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WATER DEMAND UNDER

ALTERNATIVE PRICE STRUCTURES

1. INTRODUCTION

Water managers traditionally have maintained that consumers do not respond to price

signals, so demand management has occurred most frequently through restrictions on specific

water uses and requirements for the adoption of specific technologies.  In theory, raising prices

to bring about water conservation is less costly than implementing a command-and-control

approach, even if the prices in question are inefficient.  Water utilities increasingly hear this

message and respond in many cases by implementing increasing block prices (IBPs), under

which marginal prices increase with the quantity consumed.  The price elasticity of water

demand is a key variable of interest in this context, because: (1) regulators may use price to

reduce demand during periods of scarcity; and (2) utilities often face zero-profit constraints, so

the impact of price changes on total revenues is a concern.

In 2000, approximately one-third of U.S. urban residential water customers faced

increasing block prices, up from four percent in 1982 [1], [2].  Consumer responses to IBPs in

the market for water are unclear, at best.  Estimating water demand functions under non-linear

price regimes requires econometric techniques that can separate demand from supply.  The

problem is that marginal prices change as consumption increases, so that, while the price

schedule is set by the supplier, the actual price paid by the consumer and the quantity consumed

are simultaneously determined by the consumer. 

Our analysis offers three main contributions to the economic literature on water demand. 

First, using the most price-diverse, detailed, household-level water demand data yet available,
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we exploit substantial variation in the price incentives faced by households to estimate price

elasticities under increasing-block and uniform marginal prices.  Using a structural model that

accounts for non-linear prices, we estimate a full-sample price elasticity of water demand of

approximately -0.33.  We are not the first to estimate a structural water demand model for

consumers facing piecewise-linear budget constraints.  However, previous applications have

analyzed very restrictive samples.  Ours is more broadly representative of U.S. urban residential

water demand.  

Second, we explore the ways in which the concept of price elasticity under non-linear

prices differs from that under a typical single marginal price.  We find that the price elasticity of

demand under increasing-block prices is a complex function of the price and income elasticities

of demand along particular budget segments.  These results may be of some general interest, as

non-linear prices predominate in markets for many goods and services other than water,

including electricity, local and wireless telephone services, and labor supply under progressive

income taxation.

Third, we consider the interesting and policy-relevant possibility that, aside from innate

mathematical differences in what a price elasticity is measuring, household price elasticity may

be a function of a utility’s choice of price structure.  Our examination of this question is

prompted by: (1) some clues in meta-analyses in the water demand literature that suggest this

could be the case; and (2) the fact that the three previous applications of structural estimation

under non-linear prices have all resulted in high price elasticity estimates, relative to the mean in

the literature. We perform two tests of this hypothesis. Results suggest that price elasticity may

be a function of price structure.  However, there are a number of complications in this



1For example, in many parts of the United States, annual water use is maintained by groundwater mining [3].
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determination which are described further below.  What we observe may be a behavioral

response to price structure, or it may be due to underlying heterogeneity among utilities adopting

different price structures. 

In large parts of the United States, scarce water supplies are a serious environmental

concern.  In some cases, water is being used at rates that may exceed those dictated by the

efficiency criterion, particularly when externalities are considered.1  Cities in arid states such as

Texas and California have struggled to manage scarcity in the face of population growth, as well

as consumer demand for swimming pools, landscaping and other water-intensive amenities.  The

administratively-determined rate schedule sets water markets apart from many natural resource

markets in which we would expect prices to reflect scarcity (e.g., oil and coal).  Nonetheless,

public agencies typically set water prices, thus the potential exists for establishment of rate

structures that provide social-welfare-compatible incentives.  This paper explores two important

aspects of water pricing – how sensitive U.S. households are to changes in water prices, and

whether price elasticity differs under alternative rate structures.  Research in this area can

provide critical information to water resource managers.

The paper is organized as follows.  In Section 2, we review the literature on block pricing

and the price elasticity of residential water demand.  In Section 3 we describe the data, and in

Section 4 we describe our  models.  In Section 5 we describe the results, and in Section 6 we

conclude.

2. THE LITERATURE AND THE ECONOMIC CONTEXT

2.1 Block Pricing and Efficiency
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Urban residential water pricing typically takes one of three forms: (1) a uniform marginal

price; (2) increasing block prices; or (3) decreasing block prices.  Each of these price structures

is typically accompanied by a fixed water service fee.  Under a uniform price (UP), households

pay a single volumetric marginal price at all levels of consumption. Increasing block structures

charge higher marginal prices for higher quantities consumed, resulting in a water supply

function that resembles a staircase ascending from left to right (Figure 1); decreasing block

structures are stacked in the opposite direction. 

Water prices in North America generally lie below the long-run marginal cost (LRMC) of

water supply, the efficient price [4], [5].  Utilities’ adoption of increasing block prices may

expand the fraction of consumption priced at the LRMC.  The LRMC can be greater than short-

run average cost, because LRMC reflects the cost of new supply acquisition, and new supplies

are typically more costly to develop than current supplies [4].  Thus, pricing all units at LRMC

may cause utility revenues to exceed current expenses, sometimes substantially [6], [7].  The

efficient way to deal with this would be to rebate net revenues in some lump-sum fashion.  IBPs

instead charge something approaching LRMC for “marginal” uses (lawn-watering and the like),

while meeting rate of return constraints through the manipulation of block cutoffs and infra-

marginal prices.  Increasing the fraction of consumption that faces efficient prices would result

in welfare gains.  But even if the highest-tier price in an IBP schedule does reflect LRMC, some

welfare losses must result from marginal subsidies to consumers facing lower-tier prices. Thus,

the relative efficiency of uniform and IBP structures depends on many things. 

Water prices are usually set by elected or appointed entities, such as city councils or, for

the relatively small number of investor-owned water utilities, by public utility commissions.



2For example, in the City of Corpus Christi, Texas, a local taxpayers’ organization successfully lobbied for a
regulation limiting water price increases by the public utility to the rate of inflation during the early 1990s, despite a
series of severe regional droughts.  In our experience, most of the citizen involvement in water rate setting has been
aimed at preventing price increases, rather than promoting them.

3In a more recent meta-analysis of almost 300 price elasticity studies, 1963-1998, the mean price elasticity is -0.41
[9]. 

4Which outcome occurs depends on the shape of the indifference curves relative to the budget set; this is represented
by the three alternative indifference curves in Figure 2.  Because, as modeled below, water is an essential good, we
can rule out the possibility that consumption occurs at the corner solution of zero consumption.  Under decreasing-
block structures, budget sets are non-convex, enabling multiple tangencies between  indifference curves and the
budget constraint. The theory and empirics of the non-convex case are straightforward extensions of the convex
case, and they have been developed generally [10], [11]; for labor supply [12], [13]; and for water demand [14],

5

Consumers may or may not influence the adoption of particular price structures, and even the

magnitude of marginal price, through the political process.2  We do not directly model the

avenues through which water prices are set.  Instead, we focus on the demand side – how

estimates of elasticity capture different phenomena under different price structures, and whether

consumers react differently to different price structures, establishing that endogenous price

structure choice by utilities may be a serious obstacle to answering the second question.

2.2 Consumer responses to water prices and price structure

Previous analyses suggest that water demand is inelastic.  In a meta-analysis of 124

estimates generated between 1963 and 1993, accounting for the precision of estimates, the mean

price elasticity is -0.51, the short-run median is -0.38, and the long-run median is -0.64, with 90

percent of all estimates between 0 and -0.75 [8].3 

Under block pricing, consumers face a piecewise-linear budget constraint.  Figure 2

depicts the budget constraint in a two-tier increasing block price system with a set of

hypothetical indifference curves.  The consumer has three reasonable consumption choices:

consume on the interior of segment one, on the interior of segment two, or at the kink point – the

quantity at which the marginal price increase occurs.4



[15]. 

5The alternative is to consider the demand response to a change in just one of the block prices.  However,
considering a change in all of the block prices is more intuitive because then, no matter what marginal price a
consumer faces, she experiences a one percent price increase on the margin.  For consumers in the upper tiers of an
IBP, the resulting changes in infra-marginal prices can be “rebated” by subtracting increased infra-marginal
expenditures from household income.  We discuss this further in Section 2.3.

6 Prior to Hewitt and Hanemann (1995), only three published studies had estimated price elasticities in the elastic
range [17], [18], [19].
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Price elasticity under IBPs is typically modeled as the change in demand that results from

a one percent change in all marginal prices at once.5  Some of the largest price elasticity

estimates, in the range of -1 to -2, have been obtained with structural analyses that model directly

the piecewise-linear budget constraint created by block pricing [15], [16], drawing upon an

approach developed to estimate labor supply effects of progressive income taxation.6  In

addition, two meta-analyses have found that elasticity estimates where IBPs are implemented are

higher than estimates of elasticity under linear marginal prices [8], [9].  In comparing elasticities

across different studies, the meta-analyses face many confounding factors that differentiate the

studies in their samples.  They control for some, but not all, of these factors.  Another analysis at

the utility, rather than the household level, suggests that demand is more elastic under IBPs than

under decreasing block structures [20].  Results like these have caused some conjecture that

previous elasticity estimates were biased, since they had not accounted for piecewise-linearity,

or that IBPs themselves are responsible for greater sensitivity of demand to price [9], [8], [20]. 

Differences in elasticity estimates across price structures may arise from many sources. 

First, price elasticity as a mathematical measure captures something different under uniform and

IBP structures.  A price elasticity under IBPs includes two components absent from price

elasticity under a constant marginal price – the elasticities of the probabilities that a household



7This secondary income effect is due to “virtual income,” a concept introduced in detail in Section 3.

7

will locate at each possible kink or segment along its budget constraint, and the response of

infra-marginal subsidies to price changes, essentially a secondary income effect.7  In the

Appendix, we derive a mathematical expression for price elasticity under IBPs and contrast this

with elasticity under uniform prices.  We show that structural IBP elasticity estimates that

account for these extra components of the demand response to price changes may be either lower

or higher than estimates of elasticity conditional on consumers remaining within their current

blocks.  Thus, while differences may arise from the correct estimation of an unconditional IBP

elasticity, this cannot explain a priori why elasticity estimates under IBPs tend to be higher than

those under uniform prices.

Are there other potential explanations? Intuitively, IBPs introduce at least one threshold

beyond which consumption causes an increase in the marginal water price, thus they may simply

make prices more salient to consumers.  Improvements in the presentation of water price 

information on water bills has been shown to increase consumers’ price responsiveness, and

IBPs may provide a similar signal [21].  Behavioral reactions to non-linear prices have been

observed in the context of government tax and transfer programs [22].

3.  DEMAND MODELS

The structural discrete/continuous choice (DCC) model was developed in the study of

labor supply by Hausman [12], [13] and generalized by Moffitt [10], [11].  The theoretically

similar context implied by discrete/continuous consumption problems was developed by

Hanemann [23], and first applied to water demand by Hewitt [14].  



8This functional form is common in water demand analysis, due in part to the typically extreme right-skewness of
demand.  We use it here to be able to compare our estimates with other DCC models [15], [24].

8

In the present analysis, we use a log-log demand function, described by (1).8

(1)ln ln lnw Z p yδ α γ η ε= + + + +

The dependent variable is the log of daily household water demand.  The marginal price of water

is p, and income is y.  Water demand, with the exception of the small fraction used for drinking,

is derived demand in which the primary demand is for water-consuming goods and services,

such as clean laundry, indoor bathroom use, and green lawns.  Thus, in addition to price and

income, the demand models also include household characteristics.  These variables, as well as

daily weather observations and city fixed effects, are included in the matrix Z.  The model has

two error terms.  The first source of error (η) represents heterogeneous water consumption

preferences among households not explained by the household characteristics in Z.  The second

source of error (g) reflects random error unobservable to both the household and the analyst. 

From the household’s perspective, actual use may not coincide with optimal use due to leaks or

other causes.  From the analyst’s perspective, g captures these optimization errors, as well as the

usual measurement error. We assume that the two errors are independent and normally

distributed with mean zero and variances σ2
η and σ2

g.

If all households face uniform prices for water (i.e., the price does not vary with quantity

consumed), the demand function in (1) combined with normal error terms yields a conventional

log-likelihood function for a log-normal regression (2), where w is observed consumption and

w*(.) is optimal consumption.  Maximizing (2) would produce parameter estimates equal to

ordinary least squares (OLS) estimates.
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However, with increasing block prices, demand becomes more complicated. With K blocks, each

with block price pk, the blocks are separated by K-1 switching points or “kinks” denoted wk. 

There is now a key distinction between conditional demand functions and the unconditional

demand function.  Conditional demand is defined as the quantity the individual consumes

conditional on the fact that her consumption is in the kth price block.  This is simply given by the

demand function in (1) evaluated at the marginal price pk and income equal to ,k ky y d= +

where:
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For households consuming anywhere beyond the first block, there is a wedge between the

marginal and average price of water.  The implicit subsidy from the infra-marginal rates is

accounted for by adding to income the difference, dk, between what a household would pay if all

units were charged at the marginal price, and what they actually pay.  This income supplement

for a household consuming in the second block of a two-tier price structure would be equal to the



9The treatment of  infra-marginal price changes as lump-sum changes in household income was developed in the
labor supply literature [25], [12], and the electricity demand literature [26], [27].  The first application to water
demand was by Billings and Agthe [28]. 

10With uniform prices, by contrast, the unconditional demand function is given by (1) directly.
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shaded region in Figure 1.9  The sum of income and dk is commonly called “virtual income,” here

denoted . There is a separate conditional demand function for each block.  By contrast, thereky

is but a single unconditional demand function, and this characterizes the consumer’s overall

choice – not just how much to consume conditional on being in a given price block, but also

which price block to choose.10  

Take, for example, a household’s choice when K=2, and x is consumption of all goods

other than water (Figure 2).  If a household’s demand for water, conditional on being in block 1,

is less than the kink point w1, then this is also its unconditional demand, and the household will

consume in the first block (e.g., curve A).  If conditional demand associated with block 2

exceeds w1, then  unconditional demand coincides with the conditional demand for block 2, and

the household will consume in the second block (curve B).  There is also the possibility that the

household might consume exactly at the kink point, w1 (curve C).  This occurs if both the

conditional demand function for block 1 yields a demand larger than w1 and the conditional

demand function for block 2 yields demand smaller than w1.  In that case, the unconditional

demand is w1, adjusting for random error (g).  Such households would like to locate on either of

the dotted lines extending the two budget segments from the kink point in Figure 2, but these

choices are simply not available to them. All of this is captured by (4), unconditional demand, a

function of conditional demands and kink points, where w is observed consumption,

is optimal consumption on block k, and wk is  consumption at kink point k. * ( , , ; , , )k k kw Z p y δ α γ
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Given the simultaneous determination of consumption and block price, if a typical

single-error stochastic specification were employed, the size of the error term, marginal price,

and virtual income would be systematically correlated.  Thus, OLS estimates of the demand

parameters will be biased and inconsistent. In the literature, this problem has been addressed

with instrumental variables (IV) models, such as two-stage least squares, for labor supply and

water and energy demand [29], [30], [19], [31], [32].  While such models can estimate

downward-sloping demand curves, they exhibit two key limitations.  First, simultaneous

equations models can be used only to estimate elasticities conditional on remaining within the

observed consumption block.  Second, IV methods disregard the fact that some households

consume within the neighborhood of a kink point, where it is unclear which value of marginal

price should be assigned (in an econometric model that includes one or more error terms). 

Arbitrary treatment of these observations, such as assigning them to one block or another or

dropping them from the sample, cannot be reconciled with utility theory.   The DCC model, a



11The derivation of the IBP portion of the likelihood function is described in [33].

12In the empirical analysis below, the elasticity is estimated by imposing a one percent change in each block price
and numerically calculating the resulting percentage change in expected unconditional demand.
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maximum likelihood model, addresses  these issues.  The log-likelihood function for K>1 is

given by (5), in which Φ is the standard normal cumulative distribution function.11 The first

summation accounts for consumption along K linear budget segments, and the second

summation for consumption at K-1 kinks.

(5)
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The estimated parameters can be used to calculate the expected unconditional demand

and to measure the price elasticity of demand.  In the Appendix, we provide analytical formulas

for the expected unconditional demand and the price elasticity of demand.  The overall price

elasticity of demand is defined with respect to an equi-proportional change in all block prices.12



13The data were gathered by Mayer et al. [34] for a study sponsored by the American Waterworks Association
Research Foundation.  Sample utilities include Denver Water (CO); Eugene Water and Electric Board (OR); Seattle
Public Utilities (WA); City of Bellevue Utilities Department (WA); Highline Water District (WA); Northshore
Utility District (WA); City of San Diego Water Department (CA); Tampa Water Department (FL); Phoenix Water
Department (AZ); City of Tempe Water Utilities (AZ); City of Scottsdale Water Department (AZ); Regional Water
Services, Municipality of Waterloo (ONT); City of Cambridge (ONT); Walnut Valley Water District (CA); City of
Lompoc Utilities Department (CA); and Las Virgenes Municipal Water District (CA).

14  Similar movement can be seen for households facing four-tier IBPs.  The share of household-days observed in the
first block among 4-tier households is 37 percent in the wet season, and 18 percent in the dry season; third-block
observations comprise 24 percent of household-days in the wet season, and 62 percent in the dry season.
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4. THE DATA

The data comprise 1,082 households in 11 urban areas in the United States and Canada,

served by 16 public water utilities.13  Table 1 provides descriptive statistics.

Daily household water demand and weather conditions are observed over two weeks in

an arid season and two weeks in a wet season.  Daily demand data were gathered by automated

data loggers, attached to household water meters by utility staff.  Households move seasonally

across price blocks.  During the wet season, for example, among households facing two-tier

IBPs, 56 percent of household-days are observed in the first block, and 44 percent in the second. 

During the dry season, first-block observations are 25 percent of the total, and second-block 75

percent.14  Given the econometric similarities between our analysis of water demand and labor

supply analysis under progressive income taxation, it is interesting to discuss the degree to which

consumers “cluster” at kink points.  Among households facing IBPs in our data, approximately

40 percent of demand observations lie within 5 percent of a kink point (from above or below). 

Each household faces one price structure throughout a season, but some price structures

change between the two seasons.  Thus, the data include 26 price structures: 8 two-tier IBP

structures, 10 four-tier IBP structures, and 8 uniform structures. Marginal prices range from $0

to $4.96 per thousand gallons (kgal), with a mean of $1.71/kgal.  Assuming that the four weeks



15Households chosen for the study were randomly sampled from a subset of utilities’ customer databases: single-
family households.  Sampling procedures, response rates, and statistical tests for selection bias are described in [34]. 

16Very old homes are likely to have smaller connections to their city water system, and also fewer water-using
appliances, such as dishwashers and jacuzzis, than do newer homes.  The newest homes were built after the passage
of local ordinances in the 1980s and 1990s requiring water-conserving toilets and showers.

17In our sample, households with evaporative coolers use on average 40 percent more water per day.  We include this
variable to avoid biasing the other parameter estimates, particularly the income coefficient estimate, since
evaporative cooling is relatively more common in low-income households.

18Lawn moisture needs are captured through estimated evapotranspiration (ET), less effective rainfall (equal to 0.6*
measured precipitation).  We use Hargreaves’ approximation to the Penman-Monteith evapotranspiration equation,
which requires mean, minimum, and maximum daily temperature, degrees latitude (to estimate a solar radiation
parameter), and a readily-available constant associated with the “crop” of interest – grass.

14

of water demand we observe are representative of annual patterns, the total average annual

household expenditure on water in this sample, including fixed charges, would be about $327.

Household demographic data were collected by survey.15  These include lot size, square

footage of homes, number of bathrooms, and family size.  Home age is also included in the water

demand equation, and we expect that both very old and new homes may use less water than

“middle aged” homes.16  We also control for the presence or absence of evaporative cooling,

which substitutes water for electricity in air conditioning.17 

We include a set of daily weather variables.  Maximum daily temperature is represented

by maxt, weath represents the moisture requirements of green lawns not met by precipitation,

and  seas is a dummy variable set equal to one during the arid (peak outdoor watering) season.18 

Finally, the models include a set of dummy variables that represent the 11 urban areas included

in the study: Denver, Eugene, Seattle, San Diego, Tampa, Phoenix, Tempe/Scottsdale,

Waterloo/Cambridge (Ontario), Walnut Valley, Las Virgenes, and Lompoc, accounting for

variations in geography and other factors not addressed by the other covariates.



19For the non-parametric simulations, we draw 100 random samples of size N, with replacement, from the data; take
the expectation of conditional demand in exponential form; simulate a one percent change in price or income;
calculate the resulting percent change in expected demand; and report the mean of bootstrapped estimates.  For the
parametric simulations, we generate 100 random draws from each error distribution and estimate elasticities for each
pair of error draws, using the original data and parameter estimates and taking expectations of conditional demand.

20Recall that price elasticity in our DCC models is a percent change in quantity demanded for a one percent increase
in all prices in a household’s price structure, including the impact on virtual income of increases in infra-marginal
prices.  Our elasticity estimates are a mixture of short-run and long-run.  Much of the variation in price comes from
the cross-section.  But there is also substantial variation within individual households over time, due to IBPs.  There
is also a small amount of variation in price over time due to utility price changes.
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5. EMPIRICAL RESULTS

The full-sample DCC model, with the likelihood function the sum of (2) for uniform-

price households and (5) for IBP households, is our baseline model.  We explore the possibility

of variation in price elasticity with price structure by estimating two further demand models:  the

baseline DCC model, but for IBP households only; and a panel random-effects model for

uniform price (UP) households only. We then perform some additional analysis regarding the

possibility of endogenous price structures.

5.1 Full-Sample Discrete/Continuous Choice Model

Table 2 reports results of the full-sample DCC model in column 1.  The DCC parameter

estimates amount to elasticities conditional on block location. Table 3 reports the means and

standard deviations of unconditional elasticity estimates bootstrapped parametrically and non-

parametrically.  These unconditional elasticities include the impacts of price changes on the

probability of block and/or kink switching.19 

The parameter of greatest interest, price elasticity, indicates that a one percent price

increase will reduce demand by 0.33 percent, all else equal.20  Our simulated price elasticity,

produced by exploiting the widest variation yet available in price, price structure, and individual

household characteristics, is comparable to the central tendency of estimates over the past 40



21As a point of reference, we also estimated a random effects model for the full sample to demonstrate the price
endogeneity problem.  The estimated price elasticity is 1.40, reflecting upward-sloping price schedules, not upward-
sloping demand.

22This is true of Hewitt and Hanemann , as well – simulated elasticities, allowing block-switching, are smaller than
price coefficient estimates [15].

23In general, these include both virtual income effects (which unambiguously raise the unconditional price elasticity,
relative to the conditional elasticity), and the impact of price changes on the probabilities of the household’s location
on each segment and kink in its budget constraint (which might work in either direction).  See the Appendix for a
careful discussion of these effects.
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years, but much lower than those previously estimated using the DCC approach with smaller,

more restrictive samples.21  Hewitt and Hanemann, for example, obtain an elasticity almost six

times the magnitude of ours [15]. Note that the simulated unconditional elasticity estimate is

smaller in absolute value than the price parameter estimate, the conditional elasticity.22  In this

sample, block-switching dampens the price elasticity, though it need not have done so in theory,

as we show in the Appendix. 

There are two intuitive reasons for this dampening effect.  First, households may stick at

kink points, where their price elasticity is zero.  Second, if the price falls, and optimal

consumption increases enough to move the household to a higher block, movement across the

kink point immediately results in a marginal price increase (to the price of the new block),

dampening the increase in demand we might expect from the original price decrease.  The same

would be true for a price increase, which might push the household into a lower block, at which

it suddenly faces a lower marginal price.  In our sample, these two effects seem to dominate any

potential influences that, mathematically, could push this difference in the other direction.23

 Weather, income and the other household-level characteristics affect demand in expected

ways.  Results regarding home age are weak, but as expected.  The highest water demand occurs



24We have also estimated a model replacing the quadratic home age specification with the following home age
categories: pre-1960; 1960-69; 1970-79; 1980-89; and 1990-96.  Results are qualitatively similar.  All else equal,
water consumption peaks among homes built between 1970 and 1979.  Both newer and older homes use less water. 
There were no significant changes to the other demand parameters in this alternative model.

25If we estimate our DCC model omitting all household characteristics, except income, we obtain an income
elasticity of 0.32.
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among homes aged 20 to 40 years; both newer homes and older homes use less water.24 Our

income elasticity estimate (0.13) is low compared with previous studies, usually between 0.2 and

0.6 [4]. Few previous studies have included household-level housing characteristics, which are

strongly correlated with income.  Their omission may have overestimated the influence of

income on water demand.25  Maximization of the likelihood function also provides estimates of 

ση and σg.  Consistent with the tax literature, household heterogeneity is responsible for more of

the observed variation in water demand than random error.

5.2 Exploring Elasticity Magnitude and Price Structure

When we estimate the DCC model for households facing IBPs only, we obtain a

simulated price elasticity of approximately -0.59.  When we estimate a panel random-effects

model for households facing uniform marginal prices only, we obtain an elasticity estimate of

-0.33, and the estimate is statistically insignificant, even with about 400 households in this

group.  This pattern reflects what we see in the existing literature, even though the 95 percent

confidence intervals for these two estimates overlap, as the UP estimate is noisy.  In comparisons

of studies using different samples, we observe more elastic demand among block-price samples

than among uniform-price samples.  The observed differences are much more significant than the

small differences between our DCC price coefficients and elasticity estimates, which can be
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accounted for by block-switching.  Does price elasticity vary with price structure, all else equal,

or is something else going on?  

5.2.1 Tests of simple theoretical explanations

To examine the relationship between price elasticity and price structure, we investigate

whether the observed difference can be explained by theory.  First, we would expect price

elasticities to be larger in the long run than in the short run.  It is possible that this explains the

differences seen in the previous literature.  It does not explain the difference we see in our data,

since all households (IBP and UP) were observed over approximately the same time period.

Second, if the average magnitude of prices were higher in IBP cities than in uniform-

price cities, this could explain the observed difference in the magnitude of price elasticity.  In our

sample, the average magnitude of marginal price in uniform-price cities is $1.72 per kgal, while

in block-price cities it is $1.78 (assuming that marginal price for IBP households is price in the

block of observed consumption).  With a difference this small, it is unlikely that heterogeneity in

the average magnitude of prices is responsible for the difference in elasticities we observe.  

Third, if the percentage of total income devoted to water consumption were lower among

households in uniform price cities, on average, than among households facing IBPs, this might

explain the observed difference in elasticities.  Estimated annual expenditures on water

consumption (including fixed charges) in our sample are approximately 0.5 percent of annual

income; the budget share for water does not differ significantly across price structures. 

We have eliminated some likely candidates from the list of potential explanations for

variation in price elasticity with price structure.  Two possibilities remain.  First, it is

conceivable that part of the observed difference in price elasticity of demand across price



26For estimates of low price elasticity among households with strong preferences for outdoor consumption, see [35].
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structures is driven by the shape of price structures.  But correlation does not demonstrate

causality.  The second possibility is that price structures, themselves, are endogenous.

  5.2.2 The possibility of endogenous price structures at the utility level

Our concern is that some unobserved characteristic of households within a community

drives a utility’s choice of price structure, and that this characteristic may be correlated with

price elasticity.  For example, environmentally conscious households may pay more attention to

water prices, resulting in higher elasticity, and relatively “green” communities may also be more

likely to adopt IBPs, seen as conservation tools.  Conversely, communities facing long-term

aridity and long growing seasons may lead utilities to adopt IBPs; these same communities may

be places in which households place a high premium on outdoor water consumption and are thus

less price sensitive.26  The significant differences in coefficient estimates in columns 2 and 3 of

Table 2 support the possibility of unobserved heterogeneity across UP and IBP households that

may be correlated with water demand.

Ideally, to test for the possibility of endogenous price structures, we would estimate a

two-stage model, first predicting price structure at the utility level, then estimating elasticity,

given the predicted price structure.  With the appropriate choice of instruments, this would

presumably give us unbiased estimates of price elasticity, free of the effects of underlying

heterogeneity in price structure choice among utilities.  However, the data include only 16 water

utilities, a sample too small to support the first stage of such a selection model.  

We take a second-best approach.  We test our full-sample models, allowing the price

elasticity parameter to vary with price structure, but constraining the remaining demand



27Taking into account the variation over time and space, we have 13 uniform price observations.  Variation in block
prices (both across utilities and within the individual price structures, themselves) is much more extensive.
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parameters to be equal.  It is likely that our model includes some endogenous variation in price

structure choice.  However, our data are the best known to us for this purpose, thus we perform

what should be considered, at best, an informal test.  In addition, the amount of price variation

within uniform price cities, alone, is very small – the reason we were unable to estimate a

statistically significant elasticity for those cities in our split-sample models.27  Results, reported

in the fourth column of Table 2,  should be interpreted with these caveats in mind.

Like the split-sample models, the model with a block pricing/price interaction term

suggests that demand among IBP households is more elastic than among UP households.  The

other demand parameters are essentially unchanged, with the exception of some of the city fixed

effects – not surprising, as the block-pricing interaction may now be accounting for some of the

variation absorbed by city fixed effects in prior models.

These results do not rule out the possibility of a behavioral reaction to the structure of

water prices, due to increased attention to price or any other factor.  However, given our

remaining selection concerns, we cannot say definitively that IBPs tend to increase elasticity. 

We cannot dismiss the hypothesis that underlying city-level heterogeneity in characteristics such

as aridity and conservation programs, which may be correlated with both consumers’ price

elasticity and utilities’ price schedule choice, explains part of the observed pattern in the

literature of higher price elasticity under IBPs.

6. CONCLUSION
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This paper considers both aspects of the separation of demand and supply under

non-linear pricing – simultaneous choice of price block and quantity consumed at the household

level, and endogenous price structure at the utility level.  We estimate the price elasticity of

water demand among urban households facing increasing block and uniform marginal prices,

using a structural DCC model that accommodates piecewise-linear budget constraints.  Previous

estimates of the price elasticity of water demand using DCC models have been very high relative

to the central tendency of estimates in the literature using other models.  Our estimates, which

exploit a broadly representative and highly detailed sample of North American single-family

households are much closer to the central tendency of prior estimates.  While the DCC model is

theoretically the appropriate model for estimating elasticities under IBPs, our results suggest that

these models may not induce a significant break in how we think about consumer responses to

non-linear water prices, as they did when introduced in the literature on the wage elasticity of

labor supply under progressive income taxation.  

That said, an additional lesson of the analysis is that elasticity under IBPs measures an

inherently different phenomenon than elasticity under linear marginal prices.  In the Appendix,

we develop an expression for what is captured by an unconditional price elasticity under IBPs,

and compare our conditional and unconditional estimates on this basis.  While the differences

between conditional and unconditional elasticities of water demand may not be economically

significant in our case, non-linear prices are present in many other markets (e.g., cellular phone

service, electricity), and an understanding of what an elasticity is measuring is critical, especially

in regulated markets in which price is an important policy lever (for example, a tool to promote

energy conservation).  
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Finally, in response to a literature that suggests that price elasticity varies with the shape

of administratively-determined supply curves, in ways unconnected to the mathematical

difference between price elasticity under different price structures, we estimate separate price

elasticities for two sub-samples of households — those facing IBPs and those facing uniform

marginal prices.  The elasticities do appear to differ (indeed, we fail to identify a price elasticity

significantly different from zero for the uniform-price households, alone), and we are able to

eliminate a number of simple explanations that would be consistent with economic theory. In a

second full sample model, allowing price elasticity to vary with price structure and constraining

all other demand parameters to be equal, we again observe a greater price elasticity under IBPs. 

Neither of these tests accounts for selection on price structure at the utility level.  Thus, while the

possibility of a behavioral response to price structure cannot be ruled out, neither can we

definitively identify such an effect. The collection of data suitable for estimating a two-stage

model of water demand under endogenous price structures would be a productive area for future

research.

Regardless of their potential implications for price elasticity, an important efficiency

justification for the implementation of IBPs remains.  To the extent that IBPs increase the

portion of consumers facing efficient prices for a scarce resource on the margin, they may well

be welfare-improving (and environmentally beneficial at the same time).  Exploration of the

efficiency advantages of IBPs is another area for further research. 
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Appendix.  How Price Affects Demand with Increasing Block Prices

In the presence of increasing block prices (IBPs), the concept of how price affects

demand is, itself, somewhat elusive: since there are multiple prices corresponding to the multiple

rate blocks, which price is being considered? Does one consider a single block price or all block

prices? If all prices are considered, how is the response of demand to an across-the board change

in all prices with an IBP different from the response of demand to a change in a conventional

flat-rate price? In this Appendix we answer some of these questions.  Since the results may be of

some general interest, we start with a general model of demand with multiplicative random

terms, deriving some general results regarding IBPs.  We then specialize the results to the log-

log functional form in (1).

We use the following notation for a general model of demand.  The general conditional

demand function with multiplicative random terms is written as (A1):

(A1)( , )k kw w p y d e eε η= +

where  and  are independently normally distributed with zero mean and variances  andε η 2
εσ

.  Recall that denotes the switching point between blocks k and k+1, and2
ησ kw

is consumption within the kth block.  Define:( , )k kw p y d e eε η+
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In the presence of an IBP schedule with K blocks (and K-1 switching points), the utility-

maximizing consumer ends up either somewhere along a block or at one of the switching points. 

Let denote the probability that the consumer chooses some quantity within the kth block, andkπ

let denote the probability that the consumer chooses to locate at the switching point wk.  Then:kλ

(A3)
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where Φ is the standard normal cumulative distribution function.  Observe that:

(A4)
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For a moment, leave the distribution of  unspecified. With the multiplicative random terms,η

the expected quantity demanded by the consumer in the face of IBPs – the mean of the

unconditional demand function (denoted W) – takes the form:

(A5)
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where ; the term with the integral is the partial mean of  ξ over the interval [ak,bk]. Wheneηξ =

is normal, making ξ lognormal, the formula reduces to:η

(A6)
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(A7)* ln lnk k
k
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It follows from (A6) that expected unconditional demand depends on the block prices in

a complex manner.  By way of illustration, suppose there is a reduction in the price of the second

block, p2.  This affects the consumer’s demand in several different ways. Not surprisingly, the

change in p2 has no effect on consumption in the first block, , or on the1 2( , ) / 0dw p y dp =

probability of being in that block, . However, it does affect demand in all other1 2/ 0d dpπ =

blocks.  If the consumer is located in the second block and stays there, his demand changes not

only because of the price reduction but also because the change in p2 causes the income

adjustment term d2 to change: .  The total impact on consumption within the2 2 1/d p w∂ ∂ =

second block is:

(A8)2 2 2 2 2 2 1 2 2( , ) / ( , ) / ( , ) /dw p y d dp w p y d p w w p y d y+ = ∂ + ∂ + ∂ + ∂
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If the commodity is a normal good with a non-negative income effect, this total derivative is

negative;28 hence, consumption in the second block unambiguously increases. 

The price reduction unambiguously reduces the probability of being at the switching

point at the low end of the second block, w1, since:

(A9)1 1 2 2

2 2 2 2

( ) ( , ) 0
( , )

d c dw p y d
dp w p y d dpη

λ φ
σ

+
= − >

+

where  is the standard unit normal PDF. However, some of the other effects are ambiguous.(.)φ

Starting with the probability of being in the second block,

(A10)2 2 2
2 2

2 2 2 2

( , )1 (ln / ) (ln / )
( , )

d dw p y d a b
dp w p y d dp η η

η

π φ σ φ σ
σ
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Since , and since the standard unit normal PDF is symmetric and2 2 2( , ) / 0dw p y d dp+ <

unimodal with a mode of zero, one obtains:

(A11)22
1 2 2 2

2

( )0 ( ) ( , )d as w w w p y d
dp
π

≥ ≤ ≤ ≥ +

The effect of the price change can go either way because, while the lower price in block 2

encourages the consumer to use more in that block, it may also push him into a higher

consumption block. Similarly, with the probability of being at the switchpoint w2, 
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of factors determines whether the sign of this derivative is positive (the likelihood of being at the

switching point rises) or negative (it falls). For blocks k > 2,

(A13)
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where again the sign can be positive or negative. 

In some sense, it seems clear that, when the commodity is a normal good and p2

decreases, overall consumption unambiguously increases. This is because, from (A4) and the fact

that , it follows that:1 2/ 0d dpλ >
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Moreover, for k > 2, . (A16)1 2
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All of these shifts are the responses to a change in a single block price.  Things become

much more complicated if several block prices change.  In order to characterize the overall price

elasticity of demand, we proceed as follows.  Let θ be a shift variable which affects all block

prices proportionately; the conditional demand functions can now be written .( , )k kw p y dθ θ+

The unconditional expected demand can now be viewed as a function of , .  The overallθ ( )W θ

change in expected demand with respect to a change in , evaluated at θ =1, is:θ
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where the total derivative of conditional demand along a segment with respect to θ  is

(A18)
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In the particular case where the conditional demand function takes the log-log form in (1), with

some manipulation (A19) can be written in elasticity form as:
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where α is the price elasticity of demand in the conditional log-log demand function (1) and γ is

the income elasticity of demand in (1), and:
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It follows that overall elasticity of expected demand with respect to , namely,θ

,which may be viewed as the analog of the price elasticity of demand for IBP, is a
1 (1)
(1)

dW
W dθ

complex combination of both the price and income elasticities of demand associated with the

conditional (segment) demand functions.  In general, this overall elasticity is different from the

simple price elasticity of the conditional demand function, α, but it does not appear that either

the direction or the magnitude of the difference can be signed in the general case represented by

(A20). This is because several factors are involved in the formation of the overall elasticity. 

The earlier results for a single block price change, involving (A8) - (A16), can shed some

light on these factors. Assume, as before, that the good is a normal good. If p2  falls and the

consumer still stays in the second block, two things happen. Demand goes up because of the

reduced price; but this is tempered by a decrease in demand caused by the decline in the virtual

income for that block, , which is triggered by the reduced differential between p1 and p2. 2y

Assuming there are more than two blocks, the consumer may want to move up out of the second

block. Two possibilities need to be considered. (A) One possibility is that the consumer can

become “trapped” at the kink point between the second and third blocks. (B) Even if the

consumer does succeed in moving into a higher block, two things happen: he faces a higher

(unchanged) price, p3., but he also experiences a positive income effect from the increase in

virtual income, , caused by the decrease in p2.. While (A) dampens the increase in demand3y

triggered by the reduction in p2, (B) could in principle either dampen or amplify it depending on
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the relative strength of the income effect.  Recall, also, that the effects on πk and λk for k>1 are

ambiguous.

In the analysis in this paper, we estimate an unconditional price elasticity that is smaller

in absolute value than the conditional price elasticity.  This suggests that, in our sample, the

dampening effects of sticking at kink points and facing higher (lower) prices in a potential new

block if prices rise (fall) must outweigh any amplifying effects of changes in virtual income or

potential amplifying effects of changes in the probabilities of locating on any particular segment

or switch point.  This possibility is supported by the fact that the dk are tiny fractions of

household income in our case. Hence, the income effect associated with infra-marginal price

changes is likely to be very small. This is not necessarily true of other markets characterized by

piecewise linear budget constraints.  In the case of labor supply, for example, the income effects

created by infra-marginal tax rates appear to be very large [36].  With water and electricity, in

contrast,  the infra-marginal rate subsidies associated with IBPs are found in the literature to

have almost no effect because of low prices, small differences between successive price blocks,

and the fact that annual household water and energy expenditures are typically a  small fraction

of annual income [19], [29], [32].  Though in the general case the difference between conditional

and unconditional elasticities under IBPs cannot be signed, what we observe may be typical in

the context of water demand.
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Table 1.  Descriptive Statistics

Variable Description Units Mean

Std.

Dev. Min. Max.

w

p1

p2

p3

p4

income

w1

w2

w3

blockp

seas

weath

maxt

famsz

bthrm

sqft

lotsz

age

evap

Daily household water demand

Marginal price in block 1

Marginal price in block 2

Marginal price in block 3

Marginal price in block 4

Gross annual household income

Water quantity at kink 1

Water quantity at kink 2

Water quantity at kink 3

Price structure: 1 if IBP; 0 if UP

Season: 1 if irrigation season; 0 if not

Evapotranspiration less effective rainfall

Maximum daily temperature

Number of residents in household

Number of bathrooms in household

Approximate area of home

Approximate area of lot

Approximate age of home

Evaporative cooling: 1 if yes; 0 if no

kgal/day

$/kgal

$/kgal

$/kgal

$/kgal

$000/yr

kgal/day

kgal/day

kgal/day

0/1

0/1

mm

EC

number

number

000 ft2

000 ft2

yrs/10

0/1

0.40

1.45

1.84

2.43

3.28

69.81

0.21

0.36

1.82

0.61

0.51

5.06

24.12

2.79

2.58

2.02

10.87

2.88

0.09

0.58

0.54

0.40

0.87

1.30

67.67

0.08

0.09

0.80

0.49

0.50

8.42

8.78

1.34

1.30

0.82

9.22

1.62

0.28

0.00

0.50

0.84

0.93

0.99

5.00

0.06

0.30

0.75

0

0

-46.15

0

1

1

0.40

1.00

0.07

0

9.78

3.70

4.06

4.96

5.98

388.64

0.37

0.50

2.49

1

1

19.37

42.78

9

7

4.37

45.77

5

1

Notes: City fixed effects not summarized here.  Approximately 10 percent of observations drawn from each city (Las
Virgenes Municipal Water District, Seattle, San Diego, Tampa, Phoenix, Tempe/Scottsdale, Waterloo/Cambridge,
Walnut Valley Water District, Lompoc).
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Table 2.  Water Demand Model Estimates

DCC 
 Full Sample

Split Sample Models

DCC
 Full Sample

Block Pricing Test
DCC

IBP Households Only
Random Effects

UP Households Only

Variable (1) (2) (3) (4)

lnprice

blockp*lnprice

lnincome

seas

weath

maxt

famsz

bthrm

sqft

lotsz

age

age2

evap

lasv

-0.3407*

(0.0298)

0.1306*

(0.0118)

0.3072*

(0.0247)

0.0079*

(0.0013)

0.0196*

(0.0018)

0.1960*

(0.0056)

0.0585*

(0.0093)

0.1257*

(0.0140)

0.0065*

(0.0009)

0.0869*

(0.0219)

-0.0137*

(0.0036)

0.2278*

(0.0300)

0.2590*

(0.0408)

-0.6411*

(0.0424)

0.1959*

(0.0163)

0.3370*

(0.0330)

0.0094*

(0.0017)

0.0238*

(0.0024)

0.1959*

(0.0080)

0.0553*

(0.0127)

0.2001*

(0.0191)

0.0097*

(0.0011)

0.1814*

(0.0304)

-0.0252*

(0.0050)

0.2416*

(0.0334)

0.3391*

(0.0486)

-0.3258

(0.5644)

0.0432

(0.0499)

0.2656*

(0.0331)

0.0054*

(0.0016)

0.0193*

(0.0025)

0.2095*

(0.0225)

0.0498

(0.0393)

-0.0066

(0.0600)

-0.0010

(0.0046)

-0.0870

(0.0940)

0.0109

(0.0160)

-0.8139

(0.6129)

-0.2330*

(0.0677)

-0.1106#

(0.0626)

0.1308*

(0.0118)

0.3075*

(0.0247)

0.0076*

(0.0013)

0.0200*

(0.0018)

0.1957*

(0.0056)

0.0590*

(0.0093)

0.1253*

(0.0140)

0.0064*

(0.0009)

0.0888*

(0.0219)

-0.0141*

(0.0036)

0.2281*

(0.0300)

0.2570*

(0.0409)



DCC 
 Full Sample

Split Sample Models

DCC
 Full Sample

Block Pricing Test
DCC

IBP Households Only
Random Effects

UP Households Only

Variable (1) (2) (3) (4)

38

seat

sandg

tampa

phx

tscot

eug

wcamb

wvall

lomp

constant

ση

σε

-0.1232*

(0.0379)

0.0129

(0.0365)

-0.3879*

(0.0373)

-0.0044

(0.0385)

-0.1033*

(0.0359)

0.0050

(0.0387)

-0.1939*

(0.0362)

0.1784*

(0.0387)

-0.0647

(0.0373)

-3.6994*

(0.0652)

1.0769*

(0.0103)

0.3552*

(0.0277)

-0.0482

(0.0491)

0.1361*

(0.0416)

-0.3225*

(0.0427)

-0.0271

(0.0444)

-0.1436*

(0.0406)

-4.3288*

(0.0888)

1.1493*

(0.0115)

0.4220*

(0.0227)

-0.0018

(0.5846)

-0.1646

(0.1568)

0.3272*

(0.1320)

-0.0440

(0.1132)

-3.1353*

(0.6854)

-0.1566*

(0.0424)

0.0114

(0.0366)

-0.3919*

(0.0374)

-0.0086

(0.0387)

-0.1064*

(0.0360)

0.0340

(0.0420)

-0.2545*

(0.0499)

0.1021#

(0.0580)

-0.1512*

(0.0615)

-3.7068*

(0.0654)

1.0767*

(0.0103)

0.3562*

(0.0277)

      

Notes: *Significant at α=.05. #Significant at α=.10. Standard errors in parentheses below estimates.  Dependent
variable is natural log of daily water demand.  Models in columns 1, 2 and 4 are discrete/continuous choice (DCC),
estimated by maximum likelihood.  Model in column 3 is random effects GLS regression.  City fixed effects are
relative to Denver, CO, except in column 3, where they are relative to Seattle, WA.  For full-sample models
(columns 1 and 4), N=25,666.  For IBP split-sample model (column 2), N=15,621; and for UP split-sample model
(column 3), N=10,045.
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Table 3.  Simulated Price and Income Elasticities of Demand

Elasticity Estimates

Parametric Nonparametric

Discrete Continuous Choice Model Price Income Price Income

Full sample -0.3309*
(0.0062)

0.1261*
(0.0031)

-0.3319*
(0.0366)

0.1273*
(0.0133)

Increasing-block  households only -0.5893*
(0.0437)

0.1786*
(0.0138)

-0.6090*
(0.0568)

0.1865*
(0.0159)

Random Effects Model Price Income

Uniform price  households only -0.3258
(0.5644)

0.0432
(0.0499)

Notes: *Significant at α=.05. Reported estimates are the means of bootstrapped elasticities, and reported standard
errors (in parentheses) are the standard deviations of bootstrapped elasticities.   Simulated DCC elasticity estimates
for variables other than price and income do not vary appreciably from coefficient estimates reported in Table 2. 
Elasticity estimates for random effects model are repeated from Table 2, for comparison purposes (no simulations
necessary for this model.)
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Figure 1. Two-tier increasing block price structure, in which w is water (units); p1 the marginal
price of water in block 1; p2 the marginal price of water in block 2; and w1 the boundary quantity
between blocks.
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Figure 2.  Utility maximization under a two-tier increasing block price structure, where x is all
goods other than water, and y is income.
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