we obtain the simple result:

 =  + � 0 + �
�

1¬ �



 (47)

The value of employment to a worker can be written as:

 ( ) =  ( ) + �

(Z ()

0

�
~ 0 + (1¬ ~)

¬
¬1 (0)  0

��
 (0) (48)

+

Z ()

()

 ( 0)  (0) +

Z 1

()


¬
¬1 (0)  0

�
 (0)

)


An employed worker�s expected future payo¤ can be split into three regimes. If the �rm
sheds workers next period (0   ()) then the worker may separate from the �rm. We
denote by ~ the probability that a worker separates from a �rm conditional on the �rm
shedding workers. If the worker separates, she transitions into unemployment and receives
a payo¤  0. Otherwise she continues to be employed in a �rm of size 0 = ¬1 (0). Note
that Nash sharing implies that  (¬1 (0)  0) ¬  0 = �

1¬� (¬1 (0)  0), and that, by

31The reader may wonder why the integral in (45) is not taken over the joint distribution of  and 0.
The reason is that, conditional on 0   (),  provides no additional information on 0; see the optimal
employment policy function (12).
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the �rst-order condition,  (¬1 (0)  0) = 0. Thus,  (¬1 (0)  0) =  0. In the event
that a �rm freezes employment next period (0 2 [ ()   ()]) then Nash sharing implies
that  ( 0) ¬  0 = �

1¬� ( 0). Finally, in the event that the �rm hires next period,
 (¬1 (0)  0)¬  0 = �

1¬�


. Thus, we have that:

 ( ) =  ( ) + � 0 + �
�

1¬ �

Z 1

()




 (0) + �

�

1¬ �

Z ()

()

 ( 0)  (0)  (49)

Subtracting the value of unemployment to a worker from the latter, we obtain the following
description of the worker�s surplus:

 ( )¬ =  ( )¬+�
�

1¬ �

Z 1

()




 (0)+�

�

1¬ �

Z ()

()

 ( 0)  (0)¬�
�

1¬ �





(50)
Under Nash, this must be equal to �

1¬� ( ), where  ( ) is as derived in (44) so that
we have:

 ( ) = �

�
 0 ()¬  ( ) + �





�
+ (1¬ �)  (51)

as required.

Proof of Proposition 2. Given the wage function in (9), it follows that the �rm�s
objective, (3), is continuous in (¬1 ) and concave in . Thus, it follows from the Theorem
of the Maximum that the �rm�s optimal employment policy function is continuous in (¬1 ).
Given this, it follows that the employment policy function must be of the form stated in
Proposition 2. This veri�es that the Conjecture stated at the beginning of the appendix
holds.

Proof of Proposition 3. First, note that one can re-write the continuation value condi-
tional on each of the three possible continuation regimes:

� ( 0) =

8
<

:

�¬ ( 0) if 0   () 
�0 ( 0) if 0 2 [ ()   ()] 
�+ ( 0) if 0   () 

(52)

where superscripts ¬0+ refer to whether their are separations, a hiring freeze, or hires
tomorrow. Thus we can write32:
Z
� ( 0)  (0j) =

Z ()

0

�¬ ( 0)  +

Z ()

()

�0 ( 0)  +

Z 1

()

�+ ( 0) 

(53)
Taking derivatives with respect to , recalling the de�nition of  (�), and noting that, since
� ( 0) is continuous, it must be that �¬ ( ()) = �0 (  ()) and �0 ( ()) =

32Henceforth, ��without further elaboration is to be taken as � (0j)�.
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�+ (  ()), yields:

 ( ) =

Z ()

0

�¬ ( 0)  +

Z ()

()

�0
 ( 0)  +

Z 1

()

�+
 ( 0)  (54)

Finally, using the Envelope conditions in Lemma 1 below, and substituting into (54) we
obtain (15) and (16) in the main text:

 ( ) =

Z ()

()

�
(1¬ �)

�
0��¬1

1¬ � (1¬ �)
¬ 

�
¬ ��





�
 (0j)

+

Z 1

()




 (0j) + �

Z ()

()

 ( 0)  (0j)

� (C) ( )  (55)

To verify that C is a contraction mapping, we con�rm that Blackwell�s su¢ cient conditions
for a contraction hold here (see Stokey and Lucas, 1989, p.54). To verify monotonicity, �x
( ) = (� �), and take ̂ � . Then note that:

Z (�)

(�)

̂ (� 0)  (0j�)¬
Z (�)

(�)

 (� 0)  (0j�) =
Z (�)

(�)

h
̂ (� 0)¬  (� 0)

i
 (0j�) � 0

(56)
Since (� �) were arbitrary, it thus follows that C is monotonic in . To verify discounting,
note that:

[C ( + )] ( ) = (C) ( )+� [ ( () j)¬  ( () j)] � (C) ( )+� (57)

Since �  1 it follows that C is a contraction. It therefore follows from the Contraction
Mapping Theorem that C has a unique �xed point.

Lemma 1 The value function de�ned in (3) has the following properties:

�¬ ( 0) = 0 (58)

�0
 ( 0) = (1¬ �)

�
0��¬1

1¬ � (1¬ �)
¬ 

�
¬ ��




+ � ( 0) 

�+
 ( 0) = 

Proof of Lemma 1. First, note that standard application of the Envelope Theorem implies
that �¬ ( 0) = 0 and �+

 ( 0) = . It is only slightly less obvious what happens when
�0 = 0, i.e. when the employment is frozen next period. In this case, 0 =  and this
implies that:

�0 ( 0) = 0 ()¬  ( 0) + �

Z
� ( 00)  (00j0)  (59)
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It therefore follows that:

�0
 ( 0) = 0 0 ()¬  ( 0)¬  ( 0) + �

Z
� ( 00)  (00j0)  (60)

Since, by de�nition  ( 0) �
R
� ( 00)  (00j0), the statement holds as required.

Proof of Proposition 4. First note that if  evolves according to (17), then we can
rewrite the recursion for  ( ) as:

 ( ) =
1¬ �

1¬ � (1¬ �)
� () +

�

1¬ � (1¬ �)

Z ()

()

� (0)  ~ (0)

+
�

1¬ � (1¬ �)

Z 1

()




 ~ (0) +

��

1¬ � (1¬ �)

Z ()

()

 ( 0)  ~ (0) (61)

where � () � (1¬ �)
h
px�n�¬ 1

1¬�(1¬�) ¬ 
i
¬ ���. It follows that the LHS of the �rst�order

conditions, (13) and (14) are increasing in , because � () is increasing in . Thus, to
establish that   0 and   0, simply note that the function  ( ) is also
increasing in  and thus the LHS of (13) and (14) are increasing in .
To ascertain the marginal e¤ects of � we �rst need to establish the marginal e¤ect of � on

the function  ( ). Rewriting  = � and  =  (�) in (61), di¤erentiating with respect
to �, and using the �rst�order conditions, (13) and (14), to eliminate terms we obtain:

� = ¬��
1¬ � (1¬ 0)

1¬ � [1¬ � (1¬ 0)]
¬ 



0 (�)



�p+

1¬ � [1¬ � (1¬ 0)]
 (62)

where 0 � ~ ( ()) ¬ ~ ( ()), + � 1¬ ~ ( ()), and ¬ � ~ [ ()]. Note that �

is independent of . Di¤erentiating the �rst�order condition for a hiring �rm, (13), with
respect to � we obtain:

¬�� +




0 (�)


+ �� = ¬

��

1¬ � [1¬ � (1¬ 0)]
+





0 (�)



1¬ � (1¬ �p¬)
1¬ � [1¬ � (1¬ 0)]

 0 (63)

since 0 (�)  0. Thus it follows that �  0. Likewise, di¤erentiating the �rst�order
condition for a shedding �rm, (14), with respect to � we obtain:

¬�� + �� = ¬
��

1¬ � [1¬ � (1¬ 0)]
¬ � 



0 (�)



�p+

1¬ � [1¬ � (1¬ 0)]
 (64)

Thus, �  0 ()   ¬1 ~¬1
�
1 + �

�


�

�
where � �  ln 

 ln �
.

Proof of Proposition 5. Proof of (19) and (20): See main text.
Proof of (21): First note that a necessary condition for a �rm to shed workers is that it

receives an idiosyncratic shock, which occurs with probability �. In this event, the number
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of separations in a �rm that is shedding workers is equal to ¬1 ¬ ¬1 (), since separating
�rms set employment,  = ¬1 (). Now imagine, counterfactually, that all �rms shared
the same lagged employment level, ¬1. Then, the aggregate number of separations in the
economy would equal:

� (¬1) = �

Z (¬ 1)

min

�
¬1 ¬ ¬1 ()

�
 ~ ()  (65)

where min is the lower support of idiosyncratic productivity. Using the change of variables,
 =  (), and integrating by parts:

� (¬1) = �

Z ¬ 1

min

(¬1 ¬ )
 ~ [ ()]


 = �

Z ¬ 1

min

~ [ ()]  (66)

Now, of course, the true aggregate number of separations is equal to  =
R
� (¬1)  (¬1),

where (�) is the c.d.f. of employment. Denoting max as the upper support of (�), further
integration by parts reveals that:

 = � (max)¬ �
Z

~ [ (¬1)] (¬1) ¬1 = �

Z
[1¬  ()] ~ [ ()]  (67)

as required. A similar method reveals that the aggregate number of hires in the economy,
 = �

R
 ()

�
1¬ ~ [ ()]

�
. It follows from the steady state condition for the

distribution for employment, (19), that separations, , are equal to hires,  .

Proof of Proposition 6. Given that aggregate shocks evolve according to (25), and
denoting the forecast equations for  and � in (26) as  0 ( ) and �0 ( 0 ) respectively,
we can write the marginal e¤ect of current employment on future pro�ts as

 (  ;�) =
1

2
 (  0 (  + �)   + �) +

1

2
 (  0 ( ¬ �)  ¬ �) 

(68)
where

 (  0 ( 0)  0) =

Z ( 00)

( 00)

� ( 0  0 0)  (0j) +
Z 1

( 00)

 [�0 ( 0 0)]
�
 (0j)

+�

Z ( 00)

( 00)

 ( 0  0 ( 0)  0)  (0j)  (69)

and � (  ) = (1¬ �)
h
px�n�¬ 1

1¬�(1¬�) ¬ 
i
¬�� [�0 ( 0 0) j] � �0+�1+�2 [�0 ( 0 0) j].

Taking a Taylor series approximation to  (  ;�) around � = 0 we obtain

 (  ;�) �  ( � ; 0) + � ( � ; 0) � + �
 ( ¬ �)  (70)
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where �
 �  ( � ; 0). It is straightforward to show that � ( � ; 0) = 0,

and that �
 =  0 ( � ) � . Under the conjectured forecast equations in (26), we

can write33

 0 (  0 ( 0)  0) =

Z ( 00)

( 00)

� 0 ( 0  0 0)  (0j)

+

Z 1

( 00)

c� [�0 ( 0 0)]
�¬1

�0 0 (
0 0)  (0j)

+�

Z ( 00)

( 00)

 ( 0  0 ( 0)  0)  (0j)  (71)

Evaluating at  = � and 0 = , and noting that � 0 (  0 ) = �2�� , and
�0 0 (

� ) = � , we obtain

 0 ( � 0) = �2��

Z (�)

(�)

 (0j) + c���
��¬ 1

Z 1

(�)

 (0j)

+�

Z (�)

(�)

 ( 0 � )  (0j)  (72)

Recall from above that �
 =  0 ( � ) � . Putting this together yields

�
 = �2��

2


Z (�)

(�)

 (0j) + c����
��¬ 1

Z 1

(�)

 (0j)

+��

Z (�)

(�)

 0 ( 0 � ; 0)  (0j)  (73)

Under the form of idiosyncratic shocks in (idiosync. eq.) we obtain:

�
 = ��

2
�2

(1¬ �) + �
�
~ [�

 ()]¬ ~ [� ()]
�

1¬ ��
h
(1¬ �) +

�
~ [�

 ()]¬ ~ [� ()]
�i

+���c��
��¬ 1 1¬ ~ [�

 ()]

1¬ ��
h
(1¬ �) +

�
~ [�

 ()]¬ ~ [� ()]
�i  (74)

where  (� ) � �
 () and  (� ) � � () summarize the steady state employ-

ment policy function.

33Note that the e¤ects of  0 on the limits of integration will cancel by virtue of the �rst order conditions
for optimal hiring and �ring.
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Proof of Proposition 7. Consider the c.d.f. of employment growth for a given lagged
employment level, ¬1, and for the case where employment growth is negative:

Pr (� ln  �j¬1 �  0) = Pr
¬
ln¬1 ()¬ ln¬1  �j¬1

�
= Pr

¬
  

¬
�¬1

�
j¬1

�
= � ~

�

¬
�¬1

��
 (75)

It follows that the unconditional c.d.f. of employment growth, given that � ln  0 is equal
to:

� (�) � Pr (� ln  �) = �

Z
~
�

¬
�¬1

��
 (¬1)  (76)

It follows that the density of employment growth is given by � (�) =  0
� (�) = �

R
~0 �0¬�¬1�� �¬1 (¬1),

as stated in the Proposition. A similar method reveals that, in the case where � ln  0:

� (�) = �

Z
~
�


¬
�¬1

��
 (¬1) , and � (�) = �

Z
~0 �0 ¬�¬1�� �¬1 (¬1) 

(77)
Finally there is a mass point at zero employment growth. Clearly that is given by:

� (0) = �

¬
0+
�
¬ �

¬
0¬
�
= �

Z �
~ [ (¬1)]¬ ~ [ (¬1)]

�
 (¬1)  (78)

Lemma 2 If idiosyncratic shocks evolve according to (17), and the matching function is of
the form  (  ) = �U� 1¬�, then the marginal �rm surplus de�ned in (44) is given by

 =
 ��¬1

1¬ � (1¬ �)

�
 +

��p0

1¬ � (1¬ �)¬ ��p0
E ()

�
¬ (1¬ �) 

1¬ � (1¬ �)¬ ��p0
¬ � 



� ¬ �p+

1¬ � (1¬ �)¬ ��p0
 (79)

and the marginal e¤ects of ,  and � on  are given by

 = ¬1¬ �


 ��¬1

1¬ � (1¬ �)

�
 +

��p0

1¬ � (1¬ �)¬ ��p0
E ()

�
 =

1



 ��¬1

1¬ � (1¬ �)

�
 +

��p0

1¬ � (1¬ �)¬ ��p0
E ()

�
� = ¬� 



1

�

� ¬ ��p+

1¬ � (1¬ �)¬ ��p0
 (80)

where  � 1¬�
1¬�(1¬�) , E () � E (

0j0 2 [ ()   ()]), and 0, + are as de�ned in the Proof
to Proposition 4.
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Proof. Since �rms only receive an idiosyncratic shock with probability � each period, we
can use the recursion for  ( ), (44), to write:

 ( ) =
1

1¬ � (1¬ �)
�
 x��¬1 ¬ (1¬ �) ¬ ���

�
+

��

1¬ � (1¬ �)




Z

()

 ~ +
��

1¬ � (1¬ �)

Z ()

()

 ( 0)  ~ (81)

We then conjecture that  ( ) is of the form 0 + 1. Substituting this assumption into
the latter, and equating coe¢ cients yields:

0 = ¬ (1¬ �) 

1¬ � (1¬ �)
¬ � 



� ¬ �p+

1¬ � (1¬ �)
+

��p0

1¬ � (1¬ �)
[0 + 1E ()] 

1 =
 ��¬1

1¬ � (1¬ �)
 (82)

Solving for 0 we obtain the required solution for  ( ). Likewise, we can obtain recursions
for the marginal e¤ects of  and �:

 ( ) = ¬ 1

1¬ � (1¬ �)
1¬ �


 x��¬1 +

��

1¬ � (1¬ �)

Z ()

()

 ( 0) 

 ( ) =
1

1¬ � (1¬ �)
 ��¬1 +

��

1¬ � (1¬ �)

Z ()

()

 ( 0)  ~

� ( ) = ¬
�� + �� 

2
0 (�)

R
()



1¬ � (1¬ �)
+

��

1¬ � (1¬ �)

Z ()

()

� ( 0)  (83)

Again using the method of undetermined coe¢ cients, and noting that the Cobb Douglas
matching function implies  = ��¬� =) 

2
0 (�) = ¬ 


�
�
, yields the required solutions for

,  and �.

Proof of Proposition 8. Total di¤erentiation of the Job Creation condition,  (�) =
¬ (�), yields d� = ¬ ()  (�). Indexing �rms by , we can write aggregate
employment as  � E () =

R
 (¬1 ()   () ; �) , where  (¬1 ; �) is the employment

policy function that is common to all �rms, which in turn depends on some parameters �
(which includes  and �). Di¤erentiating yields:



�
=

Z �


�
+



¬1

¬1
�

�
 (84)
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Note from the form of the employment policy function in (12) that � = 0 if � () = 0,
and ¬1 = 1 i¤� () = 0. Substitution and separation of integrals yields



�
=

Z

:�0



�

����
�0

 +

Z

:�=0

¬1
�

 +

Z

:�0



�

����
�0



= p+E
�



�

�����  0

�
+ p0E

�
¬1
�

�
+ p¬E

�


�

�����  0

�
 (85)

where p+p0 and p¬ respectively denote the steady-state probabilities of raising, freezing,
and cutting employment. Note further that in steady state E (¬1�) = E (�) =
�, so that we obtain the result that:



�
= �E

�


�

�����  0

�
+ (1¬ �)E

�


�

�����  0

�
 (86)

where � � p+ (1¬ p0). Thus, we can rewrite the marginal e¤ect of a change in  on � as:

d�


= ¬

�E
�




����  0
�
+ (1¬ �)E

�



����  0
�

�E
¬

�

���  0
�
+ (1¬ �)E

¬

�

���  0
�  (87)

Then note that the �rst-order conditions for optimal labor demand set the marginal �rm
surplus,  ( ) as follows:

 ( ) =

�
 (�) if �  0

0 if �  0
(88)

It is immediate from Lemma 2 that  = ¬ = 1
1¬� () regardless of whether

�  0 or �  0. It remains to derive � in each case. Log-linearizing the function 
around , , , and �, we obtain:

log  �  log  +  (log  + log ) + � log � +  (89)

Using this and totally di¤erentiating the �rst-order conditions for optimal labor demand
with respect to  and �, we obtain:

 log  + � log � �
�
¬ log  (�) if �  0

0 if �  0
(90)

Given the Cobb Douglas matching function assumption,  (�) = ��¬�, and it follows that
 log  (�) = ¬�d log �. Thus:



�
=

 log 

 log �



�
�
� �¬�




�
if �  0

¬ �



�
if �  0

(91)
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Substituting this into (87), we obtain:

 log �

 log 

����


� ¬ 1

1¬ �


�¬ �
 (92)

where  � �E (j�  0) E () is the steady state share of employment in hiring �rms.
In what follows, we evaluate the approximation (89) to the marginal surplus around mean
employment,  � E (), and mean productivity conditional on mean employment,  =
E () � E (0j0 2 [ ()   ()]). Thus, using the results of Lemma 2 it follows that we
can write:

 = ¬ 1



(1¬ �)  ��¬1

1¬ � (1¬ �)¬ ��p0
E () 

and:

 =
 E ()��¬1 ¬ (1¬ �) ¬ � 


[� ¬ �p+]

1¬ � (1¬ �)¬ ��p0
 (93)

where  � (1¬ �)  [1¬ � (1¬ �)]. Substituting back into the aggregate elasticity of � with
respect to , we obtain:

 log �

 log 

����


�  E ()��¬1

� [ E ()��¬1 ¬ (1¬ �) ¬ ���] + ��� ¬ (1¬ )�� 

�p+

 (94)

Noting that the marginal product of labor in the average-sized �rm is equal to E ()��¬1,
and assuming � is su¢ ciently small, we obtain:

 log �

 log 

����


� (1¬ �) ~
� [(1¬ �) (~¬ )¬ ���] + ���

 (95)

where ~ � �pE ()�¬1 + (1¬ �) E ()��¬1 and � � �� [1¬ � (1¬ �)], as required.
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Table 1.  Calibrated Model Parameters 

Parameter Meaning Value Reason 

  Matching elasticity 0.600 Petrongolo and Pissarides (2001) 
  Matching efficiency 0.129 Pissarides (2007) 

   F n n  0.590 Labor share = 0.72 

  Discount factor 0.999 Quarterly interest rate = 0.012 

b  Value of leisure 0.385 Mean inflow rate = 0.0078 

c  Flow vacancy cost 0.120 Hiring cost = 14% quarterly wage 
  Worker bargaining power 0.443 Cyclicality of new hire’s wage 

L  Labor force 18.50 Mean job-finding rate = 0.1125 

  Arrival rate of x  0.043 LBD data:  Pr ln 0 0.372n    

x  Mean of x  1.000 Normalization 

x  Std. dev. of x  0.250 LBD data:  log 0.416n    

  Mean of   1.177 Mean employment = 17.25 

  Std. dev. of   1.015 Minimum employment = 1 
 

Note: Consistent with the timing of the model, flow parameters are reported at a weekly 
frequency. First and second moments of fixed firm productivity φ and the innovation to firm 
productivity x are reported (rather than the parameters of the respective Pareto distributions) for 
ease of interpretation. 



Table 2. Cyclicality of Worker Flows: Model vs. Data 

Model / Outcome Mean Level  Elasticity w.r.t. output per worker 

 Data  Model  Data  Model 

A. Generalized     
Job Finding Rate, f  [0.1125]  [0.1125]  2.65  2.75 

Inflow Rate, s  [0.0078]  [0.0078]  -1.89  -1.68  

Vacancies, V  --  --  2.91 2.75 

Tightness, θ = V/U  [0.72]  [0.72]  6.44 6.88  

     
B. MP (i)     
Job Finding Rate, f  [0.1125]  [0.1125]  2.65  1.29 

Inflow Rate, s  [0.0078]  [0.0078]  -1.89  [-1.68] 

Vacancies, V  --  --  2.91 -0.478 

Tightness, θ = V/U  [0.72]  [0.72]  6.44 2.29 

     
C. MP (ii)     
Job Finding Rate, f  [0.1125]  [0.1125]  2.65  [2.75] 

Inflow Rate, s  [0.0078]  0.0184 -1.89  [-1.68] 

Vacancies, V  --  --  2.91 -0.032 

Tightness, θ = V/U  [0.72]  [0.72]  6.44 3.76 

      

Notes: Outcomes reported in brackets are calibrated. Non-bracketed outcomes are implied by the 
respective model. Flow outcomes are reported on a weekly basis. Empirical elasticities for f and 
s are computed using quarterly averages of the job-finding rate and the unemployment inflow 
rate from 1948Q1 to 2007Q1 derived in Shimer (2007). Following Shimer (2005), series are 
detrended using a Hodrick-Prescott filter with smoothing parameter 105. Following Mortensen 
and Nagypal (2007a), elasticities with respect to output per worker are obtained by regressing the 
log deviation from trend of f and s on the log deviation from trend of non-farm business output 
per worker obtained from the Bureau of Labor Statistics. Outcomes for the Mortensen and 
Pissarides model in panels B and C are generated from Mortensen and Nagypal’s (2007b) 
modification of the model to allow for unbounded idiosyncratic shocks.



Figure 1. Optimal Employment Policy of a Firm 
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Figure 2. Employer Size Distribution: Model vs. Data 

 

Notes: The red dots plot data on the shares of firms in successive employment categories for the 
years 1992 to 2006 based on data on employment by firm size class from the Small Business 
Administration. The blue dashed line plots the steady state distribution of employment across 
firms implied by the generalized model using the parameters reported in Table 1. 
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Figure 3. Employment Growth Distribution: Model vs. Data 

 

Notes: The red dotted line plots the cross sectional distribution of employment growth based on 
data for continuing establishments from the Longitudinal Business Database pooled over the 
years 1992 to 2005. The blue dashed line plots the steady state distribution of employment 
growth in the model using the parameters reported in Table 1.
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Figure 4. Beveridge Curve: Model vs. Data 

 

Notes: The red dots plot job openings as a fraction of the labor force against the unemployment 
rate using quarterly averaged data from the Job Openings and Labor Turnover Survey and the 
Bureau of Labor Statistics from 2001Q1 to 2007Q4. The blue hollow circles plot the analogous 
series using simulated data from the model. Series are plotted as deviations from their temporal 
means.
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Figure 5. Model Impulse Responses to a Permanent 1% Decline in Aggregate Labor Productivity, p 

A. Unemployment Rate B. Vacancy-Unemployment Ratio 

  
C. Job-finding Rate D. Inflow Rate 
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Figure 6. Cyclical Dynamics of the Employer Size Distribution: Model vs. Data 

A. 1 to 19 Employees B. 20 to 99 Employees 

  
C. 100 to 999 Employees D. 1000+ Employees 

  
Notes: Red dots plot the log deviation from trend of each employer size class share against the log deviation from trend of the 
unemployment rate. The red dot-dash lines are fitted least squares regression lines based on the data. The blue dashed line is the 
analogous relationship implied by the calibrated model. Employer size data are taken from County Business Patterns for the years 
1986 to 2007. Annual unemployment rate data are taken from the Bureau of Labor Statistics. Given the short time series, simple linear 
time trends are used.
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Figure 7. Employer Size-Wage Effect implied by the Model 

 

Notes: The blue line plots the mean log wage conditional on employer size as a function of log 
employer size derived from simulations of the steady state of the model using the parameters 
reported in Table 1. The dashed line plots least squares regression line from a regression of log 
wages on log employment. Simulated data were generated for 208 periods (four years); plotted 
series are based on the final period. The mean log wage conditional on employer size is 
computed nonparametrically from these simulated data using local weighted (LOWESS) 
regressions of log wages on log employment. 
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