
NBER WORKING PAPER SERIES

INCOMPLETE MARKETS, HETEROGENEITY AND MACROECONOMIC DYNAMICS

Bruce Preston
Mauro Roca

Working Paper 13260
http://www.nber.org/papers/w13260

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2007

The authors thank seminar participants at the Australian National University, Columbia University,
CREI-Universitat Pompeu Fabra, Duke University, Federal Reserve Bank of Atlanta, Federal Reserve
Board of Governors, Indiana University, the New York Federal Reserve Bank Workshop on Monetary
Policy, the North American Summer Meeting of the Econometric Society, Ohio State University and
the San Francisco Federal Reserve Bank for comments and Stefania Albanesi, George-Marios Angeletos,
Jesus Fernandez-Villaverde, Marc Giannoni, Wouter den Haan, Jinill Kim, John Leahy, Albert Marcet,
Tony Smith and Mike Woodford for comments and useful discussions. The usual caveat applies. Financial
support from the PER Student-Faculty Summer Grant is gratefully acknowledged. The views expressed
herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of
Economic Research.

© 2007 by Bruce Preston and Mauro Roca. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Incomplete Markets, Heterogeneity and Macroeconomic Dynamics
Bruce Preston and Mauro Roca
NBER Working Paper No. 13260
July 2007
JEL No. C6,D52,E21,E32

ABSTRACT

This paper solves a real business cycle model with heterogeneous agents and uninsurable income risk
using perturbation methods. A second order accurate characterization of agent's optimal decision rules
is given, which renders the implications of aggregation for macroeconomic dynamics transparent.
The role of cross-sectional holdings of capital in determining equilibrium dynamics can be directly
assessed. Analysis discloses that an individual's optimal saving decisions are almost linear in their
own capital stock giving rise to permanent income consumption behavior. This provides an explanation
for the approximate aggregation properties of this model documented by Krusell and Smith (1998):
the distribution of capital does not affect aggregate dynamics. While the variance-covariance properties
of endogenous variables are almost entirely determined by first order dynamics, the second order dynamics,
which capture properties of the wealth distribution, are nonetheless important for an individual's mean
consumption and saving decisions and therefore the mean equilibrium capital stock. Policy evaluation
exercises therefore need to take account of these higher order terms.

Bruce Preston
Department of Economics
Columbia University
420 West 118th Street
New York, NY 10027
and NBER
bp2121@columbia.edu

Mauro Roca
Department of Economics
Columbia University
1022 International Affairs Building
420 West 118th Street
New York, NY 10027
mfr2004@columbia.edu



1 Introduction

This paper proposes a new approach to solving macroeconomic models with heterogeneous

agents and incomplete markets. The study of such models is important for several reasons.

First, the representative agent construct holds under stringent conditions unlikely to hold in

reality. Second, heterogeneous agent models are of interest in their own right; potentially

explain a range of economic phenomena; and address issues that are impossible to analyze in

a representative agent framework. More generally, we observe important heterogeneity, but

little is understood about its consequences. Of particular import is the extent to which het-

erogeneous agents are diversely a¤ected by macroeconomic �uctuations. How should macro-

economic stabilization policies be designed when agents are di¤erentially a¤ected by policy?

A key obstacle to the analysis of such questions has been the availability of tractable

solution methods. For instance, a stochastic growth model with heterogeneous agents, ag-

gregate technology shocks and partially insurable labor income risk engenders a time varying

distribution of capital holdings across agents. For agents to solve their optimization problem,

knowledge of the stochastic properties of this wealth distribution is required to forecast future

prices, as these prices depend on the aggregate capital stock. Solving such models is di¢ cult.

This paper makes two contributions: one methodological and one substantive. The

methodological contribution is to delineate a new approach to solving a stochastic growth

model with heterogenous agents and incomplete markets based on perturbation methods.

Building on the representative agent based analyses of Judd (1998), Jin and Judd (2002),

Kim, Kim, Schaumburg, and Sims (2003) and Schmitt-Grohe and Uribe (2004), a second

order accurate solution to the model is developed. The approach can be readily extended to

higher order approximations. The analysis makes clear that the approach applies to a broad

class of alternative models which permit the analysis of a number of questions of interest such

as optimal policy design in the presence of agent heterogeneity.

The use of perturbation methods requires confronting a number of conceptual issues. First,

the set of relevant state variables that appear in a second order approximation must be deter-

mined. In heterogeneous agent models, aggregation constraints, relating individual decisions

to aggregate conditions, induce new aggregate state variables that increase the dimensional-
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ity of the model. Second, aggregation also imposes constraints on the relationships between

elasticities in individuals�optimal decisions and those characterizing aggregate dynamics. We

show how each of these complications can be handled.

The analysis demonstrates that perturbation methods have several appealing features in

application to heterogeneous agent models. The approach permits an analytic characteri-

zation of the evolution of the wealth distribution that is accurate up to the order of the

approximation. This in turn permits a characterization of optimal decisions to the same or-

der. Hence the elasticities of individual saving and consumption decisions in response to any

state variable are determined. Because aggregation proceeds directly from these individual

decision rules, the role of heterogeneity and the distribution of capital holdings in determining

aggregate dynamics can be clearly and directly assessed.

As our methodology is analytic and based on standard methods for solving linear and

quadratic systems of equations, solutions are generated in fractions of a second in contrast to

existing numerical methods based on value function iteration. The analysis is not constrained

in the manner in which uncertainty can be speci�ed. While numerical procedures typically

require uncertainty to be speci�ed as a low-dimension discrete-state Markov process, per-

turbation methods readily handle continuously distributed random variables. Similarly, the

analysis is not constrained by the number of state variables present in the model. This fact,

and the speed of the solution method, opens the way for econometric estimation of heteroge-

nous agent models. Indeed, this class of model can be estimated using methods developed by

Fernandez-Villaverde and Rubio-Ramirez (2006). As such, the framework provides a tractable

laboratory for the study of optimal policy design in the presence of heterogeneity, as well as

the quanti�cation of the welfare costs associated with various sources of risk with imperfect

insurance markets.

The substantive contribution of the paper is to give greater understanding of the role

of heterogeneity in determining aggregate dynamics in a simple real business cycle model.

In the benchmark calibration, optimal saving decisions are shown to be virtually linear in

an individual�s own holdings of the capital stock. There is very little curvature in optimal

decisions due to second order characteristics of the cross-sectional distribution of capital held
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by agents. Agents are shown to be e¤ectively permanent income consumers: they consume the

returns on their capital holdings and keep the principle intact. In consequence the marginal

propensities to save across individuals are almost equal and the model, therefore, displays

the approximate aggregation property noted by Krusell and Smith (1998): the evolution of

aggregate variables is largely determined by aggregate capital � the distribution of capital

across individuals and therefore heterogeneity matters little for macroeconomic dynamics.

Notwithstanding this �nding, we show that incomplete markets and heterogeneity do

matter for understanding macroeconomic outcomes in this simple economy. The existence of

borrowing constraints a¤ect �rst order dynamics of the model economy, and these dynamics

almost entirely determine the variance-covariance properties of all endogenous model vari-

ables. While it is not surprising that second order terms � terms that capture the evolving

second order moments of the wealth distribution � are less important for aggregate vari-

ation than �rst order terms, evidence is adduced showing that these terms do matter for

the determination of individual mean consumption and savings in equilibrium. These mean

e¤ects operate through two channels: �rst, the presence of risk leads to a constant adjust-

ment in optimal decision rules, analogous to standard precautionary savings e¤ects; second,

the interaction of uncertainty and the non-linear mapping of states into decisions in a sec-

ond order approximation, leads to Jensen inequality type e¤ects on average consumption and

savings. Indeed, the latter can be signi�cantly larger than the former, depressing aggregate

consumption by a fraction as large as 2 percent of steady state consumption on average in

the simulations considered. This combined with signi�cant observed variation in ex post indi-

vidual consumption pro�les, and therefore welfare, underscores the importance of incomplete

markets and heterogeneity for macroeconomics.

The present analysis is most closely related to Krusell and Smith (1998). They present a

novel solution algorithm for this class of problem using value function iteration-based meth-

ods. Because the wealth distribution is a high dimensional object, value function iteration

methods must resort to solving an approximation to the true problem. To reduce the di-

mension of the state space, Krusell and Smith restrict the information set agents utilize in

forecasting future prices. Analysis proceeds by conjecturing a boundedly rational law of mo-
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tion for aggregate capital. Speci�cally, tomorrow�s aggregate capital is assumed to be only a

function of today�s aggregate capital stock, and therefore depends only on the mean of the

wealth distribution. Conditional on this conjectured aggregate capital accumulation equation,

agents behave optimally. A central conclusion of their paper is that the model satis�es what

they call approximate aggregation: aggregate dynamics do not depend on characteristics of

the wealth distribution other than its mean (as would be the case under complete markets

and the representative agent construct). The analysis presented here also �nds approximate

aggregation but our results are not implied by their �ndings. Perturbation methods represent

a distinct solution method, approximating the model along a di¤erent dimension to solution

procedures based on value function iteration.

Most importantly, the approach developed here remains valid even if the conditions for

approximate aggregation do not obtain. As noted by Krusell and Smith (2006) on page 2,

when discussing their solution algorithm based on value function iteration: �The key insight

to solving the model with consumer heterogeneity using numerical methods is �approximate

aggregation�in wealth�. Furthermore, by including all state variables relevant to a second or-

der approximation of the equilibrium dynamics, the perturbation approach permits a greater

role for heterogeneity ex ante than does their algorithm which only permits the e¤ects of

heterogeneity on aggregate dynamics to be felt through the coe¢ cients on the restricted law

of motion for aggregate capital. The present analysis gives an analytical characterization of

the problem, providing additional insight to the conditions required for approximate aggre-

gation. Hence, the results presented here adduce new evidence on the importance or not

of heterogeneity that originates from imperfect labor markets in explaining macroeconomic

dynamics. Of course, while the Krusell and Smith algorithm may not provide an accurate

characterization of aggregate dynamics when approximate aggregate fails to obtain, it does

have the advantage of providing a global solution to the model, in contrast to perturbation

methods which are necessarily a local characterization in the neighborhood of the model�s

steady state.1 Nonetheless, the decisions determined by the perturbation approach are shown

1Though as shown by Swanson, Anderson, and Levin (2005), taking successively higher order approxi-
mations can, under suitable smoothness conditions satis�ed by most macroeconomic models, deliver globally
accurate characterizations of optimal decisions in the limit. Moreover, global methods involve various approx-
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to induce smaller Euler equation errors than do value function iteration based solution meth-

ods.

Following Krusell and Smith (1998), our analysis continues to build on earlier work on

heterogeneous agent models by Bewley (1977, 1980), Huggett (1993) and Aiyagari (1994).

More recently Gourinchas (2000) analyzes an overlapping generations model which discloses

the property of approximate aggregation as does Khan and Thomas (2005) in a model of �rm

investment dynamics with nonconvex costs of adjustment. Young (2005) further explores the

robustness of the approximate aggregation result. Midrigan (2006) exploits this methodology

in a study of �rm pricing behavior. Further applications on the welfare costs of business cycles

in heterogenous agent models include Storesletten, Telmer, and Yaron (2001) and Krusell and

Smith (2002). Of particular relevance to the present study is Kim, Kim, and Kollmann

(2005). They analyze a Huggett-type economy with perturbation methods though make an

approximation analogous to Krusell and Smith by characterizing the equilibrium price only

to the �rst order. Remaining decisions are then approximated to the second order given this

restriction. The contribution of our paper is to show how to obtain a complete second order

approximation. More recently, Reiter (2006) proposed a solution algorithm based on a mix

of projection and perturbation methods and Algan, Allais, and Den Haan (2006) pursues an

approach that utilizes a parametric characterization of the cross-sectional wealth distribution.

Finally, using projection methods, Gaspar and Judd (1997) solve for the consumption

function that satis�es the household�s Euler equation in two classes of heterogeneous agent

models with �nite number of households. Both models include only aggregate shocks, and

agents, in contrast to the present analysis, are ex ante heterogenous: one model having agents

with di¤erent preferences and the second with di¤erent initial wealth holdings. Our analysis

advances this research by adopting a new solution method �perturbation methods � and

by providing a complete second order characterization of a stochastic growth model with a

continuum of households that are ex ante homogeneous but ex post heterogeneous, aggregate

and idiosyncratic shocks, and incomplete markets.

imations which similarly introduce errors. The di¤erence between global and local methods lies in where in
the model space solution error is tolerated. Perturbation methods value accuracy highly, local to some point
of interest �but this does not imply the model to be globally invalid.
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The paper proceeds as follows. The next section lays out the benchmark heterogeneous

agent model. Section 3 deals with several conceptual issues relating to obtaining a second

order accurate characterization of the model solution. Section 4 discusses some calibration

exercises and highlights implications of heterogeneity and incomplete markets for macroeco-

nomic dynamics. Section 5 gives further discussion of the conditions required for approximate

aggregation and properties of solutions based on perturbation methods and value function it-

eration. The �nal section o¤ers some concluding remarks.

2 The Model

This section describes a stochastic growth model, incorporating heterogenous agents that face

partially uninsurable income risk. There are a continuum of agents with unit measure indexed

by i 2 [0; 1]. Each household i seeks to maximize

Et
1P
T=t

�T�tu (ci;T ) (1)

for

u (ci;t) =
c1�i;t � 1
1� 

where  > 0 is the inverse intertemporal elasticity of substitution, 0 < � < 1 the discount

rate and ci;t household i�s consumption of the economy�s only available good. Maximization

is subject to the �ow budget constraint for capital

ai;t+1 = (1� �) ai;t + yi;t � ci;t

where 0 < � < 1 is the depreciation rate, ai;t denotes individual i0s holdings of the capital

stock and yi;t the income of individual i to be de�ned below.

Agents face partially insurable labor market income risk. Each agent is endowed with one

unit of time. This endowment is transformed into labor input according to li;t = ei;t�l where

ei;t is an idiosyncratic employment shock satisfying

ei;t+1 = (1� �e)�e + �eei;t + "ei;t+1 (2)
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where 0 < �e < 1; �e > 0 and "ei;t+1 a bounded i.i.d. disturbance with mean and variance

(0; �2e).
2 Subsequent sections will make clear a particular advantage of perturbation methods:

stochastic components of the model need not be restricted to low dimensional discrete state

Markov processes. However, perturbation methods can handle discrete state processes as

demonstrated in Roca (2006). �l > 0 is a normalizing constant.

Given single economy-wide markets for labor and capital, wage and rental rates are deter-

mined by the aggregate production function and the aggregate quantities of the two inputs.

The latter are de�ned by

kt �
1R
0

ai;tdi (3)

lt �
1R
0

li;tdi = �e
�l (4)

where the �nal equality follows from the law of large numbers and implies that aggregate

employment is equal to the mean of individual employment outcomes. Aggregate output is

produced according to a Cobb-Douglas production technology ztk�t l
1��
t taking as inputs the

aggregate capital stock and labor supply. zt is an aggregate technology shock, common to all

households, and assumed to satisfy

zt+1 = (1� �z)�z + �zzt + "zt+1 (5)

where 0 < �z < 1; �z > 0 and "zt+1 a bounded i.i.d. disturbance with mean and variance

(0; �2z). These aggregate inputs imply market interest and wage rates equal to

r (kt; lt; zt) = �zt (kt=lt)
��1

w (kt; lt; zt) = (1� �) zt (kt=lt)� :

Household i�s income is then determined as

yi;t = r (kt; lt; zt) ai;t + w (kt; lt; zt) ei;t�l:

To solve the optimization problem agents must forecast future prices. Under the main-

tained assumptions flt; ztg are governed by exogenously given stochastic processes. Therefore,
2The analysis will later allow employment status to depend on the aggregate state. However, for simplicity

of notation this correlation is presently ignored.

7



to forecast future wage and rental rates, agents require knowledge of the stochastic process

describing the evolution of the aggregate capital stock. However, the stochastic properties of

the aggregate capital stock depend on the distribution of capital holdings in the population.

Denote this distribution by �t and associated law of motion

�t+1 = H(�t; zt): (6)

Asset markets are incomplete with capital representing the only asset by which resources

can be transferred over time. It is for this reason that employment risks are partially insurable.

To ensure satisfaction of intertemporal budget constraints, capital holdings are restricted by

a borrowing limit b � 0, ensuring the repayment of loans and the absence of Ponzi schemes.

To impose the restriction, de�ne the interior function

I (ai;t+1) =
1

(ai;t+1 + b)
2 (7)

which has the property that as individual asset holdings approach the borrowing constraint b

the interior function approaches in�nity. The model is then written as the following dynamic

programming problem:

v (ai;t; ei;t; �t; zt) = max
ci;t;ai;t+1

[u (ci;t) + �Etv (ai;t+1; ei;t+1; �t+1; zt+1) + �I (ai;t+1)] (8)

where � > 0 (discussed in detail below) subject to

ai;t+1 = (1� �) ai;t + r (kt; lt; zt) ai;t + w (kt; lt; zt) ei;t�l � ci;t (9)

and relations (2), (3), (4), (5) and (6). For later use, the �rst order conditions for optimality

are given by

uc (ci;t) = �Et [uc (ci;t+1) (r (kt+1; lt+1; zt+1) + 1� �)� �Ia (ai;t+1)] (10)

combined with relations (2), (3), (4), (5), (6) and (9). This class of problem is di¢ cult to

solve because the law of motion for the wealth distribution is unknown and in principle an

in�nite dimensional object.
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2.1 Commentary

Our introduction of the interior function (7) in the optimization problem follows a long litera-

ture in the linear programming and non-linear optimization �elds of applied mathematics on

interior methods for optimization problems subject to inequality constraints � see Forsgren,

Gill, and Wright (2002) for a review and detailed references therein. Typical analyses of this

class of model follow Aiyagari (1994) and restrict capital holdings with a borrowing constraint

ai;t+1 + b > 0; 8 i 2 [0; 1] : (11)

The idea adopted here is to replace the problem of maximizing an objective function subject

to this inequality constraint with an unconstrained maximization problem. This is achieved

by de�ning a composite function that re�ects the properties of the unconstrained objective

function and the constraint (11). Introducing the interior function with penalty parameter � >

0 modi�es the Bellman equation so that it has the property that for small � the maximization

problem satis�es the constraint ai;t+1 + b > 0. When ai;t+1 approaches b the interior function
tends to dominate the value function v (ai;t; ei;t; �t; zt) leading to large negative values. The

composite function therefore penalizes consumption-savings decisions that lead to an asset

position near the borrowing limit.3

Interior functions are similar in spirit to penalty functions that appear in various litera-

tures. In related work Kim, Kim, and Kollmann (2005) directly introduce a penalty term in

the utility function to enforce the same kind of borrowing constraint. Rotemberg and Wood-

ford (1999) in an analysis of monetary policy concerned with the implications of the lower

bound on nominal interest rates impose a penalty function on the central bank�s objective to

ensure that nominal interest rates are always non-negative.

An alternative approach is to introduce quadratic costs to adjusting capital holdings of

the form � (ai;t + b)
�2. As asset holdings approach the borrowing limit b the cost tends to

3Forsgren, Gill, and Wright (2002) provide theorems for static problems under which the maximand of
the composite function converge to the maximand of the original problem as � ! 0. Moreover, bounds can
be determined on the magnitude of the error in the maximand obtained from the modi�ed problem with
small �: We shall not develop the theory of interior methods further since we intend to take a second order
approximation to this modi�ed problem. Furthermore, in our simulation studies, we make sure that the
penalty � is su¢ ciently large to ensure agents do not violate the borrowing constraint.
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in�nity. The interpretation is that individuals that are close to their borrowing limit, therefore

representing �bad credit risks�, must expend greater resources to secure loans. Hence in

equilibrium agents will never choose a sequence of fci;t; ai;tg pairs that lead to (11) holding

with equality. This approach is similar to small open economy macroeconomic models which

adopted debt sensitive interest rate premia to ensure stationarity of foreign debt holdings in

equilibrium � see Benigno (2001), Kollmann (2002) and Schmitt-Grohe and Uribe (2003).

This approach gives similar results to those we report for the interior method.

3 Perturbation Methods

This section describes the perturbation approach. Such methods seek to approximate the

model solution to an arbitrary degree of accuracy in the neighborhood of some point of

interest in the model space. This point is typically taken to be the model�s steady state which

is discussed further below

Several conceptual issues must be confronted. The aggregation conditions (3) and (4) im-

pose signi�cant structure on our model solution � structure that is not present in analogous

representative agent models. The implications are two-fold: �rst, aggregation constraints

induce additional state variables relevant to an individual�s decision problem; second, aggre-

gation induces a relationship between the elasticities relevant to individual decisions and those

elasticities describing aggregate dynamics. The following sections deal with each of these is-

sues in turn. Perturbation methods are �rst described for a representative agent version of the

model both to introduce notation and the basic solution method. The intricacies introduced

by the presence of heterogenous agents and associated aggregation conditions for the solution

are then delineated.

3.1 The Representative Agent Model

For ease of exposition, consider a representative agent version of the model described in

Section 2. This will facilitate introduction of notation and the basics of the perturbation

approach in obtaining a second order accurate characterization of the model. Our notation

follows Schmitt-Grohe and Uribe (2004) though the analysis is otherwise identical to Judd
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(1998), Jin and Judd (2002) and Kim, Kim, Schaumburg, and Sims (2003).

To generate a representative agent model, assume that there are no idiosyncratic labor

employment shocks and that each household inelastically supplies a unit of labor. Hence all

agents will be identical ex ante and ex post so that ai;t = kt for all i in equilibrium. The

equilibrium for this model is determined by the optimality conditions

uc (ct) = �Et [uc (ci;t+1) (r (kt+1; lt+1; zt+1) + 1� �)] +
2�

(kt+1 + b)
3

kt+1 = (1� �) kt + r (kt; lt; zt) kt + w (kt; lt; zt) �l � ct

and relation (5). These conditions can then be summarized by

EtF (ct+1; ct; xt+1; xt) = Et

26664
c�t � �c�i;t+1 (r (kt+1; lt+1; zt+1) + 1� �)� 2�

(kt+1+b)
3

kt+1 � (1� �) kt � r (kt; lt; zt) kt � w (kt; lt; zt) �l + ct
zt+1 � (1� �z)�z � �zzt � "zt+1

37775
= 0 (12)

where

xt =

24 kt
zt

35 :
The solution to this model is of the form

ct = g (xt; �)

xt+1 = h (xt; �) + ��"t+1 (13)

for unknown functions g and h with dimension (1� 1) and (2� 1) respectively. � > 0

scales the degree of uncertainty in "t+1, itself a (2 � 1) vector, and � is a (2� 2) selection

matrix, designating how primitive shocks enter the state equations. This solution represents

a generalization of the standard state-space representation of a linear rational expectations

model. The �rst relation gives the policy function for the endogenous decision variables while

the second describes the evolution of the model�s state variables. In contrast to the linear

case, the solution is here given by an arbitrary non-linear mapping from current state variables

to the optimal allocations for consumption and future states. Perturbation methods seek to
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approximate the functions g and h in the neighborhood of the model�s steady state (�c; �x),

de�ned by the relations �c = g (�x; 0) and �x = h (�x; 0).

The second order approximation of the functions g and h around the steady state (xt; �) =

(�x; 0) yields

g (x; �) = g (�x; 0) +
P
m

gxm (�x; 0) (xm � �xm) + g� (�x; 0)�

+
1

2

P
m;n

gxmxn (�x; 0) (xm � �xm) (xn � �xn)

+
1

2

P
m

gxm� (�x; 0) (xm � �xm)� +
1

2

P
m

g�xm (�x; 0) (xm � �xm)�

+
1

2
g�� (�x; 0)�

2 (14)

and

h (x; �)j = h (�x; 0)j +
P
m

hxm (�x; 0)
j (xm � �xm) + h� (�x; 0)j �

+
1

2

P
m;n

hxnxm (�x; 0)
j (xm � �xm) (xn � �xn)

+
1

2

P
m

hxm� (�x; 0)
j (xm � �xm)� +

1

2

P
m

h�xm (�x; 0)
j (xm � �xm)�

+
1

2
h�� (�x; 0)

j �2 (15)

where j; m; n = 1; 2: Here j indexes the law of motion of the predetermined variable under

consideration � either the capital stock or the technology shock � and therefore selects a

particular element of the vector of non-linear functions given by h (x; �) in (13). m and n

index the same two state variables in the construction of the approximation. For instance,

h1x1x2 gives the cross partial derivative with respect to k and z for the non-linear law of motion

for k.

The unknowns in these Taylor expansions are given by the set of �rst order derivatives

gxm ; g�; h
j
xm ; h

j
�; (16)

and the second order derivatives

gxnxm ; gxm�; g�xm ; g��; h
j
xnxm ; h

j
xm�; h

j
�xm ; h

j
�� (17)
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for j; m; n = 1; 2. Hence there are 9 unknown �rst order terms and 17 second order terms.

These unknown coe¢ cients can be solved for by taking the corresponding �rst and second

derivatives of (12) with respect to x and � and evaluating the resulting expression at the

steady state (xt; �) = (�x; 0).

Consider the �rst order terms. Taking derivatives of (12) with respect to x and � yields

Fxm = 0 and F� = 0 for m = 1; 2:

The �rst set of conditions provide 6 quadratic equations in the 6 unknowns gxm and h
j
xm. The

solution of these coe¢ cients follows immediately from standard methods, such as a Schur de-

composition or eigenvalue decomposition problem, and are analogous to solving for a unique

determinate equilibrium in linear rational expectations models. The second restriction pro-

vides three equations in the three unknowns g� and hj� for j = 1; 2.

The second order coe¢ cients can similarly be determined by computing the second order

derivatives of F to give

F jxmxk = 0; F j�� = 0; F jxm� = 0

for j = 1; 2; 3 and m;n = 1; 2. This gives 17 linear equations in the 17 unknowns. The

terms g�� and hj�� provide corrections to the mean of each variable due to the presence of

uncertainty. In a �rst order approximation certainty equivalence holds and uncertainty does

not a¤ect the elasticities of optimal decision rules. The elasticities on second order terms are

similarly una¤ected. The e¤ects of uncertainty on the model solution are fully captured by

constant adjustments to the mean of each variable. We will prove a similar result for the

heterogenous agent model.

Having determined the unknowns (16) and (17), relations (14) and (15) completely char-

acterize a second-order accurate solution to the model. In particular, (15), once substituted

into (13), provides a law of motion for the aggregate capital stock. This stochastic process

determines the time series distribution of aggregate capital used to forecast future prices.
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3.2 Heterogeneous Agent Model

Our task is to determine the probability distribution characterizing the stochastic evolution

of the aggregate capital stock that is accurate to the second order. In contrast to the repre-

sentative agent model, this computation is complicated by the presence of heterogeneity in

capital holdings across households. Indeed, individual consumption and saving decisions, and

therefore the aggregate capital stock, can now depend on an additional set of state variables

relevant to describing the evolving distribution of wealth in the economy.

3.2.1 The Steady State

Following Kydland and Prescott (1982), and as often done in the modern macroeconomics

literature, an approximation to the model is sought in the neighborhood of the model�s de-

terministic steady state. The steady state is characterized by a situation in which there are

no aggregate shocks and no idiosyncractic shocks. In the absence of idiosyncractic shocks all

agents are both ex ante and ex post identical. We assume that capital is equally distributed

across agents in this steady state. It follows that in the deterministic steady state the wealth

distribution is degenerate: all agents hold the same quantity of the aggregate capital stock.

Hence the cross-sectional distribution has unit probability mass on this aggregate quantity of

capital. For example, the cross sectional variance of capital holdings is equal to zero in this

steady state, as is the cross sectional covariance between capital holdings and employment

status. These two moments of the wealth distribution are revealed to be central to our second

order approximation developed in the sequel. What the second order approximation does, is

approximate the wealth distribution in the neighborhood of this degenerate wealth distribu-

tion. It does not seek to approximate the dynamics around some ergodic wealth distribution

that might obtain with idiosyncractic shocks but no aggregate shocks as in the analyses of

Huggett (1993) and Aiyagari (1994).4

4An alternative approach would be to approximate around a nondegenerate distribution implied by the
model without technology shocks. We do not pursue it here, though acknowledge such an exercise to be of
interest and might possibly give di¤erent results. Reiter (2006) presents an analysis in this spirit, though makes
use of projection methods to characterize the ergodic wealth distribution in the presence of just idiosyncratic
shocks. The e¤ects of aggreagate shocks are then determined by linear perturbation.
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3.2.2 State Variables De�ned

To understand the set of possible state variables relevant to the evolution of the aggregate

capital stock, consider the set of state variables relevant to individual i�s decision problem

at the �rst order. They are: fai;t; ei;t; ztg. Noting that optimal decisions will be linear

in these state variables in our approximation, the aggregation constraint (3) then delivers a

fourth state variable in the aggregate capital stock, kt. Hence we look for an equilibrium

solution to the model in which decisions are linear functions, at the �rst order, of the terms

fai;t; ei;t; zt; ktg. Because individual decisions are linear in these four state variables, it is

immediate that the aggregate capital stock at the �rst order can only depend on fkt; ztg once

the properties of (3) are applied. The sequel will discuss further the relation between the

coe¢ cients in the individual decision rules and the aggregate capital accumulation equation.

Which second order terms are relevant to the household�s saving decision? In principle,

decisions could depend on all pair-wise combinations of fai;t; ei;t; zt; ktg appearing in a

second order polynomial of these �rst-order state variables. Hence the set of second order

terms in deviations from steady state values are

(ai;t � �a) (ei;t � �e) ; (ai;t � �a)
�
kt � �k

�
; (ai;t � �a) (zt � �z) ; (ai;t � �a)2 ; (ei;t � �e)2 ;

(ei;t � �e)
�
kt � �k

�
; (ei;t � �e) (zt � �z) ;

�
kt � �k

�2
;
�
kt � �k

�
(zt � �z) ; (zt � �z)2 : (18)

Again, because the dynamic equation describing individual saving decisions is linear in these

state variables, and because individual decisions must satisfy the aggregation constraint, the

aggregate capital stock can only depend on the following six objects at the second order:

1R
0

(ai;t � �a) (ei;t � �e) di;
1R
0

(ai;t � �a)2 di;
�
kt � �k

�2
;

�
kt � �k

�
(zt � �z) ; (zt � �z)2 ;

1R
0

(ei;t � �e)2 di

on noting that

1R
0

(ai;t � �a)
�
kt � �k

�
di =

�
kt � �k

�2
;
1R
0

(ai;t � �a) (zt � �z) di =
�
kt � �k

�
(zt � �z) ;

1R
0

(ei;t � �e)
�
kt � �k

�
di =

1R
0

(ei;t � �e) (zt � �z) di = 0:
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The �rst �ve terms represent the aggregate second order state variables while the �nal term is

a constant, representing a correction to the mean aggregate capital stock due to the presence

of idiosyncratic risk.

Hence, in addition to the second order polynomial terms
n
k̂2t ; k̂tẑt; ẑ

2
t

o
(introducing the

notation that for any variable x, x̂t = (xt � �x) gives the deviation from steady state), two

new state variables are induced from aggregation:

�t �
1R
0

(ai;t � �a)2 di and 	t �
1R
0

(ai;t � �a) (ei;t � �e) di: (19)

The former represents the cross-sectional variance of capital holdings while the latter gives

the cross-sectional covariance between asset holdings and employment status. The dynamics

of these two state variables will be central to characterizing the evolution of the wealth

distribution. By construction these variables take a value of zero in the deterministic steady

state. Our second order approximation characterizes the dynamics of these state variables in

the neighborhood of a degenerate wealth distribution.

Because the aggregate capital stock can depend on these variables, it follows that in equi-

librium individual household decisions must similarly depend on these second order objects.

Hence, the set of primitive objects relevant to individual household decisions are given by

fai;t; ei;t; zt; kt; �t; 	tg : (20)

Optimal decision rules to a second order will then depend on a second order polynomial in

these state variables. There will be no cross-product terms involving �t and 	t since these

are inherently second order objects implying all such terms are third order or higher and

therefore irrelevant to our second order approximation. Since decisions are linear in these

state variables, aggregation then ensures that the aggregate capital stock depends only on the

aggregate quantities n
ẑt; k̂t; k̂

2
t ; k̂tẑt; ẑ

2
t ; �̂t; 	̂t

o
:

The model characterized in Section 2 can now be reformulated. Because (20) completely

characterizes the primitive state variables relevant to household decisions to the second order,
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rewrite the model as

uc (ci;t) = �Et [uc (ci;t+1) (r (kt+1; lt+1; zt+1) + 1� �)] + 2� (ai;t + b)�3 (21)

ai;t+1 = (1� �) at + r (kt; lt; zt) ai;t + w (kt; lt; zt) �lei;t � ci;t (22)

the exogenous processes

ei;t+1 = (1� �e)�e + �eei;t + "ei;t+1

zt+1 = (1� �z)�z + �zzt + "zt+1

and the laws of motion of the endogenously determined aggregate state variables

kt+1 = hk (kt; zt;�t;	t; �) �
1R
0

ai;t+1di (23)

�t+1 = h� (kt; zt;�t;	t; �) �
1R
0

(ai;t+1 � �a)2di (24)

	t+1 = h	 (kt; zt;�t;	t; �) �
1R
0

(ai;t+1 � �a) (ei;t+1 � �e) di: (25)

Stacking these relations then permits the model to be written as

EtF (ct+1; ct; xt+1; xt) = 0

rede�ning the state vector as xt = fai;t; ei;t; zt; kt; �t; 	tg. The solution to this model

again takes the form

ct = g (xt; �)

xt+1 = h (xt; �) + ��"t+1 (26)

where h (xt; �) is now a (6� 1) vector corresponding to the states xt. Hence, relative to the

original problem, the reformulated problem has exchanged the true law of motion for the

wealth distribution (6) with an approximate law of motion embodied in the dynamics of the

�nal three relations described in (23) - (25). Worth underscoring is that the modi�ed problem

nonetheless provides a second-order accurate characterization of (6) given the arguments

presented above.
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3.3 Further Restrictions From Aggregation

So far we have discussed how heterogeneity and aggregation interact to determine the set of

state variables relevant to the dynamics and stochastic properties of the aggregate capital

stock. However, aggregation also imposes restrictions on the equilibrium coe¢ cients that can

obtain in the individual and aggregate capital accumulation equations.

Under the reformulated model, the equilibrium laws of motion for individual capital hold-

ings in a second order approximation have the general form

h (x; �)a = h (�x; 0)a +
P
m

haxm (�x; 0) (xm � �xm) + h
a
� (�x; 0)�

+
1

2

P
n;m

haxnxm (�x; 0) (xm � �xm) (xn � �xn)

+
1

2

P
m

haxm� (�x; 0) (xm � �xm)� +
1

2

P
m

ha�xm (�x; 0) (xm � �xm)�

+
1

2
ha�� (�x; 0)�

2 + ha� (�x; 0)
�
�� ��

�
+ ha	 (�x; 0)

�
	� �	

�
where x = fai;t; ei;t; zt; ktg and adopting the notation established in the discussion of the

representative agent model. The expansion is taken around the model�s steady state (�x; 0)

with no aggregate or idiosyncratic uncertainty (i.e. � = 0). Note that because f�t; 	tg

capture second order variation, these variables only appear in the �nal two terms. Similarly,

aggregate capital satis�es

h (x; �)k = h (�x; 0)k +
P
m

hkxm (�x; 0) (xm � �x) + h
k
� (�x; 0)�

+
1

2

P
n;m

hkxnxm (�x; 0) (xm � �xm) (xn � �xn)

+
1

2

P
m

hkxm� (�x; 0) (xm � �xm)� +
1

2

P
m

hk�xm (�x; 0) (xm � �xm)�

+
1

2
hk�� (�x; 0)�

2 + hk� (�x; 0)
�
�� ��

�
+ hk	 (�x; 0)

�
	� �	

�
:

Aggregation then requires

1R
0

ai;t+1di =
1R
0

h (xt; �)
a di = h (xt; �)

k = kt+1: (27)

Using the facts that
1R
0

(ai;t � �a) di =
�
kt � �k

�
and

1R
0

(ei;t � �e)di = 0 relation (27) imposes the
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following restrictions on the model solution. The �rst order coe¢ cients must satisfy

hka = h
k
e = 0, h

k
z = h

a
z and h

k
k = h

a
a + h

a
k: (28)

The second order coe¢ cients are similarly shown to satisfy

hkkk = h
a
ak + h

a
kk; h

k
zz = h

a
zz; h

k
kz = h

a
az + h

a
zk; h

k
� = h

a
� + h

a
ae; h

k
	 = h

a
	 + h

a
aa (29)

and

hk�� = h
a
�� + h

a
ee

1Z
0

(ei;t � �e)2 di = ha�� + haee�2e: (30)

The latter restriction represents the correction to the mean capital stock. It comprises two

components: one due to the aggregation of idiosyncratic risk and one due to aggregate risk

given by ha��. All remaining coe¢ cients on second order terms are equal to zero.

The two equations (24) and (25) similarly impose structure on the coe¢ cients of the second

order approximation. The appendix shows that the following coe¢ cient restrictions must be

satis�ed:

h�� = (h
a
a)
2 ; h�	 = 2h

a
eh
a
a; h

�
kk = h

a
k(h

a
a + h

a
k); h

�
zz = (h

a
z)
2 ; h�zk = 2h

a
z (h

a
a + h

a
k) (31)

will all other coe¢ cients equal to zero. The aggregation of individual speci�c risk also intro-

duces a correction to the mean equal to

h��� = (h
a
a)
2

1Z
0

(ei;t � �e)2 di = (haa)
2 �2e: (32)

Finally, the law of motion for 	t provides the restriction

h		 = �eh
a
a (33)

with all other coe¢ cients equal to zero. Again, there is a correction to the mean from the

aggregation of individual speci�c risk equal to

h	�� = h
a
e�e

1Z
0

(ei;t � �e)2 di = hae�e�2e: (34)

Note that the dynamics for �t and 	t depend only on the �rst order coe¢ cients appearing

in the individual and aggregate capital equations and so introduce no new unknowns to be

determined.
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3.4 The Solution

Given the reformulated problem and the restrictions imposed by aggregation on the permis-

sible elasticities in the individual and aggregate laws of motion for capital, the solution can

proceed as for the representative agent case. Analogous to the analyses of Jin and Judd (2002)

and Kim, Kim, Schaumburg, and Sims (2003) and theorem 1 of Schmitt-Grohe and Uribe

(2004) for representative agent models, we prove the following result for heterogenous agent

models.

Theorem 1 All elasticities in the second order approximation to (26) � comprising the laws
of motion (21) - (25) and the two exogenous disturbance processes � are independent of
uncertainty. That is

g� (�x; 0) = h� (�x; 0) = gx� (�x; 0) = hx� (�x; 0) = 0

for all x 2 fai;t; ei;t; zt; kt; �t; 	tg :

The proof is in the appendix which also outlines in detail the solution method and the full

set of restrictions that are required to solve for the unknown coe¢ cients characterizing the

second order approximation. It shows that in a second order approximation, the laws of motion

for the cross sectional variance of asset holdings (24) and the cross sectional covariance between

asset holdings and employment status (25) depend only on the �rst order elasticities implied by

the dynamics of (21), (22) and (23). To solve for the remaining elasticities, relations (21) and

(22) provide 36 restrictions in 54 unknowns. The remaining 18 restrictions are determined by

the aggregation constraints implied by (23) and given in (28) - (30). An immediate implication

of theorem 1 is that the direct impact of uncertainty on optimal decisions is re�ected in

the model solution via the constants g�� and hj�� � terms which represent the impact of

risk on mean decisions. For instance, g�� represents the correction to an individual�s mean

consumption relative to steady state due solely to the presence of uncertainty. It therefore

represents precautionary savings. Note that the �nding g� (�x; 0) = h� (�x; 0) = 0 is the usual

certainty equivalence result associated with �rst order approximations and linear-quadratic

models.

Perturbation methods present several advantages in solving this class of problem. First,

the solution technique analytically determines individual decision rules which are optimal to
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the second order. As such, the implications of aggregation can easily be analyzed, with the role

of various state variables in determining the evolution of the aggregate capital stock quickly

identi�ed. This permits a careful examination of which moments of the wealth distribution

are important for aggregate dynamics. Second, there are considerable practical advantages.

Because the solution is based on standard analytical methods for solving quadratic and linear

systems of equations, the model can be solved in fractions of a second in contrast to value

function iteration-based methods. Similarly, because the approach can handle high dimen-

sion state spaces, �exible speci�cation of the exogenous disturbance processes can be handled.

Third, the approach is robust. Numerical methods used to solve Bellman equation problems

through value function iteration are often sensitive to the precise details of various approxima-

tions used in the procedure. For instance, small variations in the grid choice characterizing

the state space can a¤ect whether the procedure leads to convergence. There are no such

concerns with perturbation methods

4 Results

The following section delineates some properties of the model solution. While fully analytic

solutions could be presented, it is more convenient to exploit a calibration study of the model.

Our benchmark calibration is discussed in detail, highlighting some of the qualitative prop-

erties of the model solution. The dependency of optimal decisions on the evolving wealth

distribution is discussed and the implications for aggregation and aggregate dynamics made

transparent. The quantitative predictions of the model are then explored for a number of

calibrations.

4.1 The Calibration and Steady State

The time period is one quarter. The intertemporal discount factor � is set equal to 0:98 and

the depreciation rate � to 0:025. The relative risk aversion parameter  equals 2 and the share

of capital � is 0:36. The normalizing constant �l is set equal to 0.32 so that agents work a

third of their available hours in steady state. The aggregate technology shock is speci�ed by

�z = 1 , �z = 0:75 and �z = 0:0132 to correspond to the two state Markov process adopted by
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Krusell and Smith (1998). The law of motion for individual�s employment status is modi�ed

to

ei;t+1 = (1� �e)�e + �eei;t + �ze(zt+1 � �z) + "ei;t+1

to allow for labor market conditions to depend on the aggregate state. This does not a¤ect the

solution method in any way, though does a¤ect the determined elasticities on zt in the optimal

decision rules. The individual�s employment status is speci�ed as �e = 0:93, �e = 0:70; and

�e = 0:05. Initially we take �ze = 0 so that an individual�s employment status is not correlated

with the aggregate state. This facilitates comparison to a representative agent version of the

model, isolating implications of incomplete markets and heterogeneity. We later choose �ze to

give an average unemployment rate of 7 percent, with 4 percent and 10 percent unemployment

rate on average when there is positive and negative one standard deviation shock to technology

leaving the remaining parametric assumptions unchanged.

The analysis assumes agents are constrained to hold positive quantities of the capital

stock (so that the borrowing limit is b = 0). The parameter � governing the sensitivity to the

borrowing constraint in the modi�ed utility function is set equal to 0:05. This ensures that no

agent violates the borrowing constraint. There are no restrictions implied by theory that give

guidance on the magnitude of this parameter. It clearly depends on the nature of risks and

agents�attitudes towards such risk and can only be checked ex post in simulations. Of course

this is no di¤erent to other choices a modeler faces in solving such models using alternative

methods. Indeed, when using value function iteration the choice of grid characterizing the

state space can lead to non-convergence of the solution algorithm. As a robustness exercise,

we check that our results are similar for a range of values for � though we note here that it

has implications for the properties of the cross-sectional wealth distribution. The steady state

is chosen to be the non-stochastic solution of the model in which all agents own the same

amount of capital, so that �ai = �k for all i.
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4.2 Optimal Decision Rules

Optimal saving decisions imply the following second order accurate law of motion for individ-

ual capital holdings:

âi;t+1 = 0:0003 + 0:9993âi;t + 0:6288êi;t + 0:8574ẑt � 0:0278k̂t

+0:0002â2i;t + 0:0006âi;têi;t + 0:0458âi;tẑt � 0:0031âi;tk̂t

+0:0006ê2i;t � 0:6465êi;tẑt + 0:0300êi;tk̂t

+0:0036ẑ2t � 0:0010ẑtk̂t + 0:0025k̂2t � 0:0009�̂t � 0:00005	̂t (35)

with all variables interpreted as deviations from steady state. The consumption allocation

rule is not presented to conserve space.

Several points are worthy of note. First, the optimal decision rule depends on all state

variables at the �rst and second order. Hence, optimal consumption and saving decisions

depend on all variables relevant to the evolution of the wealth distribution � no elasticities

are analytically found to be zero. While the coe¢ cients on some second order terms are quite

small, with the coe¢ cient on �̂t being zero to the third decimal point, this does not necessarily

imply they are irrelevant as will be made clear in the next subsection. Second, the constant

in the decision rule arises due to the e¤ects of precautionary saving. In the presence of risk,

both aggregate and idiosyncratic, agents tend to hold more capital.

Third, this decision rule implicitly determines an individual�s marginal propensity to save.

In general this marginal propensity to save will vary across individuals according to their

speci�c history of employment shocks and asset accumulation decisions. For the allocation of

capital to matter in this economy is must be the case that marginal propensities to save di¤er

across individuals so that di¤erent allocations of wealth engender di¤ering consumption and

savings decisions in the aggregate, a point to which we shall return.

Applying the aggregation constraint (3) determines the aggregate capital accumulation

equation as

k̂t+1 = 0:0003 + 0:8573ẑt + 0:9714k̂t + 0:0036ẑ
2
t + 0:0449ẑtk̂t � 0:0006k̂2t

�0:0007�̂t + 0:0006	̂t: (36)
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The law of motion for aggregate capital inherits many of the properties of the individual laws

of motion but only depends on aggregate states. Importantly, there are �ve second order

terms relevant to the evolution of the aggregate capital stockn
k̂2t ; k̂tẑt; ẑ

2
t ; �̂t; 	̂t

o
:

The coe¢ cients on the state variables
n
�̂t; 	̂t

o
have negative and positive coe¢ cients respec-

tively. To understand why there is a negative coe¢ cient on the variance of cross-sectional

capital holdings, consider an increase in this variance holding total capital �xed. As the vari-

ance rises more capital is being held by individuals with a lower marginal propensity to save.

Because this reallocation of capital results in higher aggregate consumption and lower saving

aggregate capital must fall in the next period. The positive coe¢ cient on the covariance of

cross-sectional capital holdings with employment status re�ects the fact that a higher posi-

tive correlation implies individuals with lower capital holdings also have worse employment

outcomes. This risk leads individuals to save more, resulting in higher aggregate capital.

To further understand the implications of heterogeneity for aggregate dynamics, consider

the associated quasi-representative agent model derived under the assumption of no idiosyn-

cratic employment shocks, though maintaining the assumption that agents face a borrowing

constraint.5 The aggregate capital dynamics are given by

k̂t+1 = 0:0001 + 0:8573ẑt + 0:9714k̂t + 0:0033ẑ
2
t + 0:0446ẑtk̂t � 0:0005k̂2t (37)

and depends on the same set of aggregate state variables, with the exception of the cross

sectional variance of capital holdings and covariance between capital holdings and employment

status. Comparison with the heterogeneous agent case yields several important insights. First,

precautionary savings e¤ects, which lead to higher capital accumulation and are captured in

the constant of the equilibrium laws of motion, while small, are some three times larger in the

heterogeneous agent model than in the representative agent case. While the magnitudes are

in large part a product of features of this speci�c model and the calibration (to be discussed in

the sequel), in general the presence of partially insurable idiosyncractic risks leads to greater

5The true underlying representative agent models does not require a borrowing constraint determined by
the natural debt limit as in Aiyagari (1994) �the usual No-Ponzi condition su¢ ces.
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accumulation of capital. Note also that the theory of section 2 showed that this correction is

determined by the relation

hk�� = h
a
�� + h

a
ee�

2
e:

Second, heterogeneity does not a¤ect the model solution at the �rst order: all elasticities on

�rst order dynamics are identical across the representative and heterogeneous agent models

� compare (36) and (37). To understand this, note that i) the �rst order elasticities are

determined independently of the second order properties of the model (though these second

order properties depend on the �rst order elasticities) and ii) a �rst order approximation to

the heterogeneous agent model is equivalent to only keeping track of the mean of the wealth

distribution and therefore aggregate capital. For these two reasons, at the �rst order, the

distribution of wealth across agents is irrelevant to dynamics.

Third, and related, to see the e¤ects of heterogeneity on dynamics, we must look to the

second order terms. The coe¢ cients on
n
ẑ2; ẑk̂; k̂2

o
are broadly of the same magnitude,

though the �rst and third coe¢ cients are respectively 25 and 50 percent larger in the hetero-

geneous agent model. And of course, the cross sectional properties of the wealth distribution

are also relevant to dynamics in this case. In this sense heterogeneity matters qualitatively

though further work must be done to establish the quantitative implications of these terms.

4.3 Further Model Properties

To interpret the magnitudes of the reported coe¢ cients and their implications for macro-

economic dynamics, Table 1 reports model implied statistics for aggregate consumption, the

cross-sectional holdings of capital and welfare. For both the representative and heteroge-

neous agent models a �rst and second order approximate solution are given. In each case,

the statistics are generated using the same simulated path for technology shocks. For the

heterogeneous agent model we simulate 2000 sequences of idiosyncratic shocks of length 5000.

The �rst 1000 observations are dropped to remove the e¤ects of initial conditions.

Only by considering a second order approximation of the model can the e¤ects of risk on

optimal decisions be assessed. This precautionary savings e¤ect is captured in the constant of

the optimal decision rule. As mentioned, in the heterogeneous agent model the precautionary
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Table 1: Aggregate Statistics

Baseline Calibration Risky Economy
Agents Representative Heterogeneous Heterogeneous
Order of Approximation First Second First Second First Second

S.S. Consumption 0.782 0.782 0.782 0.782 0.782 0.782
Prec. Savings (% of s.s) 0.000 0.011 0.000 0.039 0.000 0.039

Aggregate Consumption:
Mean (% of s.s.) 0.000 -0.060 0.000 -1.154 0.000 -1.937
Standard Deviation 0.010 0.010 0.009 0.010 0.016 0.017
First Order Serial Corr. 0.986 0.986 0.986 0.986 0.993 0.993

Capital Distribution:
Mean Variance 8.767 12.826
Std. Dev. of Variance 0.816 1.297

Welfare:
Mean -14.375 -14.371 -14.558 -14.920 -13.139 -14.001
Standard Deviation 4.279 4.379 4.626 5.228

savings e¤ect is 300 percent larger re�ecting the presence of idiosyncractic risk in this model.

However, under the present calibration there is little precautionary saving measured as a

fraction of steady state consumption.

Analysis of the variance and �rst order serial correlation of aggregate consumption makes

clear that these properties are largely determined by �rst order dynamics. Indeed, for the

representative agent model, the standard deviations and serial correlation are identical at the

third decimal place under both a �rst and second order approximation, while in the hetero-

geneous agent model the standard deviation shows a small discrepancy at the third decimal

point for the standard deviation. Hence, aggregate dynamics appear to be mainly determined

by �rst order model properties. Moving to a second order approximation, which introduces

terms relevant to describing the evolving properties (aside from the mean) of the wealth

distribution, adds little to our quantitative predictions concerning aggregate consumption

dynamics. Hence under this calibration Krusell and Smith (1998) approximate aggregation
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emerges once more: it seems that keeping track of the mean of the wealth distribution induces

quantitatively small errors in predicting aggregate dynamics.

However, this does not imply incomplete markets are irrelevant, since borrowing con-

straints do a¤ect �rst order dynamics. Several further caveats should also be underscored.

Even though aggregate dynamics appear to be little a¤ected by second order variation, het-

erogeneity is nonetheless relevant to the model solution. Average aggregate consumption is

lower in the heterogeneous agent model in a second order approximation when compared to

the representative agent model. That consumption is depressed on average in the presence of

greater risk suggests welfare ought to be lower. Computing average ex post welfare measures

�assigning each household an equal weight in the social objective function and computing

the present discounted value of utility implied by the determined consumption allocations �

supports this conjecture: conditional on given path of technology the representative agent

model gives a present discounted utility of -14.56; in contrast, the heterogeneous agent model

yields -14.92. The standard deviation of these ex post welfare measures are 4.279 and 4.379

respectively. Hence, not only is welfare lower on average across agents in the incomplete

markets model, but perhaps more importantly, there is signi�cant variation in the welfare of

individual agents when faced with incomplete markets and idiosyncractic risk. The relevance

of this observation for policy design is immediate.

To make this point more starkly, consider the �nal two columns which report identical

statistics for a risky version of the economy. Here the idiosyncractic employment process is

speci�ed according to the parameterization �e = 0:75 and �e = 0:05 and �ze = 0:45: It is

therefore more persistent than the benchmark case and also allows for employment status to

be correlated with the aggregate state. Note that given the evidence provided by Storesletten,

Telmer, and Yaron (2004) one could easily rationalize an income process with signi�cantly

greater persistence in the idiosyncratic shock.

The key insight emerging from this calibration is that more risky economies lead to impor-

tant welfare consequences. Indeed, the variance in ex post welfare outcomes rises signi�cantly.

For the benchmark calibration the standard deviation was 4.379 while in the risky economy
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it is 5.228.6 Hence risk has non-trivial consequences when contemplating welfare costs of

business cycles. Moreover, it seems clear that in more general modeling frameworks such

heterogeneity will have important implications for policy design.

It is also clear that in order to conduct policy evaluation exercises using model consistent

welfare measures requires a second order approximation to the complete model. A recent

macroeconomics literature has highlighted that a linear-quadratic approximation to the true

non-linear policy problem may not accurately rank alternative policies in terms of their im-

plications for welfare � see Kim and Kim (2003), Kim, Kim, Schaumburg, and Sims (2003)

and Woodford (2003) for discussions.

Finally, a property of the present model is that agents make a single decision: how much

to save or consume. The only friction in the model is the incompleteness of �nancial markets.

Consistently with Krusell and Smith (2006), it is our conjecture that in more general models

in which agents face several economic decisions in the presence of a range of frictions, �rst

order dynamics may be signi�cantly a¤ected.

4.4 Marginal Propensities to Save

Given the above discussion, it is clear that the capital accumulation equation of household i

is almost linear in their own holdings of capital. There is very little curvature in the decision

rule at the second order, with the exception of the elasticity on the âi;tẑt term, which takes

a coe¢ cient of 0:0722, though even this term represents relatively small variation. But this

does not necessarily mean that the marginal propensity to save is close to unity. To see this,

write the law of motion (35) as

âi;t+1 = � t + � i;t + 0:9986âi;t + 0:0003â
2
i;t + 0:0013âi;têi;t + 0:0463âi;tẑt � 0:0033âi;tk̂t (38)

where � t and � i;t collect aggregate and individual speci�c terms respectively that do not

depend on individual wealth holdings. Note that � t necessarily depends on the terms �̂t and

	̂t.

6It might seem puzzling that the avarage welfare is higher in the risky economy in the �rst order approxi-
mation. This is because having employment status depend on the aggregate state through zt implicity changes
the process for aggregate technology and therefore aggregate dynamics.
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Now if all agents are permanent income consumers then this function will be a ray out of

the origin with slope approximately equal to one. Of course, given that perturbation methods

account for variation in many dimensions we cannot plot ai;t+1 against ai;t in two dimensions

without making speci�c assumptions about the values of all other state variables, undermining

the utility of the approach. Perhaps more useful is to note the slope of the function (38) with

respect to current wealth holdings is

@ai;t+1
@ai;t

= 0:9986 + 0:0006âi;t + 0:0013êi;t + 0:0463ẑt � 0:0033k̂t:

It depends on a constant that is close to unity, the individual�s capital holdings and employ-

ment status, and also the aggregate state variables zt and kt. Hence changes in future wealth

given changes in current wealth vary across individuals according to di¤erences in asset hold-

ings and employment status. However, the e¤ects of these four �rst order state variables are

small. For instance, the typical variation in ẑt is of the order 0.02 making the term 0:0463ẑt

relevant only at the third decimal point. As this is true of all terms, the slope under this base-

line calibration is essentially given by the constant 0:9986. But this does not mean that the

marginal propensity to save is equal to unity. The marginal propensity is determined by both

the slope and location of the schedule (35). The location di¤ers across individuals according

to di¤erences in the stochastic constant � i;t: As individuals experience di¤erent employment

histories � i;t will vary across agents giving rise to variations in the marginal propensity to

save. Furthermore, the location of the schedule depends on the wealth distribution through

� t.

Analysis of the benchmark calibration indicates that there is limited variation in � i;t. As

it is in deviations from steady state it takes values approximately equal to zero. In this case,

agents behave very much like permanent income consumers, having a marginal propensity to

save equal to unity. Agents consume the return on capital holdings each period but leave the

principle intact. Despite facing idiosyncractic income uncertainty, having access to capital

markets provides households with adequate self insurance. It is this feature of agents decision

rules that gives rise to approximate aggregation.
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5 Approximate Aggregation

Krusell and Smith (1998) provide a novel and clever solution to the model of section 2. Noting

that the law of motion for the wealth distribution is in principle an in�nite dimensional object,

they propose solving a simpli�ed version of the model. Agents, rather than forecasting future

prices using the true distribution describing the evolution of aggregate capital, instead use a

boundedly rational law of motion of the form

kt+1 = �g;0 + �g;1kt

kt+1 = �b;0 + �b;1kt (39)

which describes the evolution in good times and bad times respectively. This assumption

serves to dramatically reduce the state space of the model so that value function iteration-

based methods can be used to solve agents�dynamic programming problem. They �nd that

the model displays an approximate aggregation property � future prices can be well forecasted

using only the mean capital stock. Because most agents in the economy behave like permanent

income consumers their saving decisions are almost linear in their own capital holdings. On

aggregating, tomorrow�s aggregate capital stock is then only a function of today�s aggregate

capital stock (the mean of the cross-sectional distribution of capital holdings). No other

characteristics of this distribution are present.

Despite this cleverness, value function iteration methods still su¤er the curse of dimen-

sionality as the size of the state space increases and can therefore handle only low dimension

state space models. As a result, their analysis only reports laws of motion for the aggregate

capital stock that depend on the past aggregate capital and its square. As shown above, in

a second order accurate approximation to the model, the aggregate capital stock depends on

some 5 second order moments of the wealth distribution. The use of boundedly rational laws

of motion for the aggregate capital stock omits signi�cant information relevant to forecasting

future prices, and may engender rather di¤erent equilibrium dynamics to the true model.

While the previous section provides evidence that variance-covariance properties may not

be much in�uenced by second order terms, two points are worth noting. First, it does not

mean heterogeneity itself is unimportant. The model solution certainly depends on the higher
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order characteristics of the wealth distribution and welfare may critically depend on such

terms. Second, the �nding of approximate aggregation is only a quantitative result for a

particular model under a particular calibration. What is appealing about the perturbation

approach is that it ex ante permits a greater role for heterogeneity to matter for aggregate

dynamics. Because the Krusell and Smith algorithm imposes a particular law of motion for

aggregate capital that depends only on past capital many higher order terms relevant to the

wealth distribution are excluded. This restriction on the model solution directly limits the

manner in which heterogeneity can be relevant to aggregate dynamics. Indeed, the e¤ects of

heterogeneity on aggregate capital dynamics can only be felt through di¤erent coe¢ cients on

the law of motion for aggregate capital (see equation (39) above). In contrast, the solution

method delineated here allows an additional set of state variables to exert their in�uences on

the dynamics of the aggregate capital stock. Hence, heterogeneity, in addition to in�uencing

aggregate capital through the mean and the previous period�s aggregate capital as in Krusell

and Smith, will also a¤ect dynamics according to the dynamics of the variance of aggregate

capital, the cross sectional variance of individual capital holdings and the cross sectional

covariance of individual asset holdings with employment status.

Perhaps most importantly, the perturbation approach does not rely on approximate aggre-

gation holding or not to give an accurate second order characterization of aggregate dynamics.

As discussed by Krusell and Smith (2006), because the value function iteration based solu-

tion method relies on the conjecture of a restricted law of motion for aggregate capital that

depends only on past aggregate capital, it will in general only be valid if approximate aggre-

gation holds and the distribution of wealth is irrelevant to dynamics. But since the solution

method is a quantitative result, without theoretical foundation, it will typically be di¢ cult

to verify in general settings whether this is true or not given that i) we do not know the

true solution to the model and ii) value function iteration methods can only consider state

spaces of limited dimension.7 While approximate aggregation has been found to hold in a

7Krusell and Smith (1998) consider more general laws of motion that include an additional moment over
and above the mean capital stock, such as the volatility of aggregate capital or some measure of dispersion
of capital holdings in the population. However, to our knowledge they have not considered a law of motion
based on all moments relevant to the second order approximation discussed here.
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number of model settings, such as the stochastic growth model presented here, this need not

be a property of other classes of models with incomplete markets and heterogeneous agents

� see Gourinchas (2000), and Krueger and Kubler (2004) for examples where approximate

aggregation is weak.

5.1 Further Insights on Approximate Aggregation

To give additional insight as to what lies behind the �nding of approximate aggregation,

consider solving the model ignoring the borrowing constraint (11). The following result is

easy to verify.

Theorem 2 If the borrowing constraint is ignored, so that � = 0, then there exists a so-
lution to the individual�s Euler equation that has a unit root in each individual i�s capital
accumulation equation so that haa = 1.

This result only demonstrates that there exists a solution of this form to the household�s

Euler equation. It does not, however, ensure satisfaction of the intertemporal budget con-

straint. The intuition for this result is as follows. The steady state of the model is consistent

with the permanent income hypothesis. At this point, and in the absence of uncertainty, in-

dividuals consume precisely their permanent income. Hence agents�optimal saving decisions

are linear in their own capital holdings. On introducing uncertainty, local to this �permanent

income point�agents continue to exhibit permanent income type behavior. Note also that

one can verify that haaa; h
a
az; h

a
ae; h

a
	 and h

a
� are equal to zero in this case. So what is perhaps

surprising is that there is little second order curvature.

To reconcile the results with the optimal capital accumulation equation given by (35)

consider the implications of reintroducing the borrowing constraint. This restricts the extent

of private agents� indebtedness. Indeed, agents must have non-negative capital holdings.

This gives rise to a stronger precautionary motive leading to higher average capital holdings.

However, by continuity; the fact that most agents hold a quantity of capital signi�cantly

above zero; and the absence of signi�cant second order curvature, the optimal accumulation

equation for individual capital implies small coe¢ cients for haaa; h
a
az; h

a
ae; h

a
	 and h

a
� in the

adopted calibration, consistent with the discussion of marginal propensities to save in section

4.4.
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This result underscores that in this model incomplete markets seem to matter little. Given

an in�nite horizon, transitory shocks and limited risk aversion, agents can engage e¤ective self

insurance using the economy�s only asset: capital. For this reason, the borrowing constraint

will only a¤ect a small number of agents who happened to be subject to an highly unlucky

sequence of employment shocks. Only in this case does the borrowing constraint become rele-

vant, consistent with departures from permanent income behavior and therefore approximate

aggregation.

5.2 Solution Accuracy and Evaluation

Having discussed the characteristics of the optimal decision rules, the analysis now turns to

a �nal exercise to evaluate the accuracy of the perturbation solution. Following Judd (1992)

and Krueger and Kubler (2004), we compute the Euler equations errors implied by each of

the solution methods so as to gauge the accuracy of the solution. That is, given the computed

consumption allocations implied both by perturbation methods and the Krusell and Smith

algorithm, we compute the errors that are implied by the true model�s Euler equation given

by (21) and (10) respectively.

Given optimal decisions we compute the Euler equation errors according to

e
�
st
�
= 1�

u0�1
�
��(st+1jst) ~r (st+1)u0

�
ĉst+1 (s

t+1)
��

ĉst (s
t)

:

Here s denotes the set of possible states (our discrete state approximation to the laws of

motion for technology and individual employment status is discussed below). The history to

time t is denoted st. �(st+1jst) gives the transition density of the markov process describing

the evolution of the states and

~r
�
st+1

�
= r

�
kt+1

�
st+1

�
; zt+1

�
st+1

��
+ 1� �:

Finally ĉst (s
t) denotes the optimal decisions computed under the assumed calibration.

Because the error measure is unit free it permits comparison across the models solved by

value function iteration and the perturbation approach. The models di¤er in each case due

to the introduction of the penalty function in the perturbation approach. Note also that the
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perturbation approach adopts continuously distributed disturbances which implies construct-

ing the above measure would be computationally burdensome. We therefore parameterize the

exogenous disturbances processes

ei;t+1 = (1� �e)�e + �eei;t + �ze (zt � �z) + "ei;t+1

zt+1 = (1� �z)�z + �zzt + "zt+1

so as to imply the same discrete four state markov process used in Krusell and Smith (1998) to

describe the evolution of the technology and employment status processes. This then requires

integrating out only four states in computing the Euler equation errors. In particular, as a

benchmark, we assume that the technology shock and employment status are uncorrelated

and that �e = 0:5 and �e = 0:05 and �ze = 0:45. The technology process is as speci�ed in

section 4.

Table 2 reports the Euler equation errors for the perturbation and value function iteration

based approaches when solved subject to the above speci�ed exogenous disturbances. Both

root mean square errors and the mean absolute deviations are reported. It is immediate

that the perturbation approach leads to smaller errors under both criteria. Indeed they are

typically an order of magnitude smaller than those for the value function iteration procedure.

For instance, under the perturbation approach the mean Euler equation error under the RMSE

criterion is 0.0005 as compared with 0.0016 using value function iteration based methods.

Hence perturbation methods yield an error which is on average a third of the value function

iteration based approach. Consistent with this, the maximum errors are a �fth as large and

the minimal errors two �fths as large. This suggests the perturbation approach to be an

e¤ective solution method for models with incomplete markets and heterogeneous agents.8

Even though it is a local approximation method, globally the induced errors are not that

large.9

8Note that the comparison between our method and that of Krusell and Smith is e¤ectively between two
di¤erent models. The interior function introduced in the perturbation approach to impose the borrowing
constraint changes the economic interpretation of the model � indeed the constraint will bind and e¤ect
agent behavior not only at zero assets. The numbers are jointly present to demonstrate that perturbation
methods appear to give a decent characterization of optimal decisions.

9In principle solution methods based on value function function could be more accurate by appropriate
choice of grid space etc. However, for a given penalty parameter � in our interior method approach, pertur-
bation methods can give a globally accurate characterization � see Swanson, Anderson, and Levin (2005).
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Table 2: Euler Equation Errors (RMSE)

Mean Standard Deviation Maximun Minimun

Perturbation 0.0005 0.0002 0.0009 0.0002

Value Function Iteration 0.0016 0.0007 0.0054 0.0005

6 Conclusion

This paper solves a real business cycle model with heterogenous agents. Private agents face

partially insurable labor income risk and aggregate technology shocks. Solving such models is

di¢ cult as the equilibrium depends on the wealth distribution. This paper proposes solving

such models using perturbation methods. We show how to construct an equilibrium which

characterizes optimal behavior to the second order.

Like Krusell and Smith (1998), we �nd the model displays an approximate aggregation

property. For the benchmark model and the same calibration as that paper, the aggregate

capital stock exhibits little dependency on properties of the cross-sectional distribution of

capital holdings. This �nding is a direct implication of there being little curvature in the

optimal saving decisions of individual households. Indeed, saving is close to being linear in

own holdings of the capital stock. However, this paper contributes to our understanding by

providing analytical foundations for approximate aggregation.

Despite the similarity in results, it is worth noting the following. First, our approach

provides independent evidence that heterogeneity exerts small quantitative e¤ects on aggre-

gate dynamics in the benchmark model considered by Krusell and Smith (1998). Moreover,

it presents a distinct solution method that approximates the model solution on a di¤erent

dimension. Second, the similarity in �ndings may well not hold for alternative calibrations or

alternative models.

Third, the framework has considerable tractability and one that can be applied to a

broad class of problems in economics. Because the approach relies on analytical methods

for solving systems of linear and quadratic equations, solving the model takes seconds rather
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than minutes or hours in the case of value function iteration. This permits confronting such

models with data using likelihood based methods. While it comes at the cost of not providing

a global solution (albeit one that introduces approximations to the model along di¤erent

dimensions) we perceive the trade-o¤ to be favorable. Indeed, the induced Euler equations

errors reveal the perturbation approach to be as accurate in a global sense as a solution based

on value function iteration. Furthermore, the approach remains valid even in models for which

approximate aggregation does not obtain.
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A Appendix

A.1 Proof of Theorem 1

The proof of theorem 1 will serve two purposes. One is to establish the desired result. The

second is to exposit the solution method for a heterogenous agents model with incomplete

markets. A second order approximation to the following system is required:

F =

26666666664

F c

F a

F k

F�

F	

37777777775
=

266666666666664

�Et [uc (ci;t+1) (r (kt+1; lt+1; zt+1) + 1� �)] + 2�

(ai;t+1+b)
3 � uc (ci;t)

(1� �) at + r (kt; lt; zt) ai;t + w (kt; lt; zt) �lei;t � ci;t � ai;t+1
1R
0

ai;t+1di� kt+1
1R
0

(ai;t+1 � �a)2di� �t+1
1R
0

(ai;t+1 � �a) (ei;t+1 � �e) di�	t+1

377777777777775
= 0

where the desired solution has the general form

ct = g (ai;t; ei;t; kt; zt; �t; 	t; �) ; ai;t+1 = h
a (ai;t; ei;t; kt; zt; �t; 	t; �)

kt+1 = hk (kt; zt;�t; 	t; �) ; �t+1 = h
� (kt; zt;�t; 	t; �) ; 	t+1 = h

	 (kt; zt;�t; 	t; �)

and for the purposes of exposition the penalty terms are ignored to simplify the notation

somewhat. The presented numerical results of course incorporate these terms. Following

Schmitt-Grohe and Uribe (2004), di¤erentiate the �rst two rows of F to obtain:

F ca = �uccgah
a
a (r + 1� �)� uccga � 6� (a+ b)

�4 haa

F ck = �ucc
�
gah

a
k + gkh

k
k

�
(r + 1� �) + �ucrkhkk � uccgk � 6� (a+ b)

�4 hak

F cz = �ucc
�
gah

a
z + gkh

k
z + gz�z

�
(r + 1� �) + �ucrk

�
hkz + �z

�
� uccgz6� (a+ b)�4 haz

F ce = �uccge�e (r + 1� �)� uccge � 6� (a+ b)
�4 hae (40)

and

F aa = (r + 1� �)� haa � ga

F ae = w � ge � hae

F ak = rkai;t + wkei;t � gk � hak

F az = rzai;t + wzei;t � gz � haz (41)
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which must all equal zero. To solve for the 12 �rst order coe¢ cients

ga; ge; gk; gz; h
a
a; h

a
e ; h

a
k; h

a
z ; h

k
a; h

k
e ; h

k
k; h

k
z (42)

12 restrictions are required. The above gives 8 in the 12 unknowns. The �nal four come from

derivatives of the aggregation constraint F k. Recall

kt+1 = h
k (kt; zt;�t; 	t) =

1R
0

ai;t+1di: (43)

A �rst order expansion of the �nal term provides:

1R
0

ai;t+1di
:
=

1R
0

�
haa (ai;t � �a) + hae (ei;t � �e) + hak

�
kt � �k

�
+ haz (zt � �z)

�
di

= (haa + h
a
k)
�
kt � �k

�
+ haz (zt � �z)

using (43), �a = �k and
1R
0

ei;tdi = �e. Similarly the second term must satisfy the approximation

hk (kt; zt;�t; 	t)
:
= hkk

�
kt � �k

�
+ hkz (zt � �z)

implying the restrictions

hka = h
k
e = 0; h

k
k = h

a
a + h

a
k; h

k
z = h

a
z :

Together with the eight restrictions given by (40) and (41) the 12 �rst order unknown coef-

�cients (42) can be determined. Note that all other coe¢ cients are known, determined by

household preferences or the �rm�s production function.

There are three other �rst order coe¢ cients to determine: g�; ha� and h
k
�. Two restrictions

come from the constraints

F a� = �g� � ha�

F c� = �uccg� (r + 1� �)� uccg� + �ucrkhk� � 6� (a+ b)
�4 ha�:

The third constraint comes from the aggregation restriction. Because

hk (kt; zt;�t; 	t; �) =
1R
0

ha (ai;t; ei;t; kt; zt; �t; 	t; �) di
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it is immediate that

ha� = h
k
�:

providing three equations in three unknowns. As the system is linear and homogeneous, if

there is a unique solution it must be the case that

g� = h
a
� = h

k
� = 0:

This established the �rst part of theorem 1: at the �rst order, uncertainty does not a¤ect any

of the �rst order elasticities. This is the usual certainty equivalence result.

Solving for the second order terms proceeds in much the same way: exploit the second

order cross partial derivatives of F c and F a with respect to pairs of fa; e; k; zg and the

derivatives with respect to f�; 	g. This provides 36 restrictions in 54 unknowns. The

remaining 18 restrictions again come from the aggregation constraint (43). To give a �avor

of the calculations, note that the second order partials F aij can be directly computed. For

example

F aaa = �haaa � gaa

F aae = �haae � gae

F aak = rk � haak � gak

F aaz = rz � haaz � gaz

must all equal zero. The remaining 12 cross partials are easily computed and generate re-

strictions that depend on the 16 unknown g0ijs and 16 unknown h
a0
ijs. The derivatives with

respect to f�; 	g provide two additional restrictions:

F a� = �g� � ha�

F a	 = �g	 � ha	: (44)

Turning to the second order terms relating to F c 16 restrictions are again obtained from

the cross partials in the variables fa; e; k; zg : As the algebra is somewhat tedious, and

because these computations are not central to the conceptual heart of the solution method,
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not all coe¢ cients are presented. For example, and for simplicity ignoring terms in the penalty

function,

F caa = �(uccc (gah
a
a)
2 + ucc [gaah

a
a + gah

a
aa]) (r + 1� �)� ucccg2ahaa � uccgaa

F cae = �(ucccgah
a
a (gah

a
e + ge�e) + ucc (gae�eh

a
a + gaaheh

a
a + gah

a
ae)) (r + 1� �)

�ucccga (gahae + ge"e)� ucc (gaahae + gae�e)

give 2 of the 16 cross partials which are again a function only of the 16 unknown g0ijs, 16

unknown ha0ijs and 16 unknown h
k0
ijs. The derivatives with respect to f�; 	g provide two

additional restrictions:

F c� = �ucc
�
gah

a
� + gkh

k
� + g�h

�
� + g	h

	
�

�
(r + 1� �) + �ucrkhk�

� 6�

(b+ â)4
ha� � uccg�

F c	 = �ucc
�
gah

a
	 + gkh

k
	 + g�h

�
	 + g	h

	
	

�
(r + 1� �) + �ucrkhk	

� 6�

(b+ â)4
ha	 � uccg	 (45)

Relations (44) and (45) provide 4 constraints but introduce 10 more unknowns written as

g�; g	; h
a
�; h

k
�; h

a
	; h

k
	; h

�
�; h

	
�; h

�
	; h

	
	:

To proceed, suppose that the �nal 4 terms
�
h��; h

	
�; h

�
	; h

	
	

	
are in fact known (we will show

below that they are completely determined by the �rst order coe¢ cients already determined.

Then the above determine 36 restrictions in 54 unknowns. The �nal 18 restrictions follow

from aggregation constraint (43). A second order expansion gives

1R
0

ai;t+1di
:
= �a+

1R
0

[haaâ+ h
a
e â+ h

a
kk̂ + h

a
z ẑ + h

a
��̂ + h

a
		̂

+
1

2
[haaaâ+ h

a
aeâê+ h

a
akâk̂ + h

a
azâẑ + h

a
eaêâ+ h

a
eeê

2 + haekêk̂ + h
a
ez êẑ

+hakak̂â+ h
a
kek̂ê+ h

a
kkk̂

2 + hakzk̂ẑ + h
a
zaẑâ+ h

a
zeêẑ + h

a
zkẑk̂ + h

a
zz ẑ

2]]di

= �a+ (haa + h
a
k) k̂ + h

a
z ẑ +

�
ha� +

haaa
2

��
�t � ��

�
+ (haae + h

a
	)
�
	t � �	

�
+
1

2
(haak + h

a
ka + h

a
kk) k̂

2 + (haaz + h
a
za + h

a
kz + h

a
zk) k̂ẑ + h

a
zz ẑ

2 + haee

1R
0

ê2di:
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Similarly, a second order expansion of

hk (kt; zt;�t; 	t) = �k + h
k
kk̂ + h

k
z ẑ + h

k�̂ + hk	̂ +
1

2

h
hkkkk̂

2 + hkzkẑk̂ + h
k
kzk̂ẑ + h

k
zz ẑ

2
i
:

Ignoring the �rst order terms already discuss, matching coe¢ cients then gives the 18 required

restrictions

hk� =
haaa
2
+ ha�

hk	 = haae + h
a
	

hkkk = 2haak + h
a
kk

hkkz = haaz + h
a
kz

hkkz = hkzk

hkzz = hazz:

The remaining coe¢ cients satisfy

hkaa = h
k
ae = h

k
ak = h

k
az = h

k
ea = h

k
ee = h

k
ek = h

k
ke = h

k
ez = h

k
ka = h

k
za = h

k
ze = 0:

Finally note that aggregation induces a further correction to the mean capital stock since

�k = �a+ haee

1R
0

ê2di

where the latter is a constant by the law of large numbers.

Two tasks remain. One is to determine
�
h��; h

	
�; h

�
	; h

	
	

	
. The second concerns accounting

for uncertainty and solving for the second order partials involving �. Take these in turn.

Recall that

�t+1 =
1R
0

(ai;t+1 � �a)2di

	t+1 =
1R
0

(ai;t+1 � �a) (ei;t+1 � �e) di:

A second order approximation to these two expressions is easily shown to provide

�̂t+1 = hae

1R
0

ê2di+ (haa)
2 �̂t + 2h

a
ah
a
e	̂t +

�
2haah

a
k + (h

a
k)
2� k̂t

+2haz (h
a
a + h

a
k) ẑtk̂t + (h

a
z)
2 ẑ2t

	̂t+1 = hae�e
1R
0

ê2i;tdi+ h
a
a�e	̂t:
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Hence all coe¢ cients depends on either known model primitives or �rst order coe¢ cients

already determined. The solution therefore satis�es

h�� = (h
a
a)
2 ; h�	 = 2h

a
ah
a
e ; h

	
� = 0; h

	
	 = h

a
a�e:

Finally, consider solving for the second order partials in �. Note that the following are

true

F a�� = �g�� � ha��

F c�� = �uccg�� (r + 1� �)� uccg�� + �ucrkhk��:

Finally note from the aggregation constraint that the following restriction must hold

hk�� = h
a
�� + h

a
ee

1R
0

ê2i;tdi:

Hence there are three equations in the unknowns g��; ha�� and h
k
�� which can be readily

solved.

The twelve cross partials (with the remaining 12 given by symmetry and again ignoring

terms in the penalty function for simplicity) are given by

F a�k = �g�k � ha�k

F a�z = �g�z � ha�z

F a�a = �g�a � ha�a

F a�e = �g�e � ha�e

F c�k = �uccg�k (r + 1� �)� uccg�k + �uccrkhk�k

F c�z = �uccg�z (r + 1� �)� uccg�z + �uccrkhk�z

F c�a = �uccg�a (r + 1� �)� uccg�a + �uccrkhk�a

F c�e = �uccg�e (r + 1� �)� uccg�e + �uccrkhk�e

F k�k = ha�k � hk�k

F k�z = ha�z � hk�z

F k�a = ha�a � hk�a

F k�e = ha�e � hk�e:

42



Once more this is a system of 12 equations in 12 unknowns that is linear and homogeneous.

It follows that if there is a unique solution then it must have all these terms equal to zero.

This therefore completes the solution of the model and also establishes the proof of theorem

1.
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