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I.  Introduction 

Even though substantial policy initiatives are aimed at reducing air pollution, uncertainty 

remains about the nature and extent of benefits from these actions.  Existing epidemiological 

studies point to a variety of health impacts, but it remains difficult to assess the economic or 

social valuations for these.  It is also difficult to be confident that these studies separate the 

causal impacts of pollution from correlated effects of neighborhoods, poverty, and a variety of 

household choices.  We focus on how pollution affects school absences.  By matching detailed 

schooling records with variations in the level of specific pollutants, we are able to establish a 

strong link to school absences. 

A large literature links child health and human capital attainment.  Grossman and 

Kaestner (1997) summarize this literature and point to school absences as a major causal link in 

this relationship—children who miss a lot of school achieve poorer grades, are less engaged with 

school, and are more likely eventually to drop out.  Absences are also of concern to parents who 

have to miss work and to school districts because state funding frequently depends on 

attendance.  In some states, schools can lose as much as $50 per day per unexcused absence.  

Nonetheless, policy interventions that might reduce absences are less clear.   

Air pollution is a possible cause of school absence for some children.  Children with 

respiratory problems such as asthma could be absent either because the pollution provokes an 

attack, or because parents keep the child inside at home in order to avoid pollution exposure.  

While absences are of interest in their own right, epidemiologists focus on absences as a possibly 

more sensitive proxy for health status than alternative measures such as emergency room visits 

or hospital admissions.  Children are particularly sensitive to pollution given their small size, 
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high metabolic rates, and developing systems, and it is important to have measures of the effects 

of pollution that capture its impact on the ability of children to perform their daily activities. 

 This paper estimates the causal effect of air pollution on elementary and middle school 

absences using unique administrative data on schooling attendance in 39 of the largest school 

districts in the state of Texas. These data are merged with information about air quality from 

monitors maintained by the Environmental Protection Agency (EPA).  Although a few other 

studies examine the relationship between various pollutants and school attendance, they may not 

have identified causal effects because of the influences of a number of potentially confounding 

factors. 

Absenteeism is affected by parental commitment to schooling, the opportunity cost of a 

child remaining at home, school policies, and of course health. Given extensive residential 

sorting based not only on wealth but also on preferences for school quality, environmental 

quality, peer characteristics, etc., geographic differences in pollution levels are correlated with 

family characteristics that may in turn be related to absenteeism. For example, pollution tends to 

be higher where people are poorer, and poor children may be more likely to be absent. In 

addition, seasonal differences in the prevalence of colds and flu as well as in pollution levels 

raise doubts about the use of seasonal variation in pollution levels to identify effects on 

absenteeism.  

In order to overcome these problems and to try to identify causal effects, we adopt a 

difference-in difference-in differences (DDD) strategy, in which we hold characteristics of 

schools, years, attendance periods and interactions of these variables constant, and focus on 

variations in pollution within school-year-period cells.  Hence, our models control for all fixed 

characteristics of schools, years, and periods as well as for characteristics of schools in particular 
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years (such as unusual variations in the student body); characteristics of schools in particular 

attendance periods (such as higher rates of illness in winter); and characteristics of particular 

years and attendance periods (such as unusual weather patterns affecting multiple school 

districts). In addition, we also control for precipitation and temperature, two factors that affect air 

pollution levels and may also affect student health directly. 

The evidence supports the contention that pollution affects school attendance.  High 

levels of carbon monoxide (CO), including levels below the regulatory threshold set by the 

Environmental Protection Agency, increase absenteeism. There is also some, although less 

certain, evidence that the level of particulate matter (PM) has impacts on attendance.  The 

findings for CO are robust to alternative specifications.  For example, our results suggest that 

reductions in the number of days with high CO levels between 1986 and 2001 in El Paso, an area 

in Texas with particularly high CO levels, reduced absences by 0.8 percentage points, indicating 

a significant effect on child health as proxied by school attendance. 

The rest of the paper is laid out as follows.  Section 2 gives some background information 

about the health effects of pollution.  Section 3 describes our data.  Section 4 describes the 

methodology. Section 5 presents results, and section 6 concludes. 

II. Background 

A. Pollution and Health  

Attention to air quality by the EPA is focused on six primary, or “criteria,” air pollutants: 

ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, particulate matter and lead.  We focus 

on three of the pollutants (ozone, CO, and PM) that are most commonly tracked by air quality 

monitors.  We dropped nitrogen dioxide because there is no federal standard for these emissions, 

and nitrogen dioxide is one of several nitrogen oxides that are key components of ozone 
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formation, which we do examine.  Data on lead were not available for this study, and airborne 

lead levels during the 1990s tended to be quite low.1  Although data on sulfur dioxide (SO2) were 

available, SO2 levels are low enough now that it is not a primary concern. In addition, many of 

the SO2 monitors have been removed over time.  

Although pollution levels in the U.S. are dropping, high levels remain in many localities.  

The EPA estimates that 160 million tons of pollution are emitted into the air each year in the 

U.S. and that in 2002 146 million people were exposed to air that was considered unhealthy at 

times (EPA, 2003). Many more people are routinely exposed to levels that fall below EPA 

thresholds but might still cause adverse health effects, as there remains uncertainty over the 

appropriate threshold levels.2 

Relatively little is known about the exact mechanisms underlying any health effects, 

although most pollutants affect the respiratory and cardiovascular systems.  Even less is known 

about the effects of pollutants on children, although it is thought that children are more 

susceptible to the effects of pollution than adults because their bodies are still developing and 

because they have higher metabolic rates.  For example, a child exposed to the same air pollution 

source as an adult would breathe in proportionately more air, and suffer proportionately greater 

exposure.  Children also typically spend more time outdoors than adults on average, increasing 

their total exposure. 

Most studies exploring correlations between air pollution and health focus on particulate 

matter, which is a catch-all term for pollution particles that come from many different sources 

                                                 
1 See Reyes (2003) for a study of the effects of removing lead from gasoline.  

2 The 24 hour Air Quality Standard (AQS) for PM10 is 150 µg/m3.  The 8 hour AQS for ozone is .08 parts per 

million (80 ppb).  The AQS for CO is 9 ppm. 
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and can be of different sizes and compositions.  Because only small particles can be inhaled into 

the lungs, the standard is to look at particulate matter less than 10 micrograms per cubic meter of 

air, or µg/m3, in aerodynamic diameter (PM10).3 

PM has been shown to aggravate and increase susceptibility to respiratory and 

cardiovascular problems, including asthma.  Children and people with existing health conditions 

are most affected.  The leading theory about why PM affects health is that it provokes an 

immune system response. If, however, immune responses take time to develop, it may be 

difficult to detect any effect of short-term movements in PM on health outcomes (Dockery, 1993, 

Hansen and Selte, 1999, EPA 2004, and Samet, 2000, Seaton, et al. 1995).  

Ozone (O3) is a secondary air pollutant formed by nitrogen oxides and volatile organic 

compounds coming from exhaust, combustion, chemical solvents and natural sources in the 

presence of heat and sunlight.  Ozone has been associated with many respiratory problems and is 

known to aggravate asthma seriously.  Levels rise with the temperature, peaking on hot summer 

afternoons.  There is a considerable amount of within-day variation in ozone levels as the 

temperature and sunlight changes, with higher levels occurring during the hours people are most 

likely to be outside. Children who play outside are especially susceptible to ozone.  Ozone poses 

less of a threat indoors, since it quickly reacts with surfaces and becomes harmless.  After rising 

for some time, ozone levels have dropped dramatically in recent years, reaching their 1980 level 

in 2003 (EPA 2003, and Lippmann, 1992).  

                                                 
3  Fine-particulate air pollution, which includes particles less than 2.5 µg/m3 (PM2.5), is considered by many experts 

to be a more effective measure of harmful pollutants because smaller particles are  more likely to be made up of 

toxic materials (such as sulfate and nitrate particles left over from fossil fuel combustion).  However, most 

regulatory agencies only began collecting information on PM2.5 in the past few years, so data on PM2.5 was not 

available during the period examined in this paper.   
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Carbon monoxide is emitted from incomplete combustions occurring in fires, internal 

combustion engines, appliances, and tobacco smoke.  Cars account for as much as 90 percent of 

CO in some urban areas.  CO impairs the transport of oxygen in the body, leading to 

cardiovascular and respiratory problems. People with pre-existing cardiovascular or respiratory 

problems appear to be most susceptible to exposure. Levels are highest during cold weather 

(Lippmann, 1992 and EPA 2004). 

The large clinical literature regarding the health effects of pollution has focused primarily 

on showing associations between air pollution and adverse health outcomes among adults. 

Nonetheless, because the health of adults reflects a lifetime of exposures in various locations, 

exposure in their current area of residence may not be a good measure of the effects of pollution.  

A smaller literature examines health effects among infants and children, who are more 

likely to have lived in their current location since birth.  This literature has shown associations 

between air pollution and infant mortality, preterm birth, and low birth weight.  However, causal 

interpretations of these estimates may still be confounded by the fact that pollution tends to be 

higher in poor and minority areas.  Hence, one might expect people in high pollution areas to 

have worse health for other reasons.   

In two important and innovative works, Chay and Greenstone (2003a, b) used changes in 

regulation to identify pollution’s effects on infant mortality. They argue that the 1970 and 1977 

Clean Air Acts caused exogenous changes in pollution levels and that the changes varied across 

areas.  These changes can be used to examine pollution’s effects on housing markets and infant 

mortality.  They find that a 1µg/m3 reduction in total suspended particulates (a common measure 

of overall pollution at that time) resulted in 5-8 fewer deaths infant per 100,000 live births.   
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Currie and Neidell (2005) examine the effects of air pollution on infant deaths in more 

recent data. They use individual-level data and within-zip code variation in pollution over time to 

identify the effects of pollution. They include zip code fixed effects to account for omitted 

characteristics like ground water pollution and socioeconomic status, and find that reductions in 

two pollutants – CO and PM10 – in the 1990s saved over 1,000 infant lives in California. 

Pollution has also been shown to have negative health effects on morbidity in addition to 

increasing mortality.  In a recent study, Neidell (2004) uses within-zip code variation in pollution 

levels to show that air pollution affects child hospitalizations for asthma.  In particular, he finds 

that if CO levels had been at their 1992 levels in 1998, hospital admissions for asthma would 

have been 5 to 14 percent greater among children 1 to 18.  This is one of the only preceding 

studies to establish a causal relationship between current levels of pollution and child health. 

B. Pollution and Absenteeism  

Several epidemiological studies have examined the link between air pollution and 

absences. In these studies, absences are viewed as a proxy for child health that is more sensitive 

to pollution induced diseases than hospital related measures. There may be a great deal of illness 

that is not severe enough to send a child to a hospital, and absence data offers a window on these 

illnesses. Moreover, there is a long tradition of using absence from school to define disability 

among children.   

Of course pollution is not the only reason for school absences, making it imperative to 

account for other causes that might confound the estimates. Most absences are due to illness and 

are attributable either to respiratory infections or to gastroenteritis (Gilliland et al., 2001). 

However, given the many other factors that can cause absences, it is clearly important to control 

adequately for a wide range of variables.  For example, low socioeconomic status might be 
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correlated both with high exposure to pollution and with high absence rates. Cold, wet weather 

will contribute to both higher illness and lower pollution levels. 

A key difference between economic models and epidemiological models of the effects of 

pollution is that economists anticipate that parents can respond to potential air pollution through 

locational choices.  Parents can avoid air pollution by moving to neighborhoods with cleaner air, 

making neighborhood choice an element to consider in modeling the impacts of pollution.  

Parents and schools can also respond to pollution by keeping children indoors when the air is 

particularly unhealthful. The decision to keep a child home from school directly adds to 

absences, and school decisions to keep children indoors may indirectly increase absenteeism if 

recess indoors contributes to the spread of colds and flu.  

We cannot distinguish between absences caused by the direct health effects of pollution 

and absences caused by avoidance behavior. Nonetheless, to the extent that children miss school 

in order to avoid pollution, they and their parents still incur a cost, and it is useful capture this 

type of avoidance behavior as well as the direct effect of pollution on illness in assessing the 

total costs of pollution.  

The recent literature examining the link between absenteeism and pollution is reviewed in 

Figure 1.4  Most studies focus on associations between pollution and absences rather than on the 

identification of causal linkages and control for omitted variables in only a limited way. 

One of the most convincing studies is by Ransom and Pope (1992) who examine the 

impact of PM10 on absenteeism in the Utah Valley.  Their data encompass a period from August 

1986 to September 1987 when a steel mill, the major polluter in the valley, shut down and 

                                                 
4  One of the first studies of this topic is by Ferris (1970).  He studies approximately 700 students from seven 

schools in Berlin, New Hampshire.  He found no difference in the mean levels of absences between schools.  
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pollution levels fell dramatically. That is, much of the variation in pollution over their sample 

was due to an event that families had little control over and were unlikely to have responded to in 

the very short run. They find that absences were 54 to 77 percent higher when PM10 increased 

from 50 to over 100 ug/m3.  These estimates imply that about one percent of students in their 

sample were absent each day as a result of particulate pollution exposure.  In addition, they find 

that the effect of high PM10 levels on absenteeism persisted for 3 to 4 weeks. This persistent 

effect may complicate attempts to measure responses to short term fluctuations in this pollutant. 

One important concern with this analysis is the possibility that the job loss following the steel 

mill closure directly affect absences by reducing the cost of taking care of a child home from 

school or adversely affecting families and children in ways that reduced school attendance. 

A second notable study is by Gilliland et al. (2001) who use data from the Children’s 

Health Study to investigate the effects of pollution on absences due to a number of causes, 

including respiratory illness.  The authors monitored a cohort of 2,081 4th grade children in 12 

southern Californian communities from January through June 1996.  They focus on the 

relationship between absence rates and within-community deviations in pollution, and allow for 

lagged effects of pollution.  They find that a 20 parts per billion (ppb) increase in O3 was 

associated with a 63 percent increase in absences for illness, and an 83 percent increase in 

absences for respiratory illnesses.  Absences reached a peak five days after exposure.   

They also find that, while average PM10 levels were associated with higher absence rates, 

daily increases were associated only with non-illness-related absences.  They find this result 

puzzling, but it could reflect insufficient controls for differences in family background or other 

variables that are correlated with higher pollution levels.  Another possibility is that small cell 

sizes make the results sensitive to outliers.   
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The other studies included in Figure 1 have weaker designs.  However, Chen et al. (2000) 

is notable because it is the only previous study to have examined CO.  Although CO is known to 

be dangerous (exposure to high levels is fatal), it has been largely ignored in the epidemiological 

literature on the effects of pollution and health.  Chen et al. find that an increase of 1 ppm in CO 

increased absence rates by almost 4 percent.  Like Gilliland et al. (2001) they also find a curious 

negative correlation between PM10 levels and absences. 

Our study is the first to use panel data methods in a large sample in order to estimate the 

causal effect of air pollution on absenteeism. As we describe in detail below, we try to identify 

the causal effects of carbon monoxide, ozone, and particulate matter using school differences in 

the year-to-year variation in pollutant and absence levels within attendance periods. Because we 

control for seasonal patterns in attendance at each school, idiosyncratic factors affecting a 

particular school and year, and special factors affecting all schools in a particular year and 

attendance period, the remaining pollutant differences provide a plausibly exogenous source of 

variation with which to identify the causal effects of the respective pollutants. 

III. Data  

Our analysis centers on Texas, which as a large industrial state is a major producer of 

pollution. In 1998, Texas ranked first in the nation in emissions of nitrogen oxides and volatile 

organic compounds (the two components of ozone), and second in emissions of CO and PM10 

(EPA 1998).  According to the American Lung Association, the Houston and the Dallas-Fort 

Worth metropolitan statistical areas rank fifth and tenth, respectively, in listings of areas with the 

worst ozone pollution in the country.  With high and variable levels of pollution, Texas provides 

a good environment in which to examine the effects of air pollution on school attendance. 
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  This paper uses panel data for schools within 10 miles of pollution monitors in 39 of the 

largest school districts in Texas –accounting for roughly 40 percent of the students in grades one 

through eight in the Texas public school system – for the academic years 1996 through 2001. 

There are 1,512 schools with pollution information in this sample.  Two different sources of data 

are used, one for pollution and one for attendance. Using the latitude and longitude of each 

school, pollution data is matched with schools.  The absence data are only available in 

aggregated six week attendance period blocks, so the hourly pollution data are also aggregated 

into six week blocks based on school-specific dates of the attendance periods.5  

The school data in this paper comes from the Texas Schools Project of the University of 

Texas, Dallas. The database combines data from a number of different sources and contains 

student level information for all public school students and teachers in Texas, along with 

information about the schools themselves. In addition to information about absenteeism, we also 

use data on gender, family income and ethnicity.6   Because all students in a school are exposed 

to the same pollutants, we aggregate the data by school, attendance period, and year to produce 

the school average absentee rates and demographic characteristics for each six week block in 

each year.  In preliminary work we examined the possibility that pollution effects differed by 

ethnicity or family income but found no evidence of significant differences.  All regressions are 

                                                 
5 Since the school calendars vary from district to district, each district was contacted in order to establish beginning 

and ending dates for each 6 week period in each year. 

6 By using school absences we are necessarily limited to days when school is in session and therefore omit a large 

share of the summer period.  Although ozone is highly correlated with temperature, it typically peaks in Texas in 

late August and September when children have returned to school, so we still capture the time of year when ozone 

levels approach or exceed Air Quality Standards, as Table 1 indicates. 
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weighted by the number of student observations in the cell. The final sample includes over 12 

million student by attendance period observations. 

The pollution data come from the Texas Commission on Environmental Quality (TCEQ), 

formerly the Texas Natural Resource Conservation Commission (TRNCC). Individual monitors 

for each pollutant are set up all over the state and take hourly readings of the pollution levels at 

each location.7  In order to allow for non-linear effects of pollution we measure pollution relative 

to EPA thresholds and allocate each day into one of five categories separately for each pollutant: 

0-25%, 25-50%, 50-75%, 75-100% and greater than 100% of the relevant threshold. We then 

calculate the shares of days in each category for all six-week attendance periods.8  

Table 1 provides some descriptive statistics for absences and pollutant levels.  The 

statistics are calculated using data aggregated to the state, year, and attendance period level and 

are weighted by cell sizes.  There are 21,791 cells.  The first panel of the table reports mean 

absence rates and pollution levels by attendance period, means for 1995 and 2000, and maximum 

values for those two years.   

                                                 
7 Over the years of this analysis, the numbers of monitors for each pollutant changed as some were taken on and off-

line. In our sample, the number of O3 monitors increased from 29 to 41 and the number CO monitors ranged 

between 20 and 24 between the 1996 and 2001 school years. The number of PM10 monitors actually fell from 38 to 

26 between the 1996 and 1998 school years before rising to 31 in the 2001 school year.  Changes in the sample 

composition over time due to changes in the number of monitors are one of the things that will be controlled by the 

inclusion of school-by-year fixed effects. 

8 Attendance periods with fewer than 25 days of CO and ozone data and five days of PM data are excluded from the 

sample. The PM threshold is far lower because, as we discuss below, PM readings are recorded roughly every sixth 

day in many locales. 
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Absences and pollution levels vary systematically across attendance periods, with both 

absences and the number of days above 75% of the CO threshold reaching their highest level in 

the 4th period.   Ozone displays the reverse pattern and is at its highest level at the beginning of 

the school year when absences are at their lowest.  There are very few cells with days above the 

PM threshold but the number of days with PM above 50% of the threshold is highest in 

attendance periods 3 and 4.     

A comparison of the averages for 1995 and 2000 shows that CO and PM levels declined 

over the study period, as did absences.  The largest decline in pollution was in CO, which fell by 

a substantial 42%.  O3 levels actually increased from the previous year in three of the six years.  

Our exploration of the data indicated that O3 consistently moves in the same direction as 

temperature, so that differences in ozone pollution from year-to-year are primarily based on 

changes in average temperature. This highlights the importance of controlling for temperature in 

the analysis.  Precipitation is also like to be important.  On the one hand, it cleanses pollutants 

from the air. On the other hand, rainy weather may be associated with increased absence for 

illness regardless of the level of pollution. 

Table 1 shows that on average, the number of days with high pollution levels is quite 

small.  However, averages mask the fact that while students in most schools in Texas face 

pollution levels well below EPA standards, a few schools have consistently high pollution levels.  

The last two columns in the first panel of Table 1 show the maximum values for absences, and 

for the percentage of days in various categories.   For example, in one cell in 1995, 12.8 percent 

of the school days had pollution levels between 75% and 100% of the EPA threshold for CO, 

while another cell had 16.67% of days between 75% and 100% of the threshold for PM. 
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The second panel of Table 1 shows the number of cells with fractions of days in various 

absence and high pollution categories.  While most cells had relatively low levels of pollution, 

there were at least several hundred cells with high CO and PM levels, and many more with high 

ozone levels.  The high CO cells were located in El Paso, Laredo, and Houston, while high PM 

cells were located in Galveston and Hidalgo counties. 

Table 2 shows the share of child-level observations in each absence or pollution category 

cell, by the child’s race and whether or not the child was receiving a subsidized school lunch.9  

Blacks and Hispanics have somewhat more absences on average than non-Hispanic whites, and 

school lunch children have more absences than those who do not participate in the program.  

Turning to the pollution measures, Hispanic children are (perhaps surprisingly) more likely to be 

exposed to high CO and PM days than either blacks or whites.  However, they are less likely to 

be exposed to high ozone days.  Similarly, low income (as measured by eligibility for school 

lunch) children are more likely to be exposed to CO and PM and somewhat less likely to be 

exposed to high values of ozone. 

IV. Methods 

A number of factors complicate efforts to identify the causal effect of pollutants on 

absenteeism. Both variables that determine pollution levels and those that determine the 

distribution of families among communities can directly affect absenteeism, making it necessary 

to account for a number of potentially confounding influences. For instance, if poor or minority 

families are more likely to live in heavily polluted areas and also have higher absence rates due 

                                                 
9 Families with incomes less than 130 percent of the federal poverty line are eligible for free school lunches, while 

families with incomes less than 185 percent of the poverty line are eligible for reduced price meals.  This is the best 

measure of household economic status available in these administrative data.   
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to factors other than air pollution, then we may obtain spuriously large positive effects of 

pollution on absences. Given limited information on both family background and pollution 

determinants, it is highly unlikely that OLS regression models attempting to control for these 

other influences would produce valid causal estimates. Fortunately, the panel data make it 

possible to account for unobserved differences in schools, seasons, and years, thereby removing 

the influences of key confounding factors. 

Equation (1) models the absence rate in school s on day d in attendance period p and year 

y as a function of pollutant levels (Pi is a vector for pollutant i), family and student demographic 

characteristics X, weather W, a vector G containing the proportions of students in all grades but 

one, and an error. Because the effects of high pollution days may persist beyond the current day 

and affect health with a lag, the equation includes the pollutant levels for the current day, 

previous day, and two days prior.  (For expositional ease, the model arbitrarily limits the length 

of lags to two days, but, given our estimation approach, this is not crucial). In order to allow for 

nonlinear pollutant effects and to examine the link between federal threshold levels and 

absenteeism, we include a set of dummy variables for each pollutant that indicates whether the 

maximum level for the day lies between 25-50 percent of the threshold, 50-75 percent of the 

threshold, 75-100 percent of the threshold, or is greater than 100 percent of the threshold (0-25 

percent is the omitted category). The combination of the lag structure and nonlinear 

parameterization provides a flexible specification of pollution effects that would capture 

increasing absenteeism during a series of high pollution days in addition to nonlinearities and 
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time delayed effects. Because all students in a school receive identical pollution treatments, we 

aggregate over students.10 
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A key factor influencing our estimation strategy is the aggregation of absence 

information during the school year into six separate six-week blocks.  This leads us to aggregate 

the pollution information into six-week blocks as well. Equation (2) aggregates equation (1) by 

school, attendance period, and year and also decomposes the error into a series of terms that 

illustrate the key unobserved influences accounted for by the panel data methods. The 

aggregation incorporates the almost perfect collinearity between period aggregates of pollution 

distributions for current, one day, and two day lagged pollution values and makes explicit that 

the aggregate nature of the attendance data precludes identification of the precise timing of 

pollutant effects. Consequently the pollutant coefficients provide the cumulative effects of a 

pollution event on absences regardless of time after exposure.  

(2) spyypsyspypsspyiii
i

spyispy GWXPA ωηφμτπρϕφβλγδ ++++++++++++=∑
=

)(
4

1
 

 We control for confounding factors with information on observable characteristics and by 

a set of fixed effects made possible by the multiple schools, attendance periods, and years of 

                                                 
10 As will be clear, this aggregation also makes the estimation computationally tractable.  While it is possible to 

formulate the model with differential effects across individuals, our preliminary investigations found no systematic 

differences in pollution impacts by race or income, leading us to restrict our attention to the models with common 

school effects.  Remember, however, that the levels of ambient pollution differ by ethnicity because of sorting 

among neighborhoods and schools, so that the common marginal effect of pollution translates into differential total 

impacts.  
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data. In terms of observables, X includes the shares of students who are Asian, Hispanic, and 

black (whites are the omitted category), the share of students eligible for a subsidized lunch, and 

the share of females; and W includes measures of temperature and precipitation. In terms of 

unobservables, the error components include school, attendance period, and year fixed effects 

along with all pair wise interactions and a random error ω. 

 The inclusion of X and the school fixed effects (ρs) accounts for persistent between 

school differences in average student characteristics that might be correlated with absences. The 

grade shares G account for any systematic differences in absenteeism related to age.  Year 

dummies (τy) control for intertemporal patterns in attendance rates, and attendance period 

dummies (πp) control for seasonal effects.  The pair wise interactions among school, year, and 

period control for many other factors that might be related to absences.  For example, 

school*year effects (φsy) account for changes over time in student populations or local variations 

in annual weather, while attendance period*school effects (μsp) help to account for distinctive 

seasonal patterns within schools (for example, schools with high immigrant enrollments might 

routinely experience high absences surrounding the Christmas vacation period).  Finally, 

year*period effects (ηyp) account for unusual seasonal effects affecting all districts, such as an 

unusually bad flu season. 

 Given all of these controls, the causal effect of pollution is identified by variation at the 

year-school-period level, illustrated by the following example. Consider looking at a particular 

Houston elementary school in 2000 and comparing attendance rates in the highest and lowest 

pollution periods within that year. Because we are looking within a school and within a year, the 

“effect” of pollution would be identified by the difference in pollution between the two periods.  

Alternatively, we could compare attendance rates in a single season in high pollution and low 
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pollution years. In this case the “effect” of pollution would be identified by the difference in 

pollution between the two years. 

Attendance might nonetheless vary across seasons or within season across years for 

reasons independent of the effects of pollution. To control for this possibility, we could make use 

of the multiple years of data and control for school average pollution levels for each season and 

for each year. In this case the “effect” of pollution would be identified by deviations from a 

school’s average pollution levels for each season and year.  In short, one could estimate a 

difference in differences model. 

We could go further to guard against other unobserved differences by attendance period 

and year that could contaminate the estimates. The availability of data across schools would 

allow us to control for average period-by-year effects across all schools.  The inclusion of 

school-by-year, school-by-attendance period, and attendance period-by-year fixed effects (along 

with other measurable variables that differ by school, attendance period, and year) would thus 

control for myriad potentially confounding factors, and this difference-in-difference-in-

differences (DDD) model is precisely that used in the analysis. 

 The DDD estimates will generate consistent estimates of the effects of pollution as long 

as there are no other factors which vary with pollution at the school-year-period level, and which 

also affect absences.  An example of something which would violate this identification 

assumption would be a natural disaster (such as a forest fire) which increased air pollution levels 

and also resulted in increased absences in a particular school, year, and period.  While we cannot 

rule this possibility out, we are unaware of any such incidents during our sample period. 

V. Results  
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This section reports the results for a series of specifications based on equation (2) along 

with variants designed to understand the robustness of the estimation. The alternative estimates 

differ along a number of dimensions including criteria for school inclusion in the sample, the 

specific set of fixed effects and interactions, and the included pollutants and their 

parameterization. All specifications include period-by-year fixed effects, the grade share 

variables, demographic characteristics, and weather variables and are weighted by the number of 

students in each school-period-year cell. Because pollutant levels vary by pollution monitor, 

attendance period, and year, robust standard errors clustered at that level are used to calculate t 

statistics. Despite the large numbers of students and over twenty thousand school-by-period-by-

year combinations, the number of monitor-period combinations is around 630. 

Table 3 reports results for a series of specifications estimated over a sample of schools 

within 10 miles of a pollution monitor. The first column shows estimates from a specification 

without school, school-by-attendance period, or school-by-year fixed effects, and the subsequent 

columns illustrate changes to the estimates as these fixed effects are successively added. 

Table 3 reveals substantial variation in both the estimated relationship between the rate of 

absenteeism and the individual pollutants and the sensitivity of the coefficients to the inclusion 

of additional covariates and fixed effects. The evidence of a negative pollutant effect is clearly 

strongest for CO. All coefficients on the shares of days 75-100 percent of the threshold and 

greater than 100 percent of the threshold are positive, and once school-by-attendance period 

fixed effects are included they are ordered in the expected direction and significant (Column 3). 

The addition of school-by-year fixed effects increases the magnitude and significance of the 

coefficients (Column 5), providing strong support for the existence of a causal effect given the 
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much more restricted variation used to identify the estimates in the presence of school-by-year 

fixed effects. 

Finally, the much smaller and statistically insignificant coefficients on the shares of days 

less than 50 percent of the threshold along with the much larger effect for days greater than 100 

percent of the threshold provide support for a nonlinear relationship between CO pollution and 

the probability of being absent. An additional day that the CO level exceeds the threshold 

increases absenteeism by almost 9 percentage points, while an additional day between 75 and 

100 percent of the threshold increases absenteeism by 5 percentage points.11  Although such high 

levels of CO are not commonplace during this period, Table 1 did show that at least 10 percent 

of the days exceeded 75 percent of the CO threshold in 66 school-by-attendance period-by-year 

cells. Thus the estimates imply increases in the period average absenteeism rate of roughly one 

half a percentage point in these cells, a significant effect but much smaller than that in Chen et al 

(2000) which did not control as thoroughly for potential confounders. 

In contrast, the proportion of days ozone exceeds the EPA threshold has a significant 

positive effect on absences in specifications without the fixed effects. However, once the fixed 

effects are added the coefficient moves closer to zero and is statistically insignificant (Column 

5). It appears that differences between communities and across seasons generate the positive 

relationship between absences and the share of days that ozone exceeds the threshold in the 

models without fixed effects.  

                                                 
11 Technically, the estimates say that if the share of high pollution days in the attendance period increased to 100 

percent, then absences over the attendance period would increase by either 9 or 5 percentage points.  We can assume 

that this relationship also holds for daily attendance, as long as daily attendance is affected by daily pollution levels 

(rather than by cumulative pollution levels over several days, for example).   
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We also find a robust and significant increase in absences associated with PM levels of 

50-75% of the EPA threshold, but no significant effect from days over 75% of the threshold. The 

relative rarity of higher PM level days and measurement error introduced by the infrequent 

reporting of PM levels in most monitors raises the possibility that measurement error for the PM 

variable conceals the adverse effects of exposure to high levels.  As opposed to ozone and CO 

for which we have daily information on maximum levels, PM measurements for most monitors 

are typically available one of every six days.12  The very small number of days in which PM 

levels exceed even 75 percent of the threshold (see Table 1) indicates that the true variances of 

the shares of days 75-100 percent and greater than 100 percent of the threshold are quite small, 

compounding the difficulty of generating a precise estimate. Given the multiple fixed effects in 

the empirical models, it is not surprising that these coefficients are estimated imprecisely.  If this 

is the correct interpretation of our results, then they suggest that PM levels as low as 50 percent 

of the EPA threshold may have deleterious health effects, an important result in light of 

continuing debate about whether EPA should lower the thresholds for PM10 .13 

In order to investigate the potential effects of measurement error and multicollinearity 

among the pollutants, we estimated a series of additional models.  Table 4 replicates Table 3 for 

the sample of schools within 5 miles of monitors for all three pollutants, under the assumption 

that readings provide more accurate measures of exposure the closer a school is to a monitor. 

This restriction reduces the sample size by roughly two-thirds, but the pattern of estimates is 

                                                 
12 A few monitors report daily or close to daily readings, but the limited data introduce substantial measurement 

error for all of the PM indicator variables. 

13 In Sept. 2006, the EPA revised the standard for PM2.5 from 65 to 35 µg/m3.  However, EPA did not change the 

standard for PM10 because of lack of scientific evidence linking PM10 below the threshold to health consequences. 
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quite similar to that observed in Table 3.  In particular, CO levels between 75% and 100% and 

above 100% of the EPA threshold remain associated with significantly higher absence rates. 

One notable difference between Table 3 and Table 4 is that we find a significant effect of 

ozone levels above the EPA threshold in regressions that include a single dummy for whether the 

threshold is exceeded or not (see column 6 of Table 4).  The finding raises the possibility that 

high levels of ozone increase absenteeism, but the result is not robust to including the indicators 

for the proportion of days with lower pollution levels. 

Table 5 reports results from two additional full fixed effects models designed to 

illuminate the sensitivity of the estimates to both specification and the structure of the pollution 

data. The first column shows estimates for single pollutant models estimated over the full sample 

of schools.  That is, the column shows the results of three separate regressions, one for each 

pollutant.  The pattern of results for all pollutants is quite similar to that found in Table 3, 

suggesting multicollinearity is not hampering our analysis. 

Column 2 of Table 5 reports results from the full fixed effect specification (Column 5 of 

Table 3) regressed on a sample in which a school’s pollutant levels for CO and ozone are based 

only on information for days in which the PM monitor closest to the school has a reading for 

PM. Again the CO results are quite similar to those reported in Table 3, probably because the 

monitors that report CO levels above the EPA threshold appear to collect daily PM information 

so that the data restriction has little effect on the shares of reported days above the threshold. 

VI. Conclusion 

Obtaining convincing estimates of the causal impact of air pollution on health is difficult.  

Two major obstacles include the presence of confounding brought about through residential 

sorting and the lack of health measures that capture the range of morbidities purportedly related 
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to pollution. Through merging administrative school-level panel data with pollution monitor 

data, we confront these issues by holding school, year, and attendance period characteristics 

constant to control for many confounding factors and by linking air quality directly with school 

absences, a  sensitive measure of children’s health and morbidity. 

Our major finding is a significant and robust effect of CO on school absences, both when 

CO exceeds air quality standards (AQS) and when CO is 75-100% of AQS.  Although the 

number of days where CO approaches these levels is quite low over the time period we study, 

this has not always been the case.  For example, in 1986 in El Paso, an area in Texas with 

particularly high CO levels, there were 16 days that CO exceeded AQS and 19 days where CO 

was between 75 and 100% of the threshold.  The respective numbers in 2001, the last year for 

which we have attendance data available, are 1 and 6.  Based on our econometric estimates, this 

decrease in high CO days decreased absences in 2000-01 school year by 0.8 percentage points, a 

significant change compared to the baseline absence rate in all of Texas of 3.58%.  Since the 

improvements in air quality over time are largely due to air quality regulations (Henderson, 

1996, Chay and Greenstone, 2003b), this suggests air quality regulations are having a positive 

impact on children’s health. 

These effects become even more pronounced if we consider that the effects of pollution 

concentrate on vulnerable segments of the populations, such as asthmatics.  Although we cannot 

identify asthmatic children in our data, we provide the following back-of-the-envelope 

calculation to assess the possible magnitude of effects for asthmatics in El Paso.  The asthma 

prevalence rate in 2002 for school age children in the U.S. is 14.0 percent and, conditional on 

being absent, the probability the child has asthma is 28.3%.14  Based on the mean absence rate in 

                                                 
14 Based on authors’ calculations from the 2002 National Health Interview Survey. 
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our sample of 3.58%, this implies an absence rate of 7.2% among asthmatics.  If all of the 0.8 

percentage point reduction in absences in El Paso occurred among asthmatics, this would imply 

that the absence rate among asthmatics was reduced by roughly 44%. 

This finding for CO, combined with growing evidence from other recent studies 

documenting a robust effect of CO on different populations and outcomes (Currie and Neidell, 

2005, and Neidell, 2004), speaks to the continuing debate over regulations concerning 

automobile emissions (Barnes and Eilperin, 2007).  CO is a product of incomplete combustion of 

fuels, making automobiles a major source of CO in urban areas, contributing as much as 90% of 

CO levels.  There are three primary approaches for reducing CO emissions: technological 

innovations in fuel combustion (such as catalytic converters), development of alternative fuels 

that do not emit CO (such as ethanol, biodiesel, and fuel cells), and reductions in vehicle miles 

traveled.  Despite dramatic improvements in emissions technology over the past several decades, 

increases in vehicle miles traveled offset some of these improvements.  Unless significant 

improvements in CO emissions can be made, further efforts at reducing CO must therefore also 

focus directly on consumer behavior, via mechanisms such as congestion pricing and emissions 

taxes.  Whichever approach is taken, it will have the additional benefit of reducing carbon 

dioxide, the primary greenhouse gas linked with climate change. 
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 Figure 1: Previous Literature 

 
Authors Sample Method 

   PM10 CO O3 NOX 

Ransom 
and Pope, 

1992 

Weekly absenteeism 
data from Provo Utah 

school district, daily data 
from one school in 

Alpine Utah, 1986-1991. 

Percent absent for each grade 
regressed on PM, controlling for day 
of week, month of school year.  Data 
incorporates period of plant shutdown 

when pollution fell dramatically.  

+ N/A N/A N/A 

Gilliland   
et al. 2001 

Six months of data from 
1996 on school 

absences, and reasons 
for absences for schools 
in 12 CA communities.  

Hourly pollution 
measures. 

Regress absence rate on within-
community deviation in pollution from 
average levels.  Examine effects on 

illness and non-illness related 
absences separately. 

- N/A + 0 

Makino, 
2000 

 
Two schools in Japan 
located near arterial 
roads.  Daily 
attendance/pollution 
data over 1993-1997. 

Regresses daily attendance data on 
PM and NOX.  Omits winter data due 

to flu season. 
 

+ N/A N/A + 

Chen    et 
al. 

2000 

 
 

57 schools in Washoe 
County NV, 1996-1998. 

Absence rate for each grade 
regressed on pollutants, weather, day 
of week, month, holiday, time trend. 

- + + N/A 

Park et al. 
2002 

 
One elementary school 

in South Korea, from 
March 1996-Dec. 1999. 

Daily absences regressed against 
daily pollutant levels using a Poisson 

regression. 
+ N/A + 0 



Table 1: Distribution of Pollution levels and Absences in School*Grade*Year*Attendance Period Cells
Average Average Average Average Average Average Average Average Average Max Max
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 All Periods All-1995 All-2000 All-1995 All-2000

Weighted averages over cells in columns 1 to 9, maximum cell values in columns 10 and 11.
Percent days absent 2.35 3.21 3.97 4.30 4.04 3.72 3.58 3.77 3.35 15.66 11.18
CO
percent of days 0-25% threshold 97.06 93.43 86.98 90.26 95.01 98.10 93.46 89.35 97.39
percent of days 25-50% threshold 2.92 5.87 10.86 8.41 4.61 1.88 5.77 9.12 2.45 61.54 65.10
percent of days 50-75% threshold 0.02 0.51 1.93 1.04 0.33 0.02 0.65 1.30 0.15 20.51 13.95
percent of days 75-100% threshold 0.00 0.14 0.23 0.26 0.05 0.00 0.11 0.23 0.01 12.82 2.56
percent of days > 100% threshold 0.00 0.05 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00
OZ
percent of days 0-25% threshold 6.42 12.71 32.58 24.75 7.72 4.25 14.51 11.44 16.63
percent of days 25-50% threshold 22.38 44.86 59.37 64.90 47.08 31.30 44.78 47.01 44.89 92.30 92.30
percent of days 50-75% threshold 27.75 29.88 7.47 10.02 40.24 46.42 26.78 27.09 25.20 85.00 91.30
percent of days 75-100% threshold 26.87 10.51 0.55 0.32 4.55 17.54 10.20 9.63 10.06 51.28 52.63
percent of days > 100% threshold 16.58 2.04 0.03 0.01 0.41 0.49 3.73 4.83 3.22 52.94 35.90
PM
percent of days 0-25% threshold 77.88 85.34 86.73 87.34 85.73 83.40 84.34 80.20 86.81
percent of days 25-50% threshold 21.51 13.75 12.01 11.78 13.33 15.15 14.65 18.58 12.57 83.33 85.70
percent of days 50-75% threshold 0.61 0.61 1.06 0.72 0.69 1.35 0.84 1.07 0.61 33.33 16.67
percent of days 75-100% threshold 0.00 0.23 0.20 0.05 0.11 0.05 0.11 0.12 0.00 16.67 0.00
percent of days > 100% threshold 0.00 0.07 0.00 0.11 0.14 0.05 0.06 0.03 0.01 2.78 7.14

Number of school x grade x attendance period x year cells with percentage of days in various categories
0 0-2.5% 2.5-5% 5-7.5% 7.5-10% >10%

Days absent 26 4475 14970 2204 91 25
CO
days 75-100% threshold 21253 150 211 61 50 66
days > 100% threshold 21715 42 2 32 0 0
OZ
days 75-100% threshold 8211 1153 1540 1250 1459 8178
days > 100% threshold 14978 998 1698 827 541 2749
PM
days 75-100% threshold 21408 0 202 78 24 79
days > 100% threshold 21617 0 86 2 25 61

Note: There are approximately 30 school days and 42 total days in each attendance period.   The percent of days
absent is calculated using only school days, while the number of days in each pollution category is calculated using
the total number of days.   There are 21,791 school by year by attendance year cells. 
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Table 2: Distribution of Pollution levels and Absences by Race/Ethnicity and Income

Blacks Hispanics Whites School No School
Lunch Lunch

Average proportion days absent 0.0359 0.0359 0.0335 0.0379 0.0309

CO
proportion of days 25-50% threshold 0.0473 0.0585 0.0423 0.0558 0.0445
proportion of days 50-75% threshold 0.0035 0.0074 0.0035 0.0064 0.0039
proportion of days 75-100% threshold 0.0003 0.0015 0.0005 0.0011 0.0006
proportion of days > 100% threshold 0.0000 0.0002 0.0000 0.0001 0.0000
OZ
proportion of days 25-50% threshold 0.4395 0.4570 0.4361 0.4514 0.4389
proportion of days 50-75% threshold 0.2641 0.2829 0.2838 0.2765 0.2824
proportion of days 75-100% threshold 0.1126 0.0962 0.1178 0.1010 0.1151
proportion of days > 100% threshold 0.0426 0.0319 0.0468 0.0346 0.0458
PM
proportion of days 25-50% threshold 0.1380 0.1629 0.1013 0.1573 0.1078
proportion of days 50-75% threshold 0.0053 0.0097 0.0023 0.0084 0.0032
proportion of days 75-100% threshold 0.0001 0.0014 0.0002 0.0011 0.0003
proportion of days > 100% threshold 0.0001 0.0009 0.0002 0.0006 0.0002
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Table 3. Estimated Effects of CO, PM10, and Ozone on Average Days Absent.
(schools within 10 miles of pollution monitors).

school fixed effects n y y y y y
school by attendance n n y n y y
  period fixed effects
school by year n n n y y y
  fixed effects

Proportion of days CO was
25-50% EPA threshold 0.0004 -0.0012 -0.0002 -0.0027 -0.0018

(0.16) (0.56) (0.09) (1.33) (1.05)
50-75% EPA threshold -0.0177 -0.0056 -0.0069 -0.0068 -0.0110

(1.89) (0.82) (0.99) (1.11) (1.96)
75-100% EPA threshold 0.0362 0.0125 0.0229 0.0271 0.0500

(2.28) (1.09) (1.73) (2.81) (4.30)
> 100% EPA threshold 0.0279 0.0172 0.0379 0.0449 0.0891 0.0928

(1.05) (1.26) (2.01) (1.71) (4.21) (3.08)

Proportion of days Ozone was
25-50% EPA threshold 0.0042 -0.0023 -0.0032 -0.0031 -0.0033

(2.20) (1.90) (2.72) (2.58) (3.10)
50-75% EPA threshold 0.0022 -0.0080 -0.0042 -0.0090 -0.0031

(1.09) (5.13) (3.10) (5.50) (2.26)
75-100% EPA threshold 0.0050 -0.0030 0.0002 -0.0042 0.0010

(1.54) (1.69) (0.15) (2.01) (0.59)
> 100% EPA threshold 0.0093 -0.0070 -0.0055 -0.0060 -0.0007 0.0023

(2.94) (3.21) (2.90) (2.55) (0.34) (1.27)

Proportion of days PM was
25-50% EPA threshold -0.0041 0.0012 0.0016 -0.0001 0.0003

(4.15) (1.71) (2.86) (0.16) (0.47)
50-75% EPA threshold 0.0071 0.0086 0.0060 0.0082 0.0049

(1.83) (4.09) (2.53) (3.43) (2.71)
75-100% EPA threshold 0.0148 0.0074 0.0009 0.0143 0.0054

(2.02) (1.60) (0.16) (2.29) (1.04)
> 100% EPA threshold -0.0005 -0.0085 -0.0063 -0.0145 -0.0112 -0.0089

(0.05) (1.47) (0.87) (2.05) (1.74) (1.34)

Notes: Data aggregated to school, year, attendance period level. Regressions
weighted by cell size. 21,791 obs. and 634 monitor, period, year cells. Parentheses show
T-statistics based on robust standard errors clustered by monitor*attendance period*year.
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Table 4. Effects of CO, PM10 and Ozone on Attendance 
(schools within 5 miles of pollution monitors).

school fixed effects n y y y y y
school by attendance n n y n y y
  period fixed effects
school by year n n n y y y
  fixed effects

Proportion of days CO was
25-50% EPA threshold 0.0083 -0.0002 0.0009 -0.0020 0.0000

(3.72) (0.10) (0.51) (0.92) (0.00)
50-75% EPA threshold -0.0073 0.0004 -0.0046 0.0029 -0.0002

(0.95) (0.07) (0.71) (0.47) (0.04)
75-100% EPA threshold 0.0113 0.0044 0.0084 0.0171 0.0306

(0.84) (0.38) (0.69) (1.85) (2.75)
> 100% EPA threshold 0.0244 0.0096 0.0267 0.0301 0.0642 0.0728

(1.03) (0.53) (1.24) (1.41) (2.88) (2.66)

Proportion of days Ozone was
25-50% EPA threshold 0.0008 -0.0035 -0.0040 -0.0040 -0.0043

(0.42) (2.54) (2.54) (2.98) (3.05)
50-75% EPA threshold 0.0013 -0.0086 -0.0036 -0.0087 -0.0018

(0.64) (4.99) (2.10) (5.08) (1.18)
75-100% EPA threshold 0.0039 -0.0051 -0.0014 -0.0070 -0.0012

(1.33) (2.23) (0.60) (2.91) (0.59)
> 100% EPA threshold 0.0079 -0.0085 -0.0065 -0.0049 0.0026 0.0059

(2.24) (3.33) (2.20) (1.84) (0.93) (2.40)

Proportion of days PM was
25-50% EPA threshold -0.0028 -0.0006 0.0000 -0.0012 -0.0003

(2.34) (0.73) (0.08) (1.33) (0.48)
50-75% EPA threshold 0.0098 0.0084 0.0064 0.0083 0.0059

(3.43) (3.54) (2.71) (3.34) (3.14)
75-100% EPA threshold 0.0060 0.0079 0.0041 0.0198 0.0138

(0.91) (1.44) (0.66) (3.34) (2.15)
> 100% EPA threshold -0.0077 -0.0090 -0.0057 -0.0147 -0.0118 -0.0042

(0.59) (1.11) (0.68) (2.06) (1.80) (0.60)

Notes: Data aggregated to school, year, attendance period level. Regressions
weighted by cell size. 7,613 obs. and 585 monitor, period, year cells. Parentheses show
T-statistics based on robust standard errors clustered by monitor*attendance period*year.
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Table 5: Additional Models of the Proportion of Days Absent
(Schools within 10 miles of a monitor)

school fixed effects y y
school by attendance y y
  period fixed effects
school by year y y
  fixed effects

Single Pollutant CO and Ozone measured
Models on same days as PM

Proportion of days CO was
25-50% EPA threshold -0.0020 -0.0015

(1.16) (0.82)
50-75% EPA threshold -0.0095 -0.0096

(1.65) (1.58)
75-100% EPA threshold 0.0501 0.0512

(4.34) (4.33)
> 100% EPA threshold 0.0973 0.0875

(4.80) (4.17)

Proportion of days Ozone was
25-50% EPA threshold -0.0034 -0.0032

(2.90) (3.08)
50-75% EPA threshold -0.0032 -0.0032

(2.34) (2.30)
75-100% EPA threshold 0.0009 0.0010

(0.51) (0.53)
> 100% EPA threshold -0.0009 -0.0006

(0.42) (0.29)

Proportion of days PM was
25-50% EPA threshold 0.0006 0.0002

(1.00) (0.35)
50-75% EPA threshold 0.0055 0.0049

(3.47) (2.64)
75-100% EPA threshold 0.0098 0.0058

(1.61) (1.05)
> 100% EPA threshold -0.0109 -0.0138

(1.52) (2.12)

observations 21,791 21,321
monitor by period by year combinations 634 628

Notes: data aggregated to school by year by attendance period level; regressions 
weighted by cell size; absolute value of t statistics based on robust standard errors clustered by 
monitor*attendance period*year in parentheses.
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