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1 Introduction.

Both the distributional effects and the efficiency effects of a trade shock de-
pend on the costs of adjustment of workers in response to the shock. For
example, the effects of opening up a sector of the economy previously pro-
tected from import competition depend crucially on how easily the workers
in that sector can find employment in other sectors. If geographic or sectoral
mobility costs are high, the efficiency benefits are thereby reduced and the
burden borne by those workers is increased. Analysis of the effect of trade on
wages thus always requires the use of some assumption on the degree of labor
mobility.3 Further, the effects of immigration into a particular region of the
country depend on how fluid labor is between that region and others, and
so the literature on labor-market effects of immigration has always required
assumptions on the degree of mobility (see Borjas et. al. (1996), Slaughter
and Scheve (1999)).4

This paper proposes a workhorse model of equilibrium labor reallocation
within the context of a trade model that is designed to address these policy
questions head-on. It incorporates a number of features that are intended to
make the model helpful in analyzing trade policy changes in particular, and
to be consistent with the broad empirical features of the adjustment process.
In this paper, we analyze the key theoretical properties of the model. In
Chaudhuri and McLaren (2007), we study a special case with two industries,
to show the simple analytics of the model. Artuç, Chaudhuri and McLaren
(forthcoming) shows how the model can be simulated, and Artuç, Chaud-
huri and McLaren (2007) estimates the structural parameters and shows the
implications for the distributional effects of trade liberalization in the US.

The model is an infinite-horizon dynamic stochastic version of a standard
‘Ricardo-Viner’ trade model with rational expectations, in which from time
to time random shocks may hit labor demand either in a sector or in a region

3For example, specific-factors models and the Stolper-Samuelson approach have very
different implications for the relationship between trade and wages, driven entirely by dif-
ferent assumptions about mobility costs (see Slaughter (1998) for an extended discussion).
Further, the appropriate time horizon for measuring the labor-market effects of trade also
depends on assumptions about mobility costs.

4For example, the differences between the Hecksher-Ohlin approach, the “factor-
proportions analysis” approach, and the “area analysis” approach to the effects of im-
migration (Borjas et. al., 1996) are entirely driven by different assumptions about labor
mobility. See Slaughter and Scheve (1999) for an extensive discussion.
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of the country (for example, changes in trade policy or terms-of-trade shocks).
In response to these shocks, each worker at each moment may choose whether
to remain where she is or to move to another sector or geographic location.
Unlike the standard trade model, if the worker moves, she will pay a cost,
which has two components: A portion that is the same for all workers making
the same move, which is a parameter of the model and is publicly known; and
a time-varying idiosyncratic portion. The latter is an extremely important
feature of the model, because it generates all of the model’s dynamics and
allows for gross flows to exceed net flows. If workers’ individual situations
vary, one may find different workers moving in opposite directions at the
same time, and this is indeed a prominent feature of the equilibrium of the
model. This is important because empirically gross flows of workers across
geographical locations and industries are substantially larger than net flows.

Many authors have proposed theoretical models of the dynamics of fac-
tor reallocation in response to a trade or policy shock. The approaches can
be classified into ‘net-flows’ approaches and search-theory approaches. ‘Net-
flows’ approaches assume positive costs of moving factors across sectors, with
the result that factors move gradually, and in only one direction, in response
to a shock (see Neary (1985)). The seminal work in this vein is Mussa (1978,
1982), which studies the dynamics of adjustment in a trade model, with cap-
ital as a quasi-fixed factor bearing convex adjustment costs. In both models,
labor is either completely immobile (that is, labor faces infinite moving costs)
or costlessly mobile (faces zero moving costs), but the roles of capital and
labor could easily be reversed to consider labor adjustment dynamics. This
is done in the labor-reallocation models of Dehejia (2003) and Karp and
Paul (2003). Dixit (1993) studies a model with random trade shocks and
a fixed cost to each reallocation, and Dixit and Rob (1994) consider fixed
labor-adjustment costs in a model with random labor-demand shocks and
risk-averse workers. Matsuyama (1992) studies an overlapping-generations
model whose workers cannot reallocate once they have chosen a sector, so
the dynamic adjustment to a trade shock comes entirely through new labor
market entrants.

A major limitation of these models is that in practice different workers
change industries in opposite directions at the same time, so that gross worker
flows exceed net flows, a fact that these models cannot accommodate. Indeed,
in the data gross flows often exceed net flows in the data by a factor of
ten. This phenomenon can be accommodated by the search-theory approach,
which adapts search models such as Lucas and Prescott (1974), Jovanovic
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and Moffitt (1990) and Pissarides (2000) to trade models. Hosios (1990)
and Davidson, Martin and Matusz (1999) study two-sector trade models in
which production requires a worker paired with a firm; workers and firms are
exogenously separated from time to time; and unmatched workers and firms
must search for a new match in order to become productive again. Thus,
these models generate unemployment, gross flows, and, in principle, gradual
adjustment to a trade shock, although these papers study only the steady
state. Davidson and Matusz (2001) analyze the transitional path in a search
model following a trade liberalization, and find that the adjustment process
absorbs much of the gains from the liberalization.

This paper combines some of the advantages of both approaches. As
with the first approach, it presents a neo-classical, market-clearing model
with costly labor adjustment. It has the advantage deriving from its neo-
classical nature that equilibrium solves a social planner’s problem, which
allows us to use the tools of duality theory to analyze the equilibrium, which
we use extensively in Section 4 and in Chaudhuri and McLaren (2007). It also
allows us to derive a kind of Euler equation, which allows us to estimate the
structural parameters of the model, as in Artuç, Chaudhuri and McLaren
(2007). On the other hand, as with the second approach, our approach
assigns a central role to gross flows.

The key properties of the equilibrium proven in the paper include gradual
adjustment of the economy to an external shock; anticipatory adjustment of
the economy to an anticipated shock; and persistent wage differentials (across
sectors or regions of the economy) even in the long-run steady state, for rea-
sons that appear to be novel in the literature. Because of these differentials,
the equilibrium does not maximize national income in the long run – nor is
it optimal to do so.

In addition, we discuss two thought experiments that demonstrate the
importance of idiosyncratic costs for empirical work, even at the aggregate
level. First, we show that if the variance of idiosyncratic shocks is sufficiently
high, aggregate variables will act as if there is no labor mobility, even though
in fact there is a lot of mobility and the welfare effects of a policy change
are very much affected by the mobility. Second, we show that if the variance
of idiosyncratic shocks is low, a different paradox emerges: Subject to a
regularity condition, the equilibrium looks like a model with no mobility in
the short run, but like a model with perfect mobility in the long run. These
findings highlight the importance of second moments of moving costs (such
as the variance of the idiosyncratic shocks), and point out an advantage of
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our structural approach over reduced-form econometric approaches. These
second-moment effects play a central role in our empirical analysis in Artuç,
Chaudhuri and McLaren (2007).

The following section lays out the structure of the model. The subsequent
section analyzes the solution to the planner’s problem of the optimal rule for
the allocation of labor, finds the key Euler condition that characterizes opti-
mality, and shows that this optimal rule is implemented by the decentralized
rational expectations equilibrium. The following section elaborates the most
important properties of the equilibrium. Finally, we briefly discuss a special
case of the model that offers a simple form for the equilibrium, facilitating
empirical estimation.

2 The model.

Consider a model in which production may occur in any of n ‘cells,’ where a
cell is taken to mean a particular industry in a particular place. For example,
‘pharmaceuticals in New Jersey’ might be one of the cells, as might ‘pharma-
ceuticals in Delaware’ or ‘food service in New Jersey.’ In each cell there are
a large number of competitive employers, and the value of their aggregate
output in any period t is given by xi

t = X i(Li
t, st) ≥ 0, where Li

t denotes the
labor used in cell i in period t, and st is a state variable that could capture
the effects of policy (such as trade protection, which might raise the domes-
tic price of the output), technology shocks, changes in world prices, and the
like. Assume that s follows a first-order Markov process on some compact
state space Ss ⊂ <k for some k, where the probability distribution for st+1

conditional on st is given by a continuous density function h(st+1; st).
Assume that X i is strictly increasing, continuously differentiable and

strictly concave in its first argument, and also continuous in its second argu-
ment. Its first derivative with respect to labor, denoted X i

1, is then a contin-
uous, decreasing function of labor. We will assume that the price received by
producers in a cell does not depend on the quantity produced in that cell,5

so that X i
1 is the value marginal product of labor curve and thus the demand

5For example, this would hold in the case of a small open economy in which the only
trade impediments are tariffs, so that the domestic price of each good is equal to an
exogenous world price plus a tariff rate.
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curve for labor in the cell.6 We assume that the spot market for labor clears
in each cell at each date and state, so we can write the period-t wage in cell
i, wi

t, as a function of labor in the cell at date t: wi
t = ωi(Li

t, st) ≡ X i
1(L

i
t, st).

Assume that X i
1(L

i, s) →∞ as Li → 0∀s. Denote the total value of output
by xt = X(Lt, st) ≡

∑
i X

i(Li
t, st).

The economy’s workers form a continuum of measure L. Each worker at
any moment is located in one of the n cells. Denote the number of workers
in cell i at the beginning of period t by Li

t, and the allocation of workers by
Lt = [L1

t , . . . , L
n
t ]. If a worker, say, θ ∈ [0, L], is in cell i at the beginning of

t, she will produce in that cell, collect the market wage wi
t for that cell, and

then may move to any other cell.
If a worker moves from cell i to cell j, she incurs a cost Cij ≥ 0, which

is the same for all workers and all periods, and is publicly known. This
can include, for example, moving costs, if i and j are in different locations;
training costs (tuition and time required for industry-specific schooling, for
example) if i and j are in different industries; and a myriad of psychic costs
as well that come from leaving a familiar location or occupation and moving
to a new one. For example, in an economy with two industries (textiles (T)
and shoes (S)) and two regions (East (E) and West (W)), suppose that cells
1, 2, 3, and 4 are T-E (textiles-East), T-W, S-E and S-W respectively. In
that case, C12, C21, C34, and C43 are costs of moving between the regions,
which include moving company services, realtors’ fees, search costs for a new
house, and the like. On the other hand, C13 and C24 are costs of moving
out of the textile industry and acquiring the human capital required to be an
effective worker in the shoe industry, which could involve night school or the
time cost of making the right network connections for the new line of work.

In addition, if she is in cell i at the end of period t, the worker collects an
idiosyncratic benefit εi

θ,t from being in that cell. These benefits are indepen-
dently and identically distributed across individuals, cells, and dates, with
density and cumulative distribution function f and F : < 7−→ <+ respec-
tively, where f(ε) > 0∀ε. We normalize the average value

∫
εf(ε)dε of the

ε’s to zero. One can think of these benefits as capturing anything in one’s
personal situation that may affect the direction or timing of labor market
decisions independently of wages. For example, in the example of the pre-

6This matters only for the property that the equilibrium can be represented as a dis-
torted planner’s optimum, which is useful for computation and for proof of some properties.
The exogeneity of product prices is irrelevant for the market equilibrium conditions derived
in Section 4 and for the estimation strategy outlined in Section 6.
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vious paragraph, a worker in T-E may become terribly bored of the textile
business and long for a change. This would correspond to a low value for
ε1 and ε2. On the other hand, this person may fall in love with someone
who lives in West, inducing high values for ε2 and ε4. Finally, the worker’s
family may have a member who is at the moment under the care of a trusted
local doctor, or the children may be near the end of high school, and at the
same time the worker has developed a good working rapport with her current
employer. In that case, any move would be costly, and we have low values
for ε2, ε3, and ε4.

Thus, the full cost for worker θ of moving from i to j can be thought of
as εi

θ,t − εj
θ,t + Cij, the first two terms representing the idiosyncratic cost,

and the last term the common cost. Note that the idiosyncratic cost can be
negative, which is important, because that provides for gross labor flows in
excess of net flows. Adopt the convention that Cii = 0 for all i.

All agents have rational expectations and a common constant discount
factor β < 1, and are risk neutral. Finally, we make the following bounded-
ness assumption: ∫

εF n−1(ε)f(ε)dε < ∞. (1)

This states that the expected value of the maximum ε for any worker on
any date is finite.

Assume that all workers and employers take wages as given. In each
cell i at each date t, the wage wi

t will adjust to clear the market, so that
wi

t = X i
1(L

i
t, st) at all times. Note that the model is, in most respects, a

multi-cell version of a standard Ricardo-Viner type trade model, as in Jones
(1971), with exogenous product prices but all labor allocations and wages
throughout the economy determined by the equilibrium. The only difference
is the moving costs, which transform a static trade model into a dynamic
one. Assume that any worker who chooses to move from i to j will herself
bear both the common moving cost, Cij, and the idiosyncratic moving costs,
εi − εj.

An equilibrium then takes the form of a decision rule by which, in each
period, each worker will decide whether to stay in her cell or move to an-
other, based on the current allocation vector L of labor across sectors, the
current aggregate state s, and that worker’s own vector ε of shocks. In the
aggregate, this decision rule generates a law of motion for the evolution of
labor allocation and, by the labor market clearing condition just mentioned,
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for the wage in each sector. Given this behaviour for wages, the decision rule
must be optimal for each worker, in the sense of maximizing her expected
present discounted value of wages plus idiosyncratic benefits net of moving
costs.

Let the maximized value to each worker of being in sector i when the
labor allocation is L and the state is s be denoted by υ̂i(L, s, ε), which,
of course, depends on the worker’s realized idiosyncratic shocks. Denote by
υi(L, s) the average of υ̂i(L, s, ε) across all workers in i, or in other words, the
expectation of υ̂i(L, s, ε) with respect to the vector ε. Thus, υi(L, s) can also
be interpreted as the expected value of being in cell i, conditional on L and
s, but before the worker learns her value of ε. Define the non-idiosyncratic
portion of the net benefit of moving from i to j by:

εij
t ≡ βEt[υ

j(Lt+1, st+1)− υi(Lt+1, st+1)]− Cij. (2)

Each i worker will then weigh this common net benefit against the idiosyn-
cratic costs of moving. Henceforth, εt will denote the n × n matrix of εij

t ’s,
and εi

t will denote its ith row.
We can write a typical i-worker’s optimization problem as follows:7

υ̂i(Lt, st, εt) = wi
t + max

j
{εj

t − Cij + βEt[υ
j(Lt+1, st+1)]}

= wi
t + βEt[υ

i(Lt+1, st+1)] + max
j
{εj

t + εij
t }. (3)

Taking the expectation of (3) with respect to the ε vector then yields the
i-worker’s Bellman equation:

υi(Lt, st) = wi
t + βEt[υ

i(Lt+1, st+1)] + Ω(εi
t), (4)

where

Ω(εi) ≡ E{ε}
[
maxj

{
εj + εij

}]
=

n∑
j=1

∫ ∞

−∞
(εj + εij)f(εj)

∏
k 6=j

F (εj + εij − εik)dεj (5)

7It may be useful to think of the narrative as follows. The state, st, is realized at the
beginning of the period. The worker then produces output and receives the wage. In the
middle of the period, the worker learns the value of the εt vector and decides whether to
move or not. The worker then enjoys εj

t at the end of the period, wherever she has landed.
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is a measure of option value. Using (4), we can rewrite (2) as:

Cij + εij
t = βEt[υ

j(Lt+1, st+1)− υi(Lt+1, st+1)]

= βEt[w
j
t+1 − wi

t+1 + βEt+1[υ
j(Lt+2, st+2)− υi(Lt+2, st+2)]

+Ω(εj
t+1)− Ω(εi

t+1)]

= βEt[w
j
t+1 − wi

t+1 + Cij + εij
t+1 + Ω(εj

t+1)− Ω(εi
t+1)]. (6)

3 The planner’s problem.

It turns out that an equilibrium of this model maximizes the expected present
discounted value of revenues net of all moving costs. This allows us to trans-
form the analysis of equilibrium into the analysis of a social planner’s prob-
lem, which is useful for a variety of reasons.8 First, we will show that any
equilibrium solves the planner’s problem, and then show that any solution
to the planner’s problem is an equilibrium, so that the set of optima and the
set of equilibria are the same.

3.1 Any equilibrium solves the planner’s problem.

Any allocation rule in this model can be summarized as a set of functions
Dij : (<n × <n

+ × Ss) 7−→ [0, 1], with the interpretation that Dij(ε; L, s) is
the fraction9 of workers in cell i with idiosyncratic shocks ε = (ε1,. . .,εn) who
will be moved to cell j. Naturally, we must have

n∑
j=1

Dij(ε; L, s) = 1∀i ∈ {1, . . . n}, ε ∈ <n,L ∈ <n
+, and s ∈ Ss. (7)

Now consider the problem of a social planner who wishes to maximize:

8Note that we mean ‘social planner’ in a narrow sense. For example, it has already been
made clear that the state variable s can include policy variables such as trade barriers,
and these will all be treated as exogenous.

9It will become clear that this fraction will be 0 or 1 almost everywhere in each state,
but it is useful for the moment to write the rule in this more general form.
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E{st}∞t=1

∞∑
t=0

βt

n∑
i=1

[
X i(Li

t, st) + Li
t

∫
· · ·
∫ ( n∑

j=1

Dij(ε; Lt, st)(ε
j − Cij)

)
n∏

j=1

(f(εj)dεj)

]
,

(8)
subject to (7) and:

Li
t+1 =

n∑
k=1

Lk
t

∫
· · ·
∫

Dki(ε; Lt, st)
n∏

j=1

(f(εj)dεj),

with L0 and s0 given, with respect to the functions Dij.
The first term in the square brackets of the objective function is simply

the value of the output in cell i, and the second term is the aggregate of
idiosyncratic benefits εj, contingent on location decisions, and net of non-
idiosyncratic moving costs Cij. The constraint is simply the law of motion
for the stock of workers in each cell: Li

t+1 equals the measure of period t cell
i workers who remain there to period t + 1, plus aggregate arrivals to i from
other cells.

The first thing to observe about this problem is that, since there are
no externalities in the labor reallocation process itself, any equilibrium is
efficient in the narrow sense of maximizing this planner’s objective function:

Proposition 1 Any equilibrium maximizes the planner’s problem.

The logic is as follows. Consider any equilibrium, and then compare it
with any alternative allocation rule. By revealed preference,the alternative
allocation rule must provide lower worker utility and employer profits at
equilibrium wages than the equilibrium allocation; adding these together, the
wages cancel out, resulting in a lower value of (8) than under the equilibrium.
The proof is laid out in detail, along with the proofs of all other propositions,
in the appendix.

It should be pointed out that the social planner’s objective function (8) is
not, in general, actually social welfare; for example, in the event that import-
competing sectors are protected by tariffs, (8) does not include tariff revenues,
which form part of national income and will be affected by reallocations of
workers. Thus, from the point of welfare the equilibrium will not in general
be efficient. The planner’s problem shown here, however, is very useful for
characterising equilibrium, as will be seen below.
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3.2 The Planner’s Optimum is an Equilibrium.

We can now show that any solution to the planner’s problem described above
is also an equilibrium, completing the equivalence of the planner’s problem
and the decentralized economy.

It will be convenient to denote by mij
t the fraction of workers in cell i who

move to j in period t. Of course, this is given by

mij
t =

∫
· · ·
∫

Dij(ε; Lt, st)
n∏

k=1

(f(εk)dεk).

Given the full-support assumption made for the ε’s, it will be clear that it
will be optimal to have mij

t > 0∀i, j, and t.
It is easy to demonstrate that an optimal allocation rule will always take

a particular form. First, for any pair of cells, i and j, at each date and state,
there is always a threshold, ε̃ij, such that no worker in i moves to j if her
realization of εi − εjis greater than ε̃ij, and no worker in i remains in i if
her εi − εj is less than ε̃ij. Thus, ε̃ij may be interpreted as the marginal
idiosyncratic moving cost for a mover from i to j. It will later be seen that
the ε̃ij’s are equal to the εij’s of the previous section. (Not surprisingly, later
it will be seen that for an optimal allocation rule, ε̃ij must also equal the
marginal benefit to having one more worker moved from i to j, and thus it
will reflect all available information about future labor demand in the two
cells as well as the common moving costs, the Cij’s.)

Proposition 2 Consider an optimal allocation rule {Dij}i,j∈{1,...n}. Fix i,

j 6= i, t, Lt, and st, and suppose that at that state mij
t , mii

t > 0. For any
number ε′, define:

χ(ε′) ≡
∫ (∫ ∞

−∞

∫ ∞

εj+ε′
Dij(ε; Lt, st)f(εi)dεif(εj)dεj

) ∏
k 6=i,j

(
f(εk)dεk

)
, and

ξ(ε′) ≡
∫ (∫ ∞

−∞

∫ εj+ε′

−∞
Dii(ε; Lt, st)f(εi)dεif(εj)dεj

) ∏
k 6=i,j

(
f(εk)dεk

)
.

(In other words, for any number ε′, χ(ε′) is the fraction of i workers who
have εi − εj > ε′ and move to j; and ξ(ε′) is the fraction of i workers who
have εi − εj < ε′ and remain in i.) Then there exists ε̃ij such that χ(ε̃ij) =
ξ(ε̃ij) = 0.
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We will adopt the convention that ε̃ii = 0∀i, and will denote the matrix of
these thresholds as ε̃ ≡ {ε̃ij}i,j∈(1,...n). An important note is that εi−εj < ε̃ij

does not ensure that the worker goes to j, because it is possible that she will
choose a third option. That point is clarified by the following proposition,
which shows how all of the ε̃ij together fully determine the choices of each
worker (to within a set of measure zero).

Proposition 3 Let the conditions in the previous proposition hold, and sup-
pose that we have chosen a set of ε̃ij as described there. Then Dij(ε; Lt, st) =
1 if and only if j solves:

max
k∈{1,...n}

{εk + ε̃ik}

(except possibly on a set of measure zero). Equivalently, Dij(ε; Lt, st) = 0 if
and only if j does not maximize {εk+ ε̃ik}, except possibly on a set of measure
zero.

This allows us to write the planner’s problem in a simple way, as the
choice of a function ε̃(L, s) giving the thresholds at each date and state.
The realized current-period payoff to a given worker in cell i is equal to that
worker’s wage, wi

t, plus (εj−Cij), if that worker moves to cell j. Conditional
on the ε̃ik’s and on εj, the probability that this worker does move to cell j
is
∏

k 6=j F (εj + ε̃ij − ε̃ik). For this reason, the realized value of the objective
function (8) will be:

E{st}∞t=1

∞∑
t=0

βtU(Lt, st, ε̃(Lt, st)), (9)

where

U(L, s, ε̃) ≡
n∑

i=1

[
X i(Li, s) + Li

n∑
j=1

(∫ ∞

−∞
(εj − Cij)f(εj)

∏
k 6=j

F (εj + ε̃ij − ε̃ik)dεj

)]
.

(10)

We can write the gross flows of workers out of sector i as a function of
the ε̃ij’s:

mij(ε̃i) =

∫ ∞

−∞
f(εj)

∏
k 6=j

F (εj + ε̃ij − ε̃ik)dεj, (11)
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where ε̃i = (ε̃i1, . . . , ε̃in). We can write mi(ε̃i) = (mi1(ε̃i), . . . min(ε̃i)). This
allows us to write the law of motion as a function of the ε̃ij’s:

Li
t+1 = mii(ε̃i)Li

t +
∑
k 6=i

mki(ε̃k)Lk
t , so (12)

L′
t+1 = L′

tm(ε̃), (13)

where m denotes the full matrix of gross flows and a prime on a vector
indicates the transpose.

Equation (11) defines all gross flows out of cell i as a function of ε̃i, with
domain {ε̃i : ε̃ij ∈ <, ε̃ii = 0} and range {mi : mij > 0,

∑
j mij = 1}. The

following presents a useful property of this function.

Proposition 4 For any i, the function mi is invertible.

Thus, we can meaningfully write either the gross flows as a function of
the ε̃ij’s (that is, mij(ε̃ij)) or vice versa (ε̃ij(mij)) without ambiguity. This
result is useful partly because it is helpful in deriving the planner’s first order
condition. In addition, note that although the ε̃ij’s are useful from the point
of view of theory, they are of course unobservable to an econometrician.
However, in some cases the gross flows mij themselves are observable in
conventional labor force surveys. This theorem gives us a way of inferring
the values of the unobservable ε̃ij’s by studying the observable mij’s. This is
a key to the econometric estimation of the model.

The planner, then, maximizes (9) subject to (13), given L0 and s0.
It is clear that the optimization problem presented above can be repre-

sented as a stationary dynamic programming problem, with Bellman equa-
tion:

V (L, s) = maxeε {U(L, s, ε̃) + βEes[V (L̃, s̃)|s]}, (14)

where V : <n
+ × Ss 7→ < is the value function,10 L̃ and s̃ are the next-period

values of the labor allocation vector L and the state s, with L̃ calculated
from L and ε̃ by (13), and where the expectation is taken with respect to

10Of course, values for L in the solution will range only within the set {L ∈ <n|Li ≥
0;
∑

i Li = L}. It is useful, nonetheless, to define the optimization problem for all L ∈ <n;
for example, this makes the partial derivaties Vi, i = 1, . . . n meaningful.
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the distribution of s̃, conditional on s. Standard properties of dynamic pro-
gramming problems will hold here; for example, the value function will be
differentiable in L.11 In addition:

Proposition 5 The value function is (i) non-negative; (ii) uniformly bounded
on any compact subset of the domain; and (iii) strictly concave in L.

The first order condition with respect to the ε̃ij terms can be obtained
mechanically, and rearranged to yield the following.

Proposition 6 In an optimal allocation, the condition:

ε̃ij + Cij = βE

(
∂Ṽ

∂L̃j
− ∂Ṽ

∂L̃i

)
(15)

will hold at all times.

To interpret this condition, recall that ε̃ij denotes the value of εi − εj

for the marginal mover from i to j, and is thus the marginal idiosyncratic
cost of reallocating a worker from i to j. The left-hand side of the equation
is therefore the marginal cost of moving workers from cell i to cell j. The
right-hand side is the discounted marginal value of doing so.

In addition, the envelope condition can be applied to the Bellman equa-
tion, yielding the following.

Proposition 7 The marginal value of a worker in cell i in the optimal allo-
cation satisfies:

∂V (L, s)

∂Li
= X i

1 + Ω(ε̃i) + βE
∂Ṽ

∂L̃i
, (16)

where Ω(ε̃i) is the function defined in (5).

11It is straightforward to verify that the conditions of Theorem 9.10 of Lucas and Stokey
(1989, p. 266) are satisfied. Technically, to apply that theorem, we need to restrict the
domain for L to a bounded set such as SL(L∗) ≡ {L ∈ <n|Li ≥ 0;

∑
i Li ∈ [0, L

∗
]} for

some L
∗

> L, to ensure boundedness of the objective function. However, this works for
any value of L

∗
, and so is not restrictive.
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This equation has a natural interpretation. An increase in the number of
workers in cell i has three effects. The first is the direct effect of increased
production in cell i. The last is the benefit those workers generate in cell i
if that is where they remain. The middle term, which is simply the average
value of maxj{εj + ε̃ij

t } for all workers currently in cell i, is the additional
benefit owing to the ability to reallocate these workers into other cells. The
Ω function is thus, once again, a measure of the option value resulting from
the ability to move workers from one cell to another.

Now we can see that the solution to this planner’s problem is also a
market equilibrium. For each j, if we set the υj(Lt+1, st+1) function in the
right-hand side of (4) equal to the partial derivative of the planner’s value
function with respect to Lj

t+1, then (16) shows that this choice of υj function
satisfies each worker’s Bellman equation (4) for the wage process generated by
the planner’s rule. But then from (15) and (2), the ε̃ij functions are exactly
the same as the the optimal cutoffs εij for the individual worker. (From here
on in, we will drop the ε̃ij notation and simply use the εij notation.)Thus,
the planner’s solution can be replicated as a decentralized equilibrium.

Further, since we have noted the strict concavity of the planner’s value
function, we know that the optimal planner’s rule is unique, and so is equilib-
rium. Further, the derivation just completed shows that the shadow values
from the planner’s problem are equal to the lifetime utilities of the workers
in the various cells. We summarize this as follows.

Proposition 8 There is a unique equilibrium, and it is the unique allocation
rule that maximizes (9). Further, the worker payoffs υi(Lt, st) are equal to
the planner’s shadow values ∂V (Lt, st)/∂Li

t.

4 Properties of the equilibrium.

A number of key properties of the adjustment process can now be seen im-
mediately.

(i) Continual reallocation of workers. Consider a special case of the
model in which the state variable s is a constant. Then one can analyze
steady states of the model, which can be calculated in the following way. For
any matrix of εij’s, one can compute a matrix of gross flow rates from (11),
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and holding those flow rates constant one can compute steady-state values
of the labor allocation vector L (and hence wages) from (13). All of this
information can then be used to calculate the right hand side of (6) for any
i 6= j. Subtracting Cij, one can then compare the result with εij. A fixed
point of this process is then a steady state. Since this computation induces a
continuous function, a steady state must exist. Label the steady state value
of the εij matrix so computed ε∗, the associated matrix of gross flows m∗,
and the associated steady state labor allocation vector L∗.

The point is that even at this steady state, there will still be a constant
reallocation of workers. This is because the integrals in (11) will always
have positive values. The reason is that the workers experience idiosyncratic
shocks constantly, and each one will wish to change jobs or to move period-
ically for personal reasons. Thus, the model has no trouble accommodating
the empirical fact that gross flows are much larger than net flows.

(ii) Gradual adjustment. Empirically, labor adjustment tends to occur
gradually (for example, see evidence summarized by Rappaport (2000) on
the intertemporal persistence of labor flows across US locations). It is easy
to see that this is a feature of the present model as well. Indeed, if the
economy is in a steady state and a shock occurs that changes the steady state
allocation, the economy will not reach the new economy in any finite time.
To see this, consider once again the special case in which s is a constant.
Suppose that the economy’s steady state allocation vector is L∗, with an
associated steady state value ε∗ of the εij matrix and associated matrix of
gross flows m∗. Denote the labor allocation vector at time t by Lt, and
suppose that L0 6= L∗. Suppose that at time T , 0 < T < ∞, the economy is
in the steady state. Then at time t = T − 1, the right hand side of (6) will
take its steady state values, so the values of εij on the left hand side must be
equal to the corresponding elements of ε∗. But then (11), the matrix of gross
flows mij

T−1 at time T − 1 must equal the values in m∗. But then working
backward from the law of motion (12), we find that LT−1 must be equal to
L∗.12 Continuing in this logic, we find that L0 = L∗, which is a contradiction.

Thus, the economy can move only gradually toward the steady state if it
is not already in it. The reason is again the idiosyncratic shocks. Suppose

12Consider the case with n = 2. Given L∗ and m∗, the equation (m∗)11L1
T−1 +

(m∗)21(L−L1
T−1) = (L∗)1 has a unique solution for L1

T−1 provided that (m∗)11 6= (m∗)21.
Given that m11 = Pr[ε1 > ε2+ε12] = Pr[ε1 > ε2+β[Ṽ2−Ṽ1]−C12] and m21 = Pr[ε1+ε21 >

ε2] = Pr[ε1 > ε2 +β[Ṽ2− Ṽ1]+C21], (m∗)11 > (m∗)21 provided that either C12 or C21 > 0.
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that a given sector has enjoyed protection from imports for many years but
suddenly the protection is taken away, and the change is expected to be
permanent. The demand for labor in the sector drops, and the result is a
reduction in the wages it pays; workers begin to reallocate themselves to
other sectors, but each period a fraction of the workers waits because for
those workers the cost of moving is high, and it is in their interest to wait in
hopes of a lower draw for their moving costs in the near future.

(iii) Anticipatory movement of workers. In general, in this model if a
change in labor demand in some cell is foreseen, that will result in a movement
of workers before the fact. This can be seen most easily in a two-cell version
of the model. Suppose that cell 1 is an export sector and cell 2 is an import-
competing sector, which is protected by a tariff. At time 0, the government
announces that it will eliminate the tariff beginning in period T > 0. There
are no other changes in the economy at any time. This can be incorporated
into the model by letting st = t∀t, and by letting X2(·, s) have one functional
form when s ≥ T and a different one when s < T . The function is shifted
down and flatter when s ≥ T compared with when s < T , since the tariff
elevates the domestic price of cell 2’s output, and hence the marginal value
product of cell-2 labor. Let L∗, ε∗ and m∗ denote the steady state values
for the economy with the tariff in place and expected to remain permanently
(call this the ‘tariff-affected steady state’), and suppose that L0 = L∗. It
can be seen quickly that no matter how large T is, the adjustment begins
immediately, in the sense that because of the announcement the gross flows
even in period 0 are already different from m∗.

To make the argument, it helps to consider two different stationary mod-
els, each with Ss a singleton, so that we can drop s as an argument in the
value function. The first model (the ‘starred’ model) is one in which there
is a tariff in place permanently, and the second model (the ‘double-starred’
model) is one in which there is never any tariff. The values L∗, ε̃∗, and m∗,
then, describe the steady-state of the ‘starred’ model. Denote the revenue
functions for cell 2 for the two models by X2∗ and X2∗∗, respectively. Apart
from these revenue functions, the two models are identical. Denote the value
functions by V ∗ and V ∗∗ respectively, while V denotes the value function for
the model with a tariff up to time T followed by free trade. The following
property is easy to verify.

Proposition 9 Assume that X2∗
1 (L2) > X2∗∗

1 (L2) for all L2 > 0. Then
dV ∗(L − L2, L2)/dL2 > dV ∗∗(L − L2, L2)/dL2 for all L2 ∈ (0, L] (call this
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the ‘strong derivative property’).

Clearly, V (Lt, st) = V ∗∗(Lt) for t ≥ T . The first-order condition at
t = T − 1 is:

ε12
T−1 + C12 = β[dV ∗∗(L− L̃2, L̃2)/dL̃2],

where a tilde denotes a next-period value. Given that ε21
t+1 = −ε12

t+1−C12−C21

at all times (see (15)), we can think of ε21
t+1 as a decreasing function of ε12

t+1.
Thus, an increase in ε12 will increase m12 and decrease m21, increasing the
next-period value of L2. By the concavity of V ∗∗, this will decrease the value
of the right-hand side of the first-order condition. Thus, the right-hand side
of the condition is a downward-sloping curve in ε12, while the left hand side
is an upward-sloping line in ε12. As a result, for a given value of L2, anything
that shifts the right-hand side of the first-order condition down will result in
a lower value of ε12. Therefore, by Proposition 9, the solution to the first-
order condition at time T −1 will yield a lower value of ε12, and thus a higher
value of ε21, along with a lower value for the right-hand side of the first-order
condition, than would be chosen for the same value of L2

T−1 in the ‘starred’
model. Using the envelope condition (16), this implies that

dV (L− L2
T−1, L

2
T−1; sT−1)/dL2

T−1 < dV ∗
2 (L− L2

T−1, L
2
T−1)/dL2

T−1

for any L2
T−1 ∈ (0, L]. Applying this same logic recursively back to t = 0, we

conclude that the value of ε12
0 (and hence the value of m12

0 ) that is chosen
is below the value m∗12 that would have been chosen in the steady state of
the ‘starred’ model. But that demonstrates the point: The response to the
future announced policy begins at the moment it is announced.

The interpretation of this result has to do once again with idiosyncratic
shocks. Even if wages are currently equal in the two sectors, if a worker
knows that an event will occur shortly in the future that will depress wages
in sector 2 for a long time afterward, and if that worker happens to have low
moving costs at the moment, understanding that her moving costs may not
be so low later on, she may simply jump at the opportunity to move now.

It should be noted that anticipatory movements of labor are also a feature
of Mussa-type models, as studied in detail by Dehejia (2003). However, in
those models, the anticipatory behavior is a result of the existence of a re-
training sector with rising marginal costs, while in the current model it arises
purely from the presence of time-varying idiosyncratic moving costs. Antic-
ipatory reorientation of an economy associated with a forthcoming change

18



in trade policy is an important phenomenon empirically, as documented for
the case of accessions to trade blocs by Freund and McLaren (1999). This
mechanism provides an additional potential source for it.

(iv) Anticipatory changes in wages. This is an immediate corollary to
the point just made. In the example discussed above, if workers begin to
leave sector 2 immediately as soon as the planned future liberalization is
announced, then clearly wages in sector 2 will begin to rise right away and
wages in sector 1 will begin to fall right away. Of course, sector 2 wages will
then drop abruptly at the date of the actual liberalization, and continue to
adjust after that.

This is important for a number of reasons. First, in doing empirical
work on the relationship between tariffs and wages, the issue of timing
could be extremely important. Simply looking at a pair of snapshots taken
before and after a liberalization, for example, could miss a large part of the
actual movement in wages; further, in the simple story just told, if the pre-
liberalization data were collected very shortly before the liberalization, the
empirical results would overstate the downward effect of the liberalization on
wages in the affected sector. Second, these anticipatory effects on wages can
provide a motive for gradualism in trade policy. If the government wishes to
compensate the workers harmed by a liberalization but cannot do so through
lump-sum transfers, announcing the policy change in advance and allowing
these adjustment mechanisms to do their work can in principle be an effective
way of doing so. This is a point made by Dehejia (2003) in the context of
a Mussa-type model. In the context of this model, Chaudhuri and McLaren
(2007) show that sufficient delay will make all workers unanimous in either
supporting or opposing the trade liberalization, and show the conditions
under which they will unite in favor of open trade rather than against it.
Artuç, Chaudhuri and McLaren (forthcoming) study simulations to show
what magnitude of delay is required and what the time-path of adjustment
looks like.

(v) Persistent wage differentials in long-run equilibrium. A feature of
the model that is not obvious is that it generally predicts wage differentials
across cells even in the steady state.

Consider, once again, a version with two cells and with s constant. Sup-
pose that C12 = C21, and suppose that there is a steady state in which
w2 ≥ w1. Observe that if in that steady state L1 > L2, then we must
have m21 > m12. From (11), this implies that ε21 > ε12. Recalling that
Ω(εi) = Eε[maxj{εj + εij}] , this implies that Ω(ε2) > Ω(ε1). From (4) ap-
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plied recursively, that means that υ2 > υ1. But from (2), this implies that
ε21 < ε12, a contradiction. Thus, in order to have L1 > L2 in the steady
state, we must also have w1 > w2. Thus, in the steady state a sector will
have a higher wage than the other if and only if it has more workers than the
other. This conclusion contrasts sharply with the behavior of a Mussa-type
model, in which factor returns are equalized across sectors in the long run
(see Mussa (1978)).

The explanation is as follows. Suppose that both cells had the same wage
in the steady state, but cell 1 was ten times the size of cell 2. In that case,
workers would be indifferent between the two cells apart from idiosyncratic
effects. In each period, a certain fraction of the workers in either cell would
realize negative moving costs, which could be interpreted as boredom with
the current job or location or a desire to move to the other cell to realize some
personal opportunity. With the wages identical, an identical fraction of the
workers in each cell would wish to change sectors in each period. However,
this would imply a much larger number of workers moving from 1 to 2 than
vice versa. The result would be net migration toward 2, which would push
down the wage in cell 2 and pull up the wage in cell 1. The wage differential
thus created would then tend to slow down migration out of 1 and speed
up migration out of 2, and this process would continue until the aggregate
number of workers moving in each direction would be equal.

These effects, which might be called ‘frictional’ wage differentials, thus
provide a new reason for persistent intersectoral or geographic wage differ-
ences, quite independent of compensating differentials, efficiency wages and
union effects, which have been emphasized in the labor economics literature.
It should also be emphasized that these effects occur even if the average
moving costs Cij are all equal to zero. The persistent wage differentials are
induced entirely by the variance in idiosyncratic effects.

(vi) National income is not maximized. The previous point should make
it clear that equilibrium in this model does not in general maximize Gross
Domestic Product, either in the short run or in the long run, because the
marginal value products of labor are not equalized across cells. This is true
even under free trade, when Proposition 1 ensures that the equilibrium max-
imizes social welfare. The point is that income and consumption are not all
that matter to the economic agents in the model, and their labor allocation
decisions depend (and ought to depend) on their idiosyncratic preference
shocks as well as on income opportunities. This point is explored in the
two-sector version of the model in Chaudhuri and McLaren (2007), where it
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is shown that the equilibrium produces more evenly-sized industries in the
steady state than what would maximize GDP.

(vii) Limiting behaviour as idiosyncratic shocks become important. There
is a sense in which the aggregate behaviour of the model when idiosyncratic
shocks are very important mimics the aggregate behaviour of a static model
with no mobility at all. This underlines how crucial it is to take account of
gross flows, as is being done here, and to estimate the structural parameters
of the mobility costs, because using a reduced-form econometric approach
could produce normative conclusions that would be seriously in error.

To make this point, consider a class of distributions for the εi’s indexed by
δ > 0 in the following way. For a particular distribution function F1 and as-
sociated density f1, the distribution function Fδ and density fδ are defined by
Fδ(ε) = F1(ε/δ) and fδ(ε) = f1(ε/δ)/δ. Thus, Fδ is a radial mean-preserving
spread of F1 for δ > 1; the probability that ε ≤ y with the distribution F1

is equal to the probability that ε ≤ δy with the distribution Fδ. With this
family of distributions, if δ is very small, then idiosyncratic effects are triv-
ial most of the time, but as δ becomes large, idiosyncratic effects become
more important and can eventually dwarf wages in their effect on workers’
decisions. The asymptotic effects of increases in δ are summarized in the
following.

Proposition 10 When the distribution of idiosyncratic shocks is given by
the family Fδ, as δ →∞ the matrix of gross flows mij converges uniformly in
equilibrium over the whole state space to a matrix each of whose components
is equal to 1/n.

Thus, if δ is very large, regardless of the labor demand shocks, workers
would always be approximately evenly distributed across the cells of the
economy. In this extreme case, which is certainly not realistic but a useful
thought experiment to make a point, the number of workers in each cell would
be completely insensitive to, for example, the elimination of tariffs, and all
of the adjustment would occur in the form of changes in wages. Aggregate
data would suggest that each industry has in effect a captive labor force,
and the cost of the elimination of a tariff on textiles, for example, would be
borne entirely by workers in the textile sector, while all other workers would
enjoy a net benefit through lower textile prices. However, this would be
quite wrong. In such an economy, far from being captive, workers would be
very footloose, and a typical textile worker would face only a 1/n chance of
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continuing in the textile sector next period. Therefore, particularly if n is
large, the cost borne by the textile workers would be very low; for most of
such a worker’s future career, she would be in other sectors, enjoying the
benefit of lower prices. It may in fact be a Pareto-improving liberalization,
while the reduced-form approach would mistakenly conclude that one sector
of workers would be badly hurt and would bitterly oppose the liberalization.
Thus, a focus on gross flows in equilibrium, and attention to the variance of
mobility costs as well as their means, are, in principle, crucial to getting the
normative conclusions right.

This message comes through in the empirical analysis of this model in
Artuç, Chaudhuri and McLaren (2007), in which it is shown that the variance
of idiosyncratic shocks implied by US labor market data is very high. Indeed,
simulations of the estimated parameters show that liberalization that results
in a lower wage for an import-competing sector both in the short run and in
the long run can indeed be Pareto-improving, a finding sharply at odds with
what a model without gross flows would imply.

(viii) Limiting behavior as idiosyncratic shocks become small.
We also want to know how the model behaves when idosyncratic shocks

are small. Consider the model with n = 2 and no aggregate shocks. Recall-
ing the notation of the previous section, consider a distribution F1 for the
idiosyncratic shocks and the family of distributions Fδ that it induces, with
associated densities f1 and fδ. This time we will let the variance become
infinitesimally small, or in other words consider the limit as δ → 0. Denote
the steady-state values of the key variables by an overbar (and denote the

steady-state value of εij by ε
ij
). Then we can derive both a short-run prop-

erty and a long-run property – roughly, in the limit the model acts like a
static model in the short run and a frictionless model in the long run. First,
the short-run property:

Proposition 11 Let Ss be a singleton (and henceforth suppress the argu-
ment s.) Fix the initial value L1

0 of the cell-1 labor force, and consider the
equilibrium timepath {L1

t (δ)}∞t=1 starting from that initial state conditional
on the value δ. Then {L1

t (δ)}∞t=1 converges pointwise to {L1
t (0)}∞t=1 as δ → 0.

Remark 1 Since there is no reason for gradual adjustment in the model with
no idiosyncratic shocks, the sequence {L1

t (0)}∞t=1 will clearly be a constant
sequence. In other words, there is either no adjustment (L1

0(0) = L1
1(0)) or

there is a one-time adjustment (L1
0(0) 6= L1

1(0)) that lands immediately in a
new steady state.
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The second property concerns the steady state. Under a regularity con-
dition for the distribution of idiosyncratic shocks that we will see is satisfied
by some important distributions, we derive a strong limiting result on the
difference between the payoff to a worker in the two cells, (υ2 − υ1).

Proposition 12 Assume that f1 is logconcave. Then, holding constant all
parameters of the model except for δ, if we denote the long-run steady-state
value of υj as υj, β(υ2 − υ1) → (C12 − C21)/2 as δ → 0.

The basic point is that if the variance of the idiosyncratic shocks is small,
then the long-run elasticity of intersectoral labor supply is large. This is
because the long-run allocation of workers to the two sectors is determined
by the ratio of m12 to m21, not by their difference. As the variance of the
idiosyncratic shocks becomes small, both m12 and m21 become small, and
the ratio becomes sensitive to small variations in the relative attractiveness
(v2 − v1) of the two sectors.

Some comments are in order. First, this result shows clearly that there is
a discontinuity in the behavior of the system as indiosyncratic shocks become
small. If there are no idiosyncratic shocks, the system has a range of steady
states, which can be wide if the values of Cij are large, including steady
states with large intersectoral wage differences. However, with even a tiny
positive variance in idiosyncratic shocks, the steady state is unique,13 and if
C12 = C21, wages and welfare are perfectly arbitraged across sectors.

Second, there is a velvet-rope effect: If moving costs are asymmetric, it is
the sector that is difficult to enter that is the most attractive in the steady
state. That is to say, if C12 > C21, then υ2 > υ1 and vice versa.

Third, if moving costs are symmetric, steady-state wages will be equated
across the sectors no matter how high the moving costs are, provided only
that the variance of the moving costs is low enough (and not zero). In this
limiting case, it is the difference between the Cij’s that determines long-run
relative intersectoral wages, not their absolute level.

Fourth, it is clear that for a positive value of the Cij’s, as the idiosyncratic
variance becomes vanishingly small, so does the level of steady-state gross
flows.14,15

13This point is analyzed in detail in Chaudhuri and McLaren (2007), Section 3.
14Using the notation of the proofs of Propositions 11 and 12 in the appendix, this is

because Gδ(−(C12 + C21)/2) → 0 as δ → 0.
15In the event that C12 = C21 = 0, the limiting rate of gross flows is one half in each

direction.
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Finally, it must be emphasized that this is a steady-state result. In gen-
eral, if trade is opened up, even where workers in both sectors have the same
steady-state utility, the lifetime utility of the workers initially in the two
sectors will be affected very differently. In fact, paradoxically, in the case in
which the idiosyncratic variance is vanishingly small, leading to perfect arbi-
trage between the two sectors in the long run, the path to the adjustment will
become extremely slow,16 so that the transition path becomes all the more
important. In fact, from (24), it can be seen that the planner’s objective
function becomes in the limit as δ → 0 identical to the objective function for
a model with no idiosyncratic shocks, which with positive Cij’s will exhibit
large differences in payoffs to workers in difference sectors in response to a
trade shock.

Therefore, a model with a small but positive idiosyncratic variance and
large symmetric moving costs will tend to act like a model with no moving
costs in the steady state, but its normative and dynamic properties on the
way to the steady state will be very different. Once again, the steady state
is a poor guide to policy.

5 A special case, and empirical implementa-

tion.

The model takes a particularly tractable form when a judicious choice of
functional form is made. Assume that the εi

t are generated from an extreme-
value distribution with cumulative distribution function given by:

F (ε) = exp(− exp(−ε/ν − γ)),

where ν is a positive constant and γ ∼= 0.5772 is Euler’s constant. These
imply:

E[εi
t] = 0 ∀i, t

V ar[εi
t] =

π2ν2

6
∀i, t.

16Roughly, the relative size of off-diagonal elements of the gross flows matrix m de-
termines the long-run allocation of labor, but the absolute size of the diagonal elements
determines the speed of adjustment.
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(See Patel, Kapadia, and Owen (1976).) Note that while we make the natural
assumption that the ε’s be mean-zero, we do not impose any restrictions on
the variance, leaving ν (which is positively related to the variance) as a free
parameter to be estimated.

It is shown in Artuç, Chaudhuri and McLaren (2007) that, with this
assumption:

εij
t ≡ βEt[V

j
t+1 − V i

t+1]− Cij = ν[ln mij
t − ln mii

t ] (17)

and:
Ω(εi

t) = −ν ln mii
t . (18)

Both these expressions make intuitive sense. The first says that the greater
the expected net (of moving costs) benefits of moving to j, the larger should
be the observed ratio of movers (from i to j) to stayers. Moreover, holding
constant the (average) expected net benefits of moving, a higher variance of
the idiosyncratic cost shocks lowers the compensating migratory flow if the
average net benefit is positive and raises it if they are negative.

The second expression says that the greater the probability of remaining
in cell i, the lower the value of having the option to move from cell i.17 More-
over, as one might expect, when the variance of the idiosyncratic component
of moving costs increases, so too does the value of having the option to move.

Substituting from (17) and (18) into (6) we get:

Cij + ν[ln mij
t − ln mii

t ] = βEt[w
j
t+1 − wi

t+1 + Cij + ν[ln mij
t+1 − ln mii

t+1]

+ν[ln mii
t+1 − ln mjj

t+1]]

This expression can be simplified and rewritten as the following conditional
moment restriction:

Et

[
β

ν
(wj

t+1 − wi
t+1) + β(ln mij

t+1 − ln mjj
t+1)−

(1− β)

ν
Cij − (ln mij

t − ln mii
t )

]
= 0

(19)
This is the basis of the empirical approach in Artuç, Chaudhuri and

McLaren (2007), where the parameters in (19) are estimated with data on
gross flows and wages, using standard Generalized Method of Moment tech-
niques. The results indicate surprisingly high levels of both the mean moving
costs Cij and their variances. This implies a somewhat sluggish adjustment
of the labor market to a trade shock, and a very prominent role for option
values in evaluating the net benefit to workers.

17Note that 0 < mii
t < 1, so Ω(εi

t) = −ν lnmii
t > 0.
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6 Conclusion.

This paper has articulated an equilibrium model of labor adjustment to ex-
ternal shocks, which has been designed to be useful for trade policy analysis
and to be empirically estimable. The key features are an infinite horizon in
which all workers have rational expectations; the possibility of shocks to labor
demand in a sector (as caused, for example, by a change in trade policy) or
in a geographic location; publicly observable costs of moving or of changing
sectors; and time-varying, idiosyncratic private costs as well. We have shown
that the equilibrium solves a particular social planner’s dynamic program-
ming problem, which facilitates analysis of the equilibrium. In addition, the
equilibrium exhibits gross flows in excess of net flows (and indeed, constant
movement of workers even in a steady state), which is an important feature
of empirical labor adjustment; gradual adjustment to a shock; anticipatory
adjustment to an announced policy change; and persistent ‘frictional’ wage
differentials across geographic locations or sectors, which will exist even if
the average moving costs are zero. We have also shown, by studying limiting
cases of the variance of idiosyncratic shocks, why the variance of those shocks
is potentially so important to the normative conclusions in applied work.

Finally, it is shown that the key equilibrium condition takes a particularly
simple form when the functional forms are chosen in a particular way, making
the econometric estimation of the parameters of the model feasible with data
on gross flows and wages over time for a particular economy, the subject of
an accompanying project reported in Artuç, Chaudhuri and McLaren (2007).

This model is further developed in a number of companion papers. Artuç,
Chaudhuri and McLaren (2007) studies quantitative properties of the model
through simulations, focussing on the effects of delay in trade liberalization;
and Chaudhuri and McLaren (2007) studies dynamics and political-economy
implications of the model in a simplified version with two industries.

7 Appendix.

Proof of Proposition 1. First, it is useful to rewrite the problem in
terms of histories of shocks. Fix the initial allocation of labor L0. For any
date t ≥ 0, define the public history variable Ht ≡ (s0, s1, . . . st), and for any
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worker, define the history of private shocks H ′
t ≡ (ε0, ε1, . . . εt). Then the

allocation rule Dij can be represented as functions of these history variables
as follows. The rule for worker reallocation can then be written as a function
dij

t such that dij
t (Ht, εt) = 1 if a worker who is in cell i after aggregate history

Ht−1 and who faces idiosyncratic shocks εt moves to j, and dij
t (Ht, εt) = 0

otherwise. From this rule, we can deduce the allocation of labor Lt at date t
from Ht−1, and for any worker, we can deduce the location of that worker at
date t from Ht−1 and H ′

t−1. We can summarize this information by writing
the the vector-valued function Lt(Ht−1) for the allocation of labor, and the
vector-valued function πt(Ht−1; H

′
t−1; i) for the individual worker’s location,

where πj
t = 1 if a worker in cell i at date t = 0 is in cell j at date t, and

πj
t = 0 otherwise. (Of course, π0 is a function of i alone, with πi

0(i) = 1 and
πj

0(i) = 0 if i 6= j. For convenience, we can write Ht = H ′
t = ∅ for t < 0.)

Now suppose that the functions D̃ij are an equilibrium allocation rule,
with induced allocation, location, and moving functions L̃t(Ht−1), π̃t(Ht−1; H

′
t−1; i),

and d̃ij
t (Ht, εt) respectively. Consider any alternative feasible rule D̂ij, with

induced L̂t, π̂t, and d̂ij
t .

From worker optimization, for any i ∈ 1, . . . n we must have:

E{st,εt},t≥0

∑∞
t=0 βt

∑n
j=1 π̃j

t(Ht−1; H
′
t−1; i)[ω

j(L̃j
t(Ht−1), st)

+
∑n

k=1(ε
k
t − Cjk)d̃jk

t (Ht, εt)]

≥ E{st,εt},t≥0

∑∞
t=0 βt

∑n
j=1 π̂j

t(Ht−1; H
′
t−1; i)[ω

j(L̃j
t(Ht−1), st)

+
∑n

k=1(ε
k
t − Cjk)d̂jk

t (Ht, εt)].

(20)

(Note that the wages in both sides of (20) are the same.) In other words,
each worker maximizes her lifetime utility, taking the time-path of wages as
given.

At the same time, by spot-market clearing, the incomes of employers are
maximized with respect to Li

t in each sector in each period taking the wage
as given, so we also have:∑∞

t=0

∑n
j=1 βt[Xj(L̃j

t , st)− ωj(L̃j
t , st)L̃

j
t ]

≥
∑∞

t=0

∑n
j=1 βt[Xj(L̂j

t , st)− ωj(L̃j
t , st)L̂

j
t ].

(21)

Multiplying (20) by Li
0 and adding (20) for i = 1, . . . n and adding the
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sum to (21), noting that
∑n

i=1 Li
0π̃

j
t(Ht−1; H

′
t−1; i) = Lj

t , we have that (8) is

larger for D̃ij than for D̂ij.
Proof of Proposition 2. Clearly χ(ε′) is decreasing and continuous,

with χ(ε′) → 0 as ε′ → ∞ and χ(ε′) → mij
t as ε′ → −∞. Clearly ξ(ε′) is

increasing and continuous, with ξ(ε′) → mii
t as ε′ → ∞ and χ(ε′) → 0 as

ε′ → −∞. Thus, we can find an ε̃∗ such that χ(ε̃∗) = ξ(ε̃∗). If χ(ε̃∗) = 0,
we are done. If not, then we have a positive mass of i workers who have
εi − εj < ε̃∗ and who remain in i, and an equal mass of i workers who have
εi − εj > ε̃∗ and who move to j. Clearly, if we simply reversed their roles,
making the movers stay and the stayers move, the next-period allocation of
labor would be unchanged, and the total surplus would be higher. Therefore,
the original allocation rule could not have been optimal.

Proof of Proposition 3. Consider an optimal allocation. Suppose that
for some i, j, k, Lt, st, and some set A(1) ⊆ <n with positive probability
measure, εj + ε̃ij > εk + ε̃ik and yet Dik(ε; Lt, st) > 0∀ε ∈ A(1). Without
loss of generality, assume that for all ε ∈ A(1), εj + ε̃ij − (εk + ε̃ik) ≥ ∆ >
0. For any positive N , consider the ball of radius 1/N around the point
ε = (−ε̃i1,−ε̃i2, . . . ,−ε̃in), and note that within such a ball will be points

for which the expression εi + ε̃ii − εi′ − ε̃ii′ = εi − εi′ − ε̃ii′ is negative for
all i′, points for which it is positive for all i′, and points with every other
possible combination of signs (note that at the center of the ball εi + ε̃ii −
εi′ − ε̃ii′ = εi − εi′ − ε̃ii′ = 0∀i′) . For N = 1, . . . ,∞, define a subset

of such a ball, B(N) ⊆ <n, by B(N) = {ε : εi − εi′ > ε̃ii′∀i′ 6= j; εi −
εj < ε̃ij; and maxi′

∣∣∣εi′ + ε̃ii′
∣∣∣ < 1/N}. (Note that at the center of the ball,

εi′ + ε̃ii′ = 0∀i′.) By the previous proposition, Dij = 1 everywhere on B(N)
for all N . Define a sequence A(N) of subsets of A(1), where for each N the
probability measure p(N) ≡

∫
A(N)

Dik(ε; Lt, st)
∏n

k=1(f(εk)dεk) of workers

in A(N) who go to k is equal to the smaller of p(1) and the measure of
B(N). For large enough N , we will have εj + ε̃ij − (εk + ε̃ik) < ∆ for all
ε ∈ B(N), and a measure of workers in A(N) going to k that is equal to the
measure of workers in B(N) who go to j. But then for every worker in A(N),
εj − εk ≥ ε̃ik − ε̃ij + ∆, and the worker moves to k; while for every worker
in B(N), εj − εk < ε̃ik − ε̃ij + ∆, and the worker moves to j. Clearly, if for
ε ∈ A(N), we simply reduced Dik(ε; Lt, st) to 0 and increased Dij(ε; Lt, st)
by Dik(ε; Lt, st); and if for ε ∈ B(N), we reduced Dij(ε; Lt, st) to 0 and
increased Dik(ε; Lt, st) to 1; then the total number of workers going to each
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cell would be unchanged. However, a positive mass of workers in A(N) and
in B(N) will have reversed their roles; B(N) workers with lower values of
εj − εk now move to k and the A(N) workers with higher values of εj − εk

move to j. Thus, the next-period allocation of labor would be unchanged,
and the total surplus would be higher. Therefore, the original allocation rule
could not have been optimal.

Proof of Proposition 4. Recall the gross flow function defined by (11).
It is convenient to define a truncated version of this function. First, let x−k

denote the vector made by deleting the kth element of x (if x has fewer than k
elements, x−k = x). After deleting one or more elements of a vector, continue
to index the remaining elements in the same way, so, for example, if x ∈ <n

and n > i, then (x−i)
n = xn. In addition, for any vector x, let x[k] denote

the vector made up of its first k elements; let x−[k] denote the vector made
up of all of its elements after the kth.

Then, for any i, define mi
offdiag : <n−1 → {x ∈ (0, 1)n−1 :

∑
j xj < 1},

with mi
offdiag(ε

i
−i) = (mi(εi))−i. Thus, mi

offdiag defines the gross flows out
of i, but not the residual category of i workers who stay in i, and it defines
them as a function of εi

−i.

We now derive some information about the derivatives of mij
offdiag. They

are as follows:

∂mij
offdiag(ε

i
−i)

∂εii′
= −

∫ ∞

−∞
f(εj)f(εj + εij − εii′)

∏
k 6=j,i′

F (εj + εij − εik)dεj < 0

if i′ 6= j, and∫ ∞

−∞
f(εi′)

∑
k 6=i′

f(εi′ + εii′ − εik)
∏

l 6=i′,k

F (εi′ + εii′ − εil)dεi′ > 0 (22)

if i′ = j.

Note that if i 6= i′,∑
j 6=i

∂mij
offdiag(ε

i
−i)

∂εii′
= −

∂mii(εi
−i)

∂εii′

=

∫ ∞

−∞
f(εi)f(εi − εii′)

∏
k 6=i,i′

F (εi − εik)dεi

> 0.
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Thus, the matrix of derivatives

∇mi
offdiag ≡

(
∂mij

offdiag(ε
i
−i)

∂εii′

)
j,i′ 6=i

,

which is the Jacobian of the mi
offdiag function, is a dominant diagonal matrix

with positive elements on the main diagonal and negative elements off the
main diagonal. This implies that it has an inverse (see Theorem 1 in McKen-
zie (1960)), and that the inverse has only positive elements (see Theorem 4 in
McKenzie (1960)). This information is useful in the remainder of the proof.

Now, fix i. The proof will proceed by induction. Define the induction
hypothesis P (n′) for n′ ≤ n as follows.

Definition 1 P (n′): For any εi ∈ <n and for any m∗ ∈ (0, 1)n with
∑

j(m
∗)j =

1, there exists a unique ε̂ ∈ <n′ such that (mi
offdiag(ε̂, (ε

i
−i)

−[n′])[n′] = (m∗
−i)

[n′].

In other words, P (n′) says that for any value of the εij’s from j = n′ + 1
to n and for any set of desired gross flows m∗ from j = 1 to n′, we can find
exactly one choice of εij’s from j = 1 to n′ (denoted ε̂) that will provide
exactly those desired gross flows. Where P (n′) holds, it will be useful to
write the ε̂ as a function: ε̂((εi

−i)
−[n′]; (m∗

−i)
[n′]).

Of course, the statement to be proved is simply P (n). It is clear that P (1)
holds, since by (11) mi1 is continuous and strictly increasing in εi1, mi1 → 0
as εi1 → −∞ and mi1 → 1 as εi1 →∞. Thus, the only task remaining is to
show that P (n′) implies P (n′ + 1).

Suppose that P (n′) holds, and so the ε̂ function defined above exists.
Fix (ε∗−i)

−[n′] and (m∗
−i)

[n′]. Consider the first n′ elements of the m̃i function
as a function of (εi)[n′], holding (εi)−[n′] constant. By (22), the derivatives
of this function form an n′-square dominant diagonal matrix with positive
elements on the main diagonal and negative elements off it. This implies
that the inverse of that matrix exists and that it has all positive elements
(see Theorems 1 and 4 in McKenzie (1960), respectively). This inverse is,
then, the Jacobian of the ε̂ function with respect to (m∗

−i)
[n′].

For any εi,n′+1, define:

µ(εi,n′+1) ≡ (mi
offdiag)(ε̂(ε̄

i,n′+1, (ε∗−i)
−[n′+1]; (m∗

−i)
[n′]), ε̄i,n′+1, (ε∗−i)

−[n′+1]),
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the flow vector resulting from a given choice for εi,n′+1, given that εi,k have
been fixed for k > n′ + 1 and that εi,k for k ≤ n′ are adjusted to keep the
first n′ elements of the flow vector equal to (m∗

−i)
[n′]. The µ function is

differentiable by construction. The derivative of its first n′ + 1 elements is
equal to: (

(∂mi
offdiag)

[n′+1]

(∂εi
−i)

[n′+1]

)[
∂ε̂

∂ε̄i,n′+1

1

]
=

[ −→
0

dµn′+1

dεi,n′+1

]
.

The left hand side of this equation is an n′+1-square matrix of derivatives
multiplied by an (n′ +1)-by-1 vector. The right hand side is an (n′ +1)-by-1
vector that has n′ zeroes, due to the definition of the ε̂ function. Once again,
by the properties of dominant diagonal matrices, the inverse of the first
matrix on the left hand side exists and has only positive elements. There-
fore, every element of the vector on the left-hand side has the same sign as
dµn′+1/dεi,n′+1. One of the elements of the vector on the left-hand side is 1,
which is positive; therefore, dµn′+1/dεi,n′+1 > 0. Further, we conclude that
dε̂/dεi,n′+1 is positive in each element.

From (11), we can see that µn′+1 → 0 as ε̄i,n′+1 → −∞. (For example, as
ε̄i,n′+1 → −∞, F (εn′+1 + εi,n′+1 − εi,n) → 0 pointwise, so by the dominated
convergence theorem mi,n′+1 → 0.) Further, µk → 0 as ε̄i,n′+1 → ∞ for k >

n′+1 (by a parallel argument), so µn′+1 →
(
1−

∑n′

j=1(m
∗
−i)

j
)

as ε̄i,n′+1 →∞.

Therefore, by continuity, there exists a value of ε̄i,n′+1 such that

(mi
offdiag(ε̂(ε̄

i,n′+1, (ε∗−i)
−[n′+1]; (m∗

−i)
[n′]), ε̄i,n′+1, (ε∗−i)

−[n′+1]))[n′+1] = (m∗
−i)

[n′+1].

Finally, since dµn′+1/dεi,n′+1 > 0, as noted above, this value of ε̄i,n′+1 is
unique. Thus, P (n′ + 1) holds.

Proof of Proposition 5. Claim (i) is straightforward, since the planner
could always set Dii ≡ 1 for all i, which would ensure a non-negative value
for (8) since Cii ≡ 0. Claim (ii) follows from the continuity of the value
function (trivially implied by its differentiability).

The proof of claim (iii) is as follows. Return to the original form of the
problem, (8). Fix L∗ > L, and define SL(L∗) ≡ {L ∈ <n|Li ≥ 0;

∑
i L

i ∈
[0, L∗]}. If L∗∗ > L∗, it is easy to see that for states in SL(L∗) × Ss, the
value function that solves the Bellman equation with the state space limited
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to SL(L∗)×Ss will agree with the function that solves it with the state space
SL(L∗∗) × Ss. Thus, if we show that the Bellman equation derived for any
finite L∗ is concave in L, we are done. That will now be demonstrated.

For any L ∈ SL(L∗) and for any n×n matrix D of functions Di,j : <n 7→
[0, 1], define

B(L, D) =
n∑

i=1

Li
t

∫
· · ·
∫ ( n∑

j=1

Dij(ε)(εj − Cij)

)
n∏

j=1

(f(εj)dεj).

This is the second term in the objective function. In addition, define the
Bellman operator T on the space of bounded real functions on SL(L∗)× Ss

by:

T (W )(L, s) = sup
D
{

n∑
i=1

X i(L, s) + B(L, D) + βEes[W (L̃, s̃)|s]},

where L̃ is determined from L and D by (12). A fixed point of T will be
a solution to the Bellman equation, and by the usual logic of discounted
dynamic programming, T is a contraction mapping, so that there is a unique
fixed point, and it can be found as the limit of T k(W ) as k → 0 for any
bounded function W .

Now consider a bounded and concave function W , and consider two differ-
ent points in the state space, a = (La, s) and b = (Lb, s). In the optimization
required in the definition of T (W ), denote the allocation rule chosen at state

a by Da, and the induced next-period labor allocation by L̃a, and similarly
use Db and L̃b for state b. Now, consider the point c = αLa + (1−α)Lb, for
some α ∈ [0, 1]. Construct the allocation rule:

Dij
c (ε) = [αLi

aD
ij
a (ε) + (1− α)Li

bD
ij
b (ε)]/Li

c.

Since Dc is a weighted average of Da and Db within each cell, it satisfies (7)
and is thus feasible. Note that:

B(Lc, Dc) =
n∑

i=1

Li
c

∫
· · ·
∫ ( n∑

j=1

Dij
c (ε)(εj − Cij)

)
n∏

j=1

(f(εj)dεj)

=
n∑

i=1

∫
· · ·
∫ ( n∑

j=1

(αLi
aD

ij
a (ε) + (1− α)Li

bD
ij
b (ε))(εj − Cij)

)
n∏

j=1

(f(εj)dεj)

= αB(La, Da) + (1− α)B(Lb, Db).
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Further, the next-period labor allocation vector that it induces is equal
to αL̃a + (1− α)L̃b. We now have:

T (W )(Lc, s) ≥
n∑

i=1

X i(Lc, s) + B(Lc, Dc) + βEes[W (L̃c, s̃)|s]}

=
n∑

i=1

X i(Lc, s) + αB(La, Da) + (1− α)B(Lb, Db) + βEes[W (L̃c, s̃)|s]}

> αT (W )(La, s) + (1− α)T (W )(Lb, s).

The first inequality follows from optimization, and the fact that Dc is
feasible. The last inequality follows from the concavity of X i and W , and
from the fact that Da is optimal at point a and Db is optimal at point b.

Therefore, if W is bounded and concave, so will be T k(W ) for any k,
and so must be the limit function, which is the true value function V . This
completes the proof.

Proof of Proposition 6. Note that the derivative of U with respect to
the choice variable is given by:

∂U(L, s, ε)

∂εii′

= −Li
∑
j 6=i′

∫
(εj − Cij)f(εj)f(εj + εij − εii′)

∏
k 6=j,i′

F (εj + εij − εik)dεj

+Li

∫ ∞

−∞
(εi′ − Cii′)f(εi′)

∑
k 6=i′

f(εi′ + εii′ − ε̄ik)
∏

l 6=i′,k

F (εi′ + εii′ − εil)dεi′ .

Using the change of variables ε = εj − εii′ + εij on the first integral and
rearranging yields:

∂U(L, s, ε)

∂εii′
= Li

∑
j 6=i′

(εii′ − εij + Cii′ − Cij)
∂mij

∂εii′

= Li

n∑
j=1

(−εij − Cij)
∂mij

∂εii′
.
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(The equality follows, first, because the term in parentheses equals zero when
j = i′, so we can lift the restriction that j 6= i′ without affecting the equation;
and second, the sum of derivatives of the flows across all cells resulting from
a change in εii′ must equal zero.) The first order condition for the Bellman
equation is, then:

Li

n∑
j=1

(
−εij − Cij + βE

∂Ṽ

∂L̃j

)
∂mij

∂εii′
= 0.

Define the function εi
offdiag as the inverse of the function mi

offdiag defined
in the beginning of the proof of Proposition (4). Then the first order condition
implies, if i 6= 1:

∑
i′ 6=i

(
Li

n∑
j=1

(
−εij − Cij + βE

∂Ṽ

∂L̃j

)
∂mij

∂εii′

∂εii′

offdiag

∂mi1

)

= Li

n∑
j=1

(
−εij − Cij + βE

∂Ṽ

∂L̃j

)∑
i′ 6=i

∂mij

∂εii′

∂εii′

offdiag

∂mi1
= 0

Now, note that ∑
i′ 6=i

∂mij

∂εii′

∂εii′

offdiag

∂mi1

takes a value of 1 if j equals 1, −1 if j equals i, and zero otherwise. Thus,
the first order condition reduces to:

L1

(
−εi1 − Ci1 + βE

∂Ṽ

∂L̃1
+ εii + Cii − βE

∂Ṽ

∂L̃i

)
= 0, or

εi1 + Ci1 = βE

(
∂Ṽ

∂L̃1
− ∂Ṽ

∂L̃i

)
.

This equation says that the marginal cost of moving a worker from i to 1
is equal at the optimum to the expected discounted marginal benefit of doing
so. This can be repeated for any pair of cells i and j with i 6= j, to yield
the indicated condition.
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Proof of Proposition 7. Using ( 14) and (10), we have:

∂V (L, s)

∂Li

= X i
1 +

n∑
j=1

(∫ ∞

−∞
(εj − Cij)f(εj)

∏
k 6=j

F (εj + εij − εik)dεj

)
+ β

n∑
j=1

mij ∂Ṽ

∂L̃j
,

where Ṽ stands for E[V (L̃, s̃)|s] from (14). Rearranging, this becomes

X i
1 +

n∑
j=1

(∫ ∞

−∞
εjf(εj)

∏
k 6=j

F (εj + εij − εik)dεj

)

+
n∑

j=1

mij

(
−Cij + β

(
∂Ṽ

∂L̃j
− ∂Ṽ

∂L̃i

))
+ β

∂Ṽ

∂L̃i
,

which from (15) and the definition of the gross flows, (11), becomes

X i
1 +

n∑
j=1

(∫ ∞

−∞

(
εj + εij

)
f(εj)

∏
k 6=j

F (εj + εij − εik)dεj

)
+ β

∂Ṽ

∂L̃i
.

This is the indicated condition.
Proof of Proposition 9. Suppose that W ∗ and W ∗∗ are two bounded,

concave value functions with dW ∗(L−L2, L2)/dL2 ≥ dW ∗∗(L−L2, L2)/dL2

for all L2 ∈ (0, L] (call this the ‘weak derivative property’), and let T be
the operator on value functions defined by the planner’s Bellman equation.
Then we claim that T (W ∗) and T (W ∗∗) are both bounded and continuous
with dT (W ∗)(L−L2, L2)/dL2 ≥ dT (W ∗∗)(L−L2, L2)/dL2 for all L2 ∈ (0, L].

The boundedness of T (W ∗) and T (W ∗∗) is immediate, and their concavity
can be proven with the same argument as was used in the proof of Proposition
5. For the derivative property, note that the first-order condition for solving
the Bellman equation with the function W ∗∗ is:

ε12 + C12 = β[dW ∗∗(L− L̃2, L̃2)/dL̃2],

where a tilde indicates next-period variables computed from the gross flow
matrix. Given that ε21

t+1 = −ε12
t+1 − C12 − C21 at all times (see (15)), we

can think of ε21
t+1 as a decreasing function of ε12

t+1. Thus, an increase in ε12

will increase m12 and decrease m21, increasing the next-period value of L2.
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By the concavity of W ∗∗, this will decrease the value of the right-hand side
of the first-order condition. Thus, the right-hand side of the condition is a
downward-sloping curve in ε12. At the same time, the left hand side of the
condition is an upward-sloping line in ε12. As a result, for a given value of
L2, anything that shifts the right-hand side of the first-order condition down
will result in a lower value of ε12 . Therefore, for a given value of L2, the
solution to the first-order condition with W ∗∗ will yield a lower value of ε12,
and thus a higher value of ε21, along with a lower value for the right-hand
side of the first-order condition, than will the solution with W ∗. But then
applying the envelope condition (16) to T (W ∗) and T (W ∗∗), it is clear that
the weak derivative property holds for T (W ∗) and T (W ∗∗). This proves the
claim.

Therefore, from any initial bounded and concave W ∗ and W ∗∗ satisfying
the weak derivative property, T k(W ∗) and T k(W ∗∗) will also be bounded and
concave and satisfy the derivative property for any k, and so the property
holds in the limit as k → ∞. Thus, the value functions V ∗ and V ∗∗ also
satisfy the weak derivative property.

From here there is one step required to show that the value functions
satisfy the strong derivative property. Considering the first-order conditions
again, this time for V ∗ and V ∗∗ respectively, the curve-shifting logic used
in the proof of the claim above shows that for a given value of L2, the
value of ε12 chosen with V ∗ will be at least as great as that chosen with
V ∗∗. Therefore, again looking at the envelope condition (16) and noting
that X2∗

1 (L2) > X2∗∗
1 (L2) for all L2 > 0, the strong derivative condition is

immediate.
Proof of Proposition 10. Fix δ > 0. Rewrite the planner’s objective

function (10):

X(Lt, st) +
∑
ij

Li
t

∫
εj
∏
k 6=j

Fδ(ε
ij
t − εik

t + εj
t)fδ(ε

j)dεj −
∑
i,j

Li
tm

ij
δ (εt)C

ij,

where mij
δ denotes the gross flow from i to j as calculated from (11) using

the distribution Fδ, and, as before εii = 0∀i. We can rewrite this function
once again as follows.

Uδ(L, s, ε̂) ≡

X(L, s) +
∑
i,j

Li

∫
εj
∏
k 6=j

Fδ(δ(ε̂
ij − ε̂ik) + εj)fδ(ε

j)dεj −
∑
i,j

Limij
δ (δε̂)Cij,
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where ε̂ is an n-square matrix of real numbers with ε̂ii = 0. In other words,
ε̂ is simply ε, scaled down by a factor of δ.

Since

mij
δ (δε̂) =

∫ ∏
k 6=j

Fδ(δ(ε̂
ij − ε̂ik) + εj)fδ(ε

j)dεj

=

∫ ∏
k 6=j

F1(ε̂
ij − ε̂ik +

εj

δ
)f1(

εj

δ
)(

1

δ
)dεj

=

∫ ∏
k 6=j

F1(ε̂
ij − ε̂ik + ε)f1(ε)dε

= mij
1 (ε̂),

the gross flows resulting from any given choice of ε̂ are independent of δ.

Further, ∑
i,j

Li

∫
εj
∏
k 6=j

Fδ(δ(ε̂
ij − ε̂ik) + εj)fδ(ε

j)dεj

= δ
∑
i,j

Li

∫
εj

δ

∏
k 6=j

F1

(
ε̂ij − ε̂ik +

εj

δ

)
f1

(
εj

δ

)(
1

δ

)
dεj

= δ
∑

i

LiAi(ε̂i),

where

Ai(ε̂i) ≡
∑

j

∫
ε
∏
k 6=j

F1(ε̂
ij − ε̂ik + ε)f1(ε)dε.

Each of these Ai functions takes a unique maximum at ε̂i = 0. To see
this, consider a sample of n independent draws from the distribution F1, and
call the realized values ε1, . . . εn. The function Ai(ε̂i) is the expectation of
the j∗th of these, where j∗ is the value of j that maximizes {ε̂ij +εj}. On the
other hand, Ai(0) is simply the expectation of the highest of the εj’s. Thus,
Ai(0) must be higher.

We can now rewrite the objective function once again:

Uδ(L, s, ε̂)/δ =
∑

i

LiAi(ε̂i) + [X(L, s)−
∑
i,j

Limij
1 (ε̂)Cij]/δ. (23)

37



The maximization of (9) is, of course, equivalent to maximizing the expected
present discounted value of Uδ(L, s, ε̂)/δ. Further, we can speak in terms
of the optimal choice of ε̂ in each state instead of the optimal choice of ε
without making any substantive difference.

Fix ∆ > 0. Let ∆̂ =
∑

i L
iAi(0) − sup|bε|≥∆

∑
i L

iAi(ε̂) > 0, where |̂ε|
indicates the absolute value of the element of ε̂ that is farthest from zero.
(Think of ∆̂ as the minimum loss from having ε̂ a distance ∆ away from its
optimum of 0.) The point will be to demonstrate that if δ is large enough,
we will have |̂ε| < ∆, regardless of the value of L and s.

The terms in the square brackets of (23) are uniformly bounded on the
feasible domain, so the last term (the square brackets divided by δ) can be
made uniformly arbitrarily small by choosing δ sufficiently high. Choose δ
high enough that those two terms are always less than (1−β)∆̂/2 in absolute
value. Now, suppose that the optimal rule for choosing ε̂ has at some state
(L∗, s∗) a value of ε̂ with |̂ε| > ∆. Now, replace that rule with one that is
identical except that at that state, and at all other states after that state has
once been reached, ε̂ is set equal to 0. In the first period in which the change
takes effect, that would increase the value of the first term of (23) by at least

∆̂. Thereafter, it could not reduce the value of that term, because with ε̂ = 0,
that term would be at its maximum. On the other hand, in the first period of
the change or in any subsequent period, the second two terms together could
fall by at most (1− β)∆̂/2, so the expected present discounted value of the

reduction in those terms would be at most [(1−β)∆̂/2]/(1−β) = ∆̂/2. Thus,
the change in the value of the objective function due to the change in rule
evaluated at the state (L∗, s∗) would be at least equal to ∆̂−∆̂/2 = ∆̂/2 > 0.
This contradicts the assumption that the initial rule was optimal.

Thus, we have that ε̂ as a function of L and s converges uniformly to the
constant 0 as δ →∞. Since the function m1 is continuous and

mij
1 (0) =

∫ ∏
k 6=j

F1(ε)f1(ε)dε

=
1

n
F1(ε)

n|∞−∞

=
1

n
,

we conclude that mij
1 (ε̂(L, s)) converges to the constant 1/n uniformly as

δ →∞.
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Proof of Proposition 11.
Following the notation of Theorem 12, the objective function can be writ-

ten as:
Uδ(L, ε̂) = δ

∑
i

LiAi(ε̂i) + [X(L)−
∑
i,j

Limij
1 (ε̂)Cij]. (24)

Consider the case in which δ = 0. Since in this case the distribution is
degenerate, the optimization problem is somewhat different in character, and
we cannot use ε̂ as the choice variable. Write the optimization problem in
the degenerate case as the maximization of:

∞∑
t=0

βt[X(Lt)−
∑
i,j

Li
tm

ij
t Cij],

subject to the law of motion Li
t+1 =

∑
j=1,2 Lj

tm
ji
t ∀t. Of course, in this de-

generate case the solution will always have either m12
t = 0 or m21

t = 0∀t, and
the steady state will have m12 = m21 = 0. Let {L1∗

t }∞t=1 denote the sequence
of sector-1 labor supplies after period 1 that result from this optimization,
and denote the optimized value of the objective function by W ∗

0 . Note that
in the case δ > 0, the part of the objective function in square brackets can
be made arbitrarily close to W ∗

0 by choosing a time path for ε̂t that brings
mij(ε̂t) sufficiently close to mij∗

t for each t.

Now, return to the case δ > 0. Fix some date T > 0 and ∆ > 0. Let Ŵ0 be
defined as the maximum of the objective function subject to the law of motion
and the additional constraint that |L1

T −L1∗
T | > ∆. Then ∆̂ ≡ W ∗

0 −Ŵ0 is the
minimum loss from constraining the date-T labor allocation to be at least ∆
away from its degenerate-case optimum. By (1), the first term of (24) can

be made uniformly smaller than ∆̂/2 be choosing δ small enough. With δ
so chosen, any time path for ε̂t that leaves L1

T farther away from L1∗
T than

∆ can be improved upon by choosing a time path for ε̂t that brings mij(ε̂t)
sufficiently close to mij∗

t for each t. Hence, for δ so chosen, the optimal policy
will bring L1

T to within ∆ of L1∗
T . But this is, then, true for any value of T .

Proof of Proposition 12. Let the distribution of µ ≡ ε1 − ε2 be
characterised by a cdf Gδ(µ) =

∫
Fδ(µ+ε2)fδ(ε

2)dε2, with pdf gδ(µ) = G′
δ(µ).

First, note that the logconcavity of f1 implies that g1 is also logconcave.
This can be seen as follows. Since for any ε̃ and µ̃ the probability that
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ε2 < ε̃ and µ ≡ ε1 − ε2 < µ̃ is equal to
∫ eε
−∞

∫ ε2+eµ
−∞ f1(ε

1)f1(ε
2)dε1dε2 =∫ eε

−∞

∫ eµ
−∞ f1(ε

2 + µ)f1(ε
2)dµdε2, the joint density function φ(µ, ε2) for µ and

ε2 is given by φ(µ, ε2) = f1(ε
2 + µ)f1(ε

2). It can be verified mechanically
that the logconcavity of f1 implies that the Hessian of log(φ(µ, ε2)) is negative
definite, so that φ is itself logconcave. Therefore, by Proposition 4(ii) of An
(1998), the marginal distribution

∫
φ(µ, ε2)dε2, which is equal to g1(µ) by

definition, is logconcave.18

Claim. For any x′ < 0 and x′′ > x′, if {x(k), y(k), λ(k)}∞k=0 is such that
x(k) → x′, y(k) → x′′, and λ(k) →∞ as k →∞, then:

lim sup
k→∞

G1(λ(k)y(k))/G1(λ(k)x(k)) = ∞.

Note that G1(λ(k)x(k)) → 0. If x′′ > 0, then G1(λ(k)y(k)) → 1, so
the result follows. If x′′ = 0, then if lim supk→∞ λ(k)y(k) > −∞, then
lim supk→∞ G1(λ(k)y(k)) > 0, and the result follows.

Now suppose that λ(k)y(k) → −∞ (the only remaining case). Since g1

is logconcave, G1 also must be, by Lemma 3 of An (1998). Assume that
lim supk→∞ G1(λ(k)y(k))/G1(λ(k)x(k)) = Λ < ∞; this will be seen shortly
to lead to a contradiction. It follows that lim supk→∞[log(G1(λ(k)y(k))) −
log(G1(λ(k)x(k)))] = log(Λ). Choose K large enough that k > K implies
that λ(k)x(k)), λ(k)y(k)) < x′, x′′. Since log(G1) is concave, if k > K, then:

[log(G1(λ(k)y(k)))− log(G1(λ(k)x(k)))]

λ(k)y(k))− λ(k)x(k))
>

[log(G1(z))− log(G1(x
′′))]

z − x′′

for any z > x′′. However, the numerator of the left-hand side has a finite
lim sup and the denominator grows without bound, so the only value of the
right-hand side that could satisfy the inequality for all values of k > K is zero.
That implies that G1(x) is constant on [x′′,∞). This is impossible because
g1 has full support (and because it is symmetric about zero). Therefore,
lim supk→∞[log(G1(λ(k)y(k))) − log(G1(λ(k)x(k)))] = ∞. This proves the
claim.

Now consider a sequence {δ(k)} of values of δ such that δ(k) → 0 as
k → ∞, and let mij(k) and υj(k) denote the values of steady-state gross
flows and worker payoffs corresponding with δ (k). Note that, since L1

t+1 =

18This proof is parallel to the proof of Corollary A1 of Goeree and Offerman (2003).
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m11
t L1

t + m21
t L2

t = m11
t L1

t + m21
t (L− L1

t ), for any k, the steady-state level of
employment in sector 1 is given by:

L
1
(k) =

m21(k)

m21(k) + m12(k)
L =

(
1 +

m12(k)

m21(k)

)−1

L

=

(
1 +

Gδ(k)(ε
12

(k))

Gδ(k)(ε
21

(k))

)−1

L

=

(
1 +

G1(ε
12

(k)/δ(k))

G1(ε
21

(k)/δ(k))

)−1

L.

Note that ε
12

= β(υ2 − υ1) − C12 and ε
21

= β(υ1 − υ2) − C21, so ε
12

=

−ε
21 − C12 − C21.
For the moment assume that at least one of C12, C21 is strictly positive.

If the lim sup ε
12

(k) ≡ z > −(C12 + C21)/2, we can find a subsequence

such that ε
12

(k) → z and ε
21

(k) → −z − C12 − C21 < 0. Since also in
this case −z − C12 − C21 < z, by the Claim, m12(k)/m21(k) → ∞ and so

within this subsequence L
1
(k) → 0. Thus, w1(k) → ∞ and w2(k) → 0 as

k → ∞. Since υi(k) = wi(k) + E{εi,εj} max{εi + βυi(k), εj − Cij + βυj(k)},
this ensures that for k sufficiently large, ε

21
(k) = β(υ1(k) − υ2(k)) − C21 >

β(υ2(k)−υ1(k))−C12 = ε
12

(k), which is a contradiction. Thus, we find that

lim sup ε
12

(k) ≤ −(C12 + C21)/2.

If lim inf ε
12

(k) ≡ z < −(C12 + C21)/2, we can find a subsequence such

that ε
12

(k) → z and ε
21

(k) → −z − C12 − C21 > z. Therefore, by the

Claim, m21(k)/m12(k) →∞ and within this subsequence L
1
(k) → L. Thus,

w2(k) →∞ and w1(k) → 0 as k →∞, ensuring that for k sufficiently large

ε
21

(k) < ε
12

(k), which is a contradiction. Thus, we find that lim inf ε
12

(k) ≥
−(C12 + C21)/2.

Therefore, lim sup ε
12

(k) ≤ −(C12 + C21)/2 ≤ lim inf ε
12

(k), so ε
12 →

−(C12 + C21)/2 as k → ∞. Substituting in ε
12

= β(υ2(k) − υ1(k)) − C12

gives the result.
Finally, the same arguments can be traced trivially in the case in which

C12 = C21 = 0, mutatis mutandis.

41



References

[1] An, MarkYuying (1998). “Logconcavity versus Logconvexity: A Com-
plete Characterization.” Journal of Economic Theory 80, pp. 350-69.
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