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ABSTRACT

We derive the first closed-form optimal refinancing rule: Refinance when the current mortgage
interest rate falls below the original rate by at least

 1
 R   

[N + W (! exp (!N))] .

In this formula W (.) is the Lambert W -function,

         2 (D + 8)   ,R =
         F

                             6/M    ,
N = 1+R (D + 8)

  (1 ! J )

D is the real discount rate, 8 is the expected real rate of exogenous mortgage repayment, F is the
standard deviation of the mortgage rate, 6/M is the ratio of the tax-adjusted refinancing cost and
the remaining mortgage value, and J is the marginal tax rate. This expression is derived by
solving a tractable class of refinancing problems. Our quantitative results closely match those
reported by researchers using numerical methods.
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1. Introduction

Households in the US hold $23 trillion in real estate assets.1 Almost all home buyers

obtain mortgages and the total value of these mortgages is $10 trillion, exceeding the

value of US government debt. Decisions about mortgage refinancing are among the

most important decisions that households make.2

Borrowers refinance mortgages to change the size of their mortgage and/or to take

advantage of lower borrowing rates. Many authors have calculated the optimal refi-

nancing differential when the household is not motivated by equity extraction consid-

erations: Dunn and McConnell (1981a, 1981b); Dunn and Spatt (2005); Hendershott

and van Order (1987); Chen and Ling (1989); Follain, Scott and Yang (1992); Yang

and Maris (1993); Stanton (1995); Longstaff (2004); and Deng and Quigley (2006).

At the optimal differential, the NPV of the interest saved equals the sum of refinanc-

ing costs and the difference between an old ‘in the money’ refinancing option that is

given up and a new ‘out of the money’ refinancing option that is acquired.

The actual behavior of mortgage holders often differs from the predictions of

the optimal refinancing model. In the 1980s and 1990s— when mortgage interests

rates generally fell — many borrowers failed to refinance despite holding options that

were deeply in the money (Giliberto and Thibodeau, 1989, Green and LaCour-Little

(1999) and Deng and Quigley, 2006). On the other hand, Chang and Yavas (2006)

have noted that over one-third of the borrowers refinanced too early during the period

1996-2003.3

1Flow of Funds Accounts of the United States, Board of Governors of the Federal Reserve System,
June, 2007.

2Dickinson and Heuson (1994) and Kau and Keenan (1995) provide extensive surveys of the
refinancing literature. See Campbell (2006) for a broader discussion of the importance of studying
mortgage decisions by households.

3Many other papers document and attempt to explain the puzzling behavior of mortgage hold-
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Anomalous refinancing behavior may be partially due to the complexity of the

problem. Previous academic research has derived the optimal differential as the

implicit numerical solution of a system of partial differential equations. Such option-

value problems may be difficult to understand, or, in practice, solve, for many bor-

rowers and their advisers. For instance, we analyze a sample of leading sources

of financial advice and find that none of these books and web sites acknowledge or

discuss the (option) value of waiting for interest rates to fall further. Instead these

advisory services discuss a “break-even” net present value rule: only refinance if the

present value of the interest savings is greater than or equal to the closing cost.

In the current paper, we derive a closed-form optimal refinancing rule. We be-

gin our analysis by identifying an analytically tractable class of mortgage refinancing

problems. We assume that the real mortgage interest rate and inflation follow Brown-

ian motion, and the mortgage is structured so that its real value remains constant

until an endogenous refinancing event or an exogenous Poisson repayment event.

The Poisson parameter can be calibrated to capture the combined effects of mov-

ing events, principal repayment, and inflation-driven depreciation of the mortgage

obligation. We derive a closed form solution for the optimal refinancing threshold.

The optimal refinancing solution depends on the discount factor, closing costs,

mortgage size, the marginal tax rate, the standard deviation of the innovation in

the mortgage interest rate, and the Poisson rate of exogenous real repayment. For

calibrated choices of these parameters, the optimal refinancing differentials we derive

ers, including: Green and Shoven, (1986); Schwartz and Torous (1989,1992, 1993); Giliberto and
Thibodeau, (1989); Richard and Roll, (1989); Archer and Ling (1993); Stanton (1995); Archer, Ling
and McGill (1996); Hakim (1997); LaCour-Little (1999); Bennett, Peach and Peristiani (2000, 2001);
Hurst (1999); Downing, Stanton and Wallace (2001); and Hurst and Stafford (2004).
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range typically from 100 to 200 basis points. We compare our interest rate differen-

tials with those computed by Chen and Ling (1989), who do not make our simplifying

assumptions. We find that the two approaches generate recommendations that differ

by fewer than 10 basis points.

Many authors have called for greater attention to normative economic analysis

(e.g. Miller 1991 and Campbell 2006). Our research follows this prescriptive line

of research. We solve an optimal mortgage refinancing problem. However, on its

own this is a redundant conceptual contribution since other authors have numerically

solved mortgage refinancing problems. Our key contribution is the derivation of a

closed-form mortgage financing rule that has three good properties. It is easy to

verify. It is easy to implement. It is accurate in the sense that it matches optimal

refinancing differentials published by other authors who do not make our simplifying

assumptions.

We provide two analytic solutions: a closed form exact solution — which appears

in the abstract — and a closed form second-order approximation, which we refer to

as the square root rule. The closed form exact solution can be implemented on a

calculator that can make calls to Lambert’s W -function (a little-known but easily

computable function that has only been actively studied in the past 20 years). By

contrast, our square root rule can be implemented with any hand-held calculator. We

find that this square root rule lies within 10 to 30 basis points of the exact solution.

The paper has the following organization. Section 2 describes and solves the mort-

gage refinancing problem. Section 3 analyzes our refinancing result quantitatively and

compares our results to the quantitative findings of other researchers. Section 4 doc-

uments the advice of financial planners, and derives the welfare loss from following
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the net present value rule. Section 5 concludes.

2. The Model

In this section, we present a tractable continuous-time model of mortgage refinancing.

The first subsection introduces the assumptions and notation. The next subsection

summarizes the argument of the proof and reports the key results.

2.1. Notation and key assumptions.

The real interest rate and the inflation rate. We assume that the real

interest rate, r, and inflation rate, π, jointly follow Brownian motion. Formally,

dr = σrdzr (1)

dπ = σπdzπ, (2)

where dz represents Brownian increments, and cov(dr, dπ) = σrπdt. Hence the nom-

inal interest rate, i = r + π follows a continuous-time random walk. Li, Pearson,

and Poteshman (2004) argue that the nominal interest rate is well-approximated by a

random walk, and that estimates showing mean reversion are biased.4 The random

walk assumptions allow us to considerably simplify the analysis. Chen and Ling

(1989), Follain, Scott and Yang (1992) and Yang and Maris (1993) also assume that

the nominal interest rate follows a random walk. However, other authors assume

that interest rates are mean reverting (e.g. Stanton, 1995 and Downing, Stanton, and

Wallace, 2005).

The interest rate on a mortgage is fixed at the time the mortgage is issued. Our

4See Hamilton (1994) for a general discussion of the difficulties of distinguishing unit-root and
trend-stationary stochastic processes.
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analysis focuses on the gap between the current nominal interest rate, i = r+ π, and

the “mortgage rate,” i0 = r0 + π0, which is the nominal interest rate at the time the

mortgage was issued. Let x represent the difference between the current nominal

interest rate and the mortgage rate: x ≡ i− i0. This implies that

dx =
p
σ2r + σ2π + 2σrπdz (3)

= σdz, (4)

where σ ≡
p
σ2r + σ2π + 2σrπ.

The mortgage contract. To eliminate a state variable, we counterfactually

assume that mortgage payments are structured so that the real value of the mort-

gage, M, remains fixed until an exogenous and discrete mortgage repayment event.

These repayment events follow a Poisson arrival process. Excluding these discrete

repayment events, the continuous flow of real mortgage repayment is given by

real flow of mortgage payments = (r0 + π0 − π)M (5)

= (i0 − π)M. (6)

In a standard mortgage contract, the real value of a mortgage obligation declines

for three different reasons: repayment of the entire principal at the time of a relocation

(or death), contracted nominal principal repayments, and inflationary depreciation

of the real value of the mortgage. We capture all of these effects when we calibrate

the exogenous arrival rate of a mortgage repayment event.

We assume that the mortgage is exogenously repaid with hazard rate λ. In
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our calibration section, we show how to choose a value of λ that simultaneously

captures all three channels of repayment: relocation, nominal principal repayment,

and inflation. Hence λ should be thought of as the expected exogenous rate of decline

in the real value of the mortgage.

Refinancing. The mortgage holder can refinance his or her mortgage at real

(tax-adjusted) cost κ(M). These costs include points and any other explicit or implicit

transactions costs (e.g. lawyers fees, mortgage insurance, personal time). We define

κ(M) to represent the net present value of these costs, netting out all allowable tax

deductions generated by future deductions of amortized refinancing points. For a

consumer who itemizes (and takes account of all allowable deductions), the formula

for κ(M) is provided in appendix A.5

Our analysis translates costs and benefits into units of “discounted dollars of in-

terest payments.” Since κ(M) represents the tax-adjusted net present value of closing

costs, κ(M) needs to be adjusted so that the model recognizes that one unit of κ is

economically equal to 1
1−τ dollars of current (fully and immediately tax-deductible)

interest payments, where τ is the marginal tax rate of the household. Hence, we

multiply κ(M) by 1
1−τ and work with the normalized refinancing cost

C(M) =
κ(M)

1− τ
.

If a consumer does not itemize, set τ = 0 for both the calculation of κ(M) and

the calculation of C(M).

5A borrower who itemizes is allowed to make the following deduction. If N is the term of the
mortgage, then the borrower can deduct 1

N of the points paid for N years. If the mortgage is
refinanced or otherwise prepaid, the borrower may deduct the remainder of the points at that time.
Appendix A derives a formula for κ(M).
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Optimization problem. Mortgage holders pick the refinancing policy that

minimizes the expected NPV of their real interest payments, applying a fixed dis-

count rate, ρ. We also assume that mortgage holders are risk neutral.

Summing up these considerations, the consumer minimizes the expected value

of her real mortgage payments. Let value function V (r0, r, π0, π,M), represent the

expected value of her real mortgage payments. More formally, the instantanteous

Bellman Equation for this problem is given by

ρV = (r0 + π0 − π)M + λM − λV +
E [dV ]

dt

= (r0 + π0 − π + λ)M − λV +
σ2r
2

∂2V

∂r2
+

σ2π
2

∂2V

∂π2
+ σrπ

∂2V

∂r∂π
.

This Bellman equation can be derived with a standard application of stochas-

tic calculus and Ito’s Lemma. First-order partial derivatives do not appear in this

expression, since r and π have no drift.

At an endogenous refinancing event, the mortgage holder exchanges V (r0, r, π0, π,M)

for V (r, r, π, π,M) + C(M). Hence, at an optimal refinancing event value matching

will imply that

V (r0, r, π0, π,M) = V (r, r, π, π,M) + C(M).

Given our assumptions, an optimizing mortgage holder picks a refinancing rule

that minimizes the discounted value of her mortgage payments. In other words, she

picks a refinancing rule that minimizes V.

We next show that the second-order partial differential equation that characterizes

V can be simplified.
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2.2. Our main result. Since M is a constant, we can partial M out of the

problem. This leaves four state variables: r0, r, π0, π.

The first step in the proof decomposes the value function V (r0, r, π0, π). We de-

fine Z to be the discounted value of expected future payments conditional on the

restriction that refinancing is disallowed. The Bellman Equation for Z is given by,

ρZ(r0, r, π0, π) = (r0 + π0 − π + λ)M − λZ(r0, r, π0, π) +
E [dZ]

dt
.

It can be confirmed that the solution for Z is

Z(r0, r, π0, π) =
(r0 + π0 − π + λ)M

ρ+ λ
. (7)

It follows that Z can be reduced to a function of the state variable −x+ r, which is

equal to r0 + π0 − π.

We decompose V, by defining R as

R(r0, r, π0, π) ≡ Z(r0, r, π0, π)− V (r0, r, π0, π). (8)

The function R represents the option value of being able to refinance. R can be

expressed as a function of one state variable:

x = i− i0

= r + π − r0 − π0.

This one-variable simplification can be derived with the following “replication” lemma.
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Lemma 1. Replication.

R(r0, r, π0, π) = R(r0 +∆, r +∆, π0, π) (9)

= R(r0, r, π0 +∆, π +∆) (10)

= R(r0, r +∆, π0 +∆, π) (11)

Proof: Consider an agent in state (r0 +∆, r +∆, π0, π). Let this agent replicate

the refinancing strategy of an agent in state (r0, r, π0, π). In other words, refinance

after every sequence of innovations in the Ito processes that would make the agent

who started at (r0, r, π0, π) refinance. So the agent in state (r0+∆, r+∆, π0, π) will

generate refinancing choices valued at V (r0, r, π0, π) + ∆M
ρ+λ

. Hence,

V (r0 +∆, r +∆, π0, π) ≤ V (r0, r, π0, π) +
∆M

ρ+ λ
.

Likewise, we have

V (r0, r, π0, π) ≤ V (r0 +∆, r +∆, π0, π)−
∆M

ρ+ λ
.

Combining these two inequalities, and substituting equations (7) and (8), yields equa-

tion 9. We now repeat this type of argument for other cases. By replication,

V (r0, r, π0 +∆, π +∆) ≤ V (r0, r, π0, π)

V (r0, r, π0, π) ≤ V (r0, r, π0 +∆, π +∆).
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Combining these two inequalities, we have equation 10. By replication,

V (r0, r +∆, π0 +∆, π) ≤ V (r0, r, π0, π) +
∆M

ρ+ λ

V (r0, r, π0, π) ≤ V (r0 +∆, r, π0, π +∆)− ∆M

ρ+ λ
.

Before refinancing, the perturbed agent pays ∆ more (the inflation rate at which the

perturbed agent borrowed is π0+∆ rather than π0). After refinancing, the perturbed

agent pays ∆ more (the real interest rate at which the perturbed agent refinances is

r +∆ rather than r). Combining the two inequalities, we have equation 11. ¤

The Lemma implies that these equalities hold everywhere in the state space:

∂R

∂r
=

∂R

∂π
= −∂R

∂r0
= − ∂R

∂π0
.

This in turn implies that R(r0, r, π0, π) can be rewritten as R(x).

We will show that the solution of R can be expressed as a second-order ordinary

differential equation with three unknowns: two constants in the differential equation

and one free boundary. To solve for these three unknowns we need three boundary

conditions. We will exploit a value matching constraint that links R the instant

before refinancing at x = x∗ and the instant after refinancing (when x = 0).

R(x∗) = R(0)− C(M)− x∗M

ρ+ λ

We will also exploit smooth pasting at the refinancing boundary.

R0(x∗) = − M

ρ+ λ
.



Optimal Mortgage Refinancing: A Closed Form Solution 13

Finally, limx→∞R(x) = 0, since the option value of refinancing vanishes as the interest

differential gets arbitrarily large. See Lemma 5 in Appendix B for a derivation of

the first two boundary conditions.

The following theorem characterizes the optimal threshold, x∗, and the value

functions. The threshold rule is expressed in x, the difference between the current

nominal interest rate, i, and the nominal interest rate of the mortgage, i0.

Theorem 2. Refinance when

i− i0 ≤ x∗ ≡ 1

ψ
[φ+W (− exp (−φ))] . (12)

where W (.) is the Lambert W -function,

ψ =

p
2 (ρ+ λ)

σ
,

φ = 1 + ψ (ρ+ λ)
κ/M

(1− τ)
.

When x > x∗ the value function is

V (r0, r, π0, π) = −Ke−ψx +
(i0 − π + λ)M

ρ+ λ
, (13)

where K6 is given by

K =
Meψx

∗

ψ(ρ+ λ)
. (14)

The option value of being able to refinance is Ke−ψx when x > x∗.

6K has an equivalent solution, K = −
¡
e−ψx

∗ − 1
¢−1 ³x∗M

ρ+λ + C(M)
´
.
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Proof: We can express V as

V (x, r) =
(−x+ r + λ)M

ρ+ λ
−R(x).

Using Ito’s Lemma, derive a continuous time Bellman Equation for V :

ρV = (−x+ r)M +
σ2

2
· ∂

2V

∂x2
+ λ (M − V ) . (15)

Substituting for V yields

(ρ+ λ)

µ
(−x+ r + λ)M

ρ+ λ
−R

¶
= (−x+ r + λ)M − σ2

2
R00.

This simplifes to

(ρ+ λ)R =
σ2

2
R00. (16)

The original value function V has been eliminated from the analysis, as has the

variable r. The option value R(x) has a solution of the form R(x) = Ke−ψx, with

exponent

ψ =

p
2(ρ+ λ)

σ
.

We pick ψ > 0 to satisfy the limiting boundary condition (limx∗→∞R(x∗) = 0). The

remaining two parameters, K and x∗, solve the system of equations derived from the

value matching and smooth pasting conditions.

Ke−ψx
∗
= K − C(M)− x∗M

ρ+ λ
(17)

−ψKe−ψx
∗
= − M

ρ+ λ
. (18)
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We use the smooth pasting condition to solve for K and substitute it back into the

value matching condition. Hence,

K =
1

ψ

Meψx
∗

ρ+ λ
, (19)

yielding
1

ψ

M

ρ+ λ
=
1

ψ
eψx

∗ M

ρ+ λ
− C(M)− x∗M

ρ+ λ
, (20)

Multiplying through by the inverse of the left hand side yields:

eψx
∗ − ψx∗ = 1 +

C(M)

M
ψ(ρ+ λ) (21)

Set k = 1+C(M)
M

ψ(ρ+λ) in Lemma 6 (Appendix B) to yield the closed form expression

for x∗ in the statement of the theorem.¤

The Lambert W function, which appears in the solution, is the inverse function

of f(x) = xex. Hence, z = W (z)eW (z). Although its origins can be traced to

Johann Lambert and Leonhard Euler in the 18th century, the function has only been

extensively examined in the past 20 years. It has since been shown to be useful in

solving a wide variety of problems in applied mathematics, and is built into a number

of common mathermatical programming packages, including Maple, Mathematica

and Matlab. For more information on the function and its uses, see Corless, Gonnet,

Hare, Jeffrey and Knuth (1996) and Hayes (2005).

We also study an additional threshold value at which the reduction in the NPV

of future interest payments (assuming no more refinancing) is exactly offset by the

cost of refinancing, C(M). We refer to this as the NPV break-even threshold.7

7Follain and Tzang (1988) also derive this differential. They note that, since it ignores the option
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Definition 3. The NPV break-even threshold, xNPV , is defined as

−x
NPVM

ρ+ λ
= C(M). (22)

Intuitively, the NPV break-even threshold is the point at which the expected

interest payments saved from an immediate and final refinancing, −xM
ρ+λ

, exactly offset

the tax-adjusted cost of refinancing, C(M).

2.3. Second-order expansion. Our closed form (exact) solution for the optimal

refinancing differential requires calls to the Lambert W -function. We also provide

an alternative solution that can be implemented on a hand-held calculator that does

not output the Lambert W -function.

The proof of the main theorem derives an implicit solution for x∗ (equation 21),

which can be written as

f(x∗) = eψx
∗ − ψx∗ − 1− ψ(ρ+ λ)

C(M)

M
= 0

A second-order Taylor series approximation to f(x∗) at x∗ = 0 is given by:

f(x∗) ≈ f(0) + f 0(0)x∗ +
1

2
f 00(0)x∗2

= −ψ(ρ+ λ)
C(M)

M
+ 0 · x∗ + 1

2
ψ2x∗2

Setting this to zero and solving for x∗ (picking the negative root) yields an approxi-

mation that we refer to as the square root rule,

to refinance, this differential represents a lower bound to the refinancing decision; they also note
that calculating the option value is complicated.
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x∗ ≈ −
r

σκ

M (1− τ)

p
2 (ρ+ λ).

We evaluate the practical accuracy of this approximation in the calibration section

below.8 We also evaluate a third-order approximation, which is given by an implicit

cubic equation.9

3. Calibration

We begin by illustrating the model’s predictions for the optimal threshold value x∗.

We numerically solve equation (12) — the exact solution of the optimal refinancing

problem — with typical values of parameters ρ, τ , κ(M), σ, and λ. We also provide

a web calculator10 which readers can use to evaluate any calibration of interest.

For our first illustrative analysis, we choose a 5% real discount rate, ρ = 0.05. We

assume a 28% marginal tax rate, τ = 0.28.11 We assume transactions costs of 1 point

and $2000; κ(M) is given by the formula in Appendix A (e.g. κ(M) = 0.01M+2000 if

τ = 0). The fixed cost ($2000) reflects a range of fees including inspection costs, title

insurance, lawyers fees, filing charges, and non-pecuniary costs like time.12 Using

8Not all of the limit properties of the second-order approximation match those of the exact
solution. In particular, as the standard deviation of the mortgage rate, σ, goes to zero, the second-
order approximation also goes to zero, while the exact solution goes to the NPV threshold. Because
of this, at low values of σ, the NPV threshold is a better approximation to the optimal threshold
than is the second-order approximation. Since the NPV threshold is also easily calculable, a
better refinancing rule than simply using the second-order approximation alone is to refinance when

x < min

½
−
q
σC(M)

M

p
2(ρ+ λ),−(ρ+ λ)C(M)

M

¾
.

9Higher order approximations provide greater accuracy at the cost of greater computational
complexity. In our view, only the second-order approximation is of significant interest due to its
ease of calculation.
10http://www.nber.org/mortgage-refinance-calculator
11In the 2007 tax code, the 28% marginal tax rate applies to joint filings for households with joint

income between $128,500 and $195,850, and to filings for single households with income between
$77,100 and $160,850.
12See Federal Reserve Board and Office of Thrift Supervision (1996), Caplin, Freeman and Tracy
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historical data, we estimate that the annualized standard deviation of the mortgage

interest rate is σ = 0.0109.13

Finally, we need to calibrate λ, the expected real repayment rate of the mortgage.

We need to calculate the value of λ that corresponds to a realistic mortgage contract

— one in which there are three forms of repayment: first, a probability of exogenous

repayment (due to a relocation); second, principal payments that reduce the real

value of the mortgage; third, inflation that reduces the real value of the mortgage.

Formally, consider a household with a mortgage with a contemporaneous real (annual)

mortgage payment of p, remaining principle M, an original nominal interest rate of

i0, and a μ hazard of relocation (implying that 1
μ
is the expected time until the next

move). We’ll consider an environment with current inflation π. For this mortgage,

the expected (flow) value of the exogenous decline in the real mortgage obligation is

μM + (p− i0M) + πM.

The term in parentheses corresponds to contracted principal repayment. The last

term represents inflation eroding the real value of the mortgage. Using this formula,

we can calibrate the value of λ.

λ = μ+
³ p

M
− i0

´
+ π

= μ+

µ
pnominal
Mnominal

− i0

¶
+ π

(1997), Danforth (1999), Lacour-Little (2000), and Chang and Yavas (2006) for data on transactions
costs.
13The standard deviation for monthly differences of the Freddie Mac 30-year mortgage rate from

April 1971 to February 2004 is 0.00315, implying an annualized standard deviation of σ =
√
12 ×

0.00315 = 0.0109. By comparison, taking annual differences yields an average standard deviation of
σ = 0.0144. These results are consistent with our decision to model interest rate innovations as iid.
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In practice it will be easier for households to use the latter “nominal” version of the

formula since households know pnominal and Mnominal, the nominal analogs of p and

M .14

We can also solve for the key terms in the equations above using formulae for a

standard fixed rate mortgage. In this case, the calibration for λ is

λ = μ+
i0

exp [i0Γ]− 1
+ π.

where Γ is the remaining life (in years) of the mortgage. See Appendix C for this

derivation.

Assume that the household has a 10% chance of moving per year, so μ = 10%,15

and the expected duration of staying the house is 10 years. Assume that i0 = 0.06,

π = 0.03, and Γ = 25 years, then, λ = 0.147.

Table 1 reports the optimal refinancing differentials calculated with our model for

the calibration summarized above. We report the exact optimal rule, the second-

and third-order approximations to the optimal rule, and the (suboptimal) net present

value rule. We calculate the refinancing differentials for mortgage sizes (M) of

$1,000,000, $500,000, $250,000 and $100,000.

14This calibration is only an approximation, since the calibration formula will change over time
(whereas λ is constant in the model from section 2).
15Hayre, Chaudhary and Young (2000) estimate that 5 to 7 percent of single-family homes turn

over per year.
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Table 1: Refinancing differentials

in basis points by solution method

Mortgage Exact optimum 2nd order 3rd order NPV rule

$1,000,000 107 97 109 27

$500,000 118 106 121 33

$250,000 139 123 145 44

$100,000 193 163 211 76

The optimal refinancing threshold increases as mortgage size decreases, since in-

terest savings from refinancing scale proportionately with mortgage size but part of

the refinancing cost is fixed ($2000). The second-order approximation deviates by 10

to 30 basis points from the exact optimum. The third-order approximation deviates

by only 2 to 18 basis points from the exact optimum. The NPV rule, by contrast,

deviates by 80 to 117 basis points from the exact optimum.

Table 2 presents results for the six different marginal tax rates that were in effect

under the tax code in 2006:

Table 2: Optimal refinancing differentials

in basis points by marginal tax rate τ

τ

Mortgage 0% 10% 15% 25% 28% 33% 35%

$1,000,000 99 101 103 106 107 109 110

$500,000 108 111 113 117 118 121 122

$250,000 124 129 131 137 139 143 145

$100,000 166 174 178 189 193 199 202
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The optimal differentials rise as the marginal tax rate rises, since interest payments

are tax deductible but refinancing costs are not.

Table 3 reports the consequences of varying, λ, the expected real rate of repay-

ment.16 We consider cases in which the expected time to the next move is 5 years

(μ = 0.20), 10 years (μ = 0.10), and 15 years (μ = 0.066), corresponding to values

for λ of .247, .147, and .114, respectively.

Table 3: Optimal refinancing differentials

in basis points by expected real rate of repayment λ

λ

Mortgage 0.114 0.147 0.247

$1,000,000 101 107 122

$500,000 112 118 136

$250,000 131 139 161

$100,000 180 193 227

As expected, a higher hazard rate of prepayment raises the optimal interest rate

differential, since the effective amount of time over which the lower interest savings

will be realized is smaller.

Table 4 reports the optimal differential assuming a refinancing cost of only $1000,

which is of interest because of the wider availability of low-cost refinancings. For

comparison, we also report the differentials predicted by the NPV rule at a refinancing

cost of $1000.
16Unless otherwise specified, we now return to our earlier assumption of a marginal tax rate of

28%.
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Table 4: Optimal refinancing differentials

in basis points by fee size

C(M)

Mortgage $2000 + 0.01M $1000 $1000, NPV

$1,000,000 107 32 2

$500,000 118 45 4

$250,000 139 66 7

$100,000 193 108 18

Reducing the costs substantially reduces the optimal interest rate differentials.

The differentials implied by the NPV rule also decline.

4. Comparison with Chen and Ling (1989)

We now compare the refinancing differentials implied by our model and those reported

by Chen and Ling (1989). Chen and Ling calculate optimal differentials for a model

in which the log one-period nominal interest rate follows a random walk, the time of

exogenous prepayment (or the expected holding period) is known with certainty, and

the real mortgage principle is allowed to decline over time because of inflation and

continuous principle repayment. Chen and Ling use numerical methods to solve the

resulting system of partial differential equations.

In contrast to their analysis, we make a simplifying assumption that allows us to

obtain an analytic solution to a closely related mortgage refinancing problem.17 As

explained above, we assume that the mortgage is structured so that its real value

17In one way, our paper adds greater realism when compared with previous work. We account
for the differential tax treatment of mortgage interest payments and refinancing costs. Refinancing
costs are not tax deductible (unlike the closing costs on an originating mortgage).
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remains constant. This allows us to avoid tracking a changing value of time to

maturity and a changing remaining mortgage balance. In contrast to our approach,

Chen and Ling’s model directly incoporates the effects of principal repayment and

the finite life of the mortgage contract.

To bring our model into line with theirs, our parameter λ is calibrated to capture

the joint effects of moving, principal repayments, and inflation. Hence, λ is set to

capture the three ways that the expected real value of the mortgage declines over

time.

To calibrate our model to match the set-up in Chen and Ling, we set λ = 0.173

to account for (1) an 8 year expected holding period ( 1
μ
= 8, so μ = 0.125); (2) a

long-run inflation forecast (in 1989) of 4% (π = 0.04); and (3) a principal repayment

rate of 0.8% at the beginning of a 30-year mortgage. We set the discount rate to

be 4%, ρ = 0.04, matching Chen and Ling’s assumption of an 8% nominal interest

rate. Chen and Ling’s random walk assumption for the log short-term interest rate

allows us to compute the implied standard deviation for the 30-year mortgage rate

(see Appendix D). We calculate an implied standard deviation for the innovations of

the 30-year mortgage rate of σ = 0.012. Finally, to match the analysis of Chen and

Ling we assume a zero marginal tax rate.18

Chen and Ling’s baseline calculations exclude the possibility of subsequent refi-

nancings. But their analysis enables us to compute the additional points that would

be necessary to buy a new refinancing option when the original mortgage is refinanced.

There are two such cases that are analyzed in Chen and Ling.

With a refinancing cost of 2 points (without a new option to refinance), 2.24

18We take results from the middle columns of their table 2. For consistency with our framework,
we consider cases from Chen and Ling in which the interest rate process has no drift.
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additional points are charged to purchase the right to refinance again,19 implying

total points of 4.24. For this case, Chen and Ling calculate an optimal refinancing

differential of 228 basis points, while we calculate an optimal refinancing differential

of 218 basis points, a difference of 10 basis points.

With a refinancing cost of 4 points (without a new option to refinance), 1.51

additional points will be charged to purchase the right to refinance again,20 implying

total points of 5.51 points. For this case, Chen and Ling calculate an optimal

refinancing differential of 256 basis points, while we calculate an optimal differential

of 255 basis points, a difference of 1 basis point.21

5. Financial advice

Households considering refinancing use many different sources of advice, including

mortgage brokers, financial planners, financial advise books, and websites. In this

section, we describe the refinancing rules recommended by 25 leading books and

websites. We find that none of the sources of financial advice in our sample provide

a calculation of the optimal refinancing differential. Instead, the advisory services

in our sample offer the break-even NPV rule as the only theoretical benchmark.

Most of the advice boils down to the following necessary condition for refinancing —

only refinance if you can recoup the closing costs of refinancing in reduced interest

payments.

First, we sampled books that were on top-ten sales lists at the Amazon and Barnes

& Noble web sites (see the web appendix for a detailed description of our sampling

19See panel 1, column 3, in Table 1 of Chen and Ling.
20See panel 1, column 3, in Table 1 of Chen and Ling.
21The second order approximations yield refinancing differentials of 182 and 207, differing from

Chen and Ling’s values by 46 and 48 basis points. These results reflect the general deterioration of
the approximation as refinancing costs become very large.
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method and findings22). Of the 15 unique books in our sample, 13 provided a break-

even calculation of some sort. Most of the 15 books also provided some rules of

thumb (e.g. ‘wait for an interest differential of 200 basis points,’ or ‘only refinance if

you can recoup the closing costs within 18 months’).

For websites, we entered the words mortgage refinancing advice into Google and

examined the top twelve sites which offered information on refinancing. Two of these

sites suggest a fixed interest-rate differential of one-and-a-half to two percent and

recommend refinancing only if the borrower plans to stay in the house for at least

three to five years. One of the sites provides a monthly savings calculator, while seven

of the sites provide a refinancing calculator based on the NPV break-even criterion.

The remaining three sites did not provide a refinancing calculator but still recommend

break-even calculations.

None of the 15 books and 10 web sites in our sample discuss (or quantitatively

analyze) the value of waiting due to the possibility that interest rates might continue

to decline.

Finally, market data also shows that many households did refinance too close to

the NPV break-even rule during the last 15 years; see, for example, Yavas and Chang

(2006) and (Agarwal, Driscoll and Laibson 2004).

How suboptimal is the NPV rule?. To measure the suboptimality of the

NPV rule, we consider an agent that starts life with state variable x = 0 (a new mort-

gage). We calculate the expected cost of using an arbitrary refinancing differential,

xH , instead of using the optimal refinancing rule specified in Theorem 2.

Proposition 4. The expected discounted Loss as a fraction of the mortgage size
22http://www.nber.org/mortgage-refinance-calculator/appendix.py
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from using an arbitrary heuristic rule instead of using the optimal rule is given by

Loss

M
=

C(M)
M

+ x∗

ρ+λ

1− e−ψx∗
−

C(M)
M

+ xH

ρ+λ

1− e−ψxH
(23)

=
eψx

∗

ψ(ρ+ λ)
−

C(M)
M

+ xH

ρ+λ

1− e−ψxH
. (24)

where xH is the heuristic threshold rule. This implies that the expected discounted

Loss as a fraction of the mortgage size from using the suboptimal NPV rule instead

of using the optimal rule is given by

Loss

M
=

eψx
∗

ψ(ρ+ λ)
. (25)

Proof : The loss is equal to the difference between the value function associated

with the optimal rule and the value function associated with the alternative rule. The

value function for the optimal rule is given in the statement of the main theorem.

Since the interest payment term is the same for both the optimal and suboptimal

rules, the difference in value functions will be equal to the difference in option value

expressions. For both the suboptimal and approximate rules, the value matching

condition still applies, but with x∗ replaced with the suboptimal differentials specified

by the alternative rule, xH .

Following the line of argument in the proof of our main theorem, the option value

function, R(x), has a solution of the form R(x) = Ke−ψx. The parameter K is

derived from the value matching condition,

Ke−ψx
H

= K − C(M)− xHM

ρ+ λ
, (26)
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implying

K =
C(M) + xHM

ρ+λ

1− e−ψxH
. (27)

So the difference in value functions is given by

Loss

M
=

"
C(M)
M

+ x∗

ρ+λ

1− e−ψx∗
−

C(M)
M

+ xH

ρ+λ

1− e−ψxH

#
e−ψx

=

"
eψx

∗

ψ(ρ+ λ)
−

C(M)
M

+ xH

ρ+λ

1− e−ψxH

#
e−ψx.

Note that xH = xNPV implies that C(M)
M

+ xH

ρ+λ
= 0, and hence

Loss

M
=

C(M)
M

+ x∗

ρ+λ

1− e−ψx∗
e−ψx =

eψ(x
∗−x)

ψ(ρ+ λ)
.

Set x = 0, to reflect the perspective of an agent with a newly issued mortgage. ¤

Note that the loss from following the NPV rule is equal to the option value of the

ability to refinance, evaluated for a new mortgage. By ignoring the existence of the

option value, the NPV rule creates a loss equal in size to the option value.

Using the same calibration assumptions that were used in section 3, we calculate

the economic losses of using the NPV rule and the second order rule instead of the

exactly optimal rule.
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Table 5: Expected losses in discounted dollars

from using the NPV and approximate rules

Mortgage Loss (NPV rule) Loss (square root rule)

$1,000,000 $163,235 $15,253

$500,000 $86,955 $9,459

$250,000 $49,066 $7,020

$100,000 $26,479 $6,406

Table 6: Expected losses as a percent of mortgage face value

from using the NPV and approximate rules

Mortgage Loss (NPV rule) Loss (square root rule)

$1,000,000 16.3% 1.5%

$500,000 17.4% 1.9%

$250,000 19.6% 2.8%

$100,000 26.8% 6.4%

Other rules of thumb. Some advisers also refer to a rule of thumb in which

borrowers are encouraged to refinance when the interest rate has dropped by 200 basis

points. We have also heard more recently of a revised 100 basis point rule of thumb.

Both rules generally, though not always, imply refinancings at bigger differentials than

those implied by the NPV rule. However, our simulations, show that the optimal

refinancing differential can vary quite substantially by expected holding period and

refinancing cost, among other parameters. Hence a “one size fits all” rule will lead

to substantial welfare losses.
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6. Conclusion

Mortgage refinancing is an important financial decision. Many papers have solved

for the optimal refinancing rule, which has been previously calculated by numerically

solving a system of partial differential equations. Such numerical analysis is beyond

the capabilities of many borrowers and their advisers.

Indeed, we show that leading financial advisers do not discuss (formally or infor-

mally) option value considerations. Advisors typically discuss the net present value

rule: refinance only if the net present value of the interest saved is at least as great

as the direct cost of refinancing. Compared to the optimal refinancing rule, the NPV

rule generates expected discounted losses of over $85,000 on a $500,000 mortgage.

We solve an analytically tractable model of mortgage refinancing. Our model

departs from existing analyses by making simplifying assumptions, but we show that

these simplifying assumptions do not make a large difference to the results. We find

that our closed-form calculations very closely match the numerical results of Chen

and Ling (1989).

Our derived refinancing rule takes the following form: Refinance when the current

mortgage interest rate falls below the original mortgage interest rate by at least

1

ψ
[φ+W (− exp (−φ))] ,

where W (.) is the Lambert W -function,

ψ =

p
2 (ρ+ λ)

σ
,
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φ = 1 + ψ (ρ+ λ)
κ/M

(1− τ)
,

ρ is the real discount rate, λ is the expected real rate of exogenous mortgage repay-

ment (including the effects of moving, principal repayment, and inflation), σ is the

annual standard deviation of the mortgage rate, κ/M is the ratio of the tax-adjusted

refinancing cost and the remaining value of the mortgage, and τ is the marginal tax

rate.

All of these variables are easy to calibrate, including λ. This variable can be

calibrated with the annual probability of relocating (μ), the ratio of total mortgage

payments to the remaining value of the mortgage
³

pnom inal
Mnom inal

´
, the initial mortgage

interest rate (i0), and the current inflation rate (π):

λ = μ+

µ
pnominal
Mnominal

− i0

¶
+ π.

Equivalently, λ can be calculated by using the remaining years left until the mortgage

is fully repaid (Γ):

λ = μ+
i0

exp(i0Γ)− 1
+ π.

We analyze both the exact solution of our mortgage refinancing problem (above)

and a useful approximation to that solution. We show that a second-order Taylor

expansion yields a square-root rule for optimal refinancing: Refinance when the

current mortgage interest rate falls below the original mortgage interest rate by at

least s
σκ/M

(1− τ)

p
2 (ρ+ λ).
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Appendix A: Partial deductibiity of points

Let κ(M) = F + fM , where F denotes the fixed cost of refinancing and 100 × f
is the number of points. The expected arrival rate of a full deductibility event — a
move or a subsequent refinancing — is θ. At time t, the probability that such a full
deductibility event has not yet occurred is e−θt. The likelihood that such an event
occurs at date t is θe−θt.
Assume the term of the new mortgage is for N years. Each year, borrowers are

allowed to deduct amount fM
N
from their income, producing a tax reduction of τfM

N
.

At the time of a full deductibility event, borrowers immediately deduct all of the
remaining undeducted points — i.e. they reduce their taxes by τfM

¡
N−T
N

¢
.

The real value of the deduction declines at the rate of inflation. Hence, the
payments are discounted effectively at the real discount rate r = ρ+ π.
The present value of these tax benefits is then:Z N

0

e−θte−(ρ+π)t
µ
τfM

N

¶
dt+

Z N

0

θe−θte−(ρ+π)t (τfM)

µ
1− t

N

¶
dt.

Using integration by parts, this simplifies to

τfM

θ + ρ+ π

∙µ
1− e−(θ+ρ+π)N

N

¶µ
ρ+ π

θ + ρ+ π

¶
+ θ

¸
Hence, total refinancing costs κ(M) are given by

κ(M) = F + fM

∙
1− τ

θ + ρ+ π

∙µ
1− e−(θ+ρ+π)N

N

¶µ
ρ+ π

θ + ρ+ π

¶
+ θ

¸¸
,

where κ(M) is defined as the present value of the cost of refinancing, net of future tax
benefits. To calibrate this formula, set θ ' μ + 0.10, where μ is the hazard rate of
moving and 0.10 is the (approximate) hazard rate of future refinancing. The actual
hazard rate of refinancing will be time-varying.
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Appendix B: Two lemmas
Lemma 5. The boundary conditions for R are given by

R(x∗) = R(0)− C(M)− x∗M

ρ+ λ

R0(x∗) = − M

ρ+ λ

lim
x→∞

R(x) = 0

Proof: We derive these from the boundary conditions on V. The value matching
and smooth pasting conditions at refinancing boundary x∗ are:

V (r0, r, π0, π) = V (r, r, π, π) + C(M).

M

ρ+ λ
=

∂V (r0, r, π0, π)

∂r
.

Since V (r0, r, π0, π) = Z(r0, r, π0, π)−R(x∗), substitution into the first equation im-
plies

Z(r0, r, π0, π)−R(x∗) = Z(r, r, π, π)−R(0) + C(M).

Rearranging the expression and simplifying the Z terms yields

R(x∗) = R(0)− C(M) +
(i0 − π + λ)M

ρ+ λ
− (r + λ)M

ρ+ λ
.

= R(0)− C(M)− x∗M

ρ+ λ
.

The value matching equation states that the value of the program just before refinanc-
ing, V (r0, r, π0, π), equals the sum of the value of the program just after refinancing
and the cost of refinancing, V (r, r, π, π) + C(M).
Changes in the interest rate (below the refinancing point) do not change the

option value terms since the consumer is going to instantaneously refinance anyway.
So a rise in the interest rate only increases the NPV of future interest payments.
This differential property must be continuous at the boundary (“smooth pasting”),
so R0(x∗) = − M

ρ+λ
.

The asymptotic boundary condition (for R) is

lim
x∗→∞

R(x∗) = 0.

As the difference between the current nominal interest rate and the original rate on
the mortgage grows beyond bound, the value of refinancing goes to zero. ¤
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Lemma 6. 23 If W is the Lambert W -function, then

ey − y = k

iff
y = −k −W (−e−k).

Proof: Lambert’s W is the inverse function of f (x) = xex, so

z =W (z)eW (z).

Let z = −e−k, then
e−k = −W (−e−k)eW (−e−k).

Divide by eW (−e−k) and add k to yield

e[−k−W (−e−k)] −
£
−k −W (−e−k)

¤
= k.

Hence, y = −k −W (−e−k) is the solution to ey − y = k. ¤

Appendix C: Formula for λ

Assume that a mortgage is characterized by a constant nominal payment, p, with a
nominal interest rate i0. The remaining nominal principal, N, is given by

Ṅ = −p+ i0N.

The boundary conditions are N(0) = N0 and N(T ) = 0. The solution to this
differential equation is

N(t) =
p

i0
+

µ
N0 −

p

i0

¶
exp(i0t).

Exploiting the boundary condition at T, we have

0 = N(T )

=
p

i0
+

µ
N0 −

p

i0

¶
exp(i0T ).

23We are grateful to Fan Zhang for pointing this result out to us.
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This implies that the nominal payment stream is given by,

p =
i0N0

1− exp(−i0T )
.

We can also show that

N(t)

N0
=

p

N0i0
+

µ
1− p

N0i0

¶
exp(i0t)

=
1− exp(i0 [t− T ])

1− exp(−i0T )
.

Hence,

p

N(t)
=

i0
1− exp(−i0T )

· N0

N(t)

=
i0

1− exp(i0 [t− T ])

So the rate of real repayment at date t is

λ = μ+
p

N
− i0 + π

= μ+
i0

1− exp(−i0Γ)
− i0 + π

= μ+
i0

exp(i0Γ)− 1
+ π.

where μ is the hazard of moving, Γ is the number of remaining years on the mortgage,
and π is the current inflation rate.

Appendix D: Standard deviation calculations

Chen and Ling (1989)’s assumptions Chen and Ling (1989) assume that the
short rate xt follows the binomial process:

xt+1
xt

= �t+1,

where:

�t+1 =

½
U w/prob π
D w/prob 1− π

.
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With constant π, over time the logarithm of this ratio will follow a binomial distrib-
ution with an N-period mean of

μ = N [π ln (U) + (1− π) ln (D)]

and variance
σ2 = N

£
(ln (U)− ln (D))2 π (1− π)

¤
.

The above expressions for μ and σ can be jointly solved for values of U and D in
terms of μ, σ, π, and N :

U = exp

Ã
μ

N
+

σ (1− π)p
Nπ (1− π)

!
and D = exp

Ã
μ

N
− σπp

Nπ (1− π)

!
.

As N →∞, this log binomial distribution approaches a log normal distribution.
Chen and Ling use this log normal approximation to calibrate values of μ and σ

from monthly data on three-month Treasury bills. They choose values for μ of -0.02,
0, and 0.02 and for σ of 5%, 15% and 25%.
They use the local expectations hypothesis to compute the values of other securi-

ties as needed.

Current paper’s assumptions We assume that the 30-year mortgage rate Mt

follows a driftless Brownian motion. We calibrate the variance with monthly data
on the first difference of Freddie Mac’s 30-year mortgage rate series from 1971-2004,
finding an annualized value of 0.000119.

Implications of Chen and Ling’s assumptions for the current paper We
can use the log version of the expectations hypothesis to approximate the yield of
longer-term securities from Chen and Ling’s short-rate assumptions.
For any security of term s, the log yield of that security approximately satisfies:

lnxst =
1

s
Et

¡
lnx1t + lnx

1
t+1 + lnx

1
t+2 + · · ·+ lnx1t+s−1

¢
In each case, the superscript denotes the term of the security. Hence the log yield on
an s-period security is the average of the expected log yields on the future sequence
of s one-period securities.
Under Chen and Ling’s assumptions,

lnx1t+1 = lnx
1
t + ln �t+1,
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where

ln �t+1 =

⎧⎨⎩
μ
N
+ σ(1−π)√

Nπ(1−π)
w/prob π

μ
N
− σπ√

Nπ(1−π)
w/prob 1− π

.

Hence:

lnx1t+i = lnx
1
t + ln �

1
t+i−1 + ln �

1
t+i−2 + · · ·+ ln �1t+1 = lnx1t +

iX
j=1

ln �1t+j,

and

Et lnx
1
t+i = Et lnx

1
t +

iX
j=1

ln �1t+j = lnx
1
t +

iX
j=1

Et ln �
1
t+j.

Using the assumptions above about how ln �t+1 evolves,

Et ln �
1
t+j = π

Ã
μ

N
+

σ (1− π)p
Nπ (1− π)

!
+ (1− π)

Ã
μ

N
− σπp

Nπ (1− π)

!
=

μ

N
.

Thus:

Et lnx
1
t+i = lnx

1
t +

iX
j=1

μ

N
= lnx1t + i

μ

N
.

This implies:

lnxst =
1

s

³
lnx1t +

³
lnx1t +

μ

N

´
+
³
lnx1t + 2

μ

N

´
· · ·+

³
lnx1t + (s− 1)

μ

N

´´
= lnx1t +

1

s

μ

N

s−1X
k=1

k

= lnx1t +
1

s

μ

N

s(s− 1)
2

= lnx1t +
μ

N

(s− 1)
2

Thus the first difference of the level of the yield is:

xst+1 − xst = e
μ
N
(s−1)
2

¡
x1t+1 − x1t

¢
≡ K

¡
x1t+1 − x1t

¢
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Define ∆xst+1 ≡ xst+1 − xst . Then

Et∆xst+1 = EtK
¡
x1t+1 − x1t

¢
= KEt

¡
x1t+1 − x1t

¢
= KEt((�t+1 − 1)x1t )

= Kx1t

Ã
π exp

Ã
μ

N
+

σ (1− π)p
Nπ (1− π)

!
+ (1− π) exp

Ã
μ

N
− σπp

Nπ (1− π)

!!

and:

V art∆xst+1 = V artK
¡
x1t+1 − x1t

¢
= K2V art((�t+1 − 1)x1t )
= K2

¡
x1t
¢2
V art(�t+1)

= K2
¡
x1t
¢2
π(1− π) exp

ÃÃ
μ

N
+

σ (1− π)p
Nπ (1− π)

!
− exp

Ã
μ

N
− σπp

Nπ (1− π)

!!2
Assume π = 1

2
. N = 12. Although Chen and Ling assume several different

values of μ, for our own specification we assume lack of drift. Setting μ = 0 and
π = 1

2
implies K = 1 and simplifies the expressions for the conditional mean and

variance considerably:

Et∆xst+1 = x1t

µ
1

2

µ
exp

σ√
12
+ exp− σ√

12

¶
− 1
¶

V art∆xst+1 =
¡
x1t
¢2µ1

4

µ
exp

2σ√
12
+ exp− 2σ√

12

¶
− 1
2

¶
Note that, given the absence of drift, these expressions do not depend on the term s
of the security.
Chen and Ling start their short rate at x1t = 0.08. For the values of σ = {0.05, 0.15, 0.25}

assumed by Chen and Ling, the corresponding mean, variance, and standard devia-
tion for the 30-year mortgage rate, annualized, are then:

σ Mean Variance Standard Deviation
0.05 0.0001 0.000016 0.0040
0.15 0.0009 0.000144 0.0120
0.25 0.0025 0.000401 0.0200




