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1 Introduction

Economic models predict that intertemporal preferences influence most important decisions,

including human capital investment, work effort, nutritional choices, exercise, medical ad-

herence, smoking, alcohol consumption, saving, and borrowing.

Most research on time preferences uses lab or field experiments in which the experimenter

asks participants to make a series of choices between sooner, smaller rewards and later, larger

rewards.1 Experiments have the benefit of giving the researcher control over the options that

are offered to the decision-maker (e.g., Augenblick et al., 2015).

The current paper sacrifices that experimental control in return for the benefit of es-

timating time preferences using decades of consumption/saving/borrowing choices that, in

aggregate, generate large-stakes consequences. We identify time preferences by analyzing the

lifecycle evolution of four balance sheet moments: the proportion of households borrowing

on their credit cards (i.e., holding some credit card debt that revolves from one month to

the next), the average magnitude of credit card borrowing (i.e., the average magnitude of

credit card debt that revolves from one month to the next, including zeroes in the average),

total net wealth among households revolving credit card debt, and total net wealth among

households not revolving credit card debt. We measure each of these four balance sheet

moments in four age intervals: 21-30, 31-40, 41-50, and 51-60. Given a stochastic income

process, these lifecycle balance sheet choices are the dual of the stochastic lifecycle consump-

tion path. Our paper extends the structural analysis of Gourinchas and Parker (2002), who

study a model with exponential time preferences, to a more flexible class of time preferences.

The lifecycle balance sheet choices depend complexly on financial constraints, preferences,

and behavioral biases (Gomes et al., 2021). To map field data to fundamental preference

parameters, we use a structural lifecycle model that is designed to reflect key features of

1For reviews, see e.g., Ainslie (1992), Frederick et al. (2002), Ericson and Laibson (2019), and Cohen et
al. (2020).
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the institutional environment in which the field data was generated (DellaVigna, 2019). We

solve and simulate a model of lifecycle consumption and saving/borrowing choices, which

builds on the ‘buffer stock’ savings literature (e.g., Deaton, 1991; Carroll, 1992, 1997; An-

geletos et al., 2001; Gourinchas and Parker, 2002; Kaplan and Violante, 2014; Kaplan et

al., 2018; Choukhmane, 2019). Our model features liquid and illiquid assets, credit card

debt, liquidity constraints, age-varying dependents (both children and older adults), Social

Security, stochastic income, mortality, and bequests.

A large body of empirical research finds that a substantial fraction of economic agents

have present-focused preferences, meaning that “agents are more likely in the present to

choose an action that generates immediate experienced utility, then they would be if all

the consequences of the actions in their choice set were delayed by the same amount of

time” (Ericson and Laibson, 2019). In other words, present-focused consumers choose more

impatiently for the present than they would for the future.

There are many ways to represent time preferences in general and present-focused prefer-

ences in particular. We use the two-parameter discount function introduced by Phelps and

Pollak (1968) to study inter-generational discounting and then used by Laibson (1997) to

study intra-personal discounting: 1, βδ, βδ2, βδ3, ... . This discount function can be cali-

brated to generate exponential discounting (β = 1) or a particular form of present-focused

preferences that is referred to as present bias: i.e., β < 1. When β < 1, the discount rate is

greater in the short-run than the long-run.2

Adopting the methodology of Gourinchas and Parker (2002), we use a two-stage Method

of Simulated Moments (MSM) procedure to estimate three preference parameters in our

2Our main specifications assume that households are naive, meaning that they do not anticipate the
self-control problems of future selves (Akerlof, 1991; O’Donoghue and Rabin, 1999a,b). In most discrete-
time consumption models, sophisticates and naifs behave similarly (Angeletos et al., 2001). In a model
like ours, Maxted (2022) uses continuous-time methods to prove an observational equivalence between the
consumption choices of sophisticates versus naifs. Section 7 extends our model to the case of sophistication,
and the results are quantitatively similar.
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model: β and δ (the time preference parameters), as well as a (constant) coefficient of relative

risk aversion (RRA).3 Our parameter estimates minimize a weighted loss function that

compares 16 empirical moments from U.S. household balance sheets to the same moments

generated by simulating the structural model. Our benchmark estimates study households

with a completed high school degree and no college degree, as this is the largest educational

category for the period we study.4

Our empirical moments, calculated from the Survey of Consumer Finances, suggest that

households can appear to be either impatient or patient, depending on what part of the

balance sheet the viewer is studying. On the one hand, we observe a high frequency of

credit card rollover borrowing (e.g., the majority of households aged 21 through 60 revolve a

credit card balance). On the other hand, we also observe that households accumulate sizable

amounts of wealth over the lifecycle (e.g., even conditional on revolving a credit card balance,

households aged 51-60 simultaneously hold average wealth of 4.2-times their average income).

The observed frequencies and magnitudes of credit card borrowing and wealth formation may

or may not pose a conceptual tension for classical economic models of household behavior.

For example, some (classical) households will experience a sequence of economic shocks that

lead to credit card borrowing that coincides with a large stock of (previously accumulated)

illiquid wealth. To evaluate whether the population-level distribution of balance sheet data

poses a quantitative tension, we use our calibrated structural model.

Our structural analysis has two primary goals. Our first goal is to estimate time prefer-

ences, studying both the exponential-discounting case (which restricts β = 1), as well as the

present-bias case (which is estimated without any constraint on β). When we estimate an

exponential discount function, we fix β = 1 and estimate δ and RRA. When we estimate

3 See McFadden (1989), Pakes and Pollard (1989), and Duffie and Singleton (1993) for early references
in the MSM literature.

4Results for other educational groups are reported in our appendix.
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the unconstrained case we simultaneously estimate β, δ, and RRA.5 Our second goal is to

determine how well the model with an exponential discount function and the model with an

unconstrained (present-biased) discount function explain households’ balance sheet choices.

When we estimate an exponential discount function (i.e., constraining β = 1), the MSM

procedure estimates an annual discount factor of δ̂ = 0.96 and R̂RA = 1.4. When we

estimate a present-biased discount function, the MSM procedure jointly estimates β̂ = 0.50,

δ̂ = 0.99, and R̂RA = 1.3. The standard error on β̂ in the present-bias specification is 0.13.

Using a 1% significance threshold, our estimate of β̂ rejects the null hypothesis of exponential

discounting (β = 1).

Our estimates of β̂ and δ̂ allow our lifecycle model to match the tension between acting

impatiently versus patiently that we observe in households’ financial choices. Over the

coming year, the short-run discount rate is roughly 1 − β̂δ̂ = 51%. The high short-run

estimated discount rate implies that households are likely to borrow on credit cards at high

real interest rates; the calibrated real interest rate on credit cards is 12% in our benchmark

calibration. This frequent and substantial borrowing at a 12% interest rate – consistent with

our empirical credit card borrowing moments – makes households appear to be impatient.

For all subsequent years, the continuation discount rate is only 1 − δ̂ = 1% per year.

This low long-run estimated discount rate implies that households are willing to accumulate

substantial (illiquid) retirement wealth at a calibrated real interest rate of 5%.6 Intuitively,

when times are occasionally very good (e.g., a large positive transitory income shock), house-

holds put their extra liquidity into the illiquid asset (which pays a small premium over the

liquid asset). Households use the illiquid asset to store wealth whether they are naive (our

benchmark case) or sophisticated (an appendix case). Naive households put their extra

5The δ and RRA values estimated for the exponential discounting case will generally not be the same as
the δ and RRA values estimated for the unconstrained discount function.

6This is the calibrated historical real return on illiquid assets like housing. For example, Kaplan and
Violante (2014) calibrate the long-run real return on housing to be 6.29%.
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funds in the illiquid asset because they anticipate that they will not need the liquidity in

the medium run. On the other hand, sophisticated households are partially motivated to

put their extra funds in the illiquid asset as a commitment device. Hence, whether house-

holds are naive or sophisticated they will hold substantial illiquid wealth, and, nevertheless

live hand-to-mouth most of the time. Accordingly, the households in our model reproduce

the observed empirical regularities of holding little liquid wealth and simultaneously holding

large amounts of illiquid wealth. These patterns match empirical findings documented in

other papers, notably Angeletos et al. (2001), Laibson et al. (2003), Kaplan and Violante

(2014), Kaplan et al. (2018), Laibson et al. (2021a), and Lee and Maxted (2023).

Under present bias, the majority of simulated households borrow on credit cards in

any given period of working life, consistent with our empirical evidence. At a 12% real

interest rate on credit card borrowing and a 5% real return on illiquid investment, exponential

discounting cannot explain why most households roll over high levels of credit card debt and

simultaneously accumulate high levels of illiquid wealth. However, if we assume different

interest rates, most importantly, a lower real interest rate on credit card borrowing (e.g.,

6% rather than our assumed value of 12%), the exponential model does match the balance

sheet moments. Using a lower credit card borrowing rate we estimate β̂ to be close to one.

By varying our interest rate assumptions in our robustness analysis, we demonstrate the

relationship between our model and successfully calibrated exponential discounting models

that assume different interest rates than we do (e.g., Kaplan and Violante, 2014; Kaplan et

al., 2018). Accordingly, our simulation shows that frequent high-interest-rate borrowing is

explained by present bias, whereas frequent low-interest-rate borrowing is consistent with

exponential discounting.

A potential downside of structural modeling with complex household preferences, budget

constraints, and state spaces, is that it is often difficult to understand the economic mech-

anisms driving parameter identification. We propose a novel identification analysis, which
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we refer to as boundary analysis, that explains how our structural lifecycle model identifies

β, δ, and RRA. This graphical analysis draws boundaries around points in the (β, δ, RRA)

parameter space that fit selected subsets of the household balance sheet moments that the

model is attempting to match. In doing so, our boundary analysis provides a visualization

of the parameter subspaces that are consistent with moment matching. For our benchmark

calibration (with a 12% real interest rate on credit cards), the parameter subspace that fits

the moments does not include any mass in the set of exponential discounting models (i.e.,

β = 1). The exponential model can fit the wealth moments or the credit card moments, but

not both.7

Our parameter estimates are broadly consistent with other papers that have estimated

present-biased time preferences with structural models and field data collected from house-

holds with low income. Paserman (2008) obtains identification from heterogeneity in unem-

ployment durations and reservation wages to estimate β = 0.40 for workers with low income

and β = 0.89 for workers with high income. DellaVigna et al. (2017) also use a model of

unemployment durations to estimate β = 0.58. Using data on welfare recipients, Fang and

Silverman (2009) estimate β = 0.36. Skiba and Tobacman (2018) model payday loan bor-

rowing to estimate β = 0.50. Jones and Mahajan (2015) run a field experiment with income

tax refunds for households with low income and estimate β = 0.34. Ganong and Noel (2019)

measure the trajectory of consumption among unemployed households, using consumption

dynamics at the time of unemployment insurance exhaustion as a key source of identification

of time preferences. They estimate that one-quarter of households have β = 0.5, and the

rest have β = 0.9.

Some papers with structural models and field data estimate higher levels of β, even for

7However, as noted above, the exponential model can fit all moments if we substantially lower the real
interest rate on credit cards. With a credit card interest rate that is close to the rate of return on the illiquid
asset, the exponential discounting model can explain why most households are simultaneously borrowing on
credit cards and accumulating large stocks of partially illiquid wealth.
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populations with low income. Allcott et al. (2022) estimate β between 0.74 and 0.83 for

payday loan borrowers. Martinez et al. (2022) use the timing of tax filing data for low

income households to estimate β = 0.86 in their preferred specification.

Lockwood (2020) analyzes variation in estimated values of β by income level. Lockwood

summarizes the literature and reports a value of β = 0.5 for households with low income

and 0.9 for households with high income (see Lockwood’s Figure 2). In our appendix (Table

F3), we report estimates of β by educational attainment. For households with some high

school but not a high school degree, we estimate β = 0.27. For households with a high school

degree but not a college degree, we estimate β = 0.50; for households with a college degree

we estimate β = 0.83.

There is a much larger literature that estimates β using laboratory/experimental evi-

dence, which is reviewed in Ericson and Laibson (2019) and Cohen et al. (2020). Relative

to the literature using structural models and field data, the literature using experimental

evidence tends to find higher estimates of β.8

2 Wealth and Credit Card Data

We begin by empirically documenting household (net) wealth accumulation and credit card

borrowing. Together these moments characterize the tension between acting patiently (i.e.,

saving for the long run) and acting impatiently (i.e., revolving credit card debt). We will use

these moments in our structural model to estimate the discount function parameters that

are needed to replicate the household balance sheet patterns that we observe in the data.

To capture households’ financial behavior over the lifecycle, we estimate moments sepa-

8For example, Augenblick et al. (2015) study college students and estimate β = 0.97 for money-earlier-
or-later (MEL) choices and β = 0.89 for a time-stamped, effort-based task. Using similar time-stamped,
effort-based experimental paradigms, Augenblick and Rabin (2019) and Fedyk (2022) also study college
students and estimate β = 0.83 and β = 0.82, respectively. Goda et al. (2019) study a representative sample
and use a MEL design to elicit time preferences; they find that the average β is close to one, and that
variation in β across respondents strongly predicts the level of retirement savings.
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rately for households with heads aged 21-30, 31-40, 41-50, and 51-60.9 All empirical moments

are calculated using the Survey of Consumer Finances (SCF) from 1989 through 2013. Our

analysis focuses on U.S. households whose head has a high school degree but not a college

degree (this group constitutes 56% of SCF households from 1989 through 2013).10 Our mo-

ment estimates control for household demographics, business cycle effects, and cohort effects

in order to make the characteristics of the SCF population analogous to our simulated data.

Appendix A contains a detailed description of the data sources and estimation procedures.

Our moment estimates are summarized in Table 1. In Table 1 we adopt the notation m̄Jm for

the vector of moments and se (m̄Jm) for their standard errors, consistent with the notation

in Section 4 below.

The first statistic, %V isa, is the fraction of households that borrow on credit cards.11 For

age groups [21-30, 31-40, 41-50, 51-60], our analysis finds that respectively [81.1%, 78.2%,

74.7%, 65.5%] of households carry credit card debt from one month to the next. Specifically,

%V isa represents the fraction of households that self-report that they did not pay their bill

in full at the end of the last billing cycle. Though there is considerable heterogeneity among

households, credit card borrowing is ubiquitous across the entire distribution of wealth.12

We construct the second statistic, meanV isa, by dividing credit card debt by mean age-

specific income. We then average this fraction over the decadal age bins. For age groups

[21-30, 31-40, 41-50, 51-60] the average household has outstanding credit card debt equal,

respectively, to [14.3%, 13.9%, 19.0%, 20.3%] of the mean income of its age cohort. This

statistic is effectively a ratio of means. We use the ratio of means instead of the mean ratio

since household-level income can take small values. A distinctive feature of these meanV isa

9We view post-retirement financial decisions as sufficiently interesting that they call for specialized models,
beyond the scope of what we study here, in order to realistically incorporate health shocks and intergenera-
tional transfers (e.g., De Nardi et al., 2010; Ameriks et al., 2020).

10We report results for other education groups in Section 7.
11This is the fraction that borrows on any type of card, not just Visa cards.
12See also Table 2 of Laibson et al. (2003), which reports the fraction of households borrowing on credit

cards by age and by wealth quartile.
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Table 1: Second-Stage Moments

Name m̄Jm se (m̄Jm)
% Visa:

21-30 0.811 0.020
31-40 0.782 0.021
41-50 0.747 0.022
51-60 0.655 0.028

mean Visa:
21-30 0.143 0.037
31-40 0.139 0.037
41-50 0.190 0.050
51-60 0.203 0.054

wealth | debt:
21-30 1.193 0.112
31-40 1.781 0.119
41-50 2.936 0.159
51-60 4.242 0.237

wealth | no debt:
21-30 1.908 0.130
31-40 2.663 0.145
41-50 4.894 0.237
51-60 8.099 0.294

Source: Authors’ estimation based on data from the Survey of Consumer Finances. Note: Estimates pertain
to households with heads who have high school diplomas but not college degrees. Standard errors are
calculated using the procedure outlined in the 2013 SCF Codebook, and account for both imputation error
and sampling error. See Appendix A for estimation details.

moment estimates is that they rise over the lifecycle. This contrasts with the pattern in the

raw data on credit card borrowing, and arises in our estimates after adjusting for cohort

effects.13

The third statistic, wealth|debt, is also computed as a ratio of means. We divide average

net worth among households that did not pay off their credit card debt in full at the end of

the last billing cycle by mean age-specific income.14 For households with heads aged [21-30,

13Compared to the Federal Reserve’s G19 Consumer Credit Series and the Consumer Credit Panel of
the New York Fed/Equifax, the SCF survey questions on credit card borrowing involve substantial under-
reporting of aggregate borrowing (Zinman, 2009). We adjust the SCF magnitudes upwards to account for
underreporting. See Appendix A for details, and Table 4 for robustness to moment choices.

14For consistency with the model in Section 3, our wealth measure excludes “involuntary” wealth like
Social Security and other defined-benefit pensions since these flows appear in our estimated income process.
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31-40, 41-50, 51-60], respectively, the resulting wealth|debt measures equal [1.19, 1.78, 2.94,

4.24]. Importantly, these wealth|debt moments show that wealth accumulation is substantial,

even for households who are simultaneously borrowing on their credit cards.

The final statistic, wealth|no debt, is similar to wealth|debt but conditions on having

no outstanding credit card balance. Households without credit card debt hold more wealth

than households with credit card debt. For households with heads aged [21-30, 31-40, 41-50,

51-60] we find wealth|no debt equal to [1.91, 2.66, 4.89, 8.10], respectively.

3 Lifecycle Consumption-Saving Model

This section presents the lifecycle model. Our work extends the numerical simulation litera-

ture pioneered by Zeldes (1989), Deaton (1991), Carroll (1992, 1997), Hubbard et al. (1995),

Gourinchas and Parker (2002), and Cagetti (2003).15 Our specific analysis is most closely

related to that of Gourinchas and Parker (2002), whose two-stage MSM procedure we adopt

(details in Section 4).

The first-stage parameters for this structural model can be found in Table 2, and are de-

scribed here. Appendix B provides additional details on our first-stage parameter estimation

procedures. In the model, economic decision-making begins at age 20. Households have an

age-dependent survival hazard of st calibrated with data from the U.S. National Center for

Health Statistics (1994). Household composition varies deterministically with age as children

and adult dependents enter and leave the household.16 Effective household size nt equals the

number of household heads – which we assume to be two in our benchmark model – plus the

number of dependent adults, plus 0.4 times the number of children under 18. Our robustness

15We have commonalities with many recent papers including De Nardi et al. (2010), Bucciol (2012),
Kaplan and Violante (2014), Kaplan et al. (2014), Carroll et al. (2017), Pagel (2017), Auclert et al. (2018),
Choukhmane (2019), Attanasio et al. (2020), and De Nardi et al. (2020).

16Demographic profiles are estimated parametrically using the decennial census in 1980, 1990, and 2000,
and the American Community Survey from 2001 through 2014.
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analysis studies alternate assumptions about the returns to scale in household consumption.

Let Yt represent period t after-tax income from transfers and wages, including labor

income, inheritances, private defined-benefit pensions, and government transfers including

Social Security. We model yt = ln(Yt) as the sum of a cubic polynomial in age, family-size

effects, an AR(1), and an i.i.d. shock. We approximate the AR(1) with a Markov process,

and denote the Markov state ζ.17 The income process is estimated from the Panel Study of

Income Dynamics (PSID).

LetXt represent liquid asset holdings at the beginning of period t, before receipt of income

Yt. If Xt < 0 then uncollateralized debt – i.e., credit card debt – was held between t− 1 and

t. Households face a credit limit at age t of λt times average income at age t: Xt ≥ −λtY t.

λt is a quadratic in age that we estimate from the SCF.18 The model precludes consumers

from simultaneously holding liquid assets and credit card debt, though such potentially

suboptimal behavior has been documented among a subpopulation of consumers.19

Positive liquid asset holdings earn a risk-free real after-tax gross interest rate of R. Similar

to Gourinchas and Parker (2002), we calibrate R as the inflation-adjusted average of Moody’s

AAA municipal bond yields from 1980-2000. The model features a “soft constraint” that

drives a wedge between the return on borrowing versus saving. Specifically, households pay

a real interest rate on credit card borrowing of RCC . We refer to this simply as the credit

card interest rate, but our computation of RCC accounts for the impact of inflation and

bankruptcy, which lower consumers’ effective interest payments.20

17Our benchmark specification does not model income using separate processes for the working lifetime
and retirement. Since we do not condition the second-stage moments on work status, the data and model are
more closely analogous with an income process that is smooth in age. Alternate assumptions are explored
in the robustness section.

18This is a crude representation of the income-based credit limits that are common in the revolving credit
market (Fulford and Schuh, 2015). Assets are not an important determinant of credit card borrowing limits
because large asset classes like retirement accounts (and in some states home equity) cannot be seized after
a credit card default.

19For more, see Gross and Souleles (2002), Telyukova and Wright (2008), Bertaut et al. (2009), and
Gorbachev and Luengo-Prado (2019).

20Specifically, from the quarterly interest rates reported in the Federal Reserve Board’s G-19 historical
series, we subtract the CPI-U and the bankruptcy rate. We calculate the latter by dividing the number
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Let Zt represent (net) illiquid asset holdings at the beginning of period t, with Zt ≥ 0 for

all t. Illiquid assets include durables, which generate two types of returns: capital gains and

consumption flows. For computational tractability, we set net capital gains equal to zero

(i.e., RZ = 1) and fix the annual consumption flow at γZt = 0.05 ·Zt. Hence, the return from

holding the illiquid asset is a 5% annual flow of consumption. We adopt the assumption that

liquidating Zt requires a proportional transaction cost, which declines as a logistic with age.

Specifically, the proportional cost of liquidation at age t is κt = 1/2

1+e(t−50)/10 . These choices

about Z do not match the properties of any particular illiquid asset, though Z has some

features of home equity and some features of defined-contribution pensions. Our robustness

checks evaluate the sensitivity of our results to the liquidity properties of Z.

Two observations motivate our assumptions about the partial, age-dependent illiquidity

of Z. First, despite increasing financial innovation, many household assets continue to be

partially illiquid. Accessing equity in homes, cars, and retirement plans entails transaction

costs and delays. Indeed, some of these frictions are by design: e.g., early withdrawal

penalties in defined contribution plans and (essentially) complete illiquidity of defined benefit

plans.

Second, illiquid assets taken as a whole tend to become more liquid as a household ages.

For example, IRS regulations establish that an employee with a 401(k) may only make a

hardship withdrawal if (i) the employer allows such withdrawals, (ii) the household faces

an immediate and heavy financial need, (iii) the employee couldn’t reasonably obtain the

funds from another source, and (iv) the withdrawal is limited to the amount necessary to

satisfy that financial need.21 To verify these preconditions, the household goes through a

time-consuming application process. Even if this application is approved, the household still

of bankruptcies (American Bankruptcy Institute) by the number of US households that have credit cards
(SCF). This attributes all U.S. bankruptcies to households holding credit cards. Robustness checks using a
wide range of credit card interest rates are presented in Section 6.3.

21Secure 2.0, signed into law in December 2022, marginally expands the liquidity of 401(k)’s.
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pays income taxes and a 10% penalty on the hardship distribution. By contrast, a mid-

life worker who has previous employers, can roll over 401(k) balances from those previous

employers into an IRA, which allows uncapped distributions without hardship restrictions;

IRA distributions are still subject to income taxes and a 10% penalty (Beshears et al., 2022).

At age 591
2

the early withdrawal penalty is eliminated.

Similar trajectories of rising liquidity characterize housing wealth. For example, a new

homeowner will not be able to take out a home equity loan if the household has a high loan-

to-value ratio. However, an older homeowner is likely to have a lower loan-to-value ratio due

to the mechanical process of principal repayment and the probabilistic process of home value

appreciation (Liu, 2022). Accordingly, home equity tends to become less and less illiquid (on

the margin) as households age. However, home equity loans generate transaction costs and

inherent time delays, which may be enough to materially discourage their use by households

seeking immediate gratification.

Let IXt represent net investment into the liquid asset X during period t, and let IZt

represent net investment into the illiquid asset Z during period t. The dynamic budget

constraints are given by:

Xt+1 = RX
(
Xt + IXt

)
, and (1)

Zt+1 = RZ
(
Zt + IZt

)
. (2)

Since the interest rate on liquid wealth RX depends on whether the consumer is borrowing

or saving in their liquid account,

RX =

 RCC if Xt + IXt < 0

R if Xt + IXt ≥ 0
.
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The static budget constraint is:

Ct = Yt − IXt − IZt + κt min
(
IZt , 0

)
.

The state variables at the beginning of period t are age (t), liquid wealth (Xt+Yt), illiquid

wealth (Zt), and the value of the Markov process (ζt). We denote the set of state variables

by Λt. The non-redundant choice variables are IXt and IZt . Consumption is a residual.

The household has constant relative risk aversion denoted by ρ. For t ∈ {20, 21, ..., 90},

self t has instantaneous payoff function

u(Ct, Zt, nt) = nt ·

(
Ct+γZt

nt

)1−ρ
− 1

1− ρ
.

The household accumulates utility through consumption until death, at which point the

household earns a bequest payoff of B(t,X, Z).22

The quasi-hyperbolic discount function {1, βδ, βδ2, βδ3, ...} corresponds to a short-run

discount rate of − ln (βδ) and a long-run discount rate of − ln (δ). When β = 1 the household

discounts exponentially, which implies that household decisions are dynamically consistent.

When β < 1, time inconsistency generates disagreement between selves.

Our benchmark in this paper follows Akerlof (1991) and O’Donoghue and Rabin (1999a,b)

in adopting the assumption of “naivete.” Under naivete, self t erroneously believes that

all future selves will make choices that are aligned with self t’s preferences. We assume

naivete for computational simplicity, and note that consumption choices do not provide a

22We assume that bequeathed wealth is consumed by heirs as an annuity. Let A(t,X,Z) = max{0, (R −
1)(X+(1−κt)Z)} denote the flow annuity payment from bequeathed wealth. This assumes that liquidating
illiquid wealth entails the same transaction cost κt faced by a living household of age t. Let n̄ and ȳ denote
average effective household size and average labor income over the lifecycle, respectively. We set bequest
payoff B(t,X,Z) = α

1−δ [u (ȳ +A(t,X, Z), 0, n̄)− u(ȳ, 0, n̄)], where α is the weight placed on the bequest
motive. Intuitively, this bequest motive captures the value of a household of size n̄ increasing consumption
from ȳ to ȳ +A(t,X,Z). Our baseline calibration sets α = 0.5. See Appendix Table E4 for robustness.
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good dataset for identifying sophistication versus naivete. Indeed, Maxted (2022) proves an

observational equivalence between naifs and sophisticates in a two-asset model similar to the

one studied here. For completeness, in Section 7.2 we extend our analysis to “sophistication,”

where the current self is aware of future selves’ present bias. Results are qualitatively similar.

Taking the (erroneously anticipated) strategies of other selves as given, self t picks a

strategy at time t. This strategy is a map from the Markov state Λt = {t,X + Y, Z, ζ} to

the choice variables
{
IX , IZ

}
. An equilibrium is a fixed point in the strategy space, such

that all strategies are optimal given the perceived strategies of future selves.

For the naivete benchmark case, let V E
t,t+1 (Λt+1) represent self t’s erroneous expectation

of self t+ 1’s value function. Self t’s objective function is

u(Ct, Zt, nt) + βδEtV
E
t,t+1(Λt+1). (3)

Self t chooses
{
IX , IZ

}
in state Λt to maximize this expression. Self t thinks that self t+ 1

will choose
{
IX,Et+1 , I

Z,E
t+1

}
to maximize an analogous expression, but with β = 1:

u(Ct+1, Zt+1, nt+1) + δEt+1V
E
t+1,t+2

(
Λt+2

(
IX,Et+1 , I

Z,E
t+1

))
. (4)

For simplicity we can denote Λt+2

(
IX,Et+1 , I

Z,E
t+1

)
as ΛE

t+2. The sequence of continuation-value

functions is defined recursively, where E superscripts always reflect naive expectations:

V E
t−1,t(Λt) = (1− 1

death
t )[u(CE

t , Zt, nt) + δEtV
E
t,t+1(ΛE

t+1)] + 1
death
t B(Λt), (5)

where 1
death
t indicates that the household dies between period t − 1 and t. We solve for

equilibrium strategies using numerical backwards induction.

We generate Js = 10000 independent streams of income realizations for Js households,

and we seed households with median age-20 wealth as calibrated from the SCF. Then we
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simulate lifecycle choices for these households, assuming they make equilibrium decisions

conditional on their state variables. From the simulated profiles of C, X, Z, and Y , we

calculate the moments used in the MSM estimation procedure. Note that the simulated

profiles, and hence the summary moments, depend on the parameters of the model. Since

the model cannot be solved analytically, its quantitative predictions are derived from the

simulated lifecycle profiles.23

4 Two-Stage Method of Simulated Moments

We estimate the parameters of the model’s discount function in the second stage of a Method

of Simulated Moments procedure, closely following the methodology of Gourinchas and

Parker (2002). MSM allows us to evaluate the predictions of our model and to formally

test the nested null hypothesis of exponential discounting, β = 1.24 The current section

describes our procedure. Appendix C presents derivations and additional technical details.

Our MSM procedure has two stages. In the first stage, nuisance parameters, χ, are

estimated using standard techniques (see Table 2). We estimate these Nχ parameters and

their associated variances, Ωχ. Appendix B contains details.25

Given χ and Ωχ, the second stage uses additional data and more of the model’s structure

to estimate Nθ additional parameters θ. The second stage, taking the first-stage parameters

fixed at χ̂, chooses θ to minimize the distance between the empirical and the simulated

moments. Specifically, we use the data from Section 2 on wealth accumulation and credit

card borrowing over the lifecycle to estimate θ = (β, δ, ρ) in the second stage. MSM, as we

implement it, differs from a calibration exercise followed by a one-stage estimation in that it

23See Maxted (2022) for a theoretical analysis of the effects of present bias on consumption-saving decisions.
24See McFadden (1989), Pakes and Pollard (1989), and Duffie and Singleton (1993) for the first formulations

of MSM.
25Included in χ are income level coefficients, income variability coefficients, effective household size coeffi-

cients, and credit limit coefficients.
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Table 2: First-Stage Estimation Results

Demographics Liquid Assets
Number of children Credit limit λt
kt = φ0exp(φ1age−φ2

age2

100
)+ε λt = φ0exp(φ1age−φ2

age2

100
)+ε

φ0 φ1 φ2 φ0 φ1 φ2

0.003 0.358 0.508 0.237 -0.007 0.022
(4.21E-06) (6.61E-05) (8.69E-05) (4.93E-02) (2.38E-03) (2.52E-03)

Number of dependent adults Real return on positive liquid assets R

at = φ0exp(φ1age−φ2
age2

100
)+ε 1.0279

-
φ0 φ1 φ2

4.59E-06 0.452 0.438 Real credit card interest rate Rcc

(1.41E-08) (1.24E-04) (1.23E-04) 1.1152
-

Illiquid Assets
Consumption flow as a fraction of assets γ
0.05

-
Real Income from Transfers and Wages

Income process

yt = ln(Yt) = φ0+φ1age+φ2
age2

100
+φ3

age3

10000
+φ4Nheads+φ5Nchildren+φ6Ndep.adults+ξt

ξt = ηt+νt = ψηt−1+εt+νt

φ0 φ1 φ2 φ3 φ4 φ5 φ6 ψ σ2
ε σ2

ν

7.528 0.141 -0.233 0.113 0.320 0.012 0.236 0.834 0.058 0.046
(0.252) (0.018) (0.039) (0.026) (0.022) (0.009) (0.012) (0.050) (0.006) (0.005)

Source: Authors’ estimation, following Laibson et al. (2003), based on data from the PSID, SCF, IPUMS-
USA, FRB, and American Bankruptcy Institute. Note: Estimates pertain to households with heads who
have high school diplomas but not college degrees. Standard errors are in parentheses. The constant of the
deterministic component of income includes a birth-year cohort effect and a business cycle effect proxied by
the unemployment rate. The dynamics of income estimation includes a household fixed effect. See Appendix
B for estimation details. All return parameters are assumed to be exactly known in the context of the first
stage. This table only reports standard errors, but the full covariance matrix is used in the second stage of
the MSM procedure.
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propagates uncertainty in the first-stage parameters into the standard errors of the second-

stage parameter estimates. That is, the variance matrix of θ̂, denoted Ωθ, depends on Ωχ.26

For parameters of the model that are not included in χ – like R, RCC , γ, the parameters

governing κt, and the bequest function – we perform additional robustness checks in Section

6.3.27

Denote the empirical vector of Nm second stage aggregate moments by m̄Jm . Let Jm be

the numbers of empirical observations used to calculate the elements of m̄Jm . Denote the

theoretical population analogue to m̄Jm by m (θ, χ) and let mJs (θ, χ) be the simulation ap-

proximation to m (θ, χ). Let g (θ, χ) ≡ [m (θ, χ)− m̄Jm ] and gJs (θ, χ) ≡ [mJs (θ, χ)− m̄Jm ] .

The moment conditions imply that in expectation

E[g (θ0, χ0)] = E [m (θ0, χ0)− m̄Jm ] = 0,

where (θ0, χ0) is the true parameter vector. Define derivatives of the moment functions with

respect to the parameters byGθ ≡ ∂g(θ0,χ0)
∂θ

andGχ ≡ ∂g(θ0,χ0)
∂χ

. Let Ωg ≡ E
[
g (θ0, χ0) g (θ0, χ0)′

]
be the variance of the second-stage moment estimates m̄Jm , which is estimated directly and

consistently from sample data using bootstrapping.

Let W be a positive definite Nm ×Nm weighting matrix. Define

q (θ, χ) ≡ gJs (θ, χ)′ ·W · gJs (θ, χ) (6)

as a scalar-valued loss function, equal to the weighted sum of squared deviations of simulated

moments from their corresponding empirical values. Our procedure is to fix χ at the value

26Our derivation of Ωθ assumes that the first-stage moments and the second-stage moments have uncor-
related measurement error. We make this simplifying assumption because most of the data that we use to
identify θ and χ come from separate datasets. The only exception is the credit limit.

27Interest rates are computed from aggregate data. Therefore our estimates do not capture household-
level variation and are not formally included in the first stage. The parameters governing κt and the bequest
motive are reduced-form structural assumptions that are not easily pinned down in the data.
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of its first-stage estimator, minimize the loss function q (θ, χ̂) with respect to θ, and define

the estimator as

θ̂ = arg min
θ

q (θ, χ̂) . (7)

Pakes and Pollard (1989) demonstrate that under regularity conditions satisfied here θ̂ is

a consistent estimator of θ0, and θ̂ is asymptotically normally distributed. As shown in

Appendix C,

Ωθ = V ar
(
θ̂
)

= (G′θWGθ)
−1
G′θW

[
Ωg + Ωs

g +GχΩχG
′
χ

]
WGθ (G′θWGθ)

−1
, (8)

where Ωs
g = Jm

Js
Ωg is the simulation correction. The first-stage correction is given by GχΩχG

′
χ.

This correction increases with the uncertainty in our estimates of the first-stage parameters

(Ωχ) as well as the sensitivity of the second-stage moments to changes in the first-stage

parameters (Gχ).

Equation (8) is used to calculate standard errors for our estimates of θ. All derivatives

are replaced with numerical analogues, which we calculate using the model and simulation

procedure. We estimate Ωg and Ωχ from sample data.

We use weighting matrixW = diag
(

Ω̂g

)−1

for our baseline estimates. Many authors have

found optimally-weighted GMM procedures lead to biased estimates in small samples (e.g.,

Altonji and Segal, 1996; West et al., 2009). An important advantage of diagonal weighting

matrices is that the contribution of each moment to q (θ, χ̂) can be easily computed. We use

this property in Section 6 to present a novel exploration of our model’s identification, which

we refer to as a Boundary Analysis. In robustness checks we find that our conclusions are

not affected by the choice of weighting matrix.
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5 Estimation Results

In this section we discuss the paper’s main findings. We focus on estimates for the discount

factors β and δ and the coefficient of relative risk aversion ρ, including the special case

in which we impose β = 1. We also assess whether these models accurately predict key

empirical regularities in the lifecycle literature summarized by the second-stage moments.

5.1 Benchmark Case

We report our benchmark estimates in Table 3. In the unconstrained case (Column 1), the

MSM procedure yields an estimate of β̂ = 0.496 with a standard error (s.e.(i) in the table) of

0.125. For this specification, β̂ lies significantly below 1; the t-stat for the β = 1 hypothesis

test is t = 4.04. The MSM procedure yields an estimate of δ̂ = 0.988, with a standard error

of 0.005, and ρ̂ = 1.319, with a standard error of 0.574. The estimated values of β and δ

imply a short-run discount rate of − ln(0.496 · 0.988) = 71.3% and a long-run discount rate

of − ln(0.988) = 1.2%.

At the estimated parameter values, the present-biased model generates the moment pre-

dictions reported in Column 1 of the lower panel of Table 3. Our estimated model has

three free parameters, which are estimated with sixteen debt and wealth moments. We can

compare the model’s simulated moments with the sample moments, which are reproduced in

Column 3. Qualitatively, the present-biased model successfully matches the lifecycle patterns

of both credit card borrowing and wealth accumulation. Quantitatively, the model substan-

tially underpredicts the fraction borrowing in every decadal age bin. For example, the model

predicts that for a randomly sampled household between the ages of 31-40, there is a 58.7%

chance that they did not pay their credit card balance in full during their last payment cy-

cle. This contrasts with 78.2% of households in the data. The model is quantitatively more

successful in matching the age-based pattern of average credit card borrowing. The model
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Table 3: Benchmark Estimates

(1) (2) (3)
Present Biased Exponential Data

Parameter estimates

β̂ 0.4961 1 -
s.e. (i) (0.1246) - -
s.e. (ii) (0.1238) - -
s.e. (iii) (0.0382) - -
s.e. (iv) (0.0358) - -

δ̂ 0.9884 0.9633 -
s.e. (i) (0.0049) (0.0048) -
s.e. (ii) (0.0049) (0.0048) -
s.e. (iii) (0.0019) (0.0011) -
s.e. (iv) (0.0018) (0.0011) -
ρ̂ 1.3195 1.4248 -
s.e. (i) (0.5739) (0.3389) -
s.e. (ii) (0.5706) (0.3375) -
s.e. (iii) (0.1735) (0.0910) -
s.e. (iv) (0.1619) (0.0855) -

Second-stage moments
% V isa 21-30 0.576 0.278 0.811
% V isa 31-40 0.587 0.241 0.782
% V isa 41-50 0.573 0.262 0.747
% V isa 51-60 0.553 0.258 0.655
mean V isa 21-30 0.107 0.034 0.143
mean V isa 31-40 0.136 0.034 0.139
mean V isa 41-50 0.169 0.042 0.190
mean V isa 51-60 0.199 0.045 0.203
wealth 21-30 | debt 1.114 0.961 1.193
wealth 31-40 | debt 1.476 0.985 1.781
wealth 41-50 | debt 2.452 2.019 2.936
wealth 51-60 | debt 4.336 4.137 4.242
wealth 21-30 | no debt 1.962 1.938 1.908
wealth 31-40 | no debt 3.038 2.883 2.663
wealth 41-50 | no debt 4.558 4.238 4.894
wealth 51-60 | no debt 7.453 6.278 8.099

Goodness-of-fit

q(θ̂, χ̂) 333.16 2237.80 -

ξ(θ̂, χ̂) 120.75 237.17 -
p-value 0 0 -

This table reports estimates of the discount function under our benchmark assumptions. The top half of the
table presents parameter estimates and standard errors. The bottom half of the table reports the moments
used to identify the second-stage parameters. Four standard errors are shown: (i) includes both the first-
stage correction and the simulation correction, (ii) includes just the first-stage correction, (iii) includes just
the simulation correction, and (iv) includes neither correction.
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also performs reasonably well in matching the age-based pattern of wealth formation, both

for households with and without credit card debt.

We also estimate δ and ρ, imposing the restriction that β = 1. This exponential dis-

counting case yields the results in Column 2. We find δ̂ = 0.963, implying a discount rate of

3.7%, with a standard error of 0.005. We estimate ρ̂ = 1.425, with a standard error of 0.339.

The exponential model matches the empirical facts about wealth accumulation over the

lifecycle reasonably well. However, with such a low discount rate the model cannot account

for observed credit card borrowing data. Instead, it predicts %V isa and meanV isa to be low

at all ages. These credit card moments, which require a high discount rate, lose in the tug

of war with the wealth moments, which require a low discount rate.28 The best fit available

under an exponential model predicts that most households have very little credit card debt,

much less than we observe in the data.

Figure 1 provides visual evidence of the exponential model’s inability to match the full

set of empirical moments. Figure 1 fixes the value of β ∈ {0.25, 0.3, 0.35, ..., 0.95, 1} and

re-estimates the benchmark model for {δ, ρ} conditional on β. The vertical axis reports the

q-value of best fit for each estimate. The model’s ability to match the full set of credit card

and wealth moments clearly suffers as β approaches 1.

Our two-stage MSM procedure also enables us to provide formal over-identification tests

that combine all of the simulated moments. As expected, with 3 free parameters and 16

precisely estimated moments, all of our models are rejected by over-identification tests.

For the present-biased model, the (inverse) goodness-of-fit measure is ξ
(
θ̂, χ̂

)
= 121. For

the exponential discounting model, the (inverse) goodness-of-fit measure is ξ
(
θ̂, χ̂

)
= 237.

Under the null hypothesis that the model is correct, ξ is distributed chi-squared with degrees

of freedom equal to the number of moments (16) minus the number of parameters (3 for the

28As we discuss in Section 6.3, if the credit card interest rate is low enough, or the return to illiquid wealth
(i.e., γ) is high enough, the exponential model can more successfully match the facts simultaneously.
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Figure 1: q on β (allowing δ and ρ to vary)

This figure illustrates the sensitivity of the model fit to restrictions on the short-run discount factor β. The
vertical axis lists the MSM objective function q. Each point comes from a separate estimate of δ and ρ,
conditional on the indicated β.

model with present bias and 2 for the exponential model). For reference, the 99% critical

values of the chi-squared distribution with 13 and 14 degrees of freedom, respectively, are

27.7 and 29.1. The overidentification tests reject both the present-biased model and the

exponential model at the 1% level, though the p-value for the present-biased model exceeds

the p-value for the exponential model by more than 20 orders of magnitude.

The standard errors reported as “s.e.(i)” in Table 3 and discussed above incorporate

corrections for the first-stage estimation and for the simulation error. For comparison, we

also report standard errors without these corrections: s.e.(ii) only includes the first-stage

correction, s.e.(iii) only includes the simulation correction, and s.e.(iv) includes neither. The

first-stage correction has a sizable effect on the standard errors. For example, if the first-stage

parameters were known with certainty (comparing s.e.(i) and s.e.(iii)) then the standard error

on β would shrink by a factor of three — falling from 0.125 to 0.038.
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5.2 Benchmark Case: Model Properties

For our benchmark estimate with present bias, Figure 2 plots the average lifecycle profile of

households in the model.29 Average income peaks at age 46 before declining monotonically as

households transition probabilistically into retirement. Total consumption at the household

level (which includes the consumption flow from the illiquid asset) remains approximately

constant from age 45 until death. Even though income is declining, illiquid wealth supports

consumption later in life for the typical household. Figure 2 also captures the underlying

tension between acting patiently and acting impatiently: alongside the accumulation of

illiquid wealth there is a buildup of credit card debt, particularly from ages 25-55.

Figure 2: Average Lifecycle Profile for Present-Biased Estimate

This figure plots the average lifecycle profile of income, total consumption, liquid assets, and illiquid assets
(divided by ten for scaling) for the benchmark estimate (β̂ = 0.496).

Our benchmark estimate also makes predictions about a household’s marginal propen-

sity to consume (MPC) over the lifecycle. In particular, we calculate the average one-year

29For the β = 1 case, see Appendix Figure 5.
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MPC out of a $2000 windfall. For households aged [25, 35, 45, 55] the MPC is [0.45, 0.42,

0.30, 0.16], respectively. Using the method of Laibson et al. (2021b), we can also convert

the model’s MPCs into marginal propensities for expenditure (MPXs), which include total

spending on both nondurables and consumer durables. For households aged [25, 35, 45, 55]

the average annual MPX is [0.64, 0.60, 0.43, 0.23], respectively.30

This pattern of declining MPCs and MPXs fits with the lifecycle predictions of the model.

As households age they accumulate illiquid wealth and face a lower transaction cost to access

this wealth, both of which decrease the share of hand-to-mouth households over the lifecycle.

The model’s predicted MPX age dynamics are also consistent with the empirical evidence

in Fagereng et al. (2021), who document a tendency for the MPX out of lottery winnings to

decline with age.

6 Identification

6.1 Boundary Analysis

A drawback to structural modeling is that the forces driving parameter identification are

often opaque. In this section we present a novel strategy – which we call a Boundary Analysis

– in order to address this identification challenge. The goal of our Boundary Analysis is to

restrict the three-dimensional θ = (β, δ, ρ) parameter space to areas where the simulated

moments are close to their empirical counterparts. These boundaries help us to detect the

underlying trade-offs that the MSM procedure makes as it chooses θ̂ optimally to fit the

30Laibson et al. (2021b) show that the one-period MPX can be approximated by:

MPX =

(
1− s+

s

r + V

)
×MPC,

where s is the durable share of consumption, V is the depreciation rate, and r is the interest rate. We
set r = 2.79% (see Table 2), and follow the calibration of Laibson et al. (2021b) in setting s = 0.125 and
V = 1− e−0.22 = 0.20.
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empirical moments.31

To conduct this analysis, we create a discrete three-dimensional grid of θ = (β, δ, ρ)

values and solve our model at each grid point θi. Our choice of a diagonal weighting matrix

means that it is easy to determine the contribution of each individual moment (or set of

moments) to q(θi, χ̂).32 We group our 16 moments into two categories – credit card borrowing

moments and wealth moments – and determine each category’s contribution to q(θi, χ̂). Let

qcc(θi, χ̂) denote the contribution of the credit card moments and let qwealth(θi, χ̂) denote the

contribution of the wealth moments, such that q(θi, χ̂) = qcc(θi, χ̂) + qwealth(θi, χ̂).

The Boundary Analysis is presented in Figure 3. In order to visualize the three-dimensional

grid of θ values we show four two-dimensional plots in (β, δ)-space for ρ ∈ {0.5, 1, 2, 3}. Each

plot has two boundaries. The red boundary encases the set of grid points at which qcc < 333,

and the blue boundary encases the set of grid points at which qwealth < 333. The threshold

of 333 is chosen to align with the q of our baseline estimate in Table 3. The stars mark the

point of best fit conditional on ρ.

We now use this Boundary Analysis to aid our discussion of the identification of θ̂.

Starting with ρ̂, Figure 3 illustrates two effects that occur as ρ increases. The first effect

is that the two boundaries pull apart — the red credit card boundary shifts left and down

toward lower values of β and δ while the blue wealth boundary shifts right and up toward

higher values of β and δ. This first effect calls for the estimation of a low ρ in order to keep

the two boundaries close together. On the other hand, the second effect of increasing ρ is

that the area enclosed by each boundary increases. Put differently, the gradient of qcc and

qwealth with respect to β and δ is decreasing in ρ. This second effect calls for the estimation

31The discussion of identification in this section will focus on how θ̂ is chosen to match the empirical
moments of Section 2. Alternatively, a reader could ask how changes to the empirical moments affect the
estimate of θ̂. To address this question we report the Andrews et al. (2017) sensitivity measure of θ̂ in
Appendix Table D1.

32Objective function q(θ, χ̂) = gJs(θ, χ̂)′ ·W · gJs(θ, χ̂), so W being diagonal implies that q(θ, χ̂) is just a
weighted sum of squared errors.
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Figure 3: Boundary Analysis

This figure shows the Boundary Analysis. The red locus marks the set of points in (β, δ)-space for which
q′cc ·Wcc · qcc < 333. The blue locus marks the set of points for which q′wealth ·Wwealth · qwealth < 333. The
star marks the point of best fit conditional on ρ.

of a high ρ. Balancing these two effects yields ρ̂ ≈ 1.3 as is estimated in Table 3.

To understand the first effect of boundaries pulling apart, a higher value of ρ increases the

household’s precautionary savings motive. This discourages credit card borrowing in order

to preserve that adjustment margin for a series of negative income shocks. As ρ increases

the model can only match the empirical credit card borrowing moments with lower discount

factors, hence the shift left and down of the red boundary. On the other hand, a higher value

of ρ also discourages wealth accumulation beyond what is needed for self-insurance purposes.

Wealth accumulation involves trading off current consumption for future consumption, and

a higher ρ makes this trade-off less appealing. Thus, as ρ increases the blue boundary shifts

right and up because higher discount factors are needed to continue fitting the empirical
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wealth moments.

For the second effect of decreasing gradients, recall that ρ is the inverse of the EIS,

such that increasing ρ decreases the sensitivity of consumption growth to β and δ. Thus,

conditional on being at a grid point θi that is included in either the credit card or wealth

boundary, larger changes to β and δ will be required for qcc or qwealth to change by enough

to exit the boundary.

Now that we’ve identified ρ, we discuss the identification of β̂ and δ̂ conditional on

ρ ≈ 1.3. Here we focus on the ρ = 1 subplot.33 The shape of both the red and blue

areas implies that β and δ are partial substitutes: when δ is high then low values of β

best match the empirical moments, and vice-versa. Nonetheless, β and δ are separately

identified because they are not perfect substitutes. The divergence of the red and blue

boundaries as β approaches 1 shows that the effect of δ relative to β is larger for wealth

accumulation than for credit card borrowing.34 Matching the wealth moments relies on

substantial illiquid asset accumulation, while matching the credit card moments relies on

minimal liquid asset accumulation. Illiquid assets have a longer effective horizon than liquid

assets, hence giving δ relatively more influence on them. As the ρ = 1 subplot shows, for

β near 1 our model cannot fit both wealth and credit card moments, but by decreasing β

(and increasing δ accordingly) our model is able to generate the simultaneous credit card

borrowing and wealth accumulation required to match the patterns we observe in the data.35

6.2 Moment Sets

As is well known from GMM theory, the choice of moments can be crucial to the outcome

of the analysis. We chose to focus on the 16 moments discussed above – each of %V isa,

33The ρ = 1 plot is similar to the equivalent ρ = 1.3 plot, which is reported in Appendix Figure 4.
34As β increases toward 1, δ needs to fall by only a little to continue fitting the wealth moments. Alter-

natively, δ needs to fall by a lot to continue fitting the credit card moments.
35See also Maxted (2022) and Lee and Maxted (2023) for further theoretical analysis of how β versus δ

affect credit card borrowing and illiquid wealth accumulation.
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meanV isa, wealth|debt, and wealth|no debt, in four decadal age bins – because of their

economic importance and their transparency. Since our model is overidentified, if it is

correctly specified then omitting some of these moments should not change our estimated

parameter values.

We pursue an initial examination of restrictions to the moment set in Table 4. Column

1 of Table 4 repeats the benchmark results. Columns 2-5 drop the %V isa, meanV isa,

wealth|debt, and wealth|no debt groups of moments, respectively. In each case, we estimate

almost identical θ̂’s.36

Column 6 takes the more aggressive step of dropping both the %V isa and meanV isa

moment blocks simultaneously. In this case, we estimate β̂ = 0.328 and δ̂ = 0.997. The

estimate of β̂ is considerably lower than the benchmark estimate, while the estimate of δ̂ is

considerably higher. The wealth accumulation moments are matched well, but the model fails

to match the credit card moments. In Column 7 we report estimates when all eight wealth

moments are dropped. This results in β̂ = 0.819 and δ̂ = 0.955. Now, the estimate of β̂

is considerably higher than the benchmark estimate, while the estimate of δ̂ is considerably

lower. The credit card moments are matched well, but there is minimal lifecycle wealth

accumulation.

The takeaway from Columns 6 and 7 is that if the model is tasked with matching only

the credit card borrowing moments or only the wealth accumulation moments, it can succeed

quite well with either δ or β (this can also be seen visually in the Boundary Analysis in Figure

3, where the diagonally shaped boundaries highlight that δ and β are partial substitutes).

Identification comes from the inclusion of both types of moments in order to generate a

tension between short-run and long-run behavior.

36Modifying the age groups that are included (dropping 51-60; dropping 21-30; adding 61-70) also does
not affect our findings.
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Table 4: Sources of Identification

(1) (2) (3) (4) (5) (6) (7) (8)
- %V isa %V isa %V isa - %V isa

meanV isa - meanV isa meanV isa - meanV isa
Benchmark wealth|debt wealth|debt - wealth|debt wealth|debt - Data

wealth|no debt wealth|no debt wealth|no debt - wealth|no debt -
Parameter estimates

β̂ 0.4961 0.5003 0.4979 0.4597 0.5405 0.3281 0.8190 -
s.e. (i) (0.1246) (0.2281) (0.1201) (0.1522) (0.1491) (0.1157) (0.1874) -

δ̂ 0.9884 0.9884 0.9883 0.9893 0.9860 0.9970 0.9548 -
s.e. (i) (0.0049) (0.0099) (0.0048) (0.0055) (0.0052) (0.0031) (0.0188) -
ρ̂ 1.3195 1.2260 1.3248 1.3668 1.2021 1.0490 0.6506 -
s.e. (i) (0.5739) (1.1435) (0.5618) (1.3642) (1.0701) (0.8994) (0.2589) -

Second-stage moments
% V isa 21-30 0.576 0.574 0.576 0.588 0.573 0.567 0.803 0.811
% V isa 31-40 0.587 0.581 0.587 0.594 0.585 0.551 0.778 0.782
% V isa 41-50 0.573 0.565 0.574 0.579 0.573 0.323 0.737 0.747
% V isa 51-60 0.553 0.546 0.554 0.562 0.566 0.067 0.678 0.655
mean V isa 21-30 0.107 0.107 0.107 0.110 0.107 0.107 0.141 0.143
mean V isa 31-40 0.136 0.135 0.136 0.139 0.135 0.122 0.172 0.139
mean V isa 41-50 0.169 0.166 0.169 0.174 0.171 0.059 0.193 0.190
mean V isa 51-60 0.199 0.197 0.199 0.207 0.207 0.005 0.227 0.203
wealth 21-30 | debt 1.114 1.156 1.116 1.049 1.155 1.092 0.909 1.193
wealth 31-40 | debt 1.476 1.572 1.478 1.268 1.561 1.427 0.529 1.781
wealth 41-50 | debt 2.452 2.584 2.451 2.084 2.525 3.014 0.177 2.936
wealth 51-60 | debt 4.336 4.548 4.330 3.795 4.325 4.473 -0.075 4.242
wealth 21-30 | no debt 1.962 2.021 1.961 1.830 2.017 1.855 1.173 1.908
wealth 31-40 | no debt 3.038 3.145 3.039 2.708 3.139 2.843 0.902 2.663
wealth 41-50 | no debt 4.558 4.708 4.563 4.108 4.627 4.305 0.799 4.894
wealth 51-60 | no debt 7.453 7.688 7.454 6.827 7.344 8.487 0.682 8.099

Goodness-of-fit

q(θ̂, χ̂) 333.16 25.44 331.31 306.39 316.06 20.46 2.08 -

This table reports estimates of the discount function under alternate moment sets. Columns (2) through
(7) vary the set of empirical moments used for estimation, maintaining all other benchmark assumptions.
In Columns (2), (3), (4), and (5), we remove each of the four moment sets individually. In Column (6),
we estimate using two conditional wealth moments, wealth|debt and wealth|no debt. In Column (7), we
estimate using two credit card borrowing moments, %V isa and meanV isa.

6.3 Robustness

In Appendix E we explore robustness to a variety of first-stage parameters and structural

modeling assumptions. Our summary view is that estimates of β reliably fall between about

0.3 and 0.8. Table E1 fixes the coefficient of relative risk aversion ρ to a variety of common

values and re-estimates β and δ conditional on the specified ρ. Table E2 examines robustness

to alternate assumptions on return parameters R, RCC , and γ. Table E3 explores robustness

to the model’s income process, and Table E4 studies robustness to other structural modeling

assumptions.37 Estimates using alternate weighting matrices are presented in Table E5.

37This includes the liquidity of the Z account, assumptions about household returns to scale, and the
strength of the bequest motive.
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Appendix E also provides details on our choices for robustness checks.

The one robustness analysis that we discuss in the main text is the sensitivity of household

savings behavior to joint assumptions on RCC and γ. We base this analysis on the seminal

model of Kaplan and Violante (2014), which also features a liquid asset and an illiquid

asset, but is able to generate sizable borrowing with β = 1. Their calibration sets the

real return on liquid wealth to −1.48%, the return on illiquid wealth to 2.29% plus a 4%

consumption flow, and the cost of borrowing to 6%. In our model, this corresponds roughly

to R = 0.9852, γ = 6.29%, and RCC = 1.06. In Table E6 we estimate our model under this

alternate calibration, finding β̂ = 1.02 and δ̂ = 0.95. These estimates are very similar to the

calibration of Kaplan and Violante (2014), who set β = 1 and δ = 0.94.38 What this result

highlights is that short-term borrowing can be rationalized if there is a small (or negative)

wedge between the cost of borrowing and the return on illiquid wealth (e.g., rCC = 6% and

γ = 6.29%). However, β < 1 allows the model to generate significant credit card borrowing

even when there is a large wedge between the cost of borrowing and the return on illiquid

wealth (e.g., rCC = 12% and γ = 5%).

7 Extensions

This paper’s findings suggest several directions for future work. This section discusses three

such directions, and provides initial analyses. Results are reported in Appendix F.

7.1 Heterogeneity

One important avenue to explore involves relaxing the assumption of homogeneous prefer-

ences (e.g., Calvet et al., 2021). Certainly there is substantial heterogeneity in the population.

38Kaplan and Violante (2014) set β = 1 and calibrate RCC internally to match the credit card borrowing
observed in the data. In this paper, we instead take RCC from the data and allow β to adjust in order to
match the credit card borrowing observed in the SCF.
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One might wonder whether a model with exponential consumers, but with heterogeneous δ’s

and ρ’s, could also resolve the empirical tensions discussed in this paper.

To explore this question, we fix β = 1 and allow for preference heterogeneity over δ and ρ.

In particular, let Fδ,ρ denote the CDF of the joint distribution over these two parameters. We

set the PDF of the joint distribution equal to fδ (δ)× fρ (ρ) , where fδ is a beta distribution

and fρ is lognormal.39

To estimate the parameters of Fδ,ρ we follow a process analogous to the MSM procedure

used throughout the paper. Let F denote an arbitrary CDF of the joint distribution of

θ = (β, δ, ρ). Let

mh (F, χ) =

∫
mJs (θ, χ) dF (θ) ,

and

F̂ = arg min
F

(mh (F, χ̂)− m̄Jm)′W (mh (F, χ̂)− m̄Jm) .

The main challenge for implementation is computation of the integral defining mh, since each

calculation of mJs (θ, χ) is numerically costly.40 We approximate the integral by calculating

mJs (θ, χ) over a dense grid of θ values and discretizing F over that grid.41

Our estimate of the exponential heterogeneity case is reported in Column 1 of Table

F1. The estimated beta distribution for δ has a mean of 0.61 with substantial (nearly

U [0, 1]) dispersion. The estimated lognormal distribution for ρ is a point mass at 2.39.

Allowing for heterogeneity generates q(F̂ , χ̂) = 991.91. While this is a large improvement

on the β = 1 single-point estimate (Column 2 of Table 3), the exponential model with

39We require that the support of Fδ,ρ be over δ ∈ [0, 1] and ρ ≥ 0. The functional form choices for fδ and
fρ respect those bounds.

40Throughout this analysis, another limitation is the assumption that heterogeneity in (β, δ, ρ) is uncor-
related with unobserved heterogeneity in the first-stage parameters.

41Calculation of the standard errors on the parameters of the distribution is currently infeasible, since
that would require recalculation of each numerical perturbation of the first-stage parameters at every point
in the grid.
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heterogeneity still underperforms the single-point estimate that allows for β < 1 (even though

the exponential model with heterogeneity has more degrees of freedom). As Table F1 shows,

the exponential heterogeneity model is simply unable to match the observed wealth levels

for households carrying credit card debt. Though heterogeneity is obviously important, this

suggests that some applications may achieve better performance at lower computational cost

by incorporating present bias.

7.2 Sophistication

The benchmark model in this paper generalizes exponential discounting to allow for naive

present bias. Under naivete the current self is unaware of future selves’ present bias, and

instead believes that future selves will discount exponentially. An alternative is to assume

that the current self is (at least partially) aware of the present bias of future selves and hence

perceives the self-control problem.

Harris and Laibson (2001) show that strategic interactions between the temporal selves of

a sophisticated consumer induce pathological discontinuities in policy functions and kinks in

value functions.42 Solutions to the (finite horizon) lifecycle problem are still computable by

backward induction, so we report estimates of β̂ and δ̂ under the sophistication assumption

in Table F2.

One consequence of the pathologies induced by sophistication is that q(θ, χ̂) may not

be continuous and therefore three caveats apply to the results in Table F2. First, the

results are numerically more fragile than under naivete. Our estimates in Table F2 are

presented conditional on ρ in order to offset this fragility by reducing the dimensionality

of the minimization problem. Second, the numerical instability arising from pathologies

means that any low-q points that are found could be partially a result of spurious fit. Third,

our calculation of standard errors assumes differentiability of the objective function (see

42See also Laibson and Maxted (2023) for a discussion.
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Appendix C for details). Standard errors are grayed out in Table F2 to indicate that this

assumption is not met under sophistication. With these caveats in mind, the results in Table

F2 show that our identification of β̂ < 1 does not rely on the assumption of naivete.

7.3 Educational Attainment

In this paper we focus on one educational category: high school graduates. By updating

our first- and second-stage moments we are also able to estimate the discount functions of

other educational populations.43 Table F3 reports estimates of θ for the population without

a high school degree, and the population with a college degree. Table F3 also includes the

targeted empirical moments for these other educational populations, which are calculated

using the same methodology as our benchmark moments. We find that β̂ is increasing in

education, and is significantly less than 1 in all cases. δ̂ is moderately decreasing in education

to balance the effect of rising β̂. Our estimate of risk aversion parameter ρ̂ is non-monotonic

in education, though standard errors are large.

8 Conclusion

This paper uses a structural lifecycle model to estimate household time preferences. In the

data, U.S. households accumulate wealth before retirement while simultaneously borrow-

ing actively on credit cards. To explain these phenomena our MSM procedure estimates

β̂ = 0.4961, δ̂ = 0.9884, and ρ̂ = 1.3195. The low long-run discount rate (− ln δ = 1.2%)

accounts for observed levels of (illiquid) wealth accumulation. The high short-run discount

rate (− ln βδ = 71.3%) explains the observed frequency and levels of credit card borrowing.

The MSM procedure rejects the restriction to exponential discounting (β = 1) in the bench-

43Certain structural assumptions of our model were made with the high school graduate demographic in
mind, so some of our assumptions do not map cleanly into other educational groups. For example, it would
be preferable to start a model of college graduates at age 23 rather than age 20.
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mark parametrization and almost all robustness checks. The model with β = 1 can replicate

either the wealth accumulation data or the credit card borrowing data, but not both.

The evidence reported here suggests that present bias improves the ability for consumption-

saving models to match household balance sheet data over the lifecycle. Quantitatively, our

parameter estimates are sensitive to some calibrational choices and our economic environ-

ment is highly stylized. One path for future research is to enrich the realism of our modeling

framework. Additionally, counterfactual policy analysis in a model similar to the one studied

here may be a fruitful avenue for future research.
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** INTERNET APPENDIX **

A Second-Stage Moments Appendix

We now discuss our procedure for constructing the %V isa, meanV isa, wealth|debt, and

wealth|no debt moments. We use the 1989 through 2013 SCF waves and all quantities are

deflated to 2010 dollars. Throughout, we impose the following sample restrictions: the head

of house has a high school degree but not a college degree, the head is between the ages of

20 and 90, the household possesses a credit card, the household earns an annual income of

at least $1000, and neither the head nor spouse is self-employed nor earns private business

income. We control for household demographics, business cycle effects, and cohort effects to

align the SCF population with our model’s simulated population. We assign to households

in our simulations the mean empirical demographic, business cycle, and cohort effects.

For each variable of interest x we first use weighted least squares, applying the SCF

population weights, to estimate

xi = FEi +BCEi + CEi + AEi + ξi. (9)

FEi is a family size effect that consists of three variables: the number of heads, the number

of children under 18, and the number of dependent adults in household i. BCEi is a business

cycle effect proxied by the unemployment rate in the household’s region of residence. In the

1992, 1995, and 1998 SCF waves we control for the unemployment rate in the household’s

Census Division. In all other years the nationwide rate is used because information on

household location is not available in the public use dataset. CEi is a cohort effect that

consists of a full set of five-year cohort dummies, AEi is an age effect that consists of a full

set of age dummies, and ξi is an error term.44

44Following Gourinchas and Parker (2002) we attribute time effects to fluctuations in unemployment,
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Next, we define the “typical” household to be identical to the simulated household (i.e.,

with head and spouse, exogenous age-varying numbers of children and adult dependents,

a fixed cohort effect, and an average unemployment effect).45 To capture the “typical”

household empirically we create a new variable, x̂i, that captures what xi would have been

had household i been typical. For example, if household i is identical to the “typical”

household except for having more children, we set x̂i = xi + φ(nkidst − nkidsi), where φ is

the coefficient on number of children in regression (9) and nkidst is the typical number of

children in a household (as a function of the head’s age). As detailed below, all second-stage

moments are estimated using x̂i. Standard error calculation follows the procedure outlined

in the 2013 SCF Codebook, and adjusts for both imputation and sampling error.

To construct the %V isa moments we create a dummy variable hasdebti equal to one

for household i if the household has a positive outstanding credit card balance in the SCF.

We apply the “typical” household adjustment to hasdebti in order to generate ̂hasdebti. To

estimate the four %V isa moments, we separately calculate a weighted average of ̂hasdebti

for each age bin 21-30, 31-40, 41-50, and 51-60.

Construction of meanV isa is complicated by the fact that aggregate credit card bor-

rowing data from the Fed indicates that SCF borrowing magnitudes are severely biased

downward (Zinman, 2009; Beshears et al., 2019). We correct for this bias by scaling all

credit card debt in the SCF by parameter α = 2.46 Let debti = α · debtSCFi , where debtSCFi is

the level of credit card debt reported in the SCF for household i. We calculate age-specific

income means (yt) and define debtinci as debti/yt.
47 We correct debtinci in order to generate

but this approach – like any approach to separate age, cohort, and time effects – requires problematic
identification assumptions.

45Refer to Appendix B on the first-stage parameters for details. Age-varying numbers of children and
adult dependents are estimated using IPUMS-USA data. The average unemployment rate is the one used
in the calibration of the income process (PSID). To account for the rising usage of credit cards we adjust all
households to the cohort born between 1980 and 1984.

46When computing the sampling error we assume that α has a standard deviation of 0.5.
47When calculating the age-specific income means we group together ages 20-21, 70-74, 75-79, and 80 and

over because we have fewer observations at those ages.
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̂debtinci. The four meanV isa moments are the weighted average of ̂debtinci for each of our

decadal age buckets.

For wealth|debt and wealth|no debt we include in the numerator all real and financial

wealth (e.g., home equity and CDs) as well as all claims on defined-contribution pension

plans (e.g., 401(k)s). The measure does not include Social Security wealth and claims on

defined-benefit pension plans, since these flows appear in our estimated income process. If

a household has a negative net balance in any illiquid asset, we set the balance equal to

zero (e.g., we set home equity equal to the max of 0 and the value of the home minus the

outstanding debt secured against it). After generating the wealth numerator (wi) for each

household i we define wealthinci as wi/yt. We correct wealthinci to generate ̂wealthinci.

In order to estimate the four wealth|debt moments and the four wealth|no debt moments,

we separately calculate a weighted average of ̂wealthinci for households with and without

credit card debt for each of our decadal age buckets.

B First-Stage Parameters Appendix

This Appendix outlines our methodology for estimating the first-stage parameters used in

our MSM procedure. This methodology is based on Laibson et al. (2003). We can separate

the first-stage parameters into household demographics, the real income process, and the

credit limit. Throughout, we impose the following sample restrictions: the head of house

has a high school degree but not a college degree, the head is between the ages of 20 and 90,

the household earns an annual income of at least $1000, and neither the head nor spouse is

self-employed nor earns private business income. Income is deflated to 2010 dollars.
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B.1 Household Demographics

Household demographics are estimated using the decennial census in 1980, 1990, and 2000,

and the American Community Survey from 2001 through 2014 (Ruggles et al., 2010). In

addition to the restrictions above, we limit the sample to households with a head and spouse.

Children are defined as household members younger than 18. Dependent adults are defined

as household members, other than the head and spouse, who are at least 18 years old.

On this sample we use weighted nonlinear least squares to estimate the following model:

xi = φ0 · exp

(
φ1 · agei − φ2 ·

age2
i

100

)
+ εi.

Dependent variable xi equals either the number of children or the number of dependent

adults in household i.

B.2 Income Process

The real income process is estimated using data from the PSID. We use sample years 1982

through 1990 because these years include complete data on income and federal taxes. We

estimate the following regression using PSID family weights:

yit = cons. + polynomial(ageit) + FEit +BCEit + CEi + hi + ξit.

Variable yit is the log of after-tax real income from transfers and wages for household i in year

t.48 The cubic age polynomial is defined as polynomial(ageit) = φ1 ·ageit+φ2 · age
2
it

100
+φ3 · age

3
it

10000
,

where ageit is the age of the head of household i in year t. Family size effect FEit =

φ4 · Nheadsit + φ5 · Nchildrenit + φ6 · Ndep.adultsit, where Nheadsit is the number of

heads of house (head only or head and spouse), Nchildrenit is the number of children, and

48Data on the income of household i in year t is collected by the PSID in survey year t + 1, since PSID
interview questions relate to the previous year’s income.
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Ndep.adultsit is the number of dependent adults in household i in year t. Business cycle

effect BCEit is proxied by the unemployment rate in the household’s state of residence. CEi

is a birth year cohort effect for the head of house that consists of a full set of five-year cohort

dummies. hi is a household-level fixed effect. Note that the constant φ0 reported in Table 2

includes the average business cycle and cohort effect. Standard errors are bootstrapped.

The first six terms of the income process listed in Table 2, corresponding to parameters φ0

through φ6, represent the deterministic component of household income in our simulation.

In order to add a stochastic component to the simulated income process, we model error

term ξit as the sum of an AR(1) process and a transitory shock:

ξit = ηit + νit = (ψ · ηit−1 + εit) + νit.

The parameters ψ, σ2
ε , and σ2

ν reported in Table 2 are estimated using an equally weighted

GMM procedure that minimizes the distance between the first seven theoretical and em-

pirical autocovariances of ∆ξ (see Laibson et al. (2003) for details). Standard errors are

bootstrapped.

B.3 Credit Limit

SCF data is used to estimate the age-dependent credit limit. One difficulty in matching the

available data to our model is that the SCF reports the credit limit associated with bank-

type credit cards, but does not include credit-limit information on store cards. We adjust

the SCF-reported credit limit upward to account for this. Specifically, since the SCF reports

debt on all types of cards we make the assumption that the ratio of the credit limit on

bank-type cards to the credit limit on bank-type plus store cards is proportional to the ratio

of debt on bank-type cards to debt on bank-type plus store cards. We divide this adjusted

credit limit by age-specific mean income ȳt and then apply the typical household adjustment
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(as described in Appendix A). On this adjusted credit limit to income ratio we fit a quadratic

age polynomial. Estimates are reported in Table 2. Standard errors are calculated following

the procedure outlined in the 2013 SCF Codebook.

C MSM Procedure Appendix

Since m (θ, χ̂) is difficult to evaluate analytically we replace it with an unbiased simulator,

calculated by taking Js draws of the initial distribution and then constructing the correspond-

ing simulated expectations. Define mJs (θ, χ̂) as the vector of simulated moments. We can

find the vector θ̂ that minimizes g′Js (θ, χ̂)WgJs (θ, χ̂), where gJs (θ, χ̂) = mJs (θ, χ̂)− m̄Jm .

The first order condition for the second stage is given by

g′Jsθ

(
θ̂, χ̂
)
WgJs

(
θ̂, χ̂
)

= 0.

where gJsθ

(
θ̂, χ̂
)

= ∂gJs

(
θ̂, χ̂
)
/∂θ′.

Following Gourinchas and Parker (2002) and Newey and McFadden (1994), an expansion

of gJs

(
θ̂, χ̂
)

around θ0 to first order leads to

g′Jsθ

(
θ̂, χ̂
)
W
[
gJs (θ0, χ̂) + gJsθ (θ0, χ̂)

(
θ̂ − θ0

)]
= 0.

Rearranging terms and defining Ĵm as the (scalar) rate of convergence of θ̂,

√
Ĵm

(
θ̂ − θ0

)
= −

[
g′Jsθ

(
θ̂, χ̂
)
WgJsθ (θ0, χ̂)

]−1

g′Jsθ

(
θ̂, χ̂
)
W

√
ĴmgJs (θ0, χ̂) .

Let Π ≡
[
g′Jsθ

(
θ̂, χ̂
)
WgJsθ (θ0, χ̂)

]−1

g′Jsθ

(
θ̂, χ̂
)
W . Expanding gJs (θ0, χ̂) around χ0,

√
Ĵm

(
θ̂ − θ0

)
= −Π

[√
ĴmgJs (θ0, χ0) +

√
ĴmgJsχ (θ0, χ0) (χ̂− χ0)

]
. (10)
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To evaluate equation (10), first note that

√
ĴmgJs (θ0, χ0) =

√
Ĵm [m̄Jm −mJs (θ0, χ0)]

=

√
Ĵm [m̄Jm −m (θ0, χ0)] +

√
Ĵm [m (θ0, χ0)−mJs (θ0, χ0)]

The two bracketed terms represent independent sets of draws from the same population. The

first term equals
√
Ĵmg (θ0, χ0) , which is asymptotically normally distributed:

√
Ĵmg (θ0, χ0)→

N (0,Σg) . We estimate Ωg = E
[
g (θ0, χ0) g (θ0, χ0)′

]
directly from its sample counterpart

by bootstrapping. The second term represents the simulation error. At the true value of θ,

the simulated moments were generated from a finite number of random draws from the true

population. Therefore, the second term is also asymptotically normal (as the size of the

simulated sample goes to infinity) with mean 0 and variance Ĵm
Σg

Js
. Finally, since variation

in the simulation and the data are independent,
√
ĴmgJs (θ0, χ0)→ N

(
0,
(

1 + Ĵm
Js

)
Σg

)
. To

operationalize this expression for the variance, given the different numbers of observations

Jm in the sample, we conservatively use the pairwise maximum numbers of observations,

max (Jma, Jmb) , to weight the (a, b)’th cell of Σg in the simulation correction.

Now turn to the second term of equation (10). In the main text we have defined the

variance of the first stage parameter estimates χ̂ as Ωχ = E
[
(χ̂− χ0) (χ̂− χ0)′

]
.

Thus,
√
ĴmgJsχ (θ0, χ0) (χ̂− χ0)→ N

(
0, ĴmGχΩχG

′
χ

)
, and

√
Ĵm

(
θ̂ − θ0

)
→ N (0,Σθ) ,

where equation (10) implies

Σθ = (G′θWGθ)
−1
G′θW

[(
1 +

Ĵm
Js

)
Σg + Ĵm ·GχΩχG

′
χ

]
WGθ (G′θWGθ)

−1
, (11)

by the asymptotic normality of χ̂ and g (·) and by the Slutsky theorem, assuming zero

covariance between the first and second stage moments. Dividing by Ĵm we obtain our key
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equation,

Ωθ = V ar
(
θ̂
)

= (G′θWGθ)
−1
G′θW

[
Ωg + Ωs

g +GχΩχG
′
χ

]
WGθ (G′θWGθ)

−1
.

Standard errors reported in the text and tables equal the square roots of the diagonal ele-

ments of Ωθ.

Note that when neither the simulation correction nor the first stage correction matter,

we obtain,

Ωθ = (G′θWGθ)
−1
G′θWΩgWGθ (G′θWGθ)

−1
.

If we were to assume W = Ω−1
g , this becomes the standard GMM variance formula: Ωθ =(

G′θΩ
−1
g Gθ

)−1
.

MSM also allows us to perform specification tests. If the model is correct,

ξ
(
θ̂, χ̂
)
≡ gJs

(
θ̂, χ̂
)
·Wopt · g′Js

(
θ̂, χ̂
)

= gJs

(
θ̂, χ̂
)
·
[
Ωg + Ωs

g +GχΩχG
′
χ

]−1 · g′Js
(
θ̂, χ̂
)

will have a chi-squared distribution with Nm − Nθ degrees of freedom. This test statistic

equals q
(
θ̂, χ̂
)

in the optimal-weighting case.
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D Identification

D.1 Identification: Description

This section presents additional analysis of our model’s identification. Table D1 reports the

Andrews et al. (2017) sensitivity measure of θ̂. The numerical derivatives that are used to

calculate this sensitivity measure are provided in Table D2. Figure 4 presents our Boundary

Analysis for ρ = 1.3 (see Section 6.1). Figure 5 plots the average lifecycle behavior for

households in our benchmark β = 1 model.

D.2 Identification: Results

Table D1: Standardized Sensitivity Estimates

δ β ρ
% Visa 21-30 0.474 -0.543 -0.413
% Visa 31-40 -0.082 0.055 -0.067
% Visa 41-50 -0.353 0.361 0.199
% Visa 51-60 -0.581 0.557 0.128
mean Visa 21-30 0.076 -0.091 -0.084
mean Visa 31-40 0.045 -0.061 -0.081
mean Visa 41-50 -0.045 0.031 -0.039
mean Visa 51-60 -0.089 0.046 -0.153
wealth 21-30 | debt -0.028 -0.032 -0.329
wealth 31-40 | debt -0.150 0.018 -0.751
wealth 41-50 | debt -0.095 0.064 -0.337
wealth 51-60 | debt 0.493 -0.467 -0.267
wealth 21-30 | no debt -0.241 0.279 0.157
wealth 31-40 | no debt -0.502 0.579 0.305
wealth 41-50 | no debt -0.226 0.321 0.328
wealth 51-60 | no debt 0.279 -0.117 0.453

This table reports the standardized sensitivity of θ̂ on mJs(θ, χ), as defined by Andrews et al. (2017). Bold
estimates mark the parameters that move to match the relevant moment perturbation. First-stage and
simulation corrections are not included when sensitivity estimates are standardized.
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Table D2: Numerical Derivatives

δ β ρ
∆mJs/∆θ

% Visa 21-30 -7.176 -0.542 1.69E-03
% Visa 31-40 -8.105 -0.378 0.009
% Visa 41-50 -12.483 -0.508 0.032
% Visa 51-60 -23.046 -0.861 0.033
mean Visa 21-30 -1.546 -0.125 -0.004
mean Visa 31-40 -2.766 -0.164 -0.003
mean Visa 41-50 -7.950 -0.354 0.005
mean Visa 51-60 -16.112 -0.683 -0.011
wealth 21-30 | debt 41.966 2.524 -0.281
wealth 31-40 | debt 141.144 8.428 -0.801
wealth 41-50 | debt 273.643 15.104 -0.947
wealth 51-60 | debt 524.195 25.324 -1.278
wealth 21-30 | no debt 98.012 5.743 -0.217
wealth 31-40 | no debt 236.849 13.848 -0.542
wealth 41-50 | no debt 380.406 20.743 -0.685
wealth 51-60 | no debt 662.345 32.104 -0.781

This table reports the model’s numerical derivatives. The derivatives in this table are the average of the
left-hand and right-hand numerical derivatives, computed at the benchmark parameter estimates reported
in Table 3. Derivative step sizes of dδ = 0.001, dβ = 0.05, and dρ = 0.05 are used.

Figure 4: Boundary Analysis for ρ = 1.3

This figure plots the Boundary Analysis for ρ = 1.3. See Section 6.1 for details.
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Figure 5: Average Lifecycle Profile for Exponential Estimate

This figure plots the average lifecycle profile of income, total consumption, liquid assets, and illiquid assets
(divided by ten for scaling) for the benchmark exponential estimate (β = 1).
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E Robustness

E.1 Robustness: Description

We recognize that economists often disagree on the calibration of ρ. For this reason we

examine the effect of imposing several common reasonable values of ρ. Appendix Table E1

reports estimates of the present-biased discount function conditional on ρ ∈ {0.5, 1, 2, 3}.

Table E2 examines robustness to our return assumptions, since R,RCC , and γ are not

included in the first-stage correction. Columns 2 and 3 perturb R to 1.02 and 1.035, re-

spectively. In Columns 4 and 5 we assume RCC = 1.10 and RCC = 1.13. In Column 6 we

set γ = 3.38%, corresponding to the average tax- and inflation-adjusted mortgage interest

rate from 1980-2000, as calculated from Freddie Mac’s historical series of nominal mortgage

interest rates and the CPI-U, assuming a marginal tax rate of 25%.49 In Column 7, we

consider the case γ = 6.59%. Flavin and Yamashita (2002) calculate this as the average real

after-tax return to housing, including capital gains, use-value, maintenance costs, and taxes.

Appendix Table E3 reports the results of modifying aspects of the income process, includ-

ing adjusting the persistence of income shocks and details of their dynamics. In Column 3

of the table, we adopt and implement the age-varying income process estimated by Karahan

and Ozkan (2013).50 Full details of the other tests are included in the table’s footnote.

Table E4 looks at some of the model’s remaining structural assumptions. In Column

2 we completely restrict withdrawals from the illiquid account. Column 3 studies alternate

assumptions about returns to scale in household size. Columns 4 and 5 increase and decrease

the strength of the bequest motive (α). Column 6 examines alternate assumptions about

the household death process.51

49This choice for γ reflects the interest savings resulting from paying off a dollar of mortgage debt.
50Because the off-diagonal terms of the estimated variance-covariance matrix were not published in their

paper, we assume that the cubic is estimated without error.
51In the benchmark model both heads of house are assumed to die simultaneously. In Column 6 we

incorporate individual mortality. We assume that utility depends continuously on the expected number of
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Robustness to the weighting matrix is examined in Table E5. We re-estimate our results

using the identity matrix, the inverse of the full VCV matrix Ω̂g, and the optimal weighting

matrix.

Table E6 examines robustness to joint assumptions on R,RCC , and γ. As discussed in

Section 6.3, we estimate our model using the calibration of Kaplan and Violante (2014).

The first column of Table E6 estimates the model under our baseline calibration, but sets

the bequest motive to 0 (in line with Kaplan and Violante (2014)). Columns 2, 3, and 4

report estimates of θ̂ under interest rate calibrations that are a weighted average of our

benchmark calibration (R = 1.0279, RCC = 1.1152, γ = 0.05) and the Kaplan and Violante

(2014) calibration (R = 0.9852, RCC = 1.06, γ = 0.0629). Columns 5 and 6 estimate θ̂ under

the Kaplan and Violante (2014) calibration, first without and then with the restriction that

β = 1. The wedge between RCC and γ shrinks as we move from Column 1 to Column 5. As

detailed in the main text, estimates of β̂ increase accordingly.

heads that remain alive until age 84, at which point the expected number of surviving heads falls below 1.
After age 84 we retain our original assumption that mortality is a discrete event.
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E.2 Robustness: Results

Table E1: Risk Aversion

(1) (2) (3) (4)
ρ = 0.5 ρ = 1 ρ = 2 ρ = 3

Present Biased
Parameter estimates

β̂ 0.7549 0.5722 0.4165 0.3213
s.e. (i) (0.0839) (0.0775) (0.1081) (0.0985)

δ̂ 0.9732 0.9836 0.9937 0.9974
s.e. (i) (0.0043) (0.0035) (0.0028) (0.0013)
ρ̂ 0.5 1 2 3
s.e. (i) - - - -

Goodness-of-fit

q(θ̂, χ̂) 565.92 359.25 435.63 655.57
Exponential

Parameter estimates

β̂ 1 1 1 1
s.e. (i) - - - -

δ̂ 0.9054 0.9606 0.9703 0.9760
s.e. (i) (0.0041) (0.0028) (0.0038) (0.0048)
ρ̂ 0.5 1 2 3
s.e. (i) - - - -

Goodness-of-fit

q(θ̂, χ̂) 2697.29 2389.85 2382.29 2675.79

This table reports estimates of the discount function, conditional on different ρ values. Columns (1) through
(4) fix only ρ, maintaining all other benchmark assumptions.
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Table E5: Weighting Matrix

(1) (2) (3) (4)

Baseline Identity Matrix Full VCV
Optimal Weights
with Adjustments

Present Biased
Parameter estimates

β̂ 0.4961 0.4661 0.3998 0.3050
s.e. (i) (0.1246) (0.1851) (0.0547) (0.1678)

δ̂ 0.9884 0.9905 0.9930 0.9954
s.e. (i) (0.0049) (0.0079) (0.0018) (0.0017)
ρ̂ 1.3195 1.2842 1.2893 1.0038
s.e. (i) (0.5739) (1.2450) (0.2978) (0.2529)

Goodness-of-fit

q(θ̂, χ̂) 333.16 0.80 301.55 49.28
Exponential

Parameter estimates

β̂ 1 1 1 1
s.e. (i) - - - -

δ̂ 0.9633 0.9670 0.9684 0.9188
s.e. (i) (0.0048) (0.0052) (0.0015) (0.0236)
ρ̂ 1.4248 1.2665 0.8622 1.9620
s.e. (i) (0.3389) (0.4491) (0.1553) (1.8003)

Goodness-of-fit

q(θ̂, χ̂) 2237.80 3.05 1338.22 135.53

This table reports estimates of the discount function under alternate weighting matrices, as indicated in the
column headers.
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F Extensions

F.1 Extensions: Description

Table F1 presents the heterogeneity analysis described in Section 7.1. Table F2 presents

our estimates under the alternate assumption that households are sophisticated about their

self-control problems. Table F3 estimates θ for alternate education groups.
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F.2 Extensions: Results

Table F1: Unobserved Heterogeneity

(1) (2) (3)
Exponential

Heterogeneity
Present Biased

Single Point
Data

Parameter estimates

Ê(β) - 0.4961 -

Ê(δ) 0.6117 0.9884 -

Ê(ρ) 2.3875 1.3195 -
Second-stage moments

% Visa 21-30 0.618 0.576 0.811
% Visa 31-40 0.659 0.587 0.782
% Visa 41-50 0.666 0.573 0.747
% Visa 51-60 0.665 0.553 0.655
mean Visa 21-30 0.110 0.107 0.143
mean Visa 31-40 0.157 0.136 0.139
mean Visa 41-50 0.218 0.169 0.190
mean Visa 51-60 0.303 0.199 0.203
wealth 21-30 | debt 0.151 1.114 1.193
wealth 31-40 | debt 0.126 1.476 1.781
wealth 41-50 | debt 0.265 2.452 2.936
wealth 51-60 | debt 0.550 4.336 4.242
wealth 21-30 | no debt 1.629 1.962 1.908
wealth 31-40 | no debt 3.139 3.038 2.663
wealth 41-50 | no debt 5.327 4.558 4.894
wealth 51-60 | no debt 9.475 7.453 8.099

Goodness-of-fit

q(F̂ , χ̂) 991.91 333.16 -

This table allows for preference heterogeneity in the Exponential case. Column (1) reports this estimate.
Details are provided in Section 7.1. For reference, Column (2) reports the baseline Present Bias estimate in
Table 3, and Column (3) lists the empirical moments.
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Table F2: Sophisticated Present Bias

(1) (2) (3) (4) (5)
ρ = 0.5 ρ = 1 ρ = 2 ρ = 3 Data

Parameter estimates

β̂ 0.6970 0.5485 0.2066 0.0925 -
s.e. (i) (0.1246) (0.0423) (0.1241) (0.0997) -

δ̂ 0.9737 0.9813 0.9968 0.9992 -
s.e. (i) (0.0057) (0.0037) (0.0026) (0.0029) -
ρ̂ 0.5 1 2 3 -
s.e. (i) - - - - -

Second-stage moments
% Visa 21-30 0.829 0.778 0.705 0.703 0.811
% Visa 31-40 0.756 0.808 0.699 0.676 0.782
% Visa 41-50 0.831 0.731 0.668 0.594 0.747
% Visa 51-60 0.775 0.644 0.509 0.474 0.655
mean Visa 21-30 0.166 0.146 0.134 0.131 0.143
mean Visa 31-40 0.191 0.177 0.173 0.158 0.139
mean Visa 41-50 0.281 0.211 0.205 0.186 0.190
mean Visa 51-60 0.288 0.216 0.160 0.154 0.203
wealth 21-30 | debt 1.086 1.152 0.432 0.221 1.193
wealth 31-40 | debt 1.856 2.014 1.232 0.918 1.781
wealth 41-50 | debt 3.551 3.145 2.625 2.109 2.936
wealth 51-60 | debt 4.911 5.265 5.156 4.658 4.242
wealth 21-30 | no debt 1.535 1.965 1.687 1.459 1.908
wealth 31-40 | no debt 3.410 2.765 2.391 2.308 2.663
wealth 41-50 | no debt 4.297 4.216 4.403 4.623 4.894
wealth 51-60 | no debt 6.229 6.402 8.005 8.569 8.099

Goodness-of-fit

q(θ̂, χ̂) 149.35 72.91 182.83 325.94 -

This table extends our estimates to sophisticated present bias. Each column fixes ρ, and reports conditional
estimates of β and δ.
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