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Abstract

Aside from the equilibrium that Hotelling (1931) displayed, his model of
non-renewable resources also contains a continuum of bubble equilibria. In
all the equilibria the price of the resource rises at the rate of interest. In a
bubble equilibrium, however, the consumption of the resource peters out, and
a positive fraction of the original stock continues to be traded forever. And
that may well be happening in the market for high-end Bordeaux wines.

1 Introduction

If an economy can sustain a rational bubble at all, then any durable good that is in
fixed supply is a potential candidate for a bubble. Non-renewable resources are such
durables; an inflating bubble on such goods cannot defeat itself by eliciting supply
that exceeds what asset holders are willing to hold.

The simplest model of non-renewable resources is that of Hotelling (1931). Aside
from the equilibrium that he defines, his model also contains a continuum of bubble
equilibria. This follows because in Hotelling’s world the price of the resource must
rise at the rate of interest even without the bubble, and so one can easily designate
a fraction of the resource as destined for eternal storage — all this does is to raise
the initial price of the resource. And that, more or less, is what Dasgupta and Heal
(1979, Ch. 8) show in a GE setting but with exogenous saving so that issues like
transversality conditions did not come up. Tirole (1985, sec. 7[b]) connects their
argument to the existence of bubbles, but only informally and a bit differently from
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the data, Orley Ashenfelter, Robert Bohr, Dennis Foley, Lu Han, Hiroyuki Kasahara, John Leahy,
Steven LeRoy, Robert Lucas, Alejandro Rodriguez, Manuel Santos, Chris Shipley, Larry Stone, Ivan
Werning and Michael Woodford for comments, and the NSF for support.

†New York University.
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Figure 1: The time series: The price of a bottle of the 1870 Lafite, in
year-2000 dollars

how we shall see it done here. The results are starker in Hotelling’s (1931) partial
equilibrium context, moreover, and they add value in ways we shall note as we go
along.

I then look at the market for vintage wines using original data, and they suggest
that bubbles exist on some top vintages such as the old red Bordeaux wines.1 The
reason for thinking that an 1870 Lafite, e.g., serves primarily as an investment, is that
there is very little evidence of its stock being consumed as time passes, but plenty
of evidence of continued active trading in the asset at auctions run by Christie’s,
Sotheby’s, etc..

Figure 1 shows the history of prices for a bottle of the 1870 Lafite, prices at
auction, prices in restaurants, and prices offered by dealers. The data for this wine
are incomplete as they are for all the wines in my sample, but the Figure describes
fairly well what the entire sample shows: Consumption occurs early, and later trans-
actions mainly reallocate assets. Consumption demand is typically met by dealers
and restaurants, and not by purchases at auction where the buyers are restaurants,
dealers and private collectors. The wine’s average rate of price increase is 5.29 percent
(auctions), 5.15 percent (restaurants) and 4.54 percent (dealers). The point of the

1Good surveys of the market for wine and for fine art are Ashenfelter and Graddy (2003) and
Burton and Jacobsen (1999).
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Figure 2: The cross section: April 2007 dealer prices per bottle for
various vintages

graph is that the red and green squares predominate in the early years of the wine’s
life, whereas the blue dots are spread out more evenly and predominate in the more
recent period. Dealers offered the 1870 Lafite for sale in the first few decades of its
life, and more recently it has shown up at many auctions. Moreover, the blue dots
represent actual transactions, whereas the red and green dots indicate that the wine
was offered for sale on a wine list, but not necessarily sold.2 This pattern is typical
of the wines in the sample, and similar graphs are reported in the Appendix.

The cross section evidence is just as dramatic. Figure 2 shows prices per bottle at
which the Antique Wine Co., a wine dealer, offered various vintages of six Bordeaux
wines. The low (2.2 percent per year ) cross-section return to age reflects the fact that
young wines have recently been appreciating faster than old wines, arguably because
of the higher convenience yield that the storage of older wines entails, especially to
a restaurant when it displays the old vintage on its wine list. A bottle of the 1811
Lafite costs $60,000.3

2In particular, the cluster of red dots in the years 2003-7 represents the sale price at the same
(Chicago’s Charlie Trotter’s) restaurant where the bottle has been offered for sale (but presumably
has not sold). See the Appendix table for an account of all the data plotted in Figure 1.

3Not in the data is the 1787 Lafite for which the record price was set at 1985 at a Christies auction
by Malcolm Forbes, the late publisher, when he paid US$156,450 for it. Analysis then showed that
the bottle was at least half full of the 1962 vintage of the same wine.
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Plan of paper.–Section 2 presents the partial equilibrium, one-capital “Hotelling”
version which also contains the main argument. The strategy is to present the simplest
case first, and then do several robustness checks. Section 3 tests for the presence of
bubbles using data on vintage wines. Section 4 describes a general-equilibrium version
of the one-capital case showing when a rational bubble is feasible. The Appendix
describes the data, extends the Hotelling model to the multi-capital case, and poses
the Planner’s problem when there is a convenience yield to the storage of capital.

2 Partial equilibrium

Consider a non-renewable resource, or “capital,” that does not depreciate, and that
cannot be augmented via investment or discovery. The price of consuming it must
rise at the rate of interest in order for suppliers to be indifferent between selling it
now or later. But when price rises at the rate of interest, agents are also happy
to hold the resource for the purpose of simply re-selling it. If one could invest in
new capital, such investment would become increasingly profitable over time, and
additional supply would keep prices down. But since such additions are impossible,
a rational bubble can form.
Hotelling’s (1931) version of the problem goes as follows. Let the interest rate be

r, and let the market demand for consuming the capital be x = D (p) . Capital can be
delivered to consumers costlessly.4 Suppose that D (p) > 0 for all p < ∞, implying
an unbounded willingness to pay at small levels of consumption, which translates into
an Inada condition on the utility function.5 The capital must then be consumed at
every date for, if at some date it were not consumed, its price would at such dates be
infinite. But if supply is to be positive at each date, we must have

pt = p0e
rt

for some p0 > 0.6

Hotelling’s equilibrium.–To solve for p0, Hotelling requires that the resource be
fully exhausted:

k0 =

Z ∞

0

D
¡
p0e

rt
¢
dt. (1)

Since D is strictly monotone, the solution for p0 is unique and so, therefore, is equi-
librium, and also the social optimum.7 Moreover, at each date the price, pt, of the
asset equals the present value of the stream of dividends to which it is a claim.

4The introduction of extraction costs would not change the results.
5We relax this in subsection 2.1.5
6We interpret r as net of any convenience yield or carrying costs of holding the asset. Wine

storage is, in any case cheap, as low as $1.32 per case per month, i.e., $1.32 per standard bottle per
year. We analyze storage costs (the opposite of convenience yield) in Section 2.1.3.

7The GE version of the Planner’s problem is analyzed in Section 4.
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Figure 3: The determination of the equilibria

Pure strategy bubble equilibria.–In the Hotelling equilibrium all sales are to con-
sumers, with each produce. Each producer chooses a date at which to sell. A contin-
uum of other equilibria may exist, however: A fraction of k0 may never be sold. We
replace (1) by two conditions. The first states that k0 is divided into a stock, kc, that
will at some point be consumed, and a stock, k∞, that speculators hold for ever:

k0 = kc + k∞. (2)

The second states that kc is eventually exhausted:

kc =

Z ∞

0

D
¡
p0e

rt
¢
dt. (3)

Hotelling’s equilibrium is the one for which kc = k0. The rest are pure-strategy bubble
equilibria. In such an equilibrium, each agent decides whether to hold the wine for
ever as an asset or whether to sell to consumers at a particular date. Figure 3 shows
how the initial prices p0 are determined — the Hotelling equilibrium, pH0 is the lowest,
and in a bubble equilibrium the date-zero prices, pB0 , are higher. Any k∞ ∈ [0, k0)
is valid as long as the economy can absorb the bubble — see (33) for a sufficient
condition. Future sellers and speculators earn the same present value of revenues
at each date, and there is no gains to arbitrage between the two markets. Figure 4
plots kt in the left panel and the relation between consumption and trading of k in
the right panel, where it is assumed that a constant fraction, v, of kt trades in each
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Figure 4: The evolution of k, of consumption and of trading

period.8 Consumption approaches zero, whereas the stock held for speculative reasons
remains positive. Optimal saving behavior dictates that this stock should occasionally
change hands, and therefore we can detect bubbles by finding out whether the ratio
of consumption to transactions for asset-holding purposes converges to zero. An
example is solved in Section 4 and plotted in Figure 7.
Mixed strategy bubble equilibria.–The stocks kc and k∞ need not be distinguish-

able, and the owner of a unit of k can, e.g., follow the mixed strategy “Sell a unit of
k to consumers with probability πt (p0) dt, where

πt (p0) ≡
D (p0e

rt)

k0
, (4)

and where the realizations are independent over agents so that there is no aggregate
risk. Every owner of capital follows the same mixed strategy. The end result is the
same as in the pure strategy case, and we still have pt = p0e

rt and no uncertainty at
the market level. Therefore the observable implications will be for the time path of kt
itself and for the consumption of k, and not about a division of kt into two stockpiles.
Stochastic-bubble equilibria.–Additional equilibria exist in which the aggregate

bubble is random so that
pt = p0e

rtzt, (5)

where zt is a random walk with zero drift. For instance, a bubble that gradually
builds and occasionally bursts is also an equilibrium. A condition that the resource
is never exhausted for any realization of the (zt) process is that

p0zt > pH0 (6)

8In the GE version of Section 5, the equilibrium fraction of k traded will be v = 1, but for now
let v be any positive constant.
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along every sample path of zt. When p0 > pH0 , many such equilibria exist in the sense
that there are many distributions of zt that have zero drift and that satisfy (6) for
each realization of (zt).

2.1 Robustness

Let us check the robustness of our conclusions to five changes in the assumptions.9

A sixth, algebraically messier extension to many capital goods is done in Appendix
2. We shall find that the existence of bubbles is robust, but that the test implied by
Figure 4 is sometimes not the way to detect them.

2.1.1 Supply endogeneity

Let the supply function for the asset at date t be S(p, t). In that case k evolves as

dk

dt
= S (p, t)−D (p) .

Suppose that for every p0 ≥ 0, 10

K (p0) ≡
Z ∞

0

S
¡
p0e

rt, t
¢
dt <∞. (7)

Condition (7) is met for any exhaustible resource.11 E.g., S (p, t) = pαe−γt for γ > rα
satisfies (7).

Now, the Hotelling equilibrium is a number pH0 such that

k0 +K (p0) =

Z ∞

0

D
¡
p0e

rt
¢
dt.

As before, a bubble equilibrium is a price p0 > pH , and the test for the equilibrium
is the same — consumption goes to zero but the stock outstanding does not, just as
in Figure 4.

9The fourth and fifth are also analyzed by Hotelling (1931).
10A model in which a bubble is explicitly defeated by supply is Deaton and Laroque (1992); in

some periods agents store a fraction of the good, but in other periods they store none of it. The
supply function in their model does not meet condition (7) — the “harvests” add up to infinity.
11If at most K̄ can ever be extracted, thenZ ∞

0

S (pt, t) dt ≤ K̄.

for any (pt)
∞
0 .
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2.1.2 Depreciation of k

Let k depreciate so that
dk

dt
= −δk − xt, (8)

where xt is consumption. Bubble equilibria remain, but now kt must always converge
to zero. Storage of wine now requires that price appreciate at r + δ:

pt = p0e
(r+δ)t.

We now have xt = D
¡
p0e

(r+δ)t
¢
for some unknown constant p0. The solution to (8)

for kt is

kt = e−δtk0 −
Z t

0

e−δ(t−s)D
¡
p0e

(r+δ)s
¢
ds. (9)

A “Hotelling equilibrium”, pH0 should be the smallest p0 for which kt → 0. Any
smaller p0 will cause kt to eventually become negative. Before solving for pH0 note
that there is again a continuum of bubble equilibria indexed by p0 > pH0 , but that
now they all entail kt → 0. The simple test of the time-path of consumption relative
to that of trading such as is depicted on the right panel in Figure 4 will not work.

EXAMPLE: D (p) = p−β with β > 1 (the elastic demand case). Appendix 3
derives the Hotelling equilibrium to be

pH0 =

µ
1

k0

¶1/β µ
1

βr + (β − 1) δ

¶1/β
. (10)

and the Hotelling sequence for kt is just

k0e
−β(r+δ)t. (11)

Because depreciation raises the growth rate of pt and because demand is elastic,
holding p0 constant, a higher δ reduces consumption by more than δk, and the net
effect is to lower pH0 . For k0 = 1, β = 2, and r = δ = 0.1, Figure 5 plots the evolution
of k in Hotelling’s equilibrium and in a bubble equilibrium. It also plots an infeasible
path for kt, one that would be implied by a price lower than pH0 .

2.1.3 Convenience yield

The owner of the asset may derive pleasure from holding it. Let utility depend on
both consumption, x, storage, k. That is, let utility be U (x, k) , with U increas-
ing, differentiable, and concave in both of its arguments, and let r be the discount
rate12. For now, assume that limx→0 Ux = +∞, and to simplify further, consider a
representative agent setup in which every agent chooses the same (x, k) pair.

12which, in an economy with no growth, would equal the rate of interest.
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Figure 5: Paths for kt when δ > 0

The price of capital and the marginal utility of consuming another unit of it must,
at each date, equal the marginal utility of lifetime storage:

pt = Ux (xt, kt) =

Z ∞

t

e−r(s−t)Uk (xs, ks) ds. (12)

Differentiating the RHS of (12) and applying (12) to the result, we have dp
dt
=

rUx (xt, kt)− Uk (xt, kt), i.e., p satisfies the ODE

dp

dt
= rp− Uk (x, k) . (13)

Therefore p grows more slowly than at the rate r, and may even decline.

Equilibria are easier to explain if U is additively separable. Let U (x, k) = u (x)+
v (k) with both u and v increasing, concave, and differentiable. Then p = u0 (x) , and
we have the pair of ODEs for (p, k) given by

dp

dt
= rp− v0 (k) ,

and
dk

dt
= − (u0)−1 (p) .
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To solve them we need two initial conditions. We are given k0, but p0 must be solved,
as before, from the equation

k0 − k∞ =

Z ∞

0

D
¡
p0e

rt
¢
dt.

Hotelling’s equilibrium obtains when k∞ = 0. The rest are bubble equilibria.13

Can convenience yield alone justify eternal storage in an equilibrium with no
bubbles? Suppose that it could. Then some capital would be stored forever, i.e., it
would not be consumed. Now if there were no bubble and if we ever did reach (even
asymptotically) the point where we stored some k eternally and would never again
consume it, (12) would read

pt →
1

r
v0 (k) . (14)

That is, pt would become constant. This simple model can therefore generate eternal
storage, but not an endless price appreciation. Moreover, (14) could not hold if u (x)
satisfied an Inada condition.

2.1.4 Monopoly power

Hotelling works out the case where k is owned by a monopolist. With no costs of
storage, Hotelling argues that if the monopolist is willing to store some of the capital,
his marginal revenue must grow at the rate of interest. That is to say,

d

dt
ln

µ
∂

∂x
D−1 (x)x

¶
= r. (15)

To save space, we discuss equilibria only for the case of iso-elastic demand x = D (p) =
p−β with β > 1. Then D−1 (x) = x1−1/β, and (15) reads,

d

dt

∂

∂x
x(β−1)/β =

µ
β − 1
β

¶
d

dt
x−1/β =

µ
β − 1
β

¶
dp

dt
= r,

so that
pt = p0 + rt

where p0 solves

k0 − k∞ =

Z ∞

0

D (p0 + rt) dt

Again, Hotelling’s equilibrium is the one where k∞ = 0. The rest are bubble equilibria.

13The Appendix briefly poses the Planner’s problem in the context where identical agents derive
utility from holding k as well as consuming it.
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The monopolist likes bubbles. He would like to sell as little as possible to the
public for consumption thereby raising p0, and pass the rest of the stock to competitive
asset holders. Indeed, if the monopolist moves first and chooses p0, his total return
is strictly increasing in p0 and the problem has a solution unless we put a cap on
willingness to pay as discussed in the next subsection.14

2.1.5 Bounded willingness to pay

Hotelling’s works this case out too. Let p̄ be maximal willingness to pay, so that p̄ is
the smallest p for which

D (p) = 0. (16)

We continue to assume that D is continuous. Hotelling’s equilibrium now entails
exhaustion of the resources in finite time, T . Thus his equilibrium is a price path
pt = pH0 e

rt for t ∈
£
0, TH

¤
, where

¡
pH0 , T

H
¢
solves the pair of equations

k0 =

Z T

0

D
¡
p0e

rt
¢
dt, (17)

and
p0e

rT = p̄ (18)

for (p0, T ).
Bubble equilibria.–A bubble equilibrium is now the triple (p0, T, k∞) such that,

instead of (18) (17), now solves (18) and

k0 − k∞ =

Z T

0

D
¡
p0e

rt
¢
dt, (19)

for k∞ ∈ [0, k0). As p̄→∞ we recover the original equilibrium set.

3 Application to wine

Let us now apply the model to vintage wines. We shall assume that wine from a
given chateau-(i.e., label-)vintage pair is homogeneous. Thus we interpret k0 as, say,
the total amount of the 1870 Lafite bottled in 1870. The stock is not renewable —
different vintages of a given wine are imperfect substitutes, judging by the vastly
different prices at which they sell.
Each chateau has a monopoly on its wine which is regarded as distinct from other

wines, but each vintage soon passes out of its hands15 and into the cellars of many
14Coase’s conjecture — that a durable-goods monopolist loses his market power because he cannot

commit to not lowering his price in future periods — does not apply here because the marginal cost
of supplying the good jumps from zero to infinity at k0.
15except for a stock that a chateau may keep to re-top old bottles, although this practice is in

decline because re-topped bottles look more like counterfeits.
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dealers, restaurants and private individuals, so that the chateau can focus on produc-
ing its next vintage. As of then, the competitive model seems to be appropriate.

In the model, k is homogeneous whereas, in fact, even within a vintage-chateau
pair there is significant heterogeneity that can be detected by inspection and that
therefore affects prices at which the bottles sell. The buyer has two main concerns: Is
the bottle authentic, and has it been properly stored.16 Thus the series in Figure 1,
or in the Figures in the Appendix, do not all represent the movement in the prices of
a claim to a given bottle, although as the vintage becomes old, it is ever more likely
that the same bottle appears on a restaurant’s wine list or a dealer’s list, and ever
more likely that the same bottles will be traded again and again at auction.

The model states that the prices of some of the wines may contain bubbles. Can
we detect any? Suppose that in Figure 4, k∞ is positive. If there is a bubble, con-
sumption should gradually taper off but that trading should continue indefinitely. By
contrast, if there is no bubble, all trade should taper off together with consumption.
If k depreciates (Sec. 2.1.2), then in the absence of a bubble, consumption and trade
should decline together. Either way, if we see trading without consumption, we may
infer that a bubble exists.

To check this, it would be ideal to have data on how much of a particular wine
is stored, and on how much of that wine is being consumed. Unfortunately, we do
not have such data. We shall therefore try to infer these magnitudes indirectly from
the frequencies with which a wine is offered for sale in three different modes — by
auctions, by dealers, and by restaurants. A wine sold by a dealer or by a restaurant
is usually consumed. By contrast, the sale of a wine at auction is likely to be stored.
We can thus hope to learn how much of a particular wine is consumed and how much
of it is stored, by comparing the frequency with which the wine is offered for sale at
these three venues.

Age distributions.–Figure 6 shows the age distribution of wine offered for sale
by dealers and restaurants, and wine actually sold at auction (we have transactions
only for auctions). Until a few years ago, vintage wines were sold mainly at auction
and not by dealers.17 Not surprisingly, therefore, the wines offered for sale by dealers
are considerably younger than those sold at auctions. On the other hand, the wines
offered for sale at restaurants are significantly older than the ones sold at auction.

16Some bottles were stored improperly which affects the level of the wine in the bottle and the
sedimentation, some bottles are stored by reputable dealers and some not, some have a reputable
distributors and some not, some have been re-corked or “reconditioned” and some not, etc.. Coun-
terfeiting is on the rise for the old, valuable vintages. See Mariani (2007), Gekas (2007) and Wine-
searcher (2007) for more on fake wines and how to recognize them.
17Market structure has been changing recently and dealers have started to hold auctions. Dealers

now offer wines that they do not necessarily store themselves. The oldness of the vintages offered
for sale today by the Antique Wine Company and described in Figure 2 is a new phenomenon.
For most of the 20th Century, one of the world’s most prestigeous dalers, Berry Brothers & Rudd,
offered wines that were at most 40 years old.
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Figure 6: Ages of wines offered by auctions, dealers, and restaurants.

We cannot take the restaurant numbers at face value, however. First, while auc-
tions prices are transactions prices, the dealer and restaurant prices are list prices.
A vintage wine will often appear on a restaurant’s wine list without ever being sold.
Therefore neither the restaurant nor the dealer age distributions pertain to the dis-
tribution of ages of wine actually consumed. Second, even as a distribution of listed
prices, the restaurant data are biased towards the older vintages because (in contrast
to a dealer’s list) a restaurant wine list typically does not provide a wine’s vintage
for the young wines. The unidentified vintages were excluded from the data which,
therefore, heavily oversample the older vintages. Therefore, while the restaurant age
distributions lie to the right of those for auction sales, this does not prove that the
wines consumed in restaurants are older than those traded at auction. The reverse is
almost certainly true.

Convenience yield, again.–Why would restaurants hold on to wine that they do
not sell? Is there a convenience yield on old wine (see Sec. 2.1.3)? As it ages, wine
undoubtedly acquires the status of a collectible, of an antique. This convenience yield
is almost surely highest among restaurants. Indeed, the sommelier of a famous New
York restaurant said this about the most expensive wines on his wine list: “I don’t
want to sell this wine. It makes the list look better.” Is this a restatement of (14)?
Moreover, (14) could hold if old wine is undrinkable and hence cannot have a large
u0 (0). We noted, however, that (14) fails empirically since in fact the prices of the
oldest wines continue to rise.18 Therefore convenience yield alone is probably not
strong enough a motive to explain why restaurants store old wine. Rather, old wine
appears to be an asset that the restaurant holds, and on which there is a bubble.19

18To generate a rising price one needs to assume that v0 (k) rises directly as a function of the age
of k age, and not just as a function of its scarcity.
19But the case is not proved beyond reasonable doubt. LeRoy (2004) discusses these issues in an
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3.1 Standard tests for bubbles

Standard tests for bubbles on an asset compare the asset’s price to the stream of
earnings to which it is a claim. I shall not be able to carry out such a test, but it is
worth outlining what information such a test would require.

Let us return to (4). The fundamental at date t is the expected discounted
dividend, ps, conditional on information available at date t:

ft =

R∞
t

e−r(s−t)πspsds

1−
R t
0
πsds

=

R∞
t

πsds

1−
R t
0
πsds

pt, (20)

with πt defined in (4). If we define the bubble in the standard way (see LeRoy 2004)
as bt ≡ pt − ft, we obtain

bt =
1−

R∞
0

πsds

1−
R t
0
πsds

pt. (21)

Conditional on not bursting the bubble must rise faster than the rate of interest:

1

b

db

dt
=
1

p

dp

dt
+

πt³
1−

R t
0
πsds

´2 = r + ht,

where ht ≡ πt/
³
1−

R t
0
πsds

´
is the hazard rate of a wine sale. The point is that

if a unit of the capital is consumed, the bubble attached to the price of that unit
alone bursts. (Of course the price of the remaining units of capital continues to rise).
Hence the bubble must rise fast enough to compensate for the loss of the value that
occurs in the event that the particular unit of capital is consumed. In expectation,
however, the bubble still grows at the rate of interest:

E0bt =
³
b0e

rt+ t
0 hsds

´Z ∞

t

πsds = b0e
rt,

because
R∞
t

πsds = exp
³
−
R t
0
hsds

´
.

From (21) we find that the bubble exists if
R∞
0

πs < 1. From (4) we see that we
can detect a bubble path with certainty only if we know the shape of the demand
curve at extremely high prices, prices that have not yet been reached. Therefore,
even if we observe kt we cannot tell in finite time if we are seeing a bubble. One must
assume something about the shape of demand before one can infer the presence of a
bubble. We do not, however, have the consumption data needed to estimate π.

Feedback from asset prices to fundamentals.–If a bubble forms, it raises p0 and,
hence, pt, and therefore there is a feedback from asset prices to fundamentals in the
general sense of Timmermann (1994), though the effect here is nonlinear. A bubble

insigtful way.
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forms, reducing kc. This raises p0 which, in turn, raises the fundamental value of
the asset e−rtpt. But a vintage may have a high p0 because it has a bubble on it, or
because it is of high quality so that the willingness to pay is higher. Therefore as
with other assets generally, high prices may signify a bubble or high fundamentals.

The give-away fact is quantity consumed relative to the quantity stored. High
prices due to fundamentals (a high demand or a low k0) should not be associated
with a higher survival of k, whereas high prices due to bubbles should be. That was
the main message of Figure 4. To sum up, evidence shows that it is high priced
wines like the Bordeaux wines in my sample that survive a long time and continue
to be traded. Low-priced wines disappear rather quickly. This indicates that these
wines acquire the properties of an asset to be held as an investment rather than as a
consumable item.20

4 General equilibrium

So far we have assumed that a rational bubble can exist in the economy at large. This
depends on whether agents are willing to save enough so that they will be willing to
hold the wealth that the bubble creates. We now derive conditions under which the
bubble can survive. The condition is the second inequality in (31) and it implies the
Santos-Woodford (1997) condition that the present value of aggregate consumption
must be infinite. Thus there are no new results here for the general theory of bubbles,
only a demonstration that the arguments of Section 2 can be embedded into a GE
framework. The conditions can be weakened if there is a convenience yield on storing
k, but that too corresponds to results on bubbles on money when money enters the
utility function

This part of is more easily done in discrete time; the parallels to the previous sec-
tions will be obvious. Aside from k, we now assume that there is a second perishable
good, y, which can be produced at constant returns to scale using labor only, and
which acts as the numeraire. We shall assume a growing population of two-period-
lived agents. The only asset21 and the only durable good is k, and its initial stock is
held by the date-zero old generation. There are no bequests.

Population grows each period by the factor n > 1. Each agent has a unit labor
endowment when young. Consumption of k occurs when old. Leisure does not enter

20One person in the trade did not agree with the thrust of these conclusions, and recently said
this: “In the past week I have drunk 1978 Meursault Perrieres Comte Lafon, 1992 Montrachet Baron
Thenard, 1964 Chateau Petrus and 1975 Chateau d’Yquem, and on Tuesday we will drink a 1949
Burgundy.....While there clearly are a few men buying wine as an investment, most wine collectors
at least initially plan to drink all the wine they buy. The problem is that the typical wine collector
has no self control and quickly buys more than he can ever drink, thus becoming what I term ‘an
inadvertent wine investor’, since at some point he will be forced to sell some of his surplus wine.”
21With a second asset like bonds or fiat money, a bubble on k would, in addition to displacing

some consumption of k, also displace a portion of the second asset.
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the utility function. An agent born at date t has lifetime utility

ct + β (ct+1 + U [xt+1]) , (22)

where ct and ct+1 denote his consumption of y in youth and old age, and x is his
consumption of capital. The linearity of utility in c delivers a constant interest rate
which simplifies the algebra but otherwise is inessential for the results. At date t = 0
the young and old agents are both of measure one (this simplifies the notation), and
the young population at t is nt. This too is the labor supplied inelastically at that
date. Thus population begins to grow at date 1.

The perishable good is produced with the technology

y = wtL, (23)

where wt = w0γ
t and where L is labor services employed. With full employment we

have
yt = w0 (γn)

t . (24)

Prices.–The numeraire is y. In terms of y the gross rate of interest must be β−1.
Let p be the price of k. Technology (23) is operated by competitive firms who bid
the wage up to wt.

Assets.–Assume Kt is the only asset. It evolves as

Kt+1 = Kt − ntxt, (25)

where xt = (U 0)−1 (pt). The young must buy capital if they are to consume in old
age. Define capital per young person to be kt = n−tKt. Then ptkt = # of units of yt
you can buy with the capital, and you paid pt−1kt for it at date t− 1.
Resource constraint : Consumption of y per old agent (there are nt) of them must

equal output per old agent
cot + ncyt = nwt. (26)

Budget constraint of young:

ptkt+1 + cyt = wt. (27)

Budget constraint of old :
ptkt = cot + ptxt. (28)
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Analysis: Solve (26) for cyt = wt − 1
n
cot and substitute into (27) to get

ptkt+1 =
1

n
cot

and using (28) to eliminate cot we end up with the difference equation of the debt per
old member

kt+1 =
1

n
(kt − xt)

This seems to be consistent with (25) — if we multiply nt+1 and apply the definition
of kt.
Willingness to hold the asset.–The entire stock kt must change hands each period

without inducing negative cyt . This means that we need

ptkt+1 ≤ wt. (29)

In (25) we have
Kt+1 = Kt − nt (U 0)

−1 ¡
p0β

−t¢ . (30)

4.1 Example

In the following example, Kt will converge to its limit geometrically. For σ > 0, take

U (x) =
x1−1/σ − 1
1− 1/σ =⇒ U 0 (x) = x−1/σ =⇒ (U 0)

−1
(p) = p−σ

Then (30) reads Kt+1 = Kt − p−σ0 (βσn)t. We shall assume that

βσn < 1 < βnγ. (31)

The first inequality in (31) guarantees that it has the solution

Kt = K∞ + (β
σn)t (K0 −K∞) ,

which is indexed by K∞. The Hotelling equilibrium has K∞ = 0 and the Hotelling
solution therefore simplifies to

KH
t = (β

σn)tK0,

The convergence of Kt to K∞ is geometric. The higher is K∞, the higher is p0:

p0 = ([1− βσn] [K0 −K∞])
−1/σ . (32)

The savings constraint.–Extremely high values of K∞ will not be feasible, how-
ever, because the young will not be able to absorb the bubble. Since kt ≤ K0/n

t, the
second inequality in (31) guarantees that (29) will hold if

p0K0 (nβ)
−t ≤ w0γ

t.
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Figure 7: The set of equilibria

In light of (31), it is necessary and sufficient that

p0K0 ≤ w0. (33)

The per-capita date-zero value of capital is less than the initial wage. Substituting
from (32) the condition reads

K∞

K0
≤ 1− Kσ−1

0

(1− βσn)wσ
0

. (34)

If σ = 1, (34) reads
K∞

K0
≤ 1− 1

(1− βn)w0

Simulated example.–Set K0 = σ = 1, βn = 0.97. Then The Hotelling equilibrium
has KH

t = (0.97)t. The worst equilibrium has Kt = 1 for all t. Figure 7 plots the
solution for K∞ =

1
3
(red line) and K∞ =

2
3
(blue line). But (34) now reads

K∞ ≤ 1−
1

(0.03)wσ
0

.

and so a constant-interest-rate Hotelling equilibrium exists only if w0 > (0.03)
−1. The

larger is w0, the larger K∞ can be, and the larger the number of bubble equilibria
that exist. As w0 gets large, all the equilibria plotted in Figure 7 will exist, i.e., those
for which K∞ ∈ [0, 1). The “worst equilibrium” does not exist, for K∞ = 1 would
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require that p0 be literally infinite. Figure 7 assumes that w0 = 1001/σ in which case
(33) implies that K∞ ≤ 2/3.
Relation to the commodity-money literature.–At each date, the value of k equals

its intrinsic value. This follows from the Inada condition on U that delivers an
unbounded willingness to pay for consuming k. If U 0 was bounded, all consumption
ofK would eventually cease, and the remaining stock would serve as the asset. Similar
conclusions hold in the OG model of Sargent-Wallace (1983, Sec. 3.3) for the case in
which gold cannot be produced and in which population grows for ever.22

4.2 Welfare

Bubbles can arise even though the no-bubble equilibrium — the Hotelling equilibrium
— is Pareto optimal. The Planner discounts generations at the rate β and has an
infinite horizon. He will fully employ the available labor and distribute the output
among agents — any distribution of yt over agents yields the Planner the same utility.
Since the Planner’s decisions about y do not interact with his decisions about x,
we can study the latter on its own. With K0 given, the Planner then maximizesP∞

t=0 (βn)
t U (xt) subject to (25). That is, he solves

max
(Kt)

∞X
t=0

(βn)t U
¡
n−t [Kt −Kt+1]

¢
with K0 given. The first-order condition is

U 0 (xt) = βU 0 (xt+1) ,

and it is also necessary that the Planner not waste any capital, i.e., that

lim
t→∞

Kt = 0.

But this is just Hotelling’s equilibrium in which all capital is exhausted.

Bubbles raise the utility of the date-zero old, and reduces the lifetime utility of
every subsequent generation. A feasible Pareto improvement exists, however, in that
K∞ could be consumed at some dates without reducing any generation’s consumption
of x and y. This conclusion echoes those in the commodity-money literature.

5 Conclusion

When it comes to bubbles on a consumable exhaustible resource, two things are
special. First, it is easier for the bubble to form and, second, detecting the bubble

22Champ and Freeman (1994, Ch. 2) model such a situation but without population growth, in
which case the demand for assets is bounded as, therefore, also is the price of gold.
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is easier, requiring simply that consumption not converge to zero when compared to
trading in the asset. Using this simple test, we have found that it is quite likely that
bubbles on some vintage wines exist because trading in these old wines continues,
and the rate at which they are consumed is quite low.

Can the model apply to certain other assets? Closest to this is oil, though we
would need to add an extraction cost. Oil fits the two key assumption that the
reserves of k are bounded and that k is consumable. Land is in fixed supply but is
not consumed, and the same is true of art and other collectibles. Gold, and silver
have a significant salvage value even after being converted into jewelry, so it is really
better thought of as an asset that carries a large convenience yield that lowers its
equilibrium return to zero or less.
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6 Appendix 1: The data

The data include only incomplete histories of the various wines. Each data point
includes: label, vintage, year offered for sale, quantity, size, price and currency. Three
kinds of prices were collected:

1. Auctions.–1766-2007. About 100,000 observations. All are transactions prices.

2. Dealers.–Mid 1800s-2007. About 4,000 observations. For the 19th century,
main source is the Guildhall Library, London. For most of the 20th Century, Berry
Brothers and Rudd, London, and on-line sources. All are list prices.

3. Restaurants.–Mid 1800s-2007. About 5000 observations. For the pre-WW2
period, main source is the NY Historical Society. A handful from the U.S. Library of
Congress and the NY Public Library. All are list prices.

Wines included.–Only 9 Chateau wines were selected: Haut Brion (1), Lafite
Rothschild (2), Latour (3), Margaux (4), Mouton Rothschild (5), Ausone (6), Cheval
Blanc (7), Petrus (8), D’Yquem (9). All are from the Bordeau region in France which,
for the past 200 years has supplied most of the highest-priced wines.

No data are available on the stock of wine by vintage.
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Main data sources and # observations

Dealer Obs.
Berry Bros. 2702
FARR 1167
21 Club(?) 54
B&S 12
J.D.C 11
W.C&C 2
Day Watson 1

Restaurant Obs.
21 Club 490
Berns Stk Hs, Tampa 490
Charlie Trotters, Chi. 318
Name unknown 283
Cru, NYC 223
Le Cirque, NYC 83
Morrell Bar, NYC 27
Antoine’s, New Orl. 22
Harry Waugh D Rm 19
LF 17
Taillevent, Paris 12
Canlis, Seattle 11
Locke Ober 7
Simpson’s, Edgbstn 4

Auctioneer Obs.
Chicago Wine Co. 32962
Christie’s, London 25600
Sotheby’s, London 17904
Zachy’s/Christie NY 7965
S. Lehman/Sthby NY 6604
Butterfield, SF 5202
David and Co., Chi. 3788
Morrell and Co. NY 3455
Christie’s, Chi. 3357
Christie’s, Amstrdm 1254
Christie’s, LA 883
Christie’s, Geneva 819
Sotheby’s, Chicago 669
Acker Merril, New York 411
Sotheby’s, New York 214
W.T. Restell, London 205
Christie’s, Bordeaux 99
Christie’s, NY 8

Conversion table.–All prices are per bottle and in year-2000$ U.S. The conversion
between different-sized bottles is described in the following table:

Code Conversion Description
B 1.0 Bottle
M 2.0 Magnum
DM 4.0 Double magnum
IP 0.0 Imperial pint
MJ 3.0 Marie-Jeanne
TM 6.0 Triple magnum
QM 8.0 Quadruple magnum
J 6.0 Jeroboam
R 6.0 Rehaboam
I 8.0 Imperial
1/10 0.5 One-tenth (of a gallon)
H 0.5 Half bottle
1/5 1.0 One-fifth (of a gallon)
Pint 0.5 Pint
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6.1 The history of the 1870 Lafite-Rothschild

Amajor concern with a wine that old is that it is undrinkable, that it has “turned into
vinegar.” But the evidence is that if properly stored, wines retain their quality even af-
ter they are 100 years old. Notes on some recent tastings are at http://www.vintagetastings.com/.

The last known (to me) tasting of the 1870 Lafite was in 1970, and was or-
ganized by Michael Broadbent, the then head of Christie’s wine department. De-
scribing his experience of tasting the 1870 Lafite at age 100, Broadbent said: “I
am very often asked by journalists which is my favorite wine. This, I believe, is
the most spectacular and memorable one.” A detailed write-up of the event is at
http://www.empireclubfoundation.com/details.asp?. A more recent, 2002 tasting of
an 1870 Château Cos d’Estournel (not in my sample) showed that the flavor was still
good.

The following three tables provide the details of each data point in Figure 1. For
some years, more than one auction- and restaurant-price observation was available.
In that case, the observations were averaged for the purpose of the plot.

Following the tables documenting the history of the 1870 Lafite, we shall display a
collection of plots for certain other vintages and other labels. The Table and the plots
should provide a fairly accurate feel for the kind of coverage that the data provide,
and for the patterns that these data show.
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The 1870 Château Lafite-Rothschild
AUCTIONS

Auction Loc Year Age Price
Christie’s, London UK 1889 19 22
Christie’s, London UK 1889 19 17
Christie’s, London UK 1892 22 17
Christie’s, London UK 1895 25 23
Christie’s, London UK 1895 25 22
Christie’s, London UK 1895 25 19
Christie’s, London UK 1896 26 19
Christie’s, London UK 1908 38 21
Christie’s, London UK 1937 67 52
Restell, London UK 1941 71 905
Christie’s, London UK 1971 101 341
Christie’s, London UK 1973 103 675
Christie’s, London UK 1976 106 696
Christie’s, London UK 1977 107 1809
Christie’s, London UK 1978 108 1747
Butterfield and Butterfield US 1989 119 660
Butterfield and Butterfield US 1989 119 903
Sotheby’s, London UK 1990 120 643
Christie’s, London UK 1990 120 316
Christie’s, London UK 1990 120 1248
Christie’s, London UK 1990 120 3626
Christie’s, London UK 1991 121 580
Christie’s, Chicago US 1991 121 1011
Christie’s, London UK 1992 122 302
Christie’s, London UK 1993 123 894
Christie’s, London UK 1993 123 894
Christie’s, London UK 1993 123 894
Christie’s, London UK 1993 123 894
Christie’s, London UK 1993 123 894
David & Co. US 1994 124 2789
David & Co. US 1994 124 2789
David & Co. US 1995 125 3616
Christie’s, New York US 1995 125 3955
David & Co. US 1995 125 3616
The Chicago Wine Company US 1996 126 1866
Christie’s, London UK 1996 126 2055
Christie’s, London UK 1996 126 2055
Sherry Lehman/Sotheby’s US 1997 127 2468
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Auction Loc Year Age Price
Morrell & Co. US 1997 127 9656
Zachy’s/Christie’s US 1998 128 1336
Morrell & Co. US 1998 128 11621
Zachy’s/Christie’s US 1998 128 3645
Sherry Lehman/Sotheby’s US 1998 128 2219
Morrell & Co. US 1998 128 11621
Christie’s, London UK 1999 129 8434
Christie’s, London UK 1999 129 1756
Zachy’s/Christie’s US 1999 129 3101
Christie’s, London UK 1999 129 6689
Sherry Lehman/Sotheby’s US 1999 129 5685
Zachy’s/Christie’s US 1999 129 3101
Sherry Lehman/Sotheby’s US 1999 129 2247
The Chicago Wine Company US 2000 130 5200
The Chicago Wine Company US 2001 131 7195
Zachy’s/Christie’s US 2006 136 3611
Zachy’s/Christie’s US 2006 136 20063
Christie’s, London UK 2006 136 7507

The 1870 Lafite — RESTAURANTS

Restaurant Loc Year Age Price
Fest-Essen, Dusseldorf GE 1889 19 32
CentralStelle, Dusseldorf GE 1895 25 35
Charlie Trotters, Chicago US 2003 133 7931
Charlie Trotters, Chicago US 2003 133 8891
Charlie Trotters, Chicago US 2004 134 8660
Charlie Trotters, Chicago US 2004 134 7726
Charlie Trotters, Chicago US 2005 135 7367
Charlie Trotters, Chicago US 2005 135 8258
Charlie Trotters, Chicago US 2006 136 8111
Charlie Trotters, Chicago US 2006 136 7235
Charlie Trotters, Chicago US 2006 136 8111
Charlie Trotters, Chicago US 2007 137 12806
Charlie Trotters, Chicago US 2007 137 14941

The 1870 Lafite — DEALERS

Dealer Loc Year Age Price
Day Watson UK 1873 3 22
Berry Bros. & Rudd UK 1907 37 583
Berry Bros. & Rudd UK 1928 58 980
Berry Bros. & Rudd UK 1932 62 771
Berry Bros. & Rudd UK 1935 65 1232
Berry Bros. & Rudd UK 1937 67 1182
CellarBrokers.com US 2007 137 9074
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7 Appendix 2: Many capital goods

The point of this section is to show that Hotelling’s analysis and our extension of it,
hold when there are many goods. This is relevant to the application to wines.
Again in a partial-equilibrium, continuous-time context, we now extend the argu-

ment to the case in which there is more than one type of capital. This is important
in our application, because with wine, each vintage is a different, but related non-
renewable commodity.23 Let v denote the vintage of the capital, such as the vintage
of the wine or of the artist in the case of, say, paintings. Sticking with continuous
time, we may think of a continuum of vintages and may think of a vintage v ∈ R as
being any real number. Write the demand for this vintage as

Dv (P ) ,

where P is the infinite-dimensional price vector for all the other vintages, past, present
and future. Once again, we assume an unbounded willingness to pay at small quan-
tities, and so arbitrage across dates requires that under perfect foresight, the price of
vintage v should satisfy for all t

pv,t = pve
r(t−v), (35)

where pv is the initial price of the vintage-v capital, so that we define P : R2 →
R+ ∪ {∞} by

P =

½
pve

r(t−v) if t ≥ v
+∞ if t < v

.

Hotelling’s equilibrium in many dimensions.–The initial stock of each vintage
can be written as kv. Instead of just one number, p0, as we had above, we now
have to solve for the vector (pv)v∈R of the initial prices of each vintage. To solve
for it, acting in the spirit of Hotelling we write the simultaneous equation system of
resource-exhaustion conditions:

kv =

Z ∞

0

Dv (Pt) dt, v ∈ R, (36)

which is to be solved for the vector (pv)v∈R.
Bubble equilibria in many dimensions.–As before, we replace (36) by the two

conditions
kv = kv,C + kv,∞, (37)

and

kv,C =

Z ∞

0

Dv (Pt) dt, (38)

23Different vintages trade at vastly different prices. Some of the great vintages are 1865, 1870,
1900, 1929 and 1961. See Figure 1 of Jovanovic (2001) for estimated vintage effects.
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both holding for all v ∈ R. A no-bubble equilibrium is the one for which kv,C = kv
for all v. The rest are bubble equilibria on at least some of the vintages.
Example.–Consider the following static allocation problem of the consumer. His

utility function depends on an array of capital goods (xv)v≤t and on an outside good
y in the following way:

U
£
(xv)v≤t , y

¤
= y +X,

where X =
¡R∞
0

avx
ρ
vdv
¢1/ρ

denotes the ‘aggregate’ capital good that, at date t, takes
on the value

Xt =

µZ t

0

avx
ρ
vdv

¶1/ρ
.

The consumer’s date-t income is It and his budget constraint is

It = y +

Z t

0

pv,txvdv.

The price of vintage-v capital at date t is given by (35). The Lagrangean is

L = y +Xt − λ

µ
It − y −

Z t

−∞
pv,txvdv

¶
.

The first-order condition are λ = 1 (for an interior optimumw.r.t. y), and avxρ−1v X1−ρ
t =

pv,t, for each v ∈ [0, t]. Together with (35), the latter yield the demand functions

xv,t =

µ
pv
av

¶1/(ρ−1)
Xte

r(t−v)/(ρ−1). (39)

Suppose that the time path of Xt is determined. We now show that some vintages
of capital can carry large bubbles while others need carry no bubbles. Suppose that
vintage t = 0 is priced according to its fundamental alone, i.e., that

k0 =

µ
p0
a0

¶1/(ρ−1) Z ∞

0

Xte
rt/(ρ−1)dt,

whereas vintage ε has a bubble, so that

kε = kε,∞ +

µ
pε
aε

¶1/(ρ−1) Z ∞

ε

Xte
r(t−ε)/(ρ−1)dt,

Let ε be small and suppose that the fundamentals of capital ε and capital 0 are the
same, i.e., that a0 = aε, and that k0 = kε. As ε→ 0, however,

pε
p0
→
µ
1− k∞

k0

¶ρ−1
,

which means that the prices can be quite different, depending on the magnitude of
k∞ — the price ratio is unbounded. The difference between p0 and pε is due entirely
to bubbles.
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8 Appendix 3: Hotelling’s equilibrium when there
is depreciation

Let us analyze first the example in Section 2.2.1. The example was D (p) = p−β with
β > 1. Then Z t

0

e−δ(t−s)D
¡
p0e

(r+δ)s
¢
ds = p−β0

Z t

0

e−δ(t−s)−β(r+δ)sds

= p−β0 e−δt
Z t

0

e−[βr+(β−1)δ]sds

= p−β0 e−δt
1− e−[βr+(β−1)δ]t

βr + (β − 1) δ .

Substituting into (9),

kt = e−δt
µ
k0 − p−β0

1− e−[β(r+δ)−δ]t

βr + (β − 1) δ

¶
, (40)

whence we see that the smallest p0 that keeps the RHS of this equation non-negative
for all t is in (10). Substituting pH0 for p0 into (40), we get (11).

9 Appendix 4: The Planner’s problem when there
is a convenience yield

Consider the planning problem. For the Planner, c = −dk
dt
, and the Planner solves

max
(k)∞0

Z ∞

0

e−ρtU
³
−k̇t, kt

´
dt

subject to a given initial stock k0. Formally, the Euler optimality condition is e−ρtUk =
− d

dt
e−ρtUk̇, which simplifies to

Uk = ρUk̇ − Uk̇kk̇ − Uk̇k̇

..

k

But if but if kt converges to a constant, k̇ =
..

k = 0 and (14) follows.
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