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1 Introduction

The architecture of political boundaries is at the heart of the political process in the United States.1

When preferences over political candidates are su¢ ciently heterogeneous, altering the landscape of

political districts can have large e¤ects on the composition of elected o¢ cials. Prior to the 2003

Texas redistricting the congressional delegation was comprised of 17 Democrats and 15 Republicans;

after the 2004 elections there were 11 Democrats and 21 Republicans.2 Politically and racially

motivated districting plans are believed to be a signi�cant reason for the lack of adequate racial

representation in state and federal legislatures, and there is a debate as to whether the creation of

majority-minority districts to ensure some level of minority representation have led to less minority-

friendly policies (see Shotts, 2002 for an excellent overview and critique).

There are several factors which weigh on the constitutionality of districting plans: (i) equal

population (the Supreme Court �rst established this principle for congressional districts in Wesberry

v. Sanders, 376 US 1 (1964)), (ii) contiguity (which is a requirement in 49 state constitutions),

and (iii) compactness. The latter consideration �distinct from the mathematical notion of a �nite

subcover of a topological space �refers to how �oddly shaped�a political district is. The Supreme

Court has acknowledged the importance of compactness in assessing districting plans for nearly

half a century.3 Yet, despite its importance as a factor in adjudicating gerrymandering claims, the

court has made it clear that no manageable standards have emerged (see the judgment of Scalia J

in Vieth v. Jubelirer). There is no consensus on how to adequately measure compactness.4

In this paper, we propose a simple index of compactness based on the distance between voters

within the same political district in a state relative to the minimum such distance achievable by

any districting plan in that state �which we coin the relative proximity index.5 The index satis�es

three desirable properties: (i) voters are treated equally (anonymity), (ii) increasing the distances

between voters within a political district leads to a larger value of the index (clustering), and

1Article I, §4 of the United States Constitution provides that �The Times, Places and Manner of holding Elections
for Senators and Representatives shall be prescribed in each State by the Legislature thereof; but the Congress may
at any time by Law make or alter such Regulations, except as to the Places of choosing Senators.�

2 In the US, political boundaries are typically redrawn every 10 years, after the decennial census. The 2003
�mid-decade�redistricting in Texas is a notable exception. The US Supreme Court recently held that this was not
unconstitutional in Jackson, et al. v. Perry, et al. (docket number 05-276).

3The Apportionment Acts of 1842, 1901 and 1911 contained a compactness requirement. In Davis v. Bande-
mer, 476 US 173 (1986)) Justices Powell and Stephens pointed to compactness as a major determinant of partisan
gerrymandering, and Justices White, Brennan, Blackmun and Marshall cited it as a useful criterion. Nineteen state
constitutions still contain a compactness requirement (Barabas and Jerit, 2004).

4An important argument against the use of compactness as a districting principle is that it may disadvantage
certain population subgroups. As Justice Scalia put it in Vieth v. Jubelirer : �Consider, for example, a legislature that
draws district lines with no objectives in mind except compactness and respect for the lines of political subdivisions.
Under that system, political groups that tend to cluster (as is the case with Democratic voters in cities) would
be systematically a¤ected by what might be called a �natural� packing e¤ect. See Bandemer, 478 U. S., at 159
(O�Connor, J., concurring in judgment).� First, the courts use compactness as one of several criterion. Second, it
is an open question whether or not more compact districting plans have a positive or negative e¤ect on racial or
political representation.

5For the emprical analysis and characterization of the optimally compact district plan we use Euclidean distance.
But since many of our results are proven in an arbitrary metric space one can extend much of the analysis here by
using driving distance or what many legal scholars refer to as �communities of interest.�

2



(iii) the index be invariant to the scale, population density, and the number of districts in a state

(independence). Further, we show that any compactness index that satis�es these properties ranks

districting plans identically to the relative proximity index.

The relative proximity index has several advantages over existing measure of compactness. First,

it is the only compactness index which permits meaningful comparisons across states. Second,

the index does not assume (implicitly or otherwise) that voters are uniformly distributed across

political districts. Many previously proposed measures adopt a geometric approach (perimeter

length of political districts, e.g.) and fail to consider the distribution of voters within a state.

Third, our measure is constructed at the state level. Some measures apply to political districts.6

Yet, the districting problem is fundamentally about partitioning; the shape of one element of the

partition a¤ects the shapes of the other elements. Analyzing individual pieces of a larger partition

in isolation can be misleading. Fourth, though our index is simple, it is based on desirable properties

that compactness measures should satisfy. Existing measures have been proposed in a relatively

ad hoc fashion. At a minimum, our approach is a more principled way of narrowing the �eld of

competing measures.

We apply the index to the districting plans of the 106th congress using tract-level data from

the US census. In doing so, we are required to calculate each state�s maximal compactness. This

number is the denominator of our index. But calculating this number by brute force, enumerating

the set of all feasible partitions and maximizing compactness over this set, is impossible.7 Similar

partitioning problems arise in applied mathematics (computer vision), computer science and op-

erations research (the k-way equipartition problem), and computational biology (gene clustering),

which have given rise to several important algorithms and candidate functionals. Unfortunately,

none of these techniques are directly applicable to our districting problem as they are either de-

signed for very small samples (�100) or do not require partitions to be of even approximately equal
cardinality.

We develop an algorithm for approximating this partitioning problem which is suitable for very

large samples and guarantees nearly equal populations in each partition. The algorithm is based on

power diagrams �a generalization of classic Voronoi diagrams �which have been used extensively

in algebraic and tropical geometry (Passare and Rullgard, 2004; Richter-Gebert, Sturmfels and

Theobald, 2003), condensed matter physics, and toric geometry/string theory (Diaconescu, Florea,

and Grassi, 2002). Power diagrams are a powerful tool to partition euclidean space into cells by

minimizing the distance between points in a cell and the centroid of that cell. We prove that

maximally compact districts are power diagrams and that the line separating two adjacent districts

are perpendicular to the line connecting their centroids, and all such lines separating three adjacent

districts meet at a single point. It follows that the resulting districts are convex polygons.

The empirical results we obtain on the compactness of districting plans are interesting and in

some cases quite surprising. The �ve states with the most compact districting plans are Idaho,

6See Young (1988), however, and section 2.2 below.
7A back of the envelope calculation reveals that, for California alone, the cardinality of this set is larger than the

number of atoms in the observable universe.
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Nebraska, Arkansas, Mississippi, and Minnesota. The �ve least compact states are Tennessee,

Texas, New York, Massachusetts, and New Jersey. The districting plan that solves the minimum

partitioning problem is more than forty percent more compact than the typical districting plan.

States which are more compact tend to be states with a larger share of blacks and a larger di¤erence

between the percent who vote Republican and Democrat. The latter is intuitive: states with more

to gain from altering the design of political districts tend to do it more. Whether or not a state is

forced to submit their districting plans to the Department of Justice (under Section 5 of the Voting

Rights Act) is also highly correlated with compactness. The rank correlation between the relative

proximity index and the most popular indices of compactness, dispersion and perimeter, is -.22 and

-.06, respectively.

We conclude our analysis by estimating a counterfactual of the 2000 Congressional elections in

California, New York, Pennsylvania, and Texas using optimally compact districts derived from our

algorithm. To better understand the impact a strict policy of maximal compactness might have

on those elected, we estimate a seat-vote curve for the actual and hypothetical districting plans

of each state. We are interested in two parameters: bias and responsiveness. Recall, bias reports,

when the vote is split, twice the di¤erence between the seat share the Democrats get and 50%.

Responsiveness is the fraction of seats the Democrats get if the average vote goes up 1%.

The results of this exercise are quite illuminating. California, New York, Pennsylvania, and

Texas all have substantially more responsive seat-vote curves under our new partition, but bias

is unchanged. These results prove that maximally compact districts would have a statistically

signi�cant e¤ect on voting outcomes �making election outcomes more responsive to actual votes.

The structure of the paper is as follows. Section 2 provides a brief legal history of compactness

and an overview of existing measures. Section 3 presents the relative proximity index, discusses

its properties, and proves our main result. Section 4 implements the index using data from the

106th congress. Section 5 provides a counterfactual estimate of the congressional elections in four

large states using the partitions derived from our index. Section 6 concludes with a discussion of

potential extensions and generalizations of our approach. There are two appendices. Appendix A

contains proofs of all technical results. Appendix B provides a guide to programs to calculate the

Relative Proximity Index.

2 Background and Previous Literature

2.1 A Brief Legal History of Compactness

Compactness has played a fundamental role in the jurisprudence of gerrymandering, both racial

and political. Since Gomillion v. Lightfoot 364 U.S. 339 (1960), where the court struck down

Alabama�s plan to redraw the boundaries of the city of Tuskegee, the court has recognized com-

pactness as a relevant factor in considering racial gerrymandering claims. In Gomillion the court

referred to the proposed district as �an uncouth 28-sided �gure.� Although Gomillion is considered

by many to be a jurisprudential high-water mark, the role of compactness in considering racial ger-
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rymandering claims has been a¢ rmed in other decisions.8 As Justice O�Connor put it: �we believe

that reapportionment is one area in which appearances do matter.�

Compactness has also played an important role in partisan gerrymandering claims. It has been

recognized by the court as a �traditional�districting principle. In Davis v. Bandemer, Justices Pow-

ell and Stevens described compactness as a major criterion (at 173), and Justices White, Brennan,

Blackmun and Marshall described it as an important criterion (at 2815). In Vieth, the plurality

acknowledged compactness as a traditional districting principle. Justice Kennedy, in his concurring

opinion, states that compactness is an important principle in assessing partisan gerrymandering

claims: �We have explained that �traditional districting principles,�which include �compactness,

contiguity, and respect for political subdivisions,� are �important not because they are constitu-

tionally required...but because they are objective factors that may serve to defeat a claim that a

district has been gerrymandered on racial lines.� ...In my view, the same standards should apply

to claims of political gerrymandering, for the essence of a gerrymander is the same regardless of

whether the group is identi�ed as political or racial.�

Despite di¤erent views about what a judicially manageable standard is or might be, the court

has been unanimous that it must include some notion of compactness.

2.2 Existing Measures of Compactness

There is a large literature in political science on the measurement of compactness. Niemi et al

(1990) provide a comprehensive account of the various measures which have been proposed (see

also Young (1988)).9 Niemi et al (1990) classify existing measures into four categories: (i) dis-

persion measures, (ii) perimeter measures, (iii) population measures, and (iv) other miscellaneous

measures.10 The important take-away is that all of these measures either fail to account for the

population distribution or are not invariant to geographical size. As such, meaningful comparisons

across states or time cannot be made.

One class of dispersion measures are based on length versus width of a rectangle which cir-

cumscribes the district (Harris, 1964; Eig and Setizinger, 1981; Young, 1988). A second uses

circumscribing �gures other than rectangles and considers the area of these �gures.11 At least

two �moment-of-inertia�measures have been suggested. Schwartzenberg (1966) and Kaiser (1966)

consider the variance of the distances from each point in the district to the districts areal center.

Boyce and Clark (1964) consider the mean distance from the areal center to a point on the perimeter

reached by equally spaced radial lines.

A second set of measures are those based on perimeters. The sum of perimeter lengths was

8 In Shaw v. Reno 113 S. Ct. 2816. 92-357 (1993), the court upheld a challenge to North Carolina�s redistricting
plan on the basis that the ill-compactness of the districts was indicative of racial gerrymandering. See also Thornburg
v. Gingles 478 U.S. 30 (1986) or Growe v. Emison 278 U.S. 109 (1993).

9Some of these measures were originally proposed for purposes other than to do with legislative districts - but
were later applied by other authors to that issue. We cite the original authors.

10We draw heavily on their summary and classi�cation.
11Reock (1961) proposes a circle, Geisler (1965) a hexagon, Horton (1932) and Gibbs (1961) a circle with diameter

equal to the districts longest axis, still others use the smallest convex �gure (see Young (1988)).
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suggested by Adams (1977), Eig and Setizinger (1981) and Wells (1982), but this measure is po-

tentially intractable for reasons highlighted in the classic work of Mandelbrot (1967) on the length

of the coastline of Great Britain. In fact, a fractal dimension based measure was proposed by

Knight (2004). Various authors have proposed measures which compare the perimeter to the area

of the district. Cox (1927) considers the ratio of the district area to that of a circle with the same

perimeter.12

There are three population based measures. Hofeller and Gro¤man (1990) propose two: the

ratio of the district population to the convex hull of the district, and the ratio of the district

population to the smallest circumscribing circle. Weaver and Hess (1963) suggest the population

moment of inertia, normalized to lie in the unit interval.

Niemi et al�s (1990) �nal miscellaneous category includes three measures: (1) the absolute devia-

tion of district area from average area in the state (Theobald 1970); a measure based on the number

of re�exive and non-re�exive interior angles (Taylor 1973); and the sum of all pairwise distances

between the centers of subunits of the district, weighted by subunit population (Papayanopolous

1973). Finally, Mehrotra, Johnson and Nemhauser (1998) use a branch-and-price algorithm to

compute a districting plan for South Carolina. Their objective function is how far people are from

a graph theoretic measure of the center of the district.

3 The Relative Proximity Index

3.1 Preliminaries

Let S denote a collection of states with typical element S 2 S: A �nite set S; whose elements we call
individuals or voters, is a metric space with associated distance function dij � 0; which measures
the distance between any two elements i; j 2 S: Let VS =

�
vS1 ; :::; v

S
n

	
denote a �nite partition

of S into elements vi 2 VS which we shall refer to as �voting districts�, or �districts�. We will

routinely refer to the partition VS as a �districting plan� for state S and allow n to represent a

generic integer. We restrict voting districts to be equal in size, up to integer rounding.13�14 Let VS
denote the set of all partitions of S which satisfy this restriction. We say a districting plan VS is

feasible if and only if VS 2 VS :

De�nition 1 A compactness index for a state S is a map c : VS 7! R+:

12For variants of Cox (1927) see Attneave and Arnoult (1956), Horton (1932), Schwartzberg (1966), or Pounds
(1972).

13This was �rst held as a requirement by the Court in Baker, and is becoming a very strict constraint. For
instance, a 2002 Pennsylvania redistricting plan was struck down because one district had 19 more people (not even
voters) than another. The 2004 Texas redistricting had each district with the same number of people up to integer
rounding. Yet, the population may grow at drastically di¤erent rates across political districts between redistrictings.
For instance, in the 2000 census, a typical state had a 23% di¤erence in the population of its smallest and largest
district.

14 In symbols:
��vSi �� 2 fbjSj = jVS jc; djSj = jVS jeg for all vSi 2 VS ; where dxe = inf fn 2 Zjx � ng and bxc =

sup fn 2 Zjn � xg.
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3.2 The Relative Proximity Index

Consider voter i in element v 2 VS and de�ne:

� (VS) =
X
v2V

X
i2v

X
j2v
(dij)

2 (1)

Similarly, let V �S = argmin
VS2VS

f� (VS)g : The Relative Proximity Index (RPI), for a partition of state

S; VS ; is given by

RPI =
�(VS)

�(V �S )
:

The RPI is well de�ned so long as �(V �S ) 6= 0 which holds so long as all voters are not located
at the same point. In the non-degenerate case, the RPI ranges from 1 to in�nity; higher numbers

indicate less compactness. The index has an intuitive interpretation: a value of 3 implies that the

current districting plan is roughly 3 times less compact than a state�s maximal compactness.

3.3 An Example

[insert �gure 1]

Consider the state depicted in Figure 1. The nodes represent voters. There are two voting

districts separated by the bold dashed line. Voters are spread evenly across the state; each adjacent

voter is 1 kilometer apart. Voter 1 is 1 kilometer away from voters 2 and 4,
p
2 kilometers away

from voter 5,
p
5 kilometers away from voter 6, and so on.

There are two steps involved in calculating the Relative Proximity index. First, we calculate

the numerator. For voter 1 the sum of squared distances is 5, since she is 1 kilometer away from

voter 2 and 2 kilometers away from voter 3�and they are the only other voters in her district. For

voter 2 the total is 12 + 12 = 2 and for voter 3 it is 12 + 22 = 5. Voters 4,5 and 6 are symmetric

to voters 1,2 and 3 respectively. Thus the numerator of our index is 2(5 + 2 + 5) = 24.

The second step in calculating RPI is to account for state speci�c topography. This will

represent the denominator of our index. There are nine other feasible partitions in addition to

ff1; 2; 3g ; f4; 5; 6gg :15 We perform the same calculation as above for each of those partitions and

then take the min of these ten values. The minimizing partition is ff1; 4; 5g ; f2; 3; 6gg�although
ff1; 2; 4g ; f3; 5; 6gg achieves the same value. That value turns out to be 2

�
12 + 2 + 12 + 2 + 12 + 12

�
=

16: The index is thus 24=16 = 3=2:

The example provides a snap-shot of the Relative Proximity Index and previews some of its

properties. For instance, because the index is calculated relative to a state speci�c baseline, neither

the size of states nor their population density can solely alter the index. If we increased the distance

between any two nodes in �gure 1 to 2 kilometers, the index would not change. Similarly, if we

15They are:ff1; 2; 4g ; f3; 5; 6gg,ff1; 2; 5g ; f3; 4; 6gg,ff1; 2; 6g ; f3; 4; 5gg,ff1; 3; 4g ; f2; 5; 6gg,
ff1; 3; 5g ; f2; 4; 6gg,ff1; 3; 6g ; f2; 4; 5gg,ff1; 4; 5g ; f2; 3; 6gg,ff1; 4; 6g ; f2; 3; 5gg,ff1; 5; 6g ; f2; 3; 4gg :
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imputed 10 more individuals to each node � thinking of them in terms of neighborhoods rather

than households �the index would be unaltered.

3.4 Three Desirable Properties of a Compactness Index

We now describe three properties which any compactness index should satisfy and discuss each in

turn.

Axiom I, an anonymity condition in the same spirit as that typically used in social choice

theory (Arrow, 1970), requires that all individuals be treated equally. That is, any compactness

index should not depend on the particular identities (race, political a¢ liation, wealth, etc.) of

voters.

Axiom I (Anonymity) Consider a state S with associated partition V and compactness index

c(V; S): For any bijection h : S ! S and compactness index ch(V; S); ch(V; S) = c(V; S):

Compactness is fundamentally a mathematical partitioning problem; deciding who to group

with whom in a political district. Clustering is the quintessential objective (Bartal, Charikar, and

Raz, 2001 ).16 Our second axiom requires that if two states with the same number of voters,

voting districts, and the same value for the minimum partitioning problem have di¤erent weighted

intra-district distances, then the state with the larger value is less compact.

Axiom II (Clustering) Let k =
P
i;j2v �ij (dij)

� ; for k = f1; :::; ng and let g (1; :::; n) : Rn !
R be a monotonic, increasing function. Consider two states, S1 and S2 and partitions V and

V 0 respectively such that S1 and S2 have: the same number of voters, the same number of

districts and

min
V 2VS1

gS1 (1; :::; n) = min
V 2VS2

gS2 (1; :::; n) :

Then

gS1 (1; :::; n) > gS2 (1; :::; n) =) c (V; S1) > c
�
V 0; S2

�
:

Our �nal axiom requires that any measure of compactness of a state be insensitive to its physical

size, population density, and number of districts. This is vital for making cross-state comparisons

of districting plans.

Density independence means that if we replicate a state by multiplying the number of people

in each household by �; the index of compactness is unaltered. For instance, when comparing two

voting districts (Cambridge, MA and New York, NY, e.g.) who di¤er in their population density,

the index provides the same cardinal measure of compactness.

Scale independence provides a similar virtue, permitting comparisons across states that di¤er

in the distances between individuals (Massachusetts and Texas, say), allowing one to increase the

16Other common objectives are distance from the geographic centroid of each partition or distance from a repre-
sentative (typically the center of a cluster and not necessarily the center of the partition).
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distances between all individuals in a state by a constant with no resulting change in the index.

Independence with respect to the number of districts is also vital in making cross-state comparisons.

Before stating the property formally, we need some further notation. We say that a state bS
is an n-Replica of S if and only if 8i 2 S;9j1; :::; jn 2 bS such that dij = 0;8i and djijk = 0;8i; k:
It is also useful to have a shorthand for the realized value of the minimum partitioning problem.

Consider two partitions of state S; V and V 0 with � and �0 elements respectively. Let V min�S and

V
min�0
S be the respective minimizing partitions.

Axiom III (Independence) Consider S; bS 2 S with cardinality jSj and ��� bS��� respectively.
1. (Scale) If dij = �dij ; for all i; j 2 S; bS: Then c(V; S) = c(V; bS); for all V:
2. (Density) If

��� bS��� = � jSj and bS is a �-replica of S then c(V; S) = c(V; bS); for all V:
3. (Number of Districts)

If

X
v2V �S

X
i2v

X
j2v

(dij)
2

V
min�
S

=

�
X
v2V �

0
S

X
i2v

X
j2v

(dij)
2

V
min�0
S

=) c (V; S) = �c
�
V 0; S

�
:

3.5 The Main Result

Let Oc = (R+;�) denote the ordered set generated by the relative proximity index c; and let Obc
denote the ordered set over elements VS 2 VS generated by any other compactness index. We say
that two indices, c and bc; are ordinally isomorphic if Oc = Obc: We are now equipped to state our
main result. The proof of this, as with all others, can be found in Appendix A.

Theorem 1 (1) The RPI satis�es Anonymity, Clustering, and Independence; (2) Suppose � = 2
and gSi (�) is symmetric for all i, then any compactness index which satis�es Anonymity, Clustering
and Independence is ordinally isomorphic to the Relative Proximity Index.

Proof. See Appendix A
The structure of the proof is as follows. The �rst part simply veri�es that the RPI satis�es the

three axioms. Because we weight individuals identically, anonymity is satis�ed. The numerator of

the index is almost the de�nition of a special case of clustering. The normalization provided by the

denominator of the index ensures that independence is satis�ed.

The di¢ culty is in showing that any other compactness index which satis�es these axioms ranks

districting plans identically to the RPI. We accomplish this by transforming states so that they

have the same number of voters and districts, and have equal minimum values. Independence

and anonymity allows for such a transformation. The clustering axioms when � = 2 and gSi (�)
is symmetric for all i; then implies that districting plans can then be ranked by their total intra-

cluster pairwise distances. Any compactness index that ranks plans di¤erently than RPI, after our

transformation, must violate clustering.
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4 Implementing the Relative Proximity Index

In this section, we apply the relative proximity index to the districting plans of the 106th congress.

4.1 The Minimum Partitioning Problem

Calculating the denominator of the relative proximity index is a complicated combinatorial problem.

When partitioning n voters into d districts the number of feasible partitions is
�

(n�1)!
(n=d�1)!(n�n=d)!

�d�1
:

So, for California alone, using data at the tract level, involves n = 6; 800 and d = 53: The cardinality

of the set of feasible partitions is 78:4� 1059;351. Technically speaking, the problem is NP-hard.

Similar problems arise in �elds such as applied mathematics (computer vision), computer sci-

ence and operations research (k-way equipartitioning problem), and computational biology (gene

clustering). The celebrated Mumford-Shah functional is a candidate functional designed to segment

images (Mumford and Shah, 1989). The structure of the functional contains two penalty functions:

one to ensure that the continuous approximation is close to the discrete problem, and another

to penalize perimeter length. While the Mumford-Shah functional is a powerful tool for myriad

problems, it cannot guarantee even nearly equal population size across districts.

If our objective function was simply distance, rather than distance squared, the problem is

precisely the k-way equipartition problem which has received considerable attention in computer

science and related to a literature in computational biology employing minimum spanning trees to

partition similar genes into clusters.17 Good algorithms for the k-way equipartition problem when

sample sizes are small (� 100) can be found in Ji and Mitchell (2005) and Mitchell (2003). This
restriction makes these algorithms impractical for our purposes.

Below, we develop an algorithm to approximate the minimum partitioning problem for large

samples, based on power diagrams (a concept we make precise below), that guarantees nearly equal

populations in each partition and runs in O
�
n log

�
n
0
��

time, where n
0
is the number of voters

and n is the number of districts in a state.

4.2 Optimally Compact Districting Plans and Power Diagrams

In this section, we show that optimally compact districting plans are power diagrams, a gener-

alization of Voronoi diagrams due to Aurenhammer (1987). Consider a set of generator points

m1; : : : ;mn in a �nite dimensional Euclidean space. The power of a point/voter x 2 S with re-

spect to a generator point mi is given by the function pow� (x;mi) = kx �mik2 � �i; where k � k
is the Euclidean norm. The total number of voters assigned to generator point mi is called its

capacity, denoted Kmi : A power diagram is an assignment of voters to generator points such that

point x is assigned to generator point mi if and only if pow� (x;mi) < pow� (x;mj) for all j 6= i:

Let the points assigned to generator point mi be denoted Di; which is referred to as a cell : Note

17Without the constraint that each district have an equal number of voters the problem is the min-sum k-clustering
problem which was shown by Sahni and Gonzales (1976) to be NP-complete. An approximation for it in a general
metric space which runs in nO(1=e) time has been found by Bartal, Charikar and Raz (2001). It is also closely related
to the classic graph partitioning problem, which is also known to be NP-hard.
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that no two Dis can intersect, and furthermore, every x 2 S is in some Di; and hence fD1; : : : ; Dng
is a partition of S. Note also that the dividing line between cells Di and Dj in a power diagram

satis�es kx�mik2 � kx�mjk2 = �i � �j :
When �i = � for all i then the power diagram is a Voronoi diagram. Power diagrams are thus

a generalization of Voronoi diagrams.

De�nition 2 An optimally compact districting plan for state S is a feasible districting plan, VS ;
with an associated total distance

X
v2VS

X
i;j2v

(dij)
2 such that there does not exist another feasible

districting plan, V
0
S with an associated total distance

X
v2V 0S

X
i;j2v

(dij)
2 such that

X
v2V 0S

X
i;j2v

(dij)
2 <

X
v2VS

X
i;j2v

(dij)
2 :

We can now state our second key result.

Theorem 2 Optimally compact districting plans are power diagrams.

Proof. See Appendix A.
This theorem follows from three lemmas which partially characterize an optimal districting plan

and establish that these characteristics imply a power diagram. The �rst lemma shows that our

objective function is equivalent to a variant of the k-means objective function. This is important

because it allows one to focus attention on district centroids.

The second lemma shows that any pair of districts are separated by a line perpendicular to a

line connecting their centroids. This separating line is the locus of points at which the power of the

two centroids are equal. It represents all points in which one is indi¤erent between placing voters

in one district and the other. Finally, we establish that all such lines separating any three adjacent

districts meet at a single point; they are concurrent.

To see that these properties imply a power diagram, recall that a power diagram is a set of lines

dividing a euclidean space into a �nite number of cells. The line separating two adjacent cells are

such that the power of the points along this locus is equal to their respective centroids. And the

power of a point is measured as a function of the di¤erence between a point and the centroid of its

district �which we have already established is equivalent to our objective function. It is important

to note that if the line separating two adjacent districts was not perpendicular to the line connecting

their centroids then one could not be indi¤erent between points being in one district and the other

everywhere along the line. This holds for all such pairs of districts, which implies concurrent lines.

Taken together, these imply that optimally compact districtings are power diagrams18. Notice,

18Aurenhammer et al. (1998) prove a closely related theorem, taking squared distance from the centroid as the
objective function. Their proof proceeds by showing that if an algorithm can be designed to �nd a power diagram
then it is an optimal partition. By contrast, we provide a constructive proof based on the parallel and concurrent
line lemmas. We could, of course, state our lemma on the equivalence of the objective functions and then appeal to
their result, but our current proof provides more information about optimal districtings.
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since all subsets of a convex set formed by drawing straight lines are convex, it follows that the

resulting districts must be convex polygons.

Theorem 2 provides an important insight for building an algorithm, allowing us to use all we

know about a partial characterization of optimally compact districts. There are three important

caveats. First, we have not yet proven that there is a unique power diagram for every set of

starting values. Second, we are only able to map optimal districting plans into power diagrams

when distance is quadratic, because this guarantees that optimal districting involves straight lines.

Mathematically, this is an obvious limitation. Practically, however, it boils down to assuming that

courts punish outliers in a district more. Given this assumption, we are hard pressed to �nd a

principled reason for courts to prefer higher order exponents.

Third, power diagrams do not guarantee a global optimum to the minimum partitioning problem

because their structure depends on exogenously given starting values.

[insert �gure 2]

Panel A of �gure 2 depicts the optimally compact districting plan for a hypothetical state. There

are nine voters, arranged so the state is a lattice. The stars represent centroids of the resulting

districts. Note that the line separating districts 1 and 2 is perpendicular to a line connecting their

centroids (the same is true for districts 1 and 3, and also 2 and 3). This is an illustration of the

Perpendicular Line Lemma alluded to above. The Concurrent Line Lemma is also illustrated by

the intersection of the lines separating districts 1,2 and 3 at a single point. The partition depicted

is indeed the globally optimal partition. Once one knows that, the centroids of the districts are

easy to compute.

In our problem, however, we do not know the optimal districts in advance, and so we must

choose generator points which will not in general be the centroids of the optimal districting plan.

An important part of the approximation problem is selecting and improving upon the generator

points. To illustrate this point, consider panel B of �gure 2 which chooses alternative generator

points than those used to partition the panel A. The generator point used for district 1 di¤ers

from that used above resulting in four voters being placed in district 1 and only 2 in districting 2,

thereby violating the equal size constraint.

4.3 An Algorithm Based on Power Diagrams

The algorithm we propose is a modi�cation of the second algorithm presented in Aurenhammer et.

al (1998). Since we know by Theorem 2 that local optima of the RPI are power diagrams, we search

within the set of power diagrams for one that is a feasible districting. However, as power diagrams

are generated around sites, which we call z1; : : : ; zn, it is necessary to update the locations of the

sites as well as the design of the districts.

First we explain the (Aurenhammer et al, 1998) algorithm for �nding a power diagram which

minimizes 	z1;:::;zd(D1; : : : ; Dd) with jDij � n for all i. Since a power diagram is de�ned by its sites
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and their weights, �1; : : : ; �d, assuming �xed sites each district Di is a function of �1; : : : ; �d, or

Di = Di(�1; : : : ; �d). We suppress this dependence for simplicity. Let

�(�1; : : : ; �d) =

dX
i=1

(n� jDij) � �i +	z1;:::;zd(D1; : : : ; Dd):

Aurenhammer et al, (1998) simpli�es the problem by continuing as if each Di does not change

locally with respect to each �i everywhere, as this is true almost everywhere (at all but �nitely

many points). Therefore, jDij and 	z1;:::;zd(D1; : : : ; Dd) are locally constant with respect to �i, so,

@�

@�i
= n� jDij:

Let � = (�1; : : : ; �d). Using some choice of �0, we can update it by gradient descent,

�t+1 = �t + �t � r�(�t):

In our implementation we set �0 to be the zero vector. It remains to pick the step sizes f�tgt�0. To
do this, one �rst determines an overestimate of the minimum value of �, call it �. This can be done

by setting � = 	z1;:::;zd(D1; : : : ; Dd) for any feasible districting (D1; : : : ; Dd). We use the notation

Di(�t) to mean one of the districts induced by the power diagram weights contained in the vector

�t, and let:

�t =
� � �(�t)Pd
i=1 jDi(�t)j2

This step size is iterated until the minimum is either reached or missed, which happens when
dX
i=1

jDi(�t)j � jDi(�t+1)j > 0. Then, � is updated by solving the equation:

� � �(�t)Pd
i=1 jDi(�t)j2

=
� � �(�t+1)Pd
i=1 jDi(�t+1)j2

�t+1 is chosen accordingly. This algorithm is repeated until the jDij�s are within some pre-
determined error bound around n.

Once optimal districts D1; : : : ; Dd for sites z1; : : : ; zd are chosen, by Lemma 7 (see Appendix A)

the function 	z1;:::;zd(D1; : : : ; Dd) is improved by moving the zi�s to the centroids of the Di�s and

keeping the �1; : : : ; �d constant. Yet, all of the Di�s are not necessarily of size n, so they need to be

adjusted by the above procedure. This process is repeated until moving the z1; : : : ; zd still leaves

the sizes of the Di�s within the prescribed error bound.

Note: The algorithm described in Aurenhammer et al. (1998) tends to fail when one of the

districts is randomly set to size 0. Our solution to this issue was to move zi to a random new

location if jDij became zero during any point in the process. Random new locations were chosen

using a uniform distribution function ranging from the minimum to the maximum of the longitude

13



and the latitude of the state in question.

4.4 The Compactness of Political Districting Plans of the 106th Congress

The ideal data to estimate the relative proximity index would contain the geographical coordinates

of every household in the US, their political district, some measure of distance between any two

households within a state, and a precise de�nition of communities of interest. This information is

not available.

In lieu of this, we use tract-level data from the 2000 US Census from the Geolytics database

which contains the latitude and longitude of the geographic centroid of each tract, the political

district each centroid is in, and its total population.19 Census tracts are small, relatively permanent

statistical subdivisions of a county. The spatial size of census tracts varies widely depending on the

density of settlement, but they do not cross county boundaries. Census tracts usually have between

2,500 and 8,000 persons and, when �rst delineated, are designed to be homogeneous with respect

to population characteristics, economic status, and living conditions. The latter consideration is

our main interest in using this level of aggregation (relative to blocks or block-groups), as census

tracts are more likely to contain some notion of communities of interest.

An important consideration in the application of RPI is how to handle tracts with di¤erent

density. The equal representation constraint � districting plans must have the same number of

individuals in each district up to integer rounding �is predicated on individuals, not tracts. Our

algorithm, described below, addresses this issue by allowing one to divide tracts into arbitrarily

small units. There is an important trade-o¤ between computational burden and the variance in

population across districts, a burden that lessens with technological progress.

For ease of implementation, we have chosen not to split any tracts. As a robustness check, we

split tracts of small states into 4 smaller parts and assigned them to the same longitude and altered

their latitude by 0.001 degrees. In all cases, accuracy (and computing time) were substantially

increased with little e¤ect on the RPI.

To calculate the RPI for each state, we begin with the numerator of the index:
P
v2V

P
i;j2v(dij)

2;

where i and j are population centroids of tracts and v are voting districts. We weight the total

distances by the population density of each tract. An identical calculation is performed for the

denominator, but V is constructed by our power diagram algorithm.

The empirical results we obtain on the compactness of districting plans are displayed in Table

1. The �rst column list each state, the second provides the relative proximity index, the third and

fourth give the maximum deviation from equal partitions in the actual data and that resulting

from our algorithm �an indication of the degree to which the equal size constraint holds. The �nal

columns report the results from a bootstrapping technique which we describe below. It is important

to realize that for every state, the elements of our partitions are more balanced than what appears

19For roughly 5,000 census tracts, information on congressional district was not provided. In these cases, we
mapped the coordinates of the centroid of the tract and manually keypunched the congressional district to which it
belonged.
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in the actual districting plans. Further, the largest deviation from equal partitions in the actual

data (Florida 0.46) is substantially larger than our largest deviation (California 0.22).

Table 1 illustrates that the �ve states with the most compact districting plans are Idaho,

Washington, Arkansas, Mississippi, and New Hampshire. The �ve least compact states are Idaho,

Nebraska, Arkansas, Mississippi, and Minnesota. The �ve least compact states are Tennessee,

Texas, New York, Massachusetts, and New Jersey. The districting plan that solves the minimum

partitioning problem is more than forty percent more compact than the typical districting plan. The

rank correlation between the relative proximity index and the most popular indices of compactness,

dispersion and perimeter, is -.22 and -.06, respectively.

Axiom III ensures that the RPI can be compared across states, but it does not guarantee that

the distribution of RPI values across states are the same. It is entirely plausible that Texas �nds

it �easier�(a lower percentile of the distribution of RPI values from feasible partitions) to obtain

a given value of RPI than say, Florida. Thus, gleaning an understanding of how �sensitive�RPI

values are for a given state is di¢ cult.

To try and address this issue, we calculated 200 RPI values for each state by randomly generating

starting values for the algorithm. Columns 5 and 6 in Table 1 report the means and associated

standard deviations from this process. The �nal column reports what percentile in the distribution

our original RPI value lies, if the distribution of RPI values is assumed to be normal. In all but

one case, our original estimates are higher than the mean of the simulated distribution and in

most cases, under the normality assumption, we are at the far extreme of the right tail of the

distribution. There are four notable exceptions: Oklahoma, Oregon, Rhode Island, and Wisconsin.

In these states, our estimate of RPI is at the median or below in the simulated distribution. This

is likely due to the fact that the current partitions of these states generate starting values that are

highly non-optimal. To obtain maximal compactness in these states, a signi�cant restructuring is

likely needed.

To understand what state demographics are correlated with compactness, we estimate a state-

level OLS regression where the dependent variable is the RPI and the independent variables are

percent black, percent Asian, percent Hispanic, population density, di¤erence in presidential vote

shares between Democrats and Republicans, and whether or not the state is required to submit

their districting plans to the Department of Justice under the preclearance provision of section 5

of the Voting Rights Act. States which are more compact tend to be states with a larger share of

blacks and a larger di¤erence between the percent who vote Republican and Democrat. The latter

is intuitive: states with more to gain from altering the design of political districts tend to do it

more. Whether or not a state is forced to submit their districting plans is also highly correlated

with compactness. Consistent with Axiom II, RPI is uncorrelated with population density.

Beyond the technical considerations, perhaps the best evidence in favor of our approach can be

illustrated visually. Figures 3-11 present side-by-side comparisons of congressional district maps

for actual districting plans and those obtained from our algorithm.20 Figures 3 and 4 illustrate this

20A complete set of maps are available at http://www.economics.harvard.edu/faculty/fryer/fryer.html
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comparison for the least and most compact states, Tennessee and Idaho, respectively. Tennessee,

under the current districting plan, resembles the salamander shaped districts drawn by Eldridge

Gerry they gave rise to name �gerrymandering.�Under the algorithm, however, Tennessee is trans-

formed into a neat set of convex polygons. Idaho is at the other extreme. Because it need only

cut the state into two equal parts, the existing cut and our preferred cut are very similar to one

another. Further, our partition provides a more equitable distribution of voters across the districts,

which explains why the calculate RPI is slightly less than one.

These �gures illustrate 3 key points. First, the geometric properties discussed above (the

perpendicular and concurrent line lemmas and the convexity of political districts) are immediately

apparent. Second, those states which rank relatively high (resp. low) in terms of the RPI appear to

quite di¤erent (resp. similar) to the partition resulting from our algorithm. Third, �gures 5 and 8

(Hawaii and Nevada), suggest that communities of interest are an important consideration. In the

actual plans, Honolulu and Las Vegas are their own districts while the rest of the state is contained

in the other. The issues faced by residents of the outer islands might well be more similar than

those of residents in Honolulu. This serves to highlight why compactness is only one factor which

weighs on the redistricting question. RPI in its current implementation ignores this consideration.

An RPI with a more general notion of distance or carefully selected starting values for the power

diagram can address this issue.

5 Election Counterfactuals

Thus far, we have derived an index of compactness, shown how one implements the index, and pro-

vided some basic facts about the most and least compact districting plans and what correlates with

these plans. We conclude our analysis with some suggestive evidence on the impact of maximally

compact districting plans on election outcomes in four large states.

In winner-take-all election contests, such as elections for representatives for the U.S. Congress

and for electoral votes for the U.S. Presidency, the winner of a contest is determined by which

candidate receives the plurality of the votes. In most of these cases, only the top two parties need

to be considered, yielding an easy condition for an election win in a district.

Assuming there are n districts, labeled i 2 [1; :::; n]; let �i denote the proportion of the two-
party vote received by the candidate from the �rst party (in examples to follow, the Democratic

Party). The candidate�s victory can then be expressed as si = wiI(�i > 1
2); where wi denotes

how many seats are determined by the vote; 1 for single-member districts, or 3 or more for the

Electoral College, for example. Two important summary statistics are the average district vote,

� = 1
n

Pn
i=1 �i, and the seat share, S =

Pn
i=1 siPn
i=1 wi

.

Many other statistics can be generated using the vote and seat outcomes directly, but we are

particularly interested in partisan bias and responsiveness. Namely: Bias = 2E(Sj� = 0:5) � 1
estimates the deviation from the median share of seats if each side receives an identical average

district vote; Responsiveness = dS
d� j� estimates how a small shift in the average district vote would
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translate into a shift in the share of seats. This estimate is taken either at the observed average

district vote or the median vote.

5.1 Data and Statistical Framework

We use voter tabulation district (VTD) level election return data from US elections of the 105th and

106th congress for four large states; California, New York, Pennsylvania, and Texas. These states

were chosen because of their large number of congressional districts (roughly 30 or greater) and the

availability of vote shares by VTD. There are approximately 300 VTDs in a typical congressional

district, though there is substantial variation. In our data, for instance, California has 7,000 VTDs

for 50 districts; Texas has 8,000 for 30. Pennsylvania has 9,000 for 20, and New York contains

13,000 for 30 districts.

The intuition behind our approach is straightforward. Consider �gure 9, which depicts the

existing districting plan of New York and the plan derived from our algorithm. To �x ideas,

concentrate on the western portions of the state. There are roughly 433 VTDs in each congressional

district in New York. Suppose an election takes place. Currently, a congressional representative is

chosen by aggregating the votes from the VTDs within each district. In �gure 9, this amounts to

adding votes from roughly 433 voting centers in districts 27 through 31. Now, suppose we want

to estimate how these representatives will change if the districting plan were drawn to maximize

compactness. To do this, we simply take note of which VTDs are in the new partitions and aggregate

within each new district. In short, we disaggregate down to the VTD level, take note of the new

districting lines, and then aggregate up taking these boundaries into account. As before, the winner

of the new districts (in Figure 9 this now amounts to district 4, 6, 8, and 17) is determined by

aggregating the votes from VTDs.

There are a few complications. First, we need to assign candidates to the new districts in a

reasonable manner. Second, we need to take into account the results of previous elections and

whether or not the candidate is an incumbent � as both of these factors weigh heavily on the

prediction of future elections. Third, we need to think about how to get standard errors on our

estimates.

To formalize the intuition above, we employ techniques from elementary Bayesian statistics

developed in Gelman and King (1994). We provide a terse synopsis of their approach below.21 The

crux of the Gelman-King method is a linear model with two distinct error components of the form:

�i = X� + i + "i: (2)

The vector X consists of an intercept term, results from the previous election, and an incumbent

dummy.

To derive precise predictions in this framework, more structure has to be placed on the error

terms. Let i � N(0; �2) represent the systematic error component; an expression of the unobserved

21For more details, see Gelman and King (1994).

17



variables that took place before the election campaign began and would be identical if the election

were to be re-run again. This might include the result in the previous election, the race of the

candidates, or a relevant change in election law. The unpredictability of the behavior of voters is

also a source of systematic error.

The second source of error is a random component which can be explained by random events

during the election, such as the weather on election day or the reaction of the public to an unin-

tentional ga¤e. Let "i � N(0; �2").

There are two key assumptions in the Gelman-King Method. First, errors are expressed in

terms of two parameters: �2, the sum of the individual variances �2 and �
2
", and �, the proportion

of the total variance attributed to the systematic component; � = �2=(�
2
 + �2"). Second, the

counterfactual assumes that the regrouping of voters into new districts will not have a systematic

e¤ect on voting behavior.

Estimating � and �2

In practice, a districting map is constant over a series of elections. Thus, � and �2 are found

by taking the mean of individual estimators from each year. In each year, �2 is the variance of the

random error term in equation (2) and �, the fraction of the error attributed to systematic error, is

estimated by including the results of the previous election as an explanatory variable in the current

one. By calculating this for each election that did not follow a redistricting (i.e. where the electoral

map is identical), and taking the mean, we have an estimator for �.22

Generating Hypothetical Future Elections

To predict the properties of a subsequent election using the same districting plan, a series of

hypothetical elections are simulated using the estimates for � and �2. A new set of explanatory

variables X is used to demonstrate the conditions at the election. Since no information can be

derived about the nature of the systematic error component beforehand, one error term is used,

! = +", with variance �2. Thus, a single hypothetical election is then generated by drawing from

�hyp = Xhyp� + �hyp + ! (3)

where � is the posterior distribution, with mean b� = (X 0X)�1X
0
� and (with a normality assump-

tion) variance �� = �2(X 0X)�1. The � term is used to produce hypothetical elections whose

average district vote is desired to be di¤erent from the original. Integrating out the conditional

parameters � and  one obtains the marginal distribution:

�hypj� � N(�v + (Xhyp � �X)b� + �; (Xhyp � �X)��(Xhyp � �X)02)�2I):
To evaluate the election system, let Xhyp = X; to evaluate under counterfactual conditions, set

Xhyp to the desired explanatory variables.

22 Ideally, one would have historical votes for many years to tease out the systematic error component. We have
only two years of such data.
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Comparing Districting Plans

With the above statistical model in hand, we can predict elections under di¤erent partitions of

a state into voting districts. The procedure is as follows. First, we estimate the model in equation

(2). Second, having generated a new map through our algorithm, we determine the values for the

explanatory variables for each district, either by aggregating and averaging the previous values in

each precinct or by making sensible predictions for their value (e.g. incumbency). In terms of

vote shares, we simply aggregate the VTDs in the new partitions. For incumbency, we assign each

incumbent to the latitude and longitude of the centroid of their district. Under the new districting

plan, if there is one such incumbent per district, s/he becomes the incumbent. In the rare cases

where there was more than one incumbent assigned to a district under a new districting plan, we

break the tie by choosing the incumbent closest to the resulting centroid and replacing another

district with the other incumbent to keep the numbers constant. Finally, with our new map we

simulate the model 1000 times; deriving the relevant parameters is straightforward.

5.2 Analyzing Seat-Vote Curves

Using the methodology described above, �gures 13-16 provide seat-vote curves for California, New

York, Pennsylvania, and Texas under each state�s actual districting plan and the plan that maxi-

mizes its compactness. The vertical axis depicts the proportion of seats won by democrats. The

horizontal axis depicts the share of votes that the democrats earned in the election. Each �gure

reports two interesting quantities: Vote is the average district vote the Democrats received in the

election; and Seats report the fraction of seats the Democrats received in the election (not the

hypothetical seat share). The dark line represents our estimate of the seat vote curve, the two

parallel lines around it are 95% con�dence intervals. Visually, one can see that there is a marked

di¤erence between the seat-vote curves estimate, from the actual data and those estimated from

the partition developed by our algorithm, in California and New York. The slope of the curve is

signi�cantly steeper in both these states. Texas and Pennsylvania are also slightly steeper, but the

di¤erence is much less dramatic.

To get a better sense of the magnitudes involved, table 2 presents our estimates of Bias and

Responsiveness for the actual partition of our four states and those gleaned from the algorithm. We

also report the t-statistic on the di¤erence between them. Under maximally compact districting,

measures of bias are slightly smaller in all states except Pennsylvania, though none of the di¤erences

are statistically signi�cant. In terms of responsiveness, however, there are large and statistically

signi�cant di¤erences between the existing partitions and those that are maximally compact. New

York, in particular, has a �ve fold increase; from .482 to 2.51. In other words, under the current

partition, a 1% increase in vote share for Democrats results in a .482% increase in seats under the

current system. When maximally compact, however, a 1% increase results in a 2.51% increase. The

next largest change is California - increasing from 1.086 to 1.731. Pennsylvania and Texas show

smaller increases, which are statistically signi�cant at the 10% level.
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6 Concluding Remarks

There will be continued debate about the design of districting plans. We have developed a simple

but principled measure of compactness. Our measure can be used to compare districting plans

across state and time, a feature not found in existing measures, and our algorithm provides a way

of approximating the most compact plan. Further, the impact a maximally compact districting plan

can have on the responsive of votes is encouraging. These are �rst steps toward a more scienti�c

understanding of districting plans and their e¤ects. Extensions and generalizations abound.

Perhaps the most obvious extension is to consider higher dimensional spaces, generalized dis-

tance functions, and communities of interest. Aurenhammer and Klein (2000) provide a com-

prehensive survey of Voronoi Diagrams and how to incorporate generalized notions of distance,

including p-norms, convex and �airlift�distances, and non-planar spaces. These extensions are not

only mathematically interesting and elegant, they have real world content. Consider the following

thought experiment. Suppose there is a city on a hill.23 On the West side is mild, long incline

toward the rest of the city, which is in a plane. On the East side is a steep cli¤, either impassable

or with just a narrow, winding road that very few people use. While the next residential center

to the East is much closer to the hilltop on a horizontal plane, it is much further on all sorts of

distances that we think might matter: transportation time, intensity of social interactions, sets of

shared local public goods and common interests, etc. Thus, for all practical purposes, one probably

wants to include the hilltop in an Eastern district rather than a Western one. More general notions

of distance can handle this. A similar situation arises when there is a �natural�boundary (river or

highway, e.g.) that e¤ectively segregates / reduces communication between two population centers

that are geographically very close. Conversely, there could be something (e.g., a tunnel or subway)

that makes two non-connected regions e¤ectively close to each other. Or, there may be other notions

of communities and shared interest that lend themselves to a natural clustering. It is imperative

to note that the derivation of our index only assumed a general metric space �many of these ideas

�t squarely within our framework. The empirical application of the index, however, required us to

only consider euclidean distances. The challenge ahead is to incorporate more general notions of

distance into an empirically tractable algorithm.
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7 Appendix A: Technical Proofs

7.1 Proof of Theorem 1

Proof of Theorem 1, Part 1:
That the RPI satis�es the three axioms follows from �ve simple lemmas which we now state

and prove.

Lemma 1 The Relative Proximity Index satis�es Anonymity.

Proof. Consider a partition V of state S and an associated compactness index c (V; S) : Now

consider a bijection h : S ! S: X
v2VS

X
i2v

X
j2v

(dij)
2

is unchanged since h is a bijection and hence there are the same number of point in each element

of V and they are at the same points. For identical reasons the denominator of the RPI does not

change, and hence c (V; S) = ch (V; S) for any bijection h:

Lemma 2 The Relative Proximity Index satis�es Clustering.

Proof. Let there be two partitions, V 1S and V
2
S0 such thatX

v2V 1S

X
i2v

X
j2v

(dij)
2 >

X
v2V 2

S0

X
i2v

X
j2v

(dij)
2 (4)

Clustering requires:

c(V 1S ; S) > c(V 2S ; S)

Suppose, by way of contradiction, that (4) holds, and

c(V1; S) < c(V2; S): (5)

That is P
v2V 1S

P
i2v
P
j2v (dij)

2

minV 2VS
P
v2V

P
i2v
P
j2v (dij)

2 <

P
v2V 2S

P
i2v
P
j2v (dij)

2

minV 2VS
P
v2V

P
i2v
P
j2v (dij)

2 (6)

The denominators are identical and hence the supposition requires:X
v2V 1S

X
i2v

X
j2v

(dij)
2 <

X
v2V 2

S0

X
i2v

X
j2v

(dij)
2 ; (7)

a contradiction.

Lemma 3 The Relative Proximity Index satis�es Density Independence.
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Proof. Consider S and bS; with jSj and ��� bS��� respectively with bS a �-replica of S: We need to show
that RPI (V; S) = RPI(V; bS) for all V 2 VS ; V 2 VŜ : That isP

v2VS
P
i2v
P
j2v (dij)

2

minV 2VS
P
v2V

P
i2v
P
j2v (dij)

2 =

P
v2VŜ

P
i2v
P
j2v (dij)

2

minV 2VŜ
P
v2V

P
i2v
P
j2v (dij)

2 ;

for all V 2 VS ; V 2 VŜ : By the de�nition of a �-replica, the right-hand side of the above equation
is simply

�
P
v2VS

P
i2v
P
j2v (dij)

2

�minV 2VS
P
v2V

P
i2v
P
j2v (dij)

2 ;

which is clearly equal to the left-hand side for any partition.

Lemma 4 The Relative Proximity Index satis�es Scale independence.

Proof. Scale Independence requires that for two states, S and bS with djk = �djk; for all j; k 2 S; bS:
Then c(V; S) = c(V; bS); for all V 2 VS ; V 2 VŜ : That isP

v2VS
P
i2v
P
j2v (dij)

2

minV 2VS
P
v2V

P
i2v
P
j2v (dij)

2 =

P
v2VŜ

P
i2v
P
j2v (dij)

2

minV 2VS
P
v2V

P
i2v
P
j2v (dij)

2 ;

for all V 2 VS ; V 2 VŜ : Scale independence means that the right-hand side of the above equation
is simply P

v2VS
P
i2v
P
j2v (�dij)

2

minV 2VS
P
v2V

P
i2v
P
j2v (�dij)

2 =
�2
P
v2VS

P
i2v
P
j2v (dij)

2

�2minV 2VS
P
v2V

P
i2v
P
j2v d

2
ij

:

which is clearly equal to the left-hand side for any partition.

Lemma 5 The Relative Proximity Index satis�es Number of Districts independence.

Proof. Follows immediately from the de�nition of independence with respect to number of districts.

We can now prove the second part of Theorem 1. It is proved by transforming a given state so

that it can be compared to another state. Anonymity and Independence ensure that this can be

done in a way which does not alter the compactness index, and Clustering then allows a comparison

of two districting plans to be made based on their total intra-cluster pairwise distances.

Proof of Theorem 1, Part 2.
Proof. From part 1 we have RPI (V; Sm) > RPI

�
V̂ ; Sn

�
) c (V; Sm) > c

�
V̂ ; Sn

�
; for any m;n:

Suppose part 2 is not true. This implies that

c (V; Sm) > c
�
V̂ ; Sn

�
and RPI (V; Sm) < RPI

�
V̂ ; Sn

�
; (8)

or

c (V; Sm) < c
�
V̂ ; Sn

�
and RPI (V; Sm) > RPI

�
V̂ ; Sn

�
;
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for some m;n:

If Sm = Sn then the argument is straightforward. Begin with the �rst pair of inequalities.

Note that Equality implies that �ij = � for all i; j and that symmetry of g implies combined with

Equality implies that g is additively separable in its arguments. Then by Equality and Clustering

we have X
v2VSm

X
i2v

X
j2v

(dij)
2 >

X
v2V̂Sn

X
i2v

X
j2v

(dij)
2 =) c (V; Sm) > c

�
V̂ ; Sn

�
;

since RPI (V; Sm) < RPI
�
V̂ ; Sn

�
and

Sm = Sn ) min
V 2VSm

X
v2VSm

X
i2v

X
j2v

(dij)
2 = min

V 2VSn

X
v2V̂Sn

X
i2v

X
j2v

(dij)
2 ;

we have X
v2VSm

X
i2v

X
j2v

(dij)
2 <

X
v2V̂Sn

X
i2v

X
j2v

(dij)
2 :

By Clustering this implies that c (V; Sm) < c
�
V̂ ; Sn

�
�a contradiction. Identical reasoning rules

out the case where

c (V; Sm) < c
�
V̂ ; Sn

�
and RPI (V; Sm) > RPI

�
V̂ ; Sn

�
:

Now consider the case in which Sm 6= Sn; and suppose that Sm contains m districts and Sn

contains n districts. Consider the following transformation of state n: First, make a ��replica of
Sn and a ��replica of Sm so that the number of voters is the same as in state the transformed Sm:
Note that c (V; Sm) and RPI (V; Sm) are unchanged due to Independence. In a slight abuse of

notation we will continue to use V and Sm in reference to the ��replicated state. Second, expand
or contract the state in the sense that the distance between any two points, dij say, in state Sn is

�dij in state Sn0 : Note that any partition of state n is a well de�ned partition of state Sn0 as it

contains the same voters, scaled by �: Choose � such that

� =

jnjminV 2VmSn
X
v2V̂Sn

X
i2v

X
j2v

(dij)
2

� jmjminV 2VSm
X
v2VSm

X
i2v

X
j2v

(dij)
2
;

where jnj and jmj are the number of voters in states Sn and Sm respectively, and the m superscript
denotes a partition into m elements. Note that

min
V 2VSm

X
v2VSm

X
i2v

X
j2v

(dij)
2 = min

V 2VmSn0

X
v2VSn0

X
i2v

X
j2v

(dij)
2 : (9)
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Third, select a feasible partition of Sn0 with m elements, and denote this partition V̂
0: SupposeX

v2V̂ 0Sn0

X
i2v

X
j2v

(dij)
2 = �

X
v2V̂Sn

X
i2v

X
j2v

(dij)
2 ;

and that

min
V 2VmSn

X
v2V̂Sn

X
i2v

X
j2v

f (dij) = � min
V 2VnSn

X
v2V̂Sn

X
i2v

X
j2v

f (dij) :

Hence X
v2V̂ 0Sn0

X
i2v

X
j2v

(dij)
2

minV 2VmSn

X
v2V̂Sn

X
i2v

X
j2v

(dij)
2
=
�

�

X
v2V̂Sn

X
i2v

X
j2v

(dij)
2

minV 2VnSn

X
v2V̂Sn

X
i2v

X
j2v

(dij)
2

By Independence

c
�
V̂ 0; Sn0

�
=
�

�
c
�
V̂ ; Sn

�
and

RPI
�
V̂ 0; Sn0

�
=
�

�
RPI

�
V̂ ; Sn

�
:

From (8)

c (V; Sm) >
�

�
c
�
V̂ 0; Sn0

�
and RPI (V; Sm) <

�

�
RPI

�
V̂ 0; Sn0

�
: (10)

But since Sm and Sn0 have the same number of voters, the same number of districts, and (9)

holds, it follows that (10) implies that c violates Clustering.

Identical reasoning rules out the case where

c (V; Sm) < c
�
V̂ ; Sn

�
and RPI (V; Sm) > RPI

�
V̂ ; Sn

�
;

and hence the proof is complete.

7.2 Proof of Theorem 2

Let districts of state S be denoted D1; : : : ; Dd. A districting plan is feasible if jDij = n for all

i 2 f1; : : : ; dg. The set of feasible districtings is V. Let the centroid of district Di be mi, so

mi =
1
n

P
x2Di (x). De�ne the functions:

 (Di) =
X
x2Di

kx�mik2, 	(D1; : : : ; Dd) =

dX
i=1

 (Di)
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We say that districting is optimally compact if it minimizes 	(D1; : : : ; Dd) over all (D1; : : : ; Dd) 2
V. For z1; : : : ; zd 2 R2, let:

 zi(Di) =
X
x2Di

kx� zik2, 	z1;:::;zd(Di) =

dX
i=1

 zi(Di)

A Power Diagram with sites z1; : : : ; zd is a partition of R2 into districts D1; : : : ; Dd such that for
�xed constants �1; : : : ; �d 2 R,

Di =

�
q 2 R2 : i = argmin

j

�
kq � zjk2 � �j

��
It is clear that a power diagram is described by its edges and the fact that if x is on the same side as

Di of any complete set of linear separators between Di and other districts then x 2 Di, and other-
wise not. The edges of Di are described by the set of q 2 R2 such that kq�zik2��i = kq�zik2��j ,
or kq � zik2 � kq � zik2 = �i � �j .

Lemma 6 	(D1; : : : ; Dd) is proportional to the RPI for (D1; : : : ; Dd) 2 V, so minimizing one is
equivalent to minimizing the other. Speci�cally,

dX
i=1

X
x2Di

X
y2Di

kx� yk2 = 2n
dX
i=1

X
x2Di

kx�mik2 :
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Proof of Lemma 6.

dX
i=1

X
x2Di

X
y2Di

kx� yk2 =
dX
i=1

X
x2Di

X
y2Di

�
kxk2 + kyk2 � 2x � y

�

=
dX
i=1

X
x2Di

0@nkxk2 � 2nmi � x+
X
y2Di

kyk2
1A

=

dX
i=1

0@X
x2Di

�
nkxk2 � 2nmi � x

�
+ n

X
y2Di

kyk2
1A

=

dX
i=1

0@X
x2Di

�
2nkxk2 � 2nmi � x

�1A
=

dX
i=1

0@2n X
x2Di

�
kxk2 �mi � x

�1A
=

dX
i=1

2n

0@X
x2Di

�
kxk2

�
� nkmik2

1A
=

dX
i=1

0@2n
0@X
x2Di

�
kxk2 � 2mi � x+ kmik2

�1A1A
=

dX
i=1

0@2n
0@X
x2Di

kx�mik2
1A1A

= 2n
dX
i=1

X
x2Di

kx�mik2

Lemma 7 For all (D1; : : : ; Dd) 2 V,

(m1; : : : ;md) = arg min
(z1;:::;zd)

	z1;:::;zd(D1; : : : ; Dd)

Proof of Lemma 7. It su¢ ces to show that substituting mi for zi minimizes the expression on

the right. Its �rst order condition with respect to the zi is:

8Di, 2
X
x2Di

(x� zi) = 0 ) zi =
1

n

X
x2Di

x = mi

Lemma 8 In an optimally compact districting, every pair of adjacent districts is separated by a
line perpendicular to a line connecting their centroids.
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Proof of Lemma 8. Let (D1; : : : ; Dd) be optimally compact. Without loss of generality we

can prove the lemma for districts D1 and D2. By isometry we can assume that m1 = (0; 0) and

m2 = (�; 0). Pick v1 = (x1; y1) 2 D1 and v2 = (x2; y2) 2 D2. Let D0
1 = D1 [ fv2g � fv1g and

D0
2 = D2 [ fv1g � fv2g. By the optimality of (D1; : : : ; Dd) and the optimality lemma,

 (D1) +  (D2) �  (D0
1) +  (D

0
2) �  m1

(D0
1) +  m2

(D0
2)

) kv1 �m1k2 + kv2 �m2k2 � kv1 �m2k2 + kv2 �m1k2

) � 2v1 �m1 � 2v2 �m2 � �2v1 �m2 � 2v2 �m1

) (v2 � v1) � (m1 �m2) � 0

) (x2 � x1) � (��) + (y2 � y1) � (0) � 0

) x1 � x2

Since v1 and v2 are arbitrary, we can pick them such that v1 is the point in D1 with greatest

x1 and v2 is the point in D2 with least x2, showing that there is a line of the form x = c for

c 2 R separating the two districts. Isometrics preserve perpendicularity, so applying one moving
m1 and m2 away from (0; 0) and (�; 0) leaves the separator between D1 and D2 perpendicular to

the segment connecting m1 and m2.

Lemma 9 Let (D1; : : : ; Dd) be optimal. For every three districts, there exist three concurrent lines
each of which separates two of the three districts, with one line separating each pair of districts.

Proof of Lemma 9. Without loss of generality we prove this for the three districts D1, D2,

and D3. By the Straight Line lemma, there exist linear separators between D1 and D2, D2 and

D3, and D3 and D1 perpendicular to the lines connecting their centroids. We can characterize

these lines by the equations kr � m1k2 � kr � m2k2 = �1;2, ks � m2k2 � ks � m3k2 = �2;3, and

kt�m3k2 � kt�m1k2 = �3;1, for free variables r; s; t 2 R2. If the lines are concurrent, that means
there exist q 2 R2 satisfying all three equations. Adding them together gives �1;2+�2;3+�3;1 = 0.

Therefore, if the lines are concurrent then for all r, s, and t on the lines,

kr �m1k2 � kr �m2k2 + ks�m2k2 � ks�m3k2 + kt�m3k2 � kt�m1k2 = 0

Assume there is no choice for �1;2, �2;3, and �3;1 such that the lines are concurrent. Then, for all

r, s, and t on the three edges,

kr �m1k2 � kr �m2k2 + ks�m2k2 � ks�m3k2 + kt�m3k2 � kt�m1k2 6= 0

If any one of �1;2, �2;3, or �3;1 induces an optimal separator at both the values �1 and �2 in R2,
then it must also at the value ��1 + (1 � �)�2 for � 2 [0; 1]. So the expression above is either
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strictly greater or strictly less than 0 for all permissible values of r, s, and t. We assume without

loss of generality that it is greater. Then, there exist v1 2 D1, v2 2 D2, and v3 2 D3 such that

when substituted for r, s, and t, respectively, the above expression reaches a positive in�mum. The

expression cannot be at an in�mum unless the extreme values of r, s, and t are speci�cally chosen

to be in D1, D2, and D3, respectively, otherwise kr � m1k2 � kr � m2k2, for example, could be
decreased by moving r in the direction m1 �m2 while still separating D1 and D2. Therefore,

kv1 �m1k2 � kv1 �m2k2 + kv2 �m2k2 � kv2 �m3k2 + kv3 �m3k2 � kv3 �m1k2 > 0

, kv1 �m1k2 + kv2 �m2k2 + kv3 �m3k2 > kv1 �m2k2 + kv2 �m3k2 + kv3 �m1k2

Let D0
1 = D1 [ fv3g � fv1g, D0

2 = D2 [ fv1g � fv2g, and D0
3 = D3 [ fv2g � fv3g. Then,

 (D1) +  (D2) +  (D3) >  m1
(D0

1) +  m2
(D0

2) +  m3
(D0

3) >  (D0
1) +  (D

0
2) +  (D

0
3)

This contradicts the optimality of D1; : : : ; Dd, and the lemma follows.

Proof of Theorem 2. We prove that any optimal districting is a power diagram with cites

equal to their centroids, m1; : : : ;md. For any pair of districts Di and Dj , we can pick �i;j such

that kq�mik2 � kq�mjk2 = �i;j is a linear separator between the districts, and if we add a third

district Dj , we can similarly pick �j;k and �k;i such that the districting lines are concurrent, or

�i;j + �j;k + �k;i = 0. Note that �a;b = ��b;a. We prove that there exist constants �1; : : : ; �d such
that �i � �j = �i;j by induction. This is obviously true when n = 2. Assume it is true for districts

D1; : : : ; Dk. For i; j < k + 1,

�i;k+1 = �i;j + �j;k+1 = �i � �j + �j;k+1

) �i � �i;k+1 = �j � �j;k+1

Thus, �i��i;k+1 is constant over choice of i, call the constant �k+1. That makes �i;k+1 = �i��k+1
for any i, and the induction is complete. Clearly any x 2 Di is on the mi side of a boundary line

between Di and another district, so it follows that optimal districtings are power diagrams.

8 Appendix B: A Guide to Programs

All programs to compute feasible districtings minimizing the RPI are written for

MATLAB. There are two main programs, Main.m and Compute_Index.m, and support pro-

grams District.m, getRandGP.m, Psi.m, Weighted_Assign.m, Weighted_FirstTryAssign.m, and

Weighted_PowerDiagram.m. We brie�y describe each below.

Main.m and Compute_Index.m are both shell programs which call District.m, the actual al-
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gorithm, and store its output in text �les. Typing Compute_Index(�lename, Iterations) reads

demographic data about a state from a text �le, say �indiana.out�, and creates a new districting

Iterations times. The �le should have the latitudes and longitudes of the census tracts of the states

in columns two and three (respectively), the FIPS code of the state repeated in every entry of col-

umn four, the current districts of all census tracts in column �ve, and the populations of all census

tracts in column six. Compute_Index.m generates two output �les. The �rst, in this case �indi-

ana.out.output�contains the latitudes and longitudes of the census tracts in the �rst two columns,

and their new district numbers in the subsequent columns. Each column after the second repre-

sents a di¤erent iteration of the algorithm. The second output �le, in this case �indiana.out.stats�,

contains statistics from each iteration of the algorithm on a di¤erent row. The �rst column has the

RPI�s, the second has the accuracy of the districting, and the third has the accuracy of the current

districting. Accuracy is measured:

max
i2f1;:::;dg

���� jDij � nn

����
Compute_Index.m has the following hard-coded parameters which are passed to District.m:

outside_tol_ratio, tol_ratio, outside_bail, and bail. tol_ratio and bail are the stopping criteria for

the sub-routine Weighted_Assign.m which creates the best districting around randomly-initiated

sites. If the accuracy falls below tol_ratio or the number of iterations of the gradient-descent pro-

cedure rises above bail, the algorithm terminates. Likewise, outside_tol_ratio and outside_bail

are the stopping criteria for the larger districting algorithm. If the accuracy of the districting falls

below outside_tol_ratio or the number of times the sites are moved rises above outside_bail, the

algorithm terminates. The set values for outside_tol_ratio, tol_ratio, outside_bail, and bail are

.9 times the real accuracy, whichever is the lesser between .9 times the real accuracy or .05, 35

times the number of districts in the state, and 35 times the number of districts in the state.

Main(�lename) reads a list of states and iterations for each state to be run by Compute_Index.

The �le is of the form:

states, bootstraps

alabama 4

arizona 7

arkansas 3

california 1

Names of states and numbers of iterations are separates by tabs. If �arizona� is written in this

�le, Compute_Index will open a �le called �arizona.out�. Main.m creates an additional �le called

index.txt which lists the FIPS code for every state next to the best RPI the algorithm has found

for it such that the accuracy for the districting corresponding to that RPI is better than the state�s

current accuracy.

This procedure yields an RPI > 1 and an accuracy better than the current accuracy nearly all

of the time for all states other than Connecticut, Idaho, Minnesota, and Nebraska, which already
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are well-districted and usually require quite a few bootstraps to improve on the current districting.
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Figure 1: A Simple Example
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Figure 2: Good and Bad Generator Points



Figure 3: Tennessee 106th Congress Districting Plans, Actual v. Algorithm



Figure 4: Idaho 106th Congress Districting Plans, Actual v. Algorithm



Figure 5: Hawaii 106th Congress Districting Plans, Actual v. Algorithm



Figure 6: Illinois 106th Congress Districting Plans, Actual v. Algorithm



Figure 7: Massachusetts 106th Congress Districting Plans, Actual v. Algorithm



Figure 8: Nevada 106th Congress Districting Plans, Actual v. Algorithm



Figure 9: New York 106th Congress Districting Plans, Actual v. Algorithm



Figure 10: Pennslyvania 106th Congress Districting Plans, Actual v. Algorithm



Figure11: Texas 106th Congress Districting Plans, Actual v. Algorithm



Figure 12: Florida 106th Congress Districting Plans, Actual v. Algorithm



Actual Maximally Compact

Figure 13: Seat-Vote Curves for California, Actual v. Maximally Compact



Figure 14: Seat-Vote Curves for New York, Actual v. Maximally Compact

Actual Maximally Compact



Figure 15: Seat-Vote Curves for Texas, Actual v. Maximally Compact

Actual Maximally Compact



Figure 16: Seat-Vote Curves for Pennsylvania, Actual v. Maximally Compact



State Name RPI
Max Deviation 

(Actual)
Max Deviation 
(Algorithm) Mean RPI

Standard Deviation 
RPI Percentile

Alabama 1.21 0.27 0.05 0.99 0.03 1.00
Arizona 1.34 0.20 0.15 1.27 0.04 0.97
Arkansas 1.08 0.14 0.05 0.78 0.01 1.00
California 1.49 0.17 0.04 0.96 0.03 1.00
Colorado 1.59 0.15 0.05 1.28 0.02 1.00
Connecticut 1.36 0.02 0.01 1.09 0.35 0.78
Florida 1.39 0.46 0.07 0.83 0.08 1.00
Georgia 1.24 0.14 0.09 0.90 0.01 1.00
Hawaii 1.59 0.09 0.04 1.48 0.02 1.00
Idaho 0.97 0.10 0.02 0.80 0.02 1.00
Illinois 1.43 0.29 0.11 0.98 0.07 1.00
Indiana 1.49 0.20 0.06 1.05 0.02 1.00
Iowa 1.38 0.06 0.05 1.29 0.01 1.00
Kansas 1.11 0.08 0.05 0.95 0.01 1.00
Kentucky 1.51 0.14 0.05 1.22 0.01 1.00
Louisiana 1.15 0.13 0.05 0.79 0.43 0.80
Maine 1.39 0.04 0.03 1.15 0.01 1.00
Maryland 1.52 0.22 0.04 1.25 0.02 1.00
Masschussetts 1.87 0.10 0.05 1.54 0.01 1.00
Michigan 1.24 0.13 0.04 0.99 0.02 1.00
Minnesota 1.05 0.16 0.05 0.90 0.02 1.00
Mississippi 1.02 0.18 0.05 0.87 0.01 1.00
Missouri 1.38 0.23 0.05 1.01 0.16 0.99
Nebraska 1.01 0.05 0.04 0.89 0.23 0.70
Nevada 1.38 0.08 0.05 1.19 0.01 1.00
New Hampshire 1.10 0.01 0.00 1.09 0.00 0.95
New Jersey 2.27 0.21 0.05 1.69 0.02 1.00
New Mexico 1.23 0.06 0.04 1.14 0.01 1.00
New York 1.83 0.21 0.10 1.45 0.45 0.80
North Carolina 1.33 0.28 0.04 1.15 0.09 0.97
Ohio 1.62 0.13 0.05 1.42 0.01 1.00
Oklahoma 1.24 0.09 0.05 1.42 0.36 0.31
Oregon 1.26 0.09 0.04 1.21 0.28 0.56
Pennsylvania 1.81 0.25 0.22 1.27 0.05 1.00
Rhode Island 1.18 0.03 0.02 1.18 0.01 0.55
South Carolina 1.22 0.21 0.04 1.27 0.02 0.00
Tennessee 2.91 0.25 0.04 2.59 0.04 1.00
Texas 1.90 0.30 0.22 1.24 0.07 1.00
Utah 1.46 0.06 0.04 1.40 0.01 1.00
Virginia 1.38 0.22 0.07 1.14 0.04 1.00
Washington 1.17 0.15 0.06 0.77 0.03 1.00
West Virginia 1.68 0.06 0.05 1.61 0.01 1.00
Wisconsin 1.40 0.11 0.08 1.22 0.58 0.62

Table 1: The Relative Proximity Index, 2000

Notes: RPI values were calculated using tract-level data from the 2000 Census. Max Deviation 1 minus 
the total population of the largest congressional district divided by the total population of the smallest 
congressional district. Mean RPI was calculated as the mean of 200 repititions of the RPI -- each having 
different starting values. 



State
Bias 
(Actual)

Bias 
(Algorithm)

t-statistic on 
Difference

Responsiveness 
(Actual)

Responsiveness 
(Algorithm)

t-statistic on 
Difference

California .028 .007 .469 1.086 1.731 -4.327**
(.010) (.045) (.069) (.132)

New York .103 .018 1.051 0.482 2.51 -6.540**
(.014) (.080) (.036) (.308)

Pennsylvania -0.0027 .031 -.363 1.138 1.562 -1.800*
(.021) (.076) (.128) (.198)

Texas .062 .039 .334 0.8872 1.305 -1.717*
(.024) (.064) (.103) (.221)

Table 2: Partisan Bias and Responsiveness, Actual versus Maximally Compact Districtings

Notes: Estimates are based on voter tabulation district level election return data for the 105th and 
106th congress. 




