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1 Introduction

The response of long-term interest rates to changes in short term interest rates is a feature of the

economy that often puzzles policy makers. For example, in remarks made on May 27, 1994, Alan

Greenspan expressed concern that long rates moved too much in response to an increase in short

rates:

In early February, we thought long-term rates would move a little higher as we tightened.

The sharp jump in [long] rates that occurred appeared to reflect the dramatic rise

in market expectations of economic growth and associated concerns about possible

inflation pressures.1

Then in his February 16, 2005, testimony, Chairman Greenspan expressed a completely different

concern about long rates:

Long-term interest rates have trended lower in recent months even as the Federal Reserve

has raised the level of the target federal funds rate by 150 basis points. Historically, even

distant forward rates have tended to rise in association with monetary policy tightening.

... For the moment, the broadly unanticipated behavior of world bond markets remains

a conundrum.2

Chairman Greenspan’s comments are a reflection of the fact that we do not yet have a satisfactory

understanding of how the yield curve is related to the structural features of the macroeconomy

such as investors’ preferences, the fundamental sources of economic risk, and monetary policy.

Figure 1 plots the nominal yield curve for a variety of maturities from one quarter—which we refer

to as the short rate—up to forty quarters for US treasuries starting in the first quarter of 1970 and
1Testimony of Chairman Alan Greenspan before the U.S. Senate Committee on Banking, Housing, and Urban

Affairs, May 27, 1994. Federal Reserve Bulletin, July 1994.
2Testimony of Chairman Alan Greenspan before the U.S. Senate Committee on Banking, Housing, and Urban

Affairs, February 16, 2005.
http://www.federalreserve.gov/boarddocs/hh/2005/february/testimony.htm
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ending in the last quarter of 2005.3 Figure 2 plots the average yield curve for the entire sample

and for two subsamples. Figure 3 plots the standard deviation of yields against their maturities.

Two basic patterns of yields are clear from these figures: (1) On average the yield curve is upward

sloping, and (2) there is substantial volatility in yields at all maturities. Chairman Greenspan’s

comments, therefore, must be framed by the fact that long yields are almost as volatile as short

rates. The issue, however, is the relationship of the volatility at the long end to the volatility at

the short end, and the correlation between changes in short-term interest rates and changes in

long-term interest rates.

We can decompose forward interest rates into expectations of future short-term interest rates and

interest rate risk premia. Since long-term interest rates are averages of forward rates, long-run

interest rates depend on expectations of future short-term interest rates and interest rate risk

premiums. A significant component of long rates is the risk premium and there is now a great

deal of empirical evidence documenting that the risk premiums are time-varying and stochastic.

Movements in long rates can therefore be attributed to movements in expectations of future nominal

short rates, movements in risk premiums, or some combination of movements in both.

Moreover, if monetary policy is implemented using a short-term interest rate feedback rule, e.g.,

a Taylor rule, then inflation rates must adjust so that the bond market clears. The resulting

endogenous equilibrium inflation rate will then depend on the same risk factors that drive risk

premiums in long rates. Monetary policy itself, therefore, could be a source of fluctuations in the

yield curve in equilibrium.

We explore such possibilities in a model of time-varying risk premiums generated by the recursive

utility model of Epstein and Zin (1989) combined with stochastic volatility of endowment growth.

We show how the model can be easily solved using now standard affine term-structure methods.

Affine term-structure models have the convenient property that yields are maturity-dependent

linear functions of state variables. We examine some general properties of multi-period default-free

bonds in our model assuming first that inflation is an exogenous process, and by allowing inflation
3Yields up to 1991 are from McCulloch and Kwon (1993) then Datastream from 1991 to 2005.
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to be endogenous and determined by an interest-rate feedback rule. We show that the interest rate

feedback rule—the form of monetary policy—can have significant impacts on properties of the term

structure of interest rates.

2 The Duffie-Kan Affine Term Structure Model

The Duffie and Kan (1996) class of affine term-structure models, translated into discrete time

by Backus et al. (2001), is based on a k-dimensional vector of state variables z that follows a

“square-root” model

zt+1 = (I − Φ)θ + Φzt + Σ(zt)1/2εt+1,

where {εt} ∼ NID(0, I), Σ(z) is a diagonal matrix with a typical element given by σi(z) = ai + b′iz

where bi has nonnegative elements, and Φ is stable with positive diagonal elements. The process

for z requires that the volatility functions σi(z) be positive, which places additional restrictions on

the parameters.

The asset pricing implications of the model are given by the pricing kernel, mt+1, a positive random

variable that prices all financial assets. That is, if a security has a random payoff ht+1 at date-t+1,

then its date-t price is Et[mt+1ht+1]. The pricing kernel in the affine model takes the form

− log mt+1 = δ + γ′zt + λ′Σ(zt)1/2εt+1,

where the k×1 vector γ is referred to as the “factor loadings” for the pricing kernel, the k×1 vector

λ is referred to as the “price of risk” vector since it controls the size of the conditional correlation

of the pricing kernel and the underlying sources of risk, and the k×k matrix Σ(zt) is the stochastic

variance-covariance matrix of the unforecastable shock.

Let b(n)
t be the price at date-t of a default-free pure-discount bond that pays 1 at date t + n, with

b(0)
t = 1. Multi-period default-free discount bond prices are built up using the arbitrage-free pricing
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restriction

b(n)
t = Et[mt+1b

(n−1)
t+1 ]. (1)

Bond prices of all maturities are log-linear functions of the state:

− log b(n)
t = A(n) + B(n)zt,

where A(n) is a scalar, and B(n) is a 1× k row vector.

The intercept and slope parameters, which we often refer to as “yield-factor loadings,” of these

bond prices can be found recursively according to

A(n+1) = A(n) + δ + B(n)(I − Φ)θ − 1
2

k∑

j=1

(λj + B(n)
j )2aj ,

B(n+1) = (γ′ + B(n)Φ)− 1
2

k∑

j=1

(λj + B(n)
j )2b′j ,

(2)

where B(n)
j is the j-th element of the vector B(n). Since b(0) = 1, we can start these recursions

using A(0) = 0 and B(0)
j = 0, j = 1, 2, ..., k.

Continuously compounded yields, y(n)
t are defined by b(n)

t = exp(−ny(n)
t ), which implies y(n)

t =

−(log b(n)
t )/n. We refer to the short rate, it, as the one-period yield: it ≡ y(1)

t .

This is an arbitrage-free model of bond pricing since it satisfies equation (1) for a given pricing

kernel mt. It is not yet a structural equilibrium model, since the mapping of the parameters of the

pricing model to deeper structural parameters of investors’ preferences and opportunities has not

yet been specified. The equilibrium structural models we consider will all lie within this general

class, hence, can be easily solved using these pricing equations.
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3 A 2-Factor Model with Epstein-Zin Preferences

We begin our analysis of structural models of the yield curve by solving for equilibrium real yields in

a representative-agent exchange economy. Following Backus and Zin (2006) we consider a represen-

tative agent who chooses consumption to maximize the recursive utility function given in Epstein

and Zin (1989). Given a sequence of consumption, {ct, ct+1, ct+2, ...}, where future consumptions

can be random outcomes, the intertemporal utility function Ut is the solution to the recursive

equation:

Ut = [(1− β)cρ
t + βµt(Ut+1)ρ]1/ρ, (3)

where 0 < β < 1 characterizes impatience (the marginal rate of time preference is 1− 1/β), ρ ≤ 1

measures the preference for intertemporal substitution (the elasticity of intertemporal substitution

for deterministic consumption paths is 1/(1 − ρ)), and the certainty equivalent of random future

utility is

µt(Ut+1) ≡ Et
[
Uα

t+1

] 1
α , (4)

where α ≤ 1 measures static risk aversion (the coefficient of relative risk aversion for static gambles

is 1− α). The marginal rate of intertemporal substitution, mt+1, is

mt+1 = β

(
ct+1

ct

)ρ−1 (
Ut+1

µt(Ut+1)

)α−ρ

,

Time-additive expected utility corresponds to the parameter restriction ρ = α.

In equilibrium, the representative agent consumes the stochastic endowment, et, so that log(ct+1/ct) =

log(et+1/et) = xt+1, where xt+1 is the log of the ratio of endowments in t + 1 relative to t. The log

of the equilibrium marginal rate of substitution, referred to as the real pricing kernel, is therefore

given by

log mt+1 = log β + (ρ− 1)xt+1 + (α− ρ) [log Wt+1 − log µt(Wt+1)] , (5)

where Wt is the value of utility in equilibrium.

The first two terms in the marginal rate of substitution are standard expected utility terms: the
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pure time preference parameter β and a consumption growth term times the inverse of the negative

of the intertemporal elasticity of substitution. The third term in the pricing kernel is a new term

coming from the Epstein-Zin preferences.

The endowment-growth process evolves stochastically according to

xt+1 = (1− φx)θx + φxxt + v1/2
t εx

t+1,

where

vt+1 = (1− φv)θv + φvvt + σvε
v
t+1

is the process for the conditional volatility of endowment growth. We will refer to vt as stochastic

volatility. The innovations εx
t and εv

t are distributed NID(0, I).

Note that the state vector in this model conforms with the setup of the Duffie-Kan model above.

Define the state vector zt ≡ [xt vt]′, which implies parameters for the Duffie-Kan model:

θ = [θx θv]′

Φ = diag{φx, φv}

Σ(zt) = diag{a1 + b′1zt, a2 + b′2zt}

a1 = 0, b1 = [0 1]′, a2 = σ2
v , b2 = [0 0]′.

Following the analysis in Hansen et al. (2005), we will work with the logarithm of the value function

scaled by the endowment:

Wt/et = [(1− β) + β(µt(Wt+1)/et)ρ]1/ρ

=
[
(1− β) + β(µt

(
Wt+1

et+1
× et+1

et

)ρ]1/ρ

, (6)

where we have used the linear homogeneity of µt (see equation (4)). Take logarithms of (6) to
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obtain

wt = ρ−1 log[(1− β) + β exp(ρut)],

where wt ≡ log(Wt/et) and ut ≡ log(µt(exp(wt+1 +xt+1))). Consider a linear approximation of the

right-hand side of this equation as a function of ut around the point m̄:

wt ≈ ρ−1 log[(1− β) + β exp(ρm̄)] +
[

β exp(ρm̄)
1− β + β exp(ρm̄)

]
(ut − m̄)

≡ κ̄ + κut,

where κ < 1. For the special case with ρ = 0, i.e., a log time aggregator, the linear approximation

is exact with κ̄ = 1 − β and κ = β (see Hansen et al. (2005)). Similarly, approximating around

m̄ = 0, results in κ̄ = 0 and κ = β .

Given the state variables and the log-linear structure of the model, we conjecture a solution for the

log value function of the form,

wt = ω̄ + ωxxt + ωvvt,

where ω̄, ωx, and ωv are constants to be determined. By substituting

wt+1 + xt+1 = ω̄ + (ωx + 1)xt+1 + ωvvt+1.

Since xt+1 and vt+1 are jointly normally distributed, the properties of normal random variables can

be used to solve for ut:

ut ≡ log(µt(exp(wt+1 + xt+1)))

= log(Et[exp(wt+1 + xt+1)α]
1
α )]

= Et[wt+1 + xt+1] +
α

2
Vart[wt+1 + xt+1]

= ω̄ + (ωx + 1)(1− φx)θx + ωv(1− φv)θv + (ωx + 1)ωxxt + ωvφvvt

+
α

2
(ωx + 1)2vt +

α

2
ω2

vσ
2
v .
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We can use the above expression to solve for the value-function parameters and verify its log-linear

solution

ωx = κ(ωx + 1)φx

⇒ ωx =
(

κ

1− κφx

)
φx

ωv = κ[ωvφv +
α

2
(ωx + 1)2]

⇒ ωv =
(

κ

1− κφv

) [
α

2

(
1

1− κφx

)2
]

ω̄ =
κ̄

1− κ
+

1
1− κ

[
(ωx + 1)(1− φx)θx + ωv(1− φv)θv +

α

2
ω2

vσ
2
v

]
.

The solution allows us to simplify the term [log Wt+1 − log µt(Wt+1)] in the real pricing kernel in

equation (5):

log Wt+1 − log µt(Wt+1) = wt+1 + xt+1 − log µt(wt+1 + xt+1)

= (ωx + 1)[xt+1 − Etxt+1] + ωv[vt+1 − Etvt+1]

−α

2
(ωx + 1)2Vart[xt+1]−

α

2
ω2

vVart[vt+1]

= (ωx + 1)v1/2
t εx

t+1 + ωvσvε
v
t+1 −

α

2
(ωx + 1)2vt −

α

2
ω2

vσ
2
v .

The real pricing kernel, therefore, is a member of the Duffie-Kan class with 2-factors and parameters

δ = − log(β) + (1− ρ)(1− φx)θx +
α

2
(α− ρ)ω2

vσ
2
v

γ = [γx γv]′

=

[
(1− ρ)φx

α

2
(α− ρ)

(
1

1− κφx

)2
]′

λ = [λx λv]′

=

[
(1− α)− (α− ρ)

(
κφx

1− κφx

)
−

(α

2

) (
κ(α− ρ)
1− κφv

) (
1

1− κφx

)2
]′

.

(7)
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We can now use the recursive formulas in equation (2) to solve for real discount bond prices and

the real yield curve.

Note how the factor loadings and prices of risk depend on the deeper structural parameters, and

the greatly reduced dimensionality of the parameter space relative to the general affine model. Also

note that for the time-additive expected utility special case, α = ρ, the volatility factor does not

enter the conditional mean of the pricing kernel since γv = 0, and also that the price of risk for

the volatility factor is zero since λv = 0. Finally, we can see from the expressions for bond prices

that the two key preference parameters, ρ and α, provide freedom in controlling both the factor

loadings and the prices of risk in the real pricing kernel.

4 Nominal Bond Pricing

To understand the price of nominal bonds, we need a nominal pricing kernel. If we assume that

there is a frictionless conversion of money for goods in this economy, the nominal kernel is given by

log(m$
t+1) = log(mt+1)− pt+1, (8)

where pt+1 is the log of the money price of goods at time t+1 relative to the money price of goods

at time t, i.e., the inflation rate between t and t + 1. Clearly then, the source of inflation, its

random properties, and its relationship to the real pricing kernel is of central interest for nominal

bond pricing. We next consider two different specifications for equilibrium inflation.

4.1 Exogenous Inflation

If we expand the state space to include an exogenous inflation process, pt, the state vector becomes

zt = [xt vt pt]′. The stochastic process for exogenous inflation is

pt+1 = (1− φp)θp + φppt + σpε
p
t+1,
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where εp
t+1 is also normally distributed independently of the other two shocks. In this case, the

parameters for the affine nominal pricing kernel are

δ$ = δ + (1− φp)θp

γ$ = [γx γv φp]′

λ$ = [λx λv 1]′.

In the exogenous inflation model, the price of inflation risk is always exactly 1, and does not change

with the values of any of the other structural parameters in the model. In addition, the factor

loadings and prices of risk for output growth and stochastic volatility are the same as in the real

pricing kernel. We will refer to this nominal pricing kernel specification as the exogenous inflation

economy.

4.2 Monetary Policy and Endogenous Inflation

We begin by assuming that monetary policy follows a simple nominal interest-rate rule. We will

abuse conventional terminology and often refer to the interest-rate rule as a Taylor rule. While

there are a variety of ways to specify a Taylor rule—see Ang et al. (2004)—we will consider a rule

in which the short term interest rate depends on contemporaneous output, inflation and a policy

shock:

it = τ̄ + τxxt + τppt + st, (9)

where the monetary policy shock satisfies

st = φsst−1 + σsε
s
t ,

and where εs
t ∼ NID(0, 1) is independent of the other two real shocks.

Since this nominal interest rate rule must also be consistent with equilibrium in the bond market,

i.e., it must be consistent with the nominal pricing kernel in equation (8) as well as equation (9),

10



we can use these two equations to find the equilibrium process for inflation. Conjecture a log-linear

solution for pt,

pt = π̄ + πxxt + πvvt + πsst, (10)

with π̄, πx, and πs constants to be solved.

To solve for a rational expectations solution to the model, we substitute the guess for the inflation

rate into both the Taylor rule and the nominal pricing kernel and solve for the parameters π̄, πx,

πv, and πs that equate the pricing-kernel-determined short rate with the Taylor-rule-determined

short rate.

From the dynamics of xt+1, vt+1, and st+1, inflation pt+1 is given by

pt+1 = π̄ + πxxt+1 + πvvt+1 + πsst+1

= π̄ + πx(1− φx)θx + πv(1− φv)θv + πxφxxt + πvφvvt + πsφsst

+πxv1/2
t εx

t+1 + πvσvε
v
t+1 + πsσsε

s
t+1.

Substituting into the nominal pricing kernel,

− log(m$
t+1) = − log(mt+1) + pt+1

= δ + γxxt + γvvt + γxv1/2
t εx

t+1 + γvσvε
v
t+1 + pt+1

= δ + π̄ + πx(1− φx)θx + πv(1− φv)θv

+(γx + πxφx) xt + (γv + πvφv) vt + πsφsst

+(λx + πx) v1/2
t εx

t+1 + (λv + πv) σvε
v
t+1 + πsσsε

s
t+1.

From these dynamics, the nominal one period interest rate it = −log
(
Et

[
m$

t+1

])
is

it = δ + π̄ + πx(1− φx)θx + πv(1− φv)θv

+(γx + πxφx) xt + (γv + πvφv) vt + πsφsst

−1
2

(λx + πx)2 vt −
1
2

(λv + πv)2 σ2
v −

1
2
π2

sσ
2
s .
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Comparing this to the interest rate rule it = τ̄ + τxx + τp (π̄ + πxxt + πvvt + πsst) + st, gives the

parameter restrictions consistent with equilibrium:

πx =
γx − τx

τp − φx

πv =
γv − 1

2(λx + πx)2

τp − φv

πs = − 1
τp − φs

π̄ =
1

τp − 1

[
δ − τ̄ + πx(1− φx)θx + πv(1− φv)θv −

1
2
(λv + πv)2σ2

v −
1
2
π2

sσ
2
s

]
. (11)

These expressions form a recursive system we use to solve for the equilibrium parameters of the

inflation process. See Cochrane (2006) for a more detailed account of this rational expectations

solution method.

It is clear from these expressions that the equilibrium inflation process will depend on the preference

parameters of the household generally, and attitudes towards risk specifically.

In a similar fashion, we can extend the analysis to any Taylor rule-type that is linear in state

variables, including lagged short rates, other contemporaneous yields at any maturity, as well as

forward-looking rules, as in Clarida et al. (2000), since in the affine framework, interest rates are

all simply linear functions of the current state variables. See Ang et al. (2004) and Gallmeyer et al.

(2005) for some concrete examples.

4.3 A Monetary-Policy Consistent Pricing Kernel

Substituting the equilibrium inflation process from equations (10) and (11) into the nominal pricing

kernel, an equilibrium 3-factor affine term structure model that is consistent with the nominal-

interest rate rule is obtained.
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The state space is

zt ≡ [xt vt st]′

Φ = diag{φx, φv, φs}

θ = [θx θv 0]′

Σ(zt) = diag{a1 + b′1zt, a2 + b′2zt, a3 + b′3zt}

a1 = 0, b1 = [0 1 0]′

a2 = σ2
v , b2 = [0 0 0]′

a3 = σ2
s , b3 = [0 0 0]′,

and the parameters of the pricing kernel are

δ$ = δ + π̄ + πx(1− φx)θx + πv(1− φv)θv

γ$ = [γx + φxπx γv + φvπv φsπs]′

λ$ = [λx + πx λv + πv πs]′.

We will often refer to this nominal pricing kernel specification as the endogenous inflation economy.

The Taylor rule parameters, through their determination of the equilibrium inflation process, affect

both the factor loadings on the real factors as well as their prices or risk. Monetary policy through

its effects on endogenous inflation, therefore, can result in significantly different risk premiums in

the term structure than the exogenous-inflation model. We explore such as possibility through

numerical examples.

5 Quantitative Exercises

We calibrate the exogenous processes in our model to quarterly post-war US data as follows:

1. Endowment Growth. φx = 0.36, θx = 0.006, σx = 0.0048(1− φ2
x)1/2;
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2. Inflation. φp = 0.8471, θp = 0.0093, σp = 0.0063(1− φ2
p)1/2;

3. Stochastic volatility. φv = 0.973, θv = 0.0001825, σv = 0.9884× 10−5;

4. Policy Shock. φs = 0.922, σs = (0.023× 10−4)1/2.

The endowment growth process is calibrated to quarterly per capita consumption of durable goods

and services, and inflation is calibrated to the nondurables and services deflator, similarly to Piazzesi

and Schneider (2006). The volatility process is taken from Bansal and Yaron (2004), who calibrate

their model to monthly data. We adjust their parameters to deal with quarterly time-aggregation.

We take the parameters for the policy shock from Ang et al. (2004) who estimate a Taylor rule

using an affine term-structure model with macroeconomic factors and an unobserved policy shock.

Figures 4 though 7 depict the average yield curves and yield volatilities for different preference

parameters for the exogenous and endogenous inflation models. The top plot in each figure depicts

the average historical nominal yield curve with stars (∗∗), the average real yield curve common

across both inflation models with a dashed line (−−), the average nominal yield curve in the

exogenous inflation economy with a dashed-dotted line (- – -), and the average nominal yield curve

in the endogenous inflation economy with a solid line (–). The bottom plot depicts yield volatilities

for the same cases as the average yield curve plot.

Each figure is computed using a different set of preference parameters. We fix a level of the

intertemporal elasticity parameter ρ for each plot, and pick the remaining preference parameters—

the risk aversion coefficient α and the rate of time preference β—to minimize the distance between

the average nominal yields and yield volatilities in the data and the those implied by the exogenous

inflation economy. We pick the Taylor-rule parameters to minimize the distance between the average

nominal yields and yield volatilities in the data and the those implied by the endogenous inflation

economy. Table 1 reports the factor loadings and the prices of risk for each economy corresponding

to the figures. Table 2 reports the coefficients on the equilibrium inflation rate and properties of

the equilibrium inflation rate in the endogenous inflation economy.

14



Figure 4 reports the results with ρ = −0.5; here the representative agent has a low intertemporal

elasticity of substitution. The remaining preference parameters are α = −4.83, β = 0.999. With

this choice of parameters, the average real term structure is slightly downward sloping.

Backus and Zin (1994) show that a necessary condition for the average yield curve to be upward

sloping is negative autocorrelation in the pricing kernel.4 Consider an affine model with independent

factors z1
t , z2

t , ..., zk
t with an innovation εj

t on the jth factor, a factor loading γj on the jth factor,

and a price of risk λj on the jth factor. In such a model, the jth factor contributes

γ2
j Autocov(zj

t ) + γjλjCov(zj
t , ε

j
t ), (12)

to the autocovariance of the pricing kernel.

In our calibration, the exogenous factors in the real economy—output growth and stochastic

volatility—all have positive autocovariances and the factor innovations have positive covariances to

the factor levels. This implies that γ2
j Autocov(zj

t ) and Cov(zj
t , ε

j
t ) are both positive. For a factor to

contribute negatively to the autocorrelation of the pricing kernel requires that the factor loading γj

and the price of risk λj have opposite signs. Additionally, the price of risk λj must be large enough

relative to the factor loading γj to counteract the positive autocovariance term γ2
j Autocov(zj

t ).

Output growth has a lower autocorrelation coefficient than stochastic volatility in our calibration,

but since output growth has a much higher unconditional volatility, it has a much higher auto-

covariance than stochastic volatility. The factor loading γx in the real economy on the level of

output growth is equal to (1− ρ)φx, which is nonnegative for all ρ ≤ 1. Also, the price of risk for

output growth λx is positive at the parameter values used in Figure 4 since a sufficient condition

for it to be positive is α ≤ 0 and |ρ| ≤ |α|. From (12), output growth contributes positively to the

autocovariance of the pricing kernel.
4Piazzesi and Schneider (2006) argue that an upward-sloping nominal yield curve can be generated if inflation is

bad news for consumption growth. Such a structure leads to negative autocorrelation in the nominal pricing kernel.
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From the real pricing kernel parameters given in (7), the price of risk for volatility is related to the

factor loading on the level of volatility by

λv = − β

1− βφv
γv.

Since 1− βφv > 0, the volatility price of risk λv and the volatility factor loading γv have opposite

signs implying that the volatility factor can contribute a negative autocovariance to the pricing

kernel. But output growth has the strongest effect on the autocovariance of the pricing kernel,

leading to positively autocovariance in the pricing kernel. As a consequence, the average real yield

curve is downward sloping. The numerical values for the real pricing kernel’s factor loadings and

prices of risk from Figure 4 are reported in Panel A of Table 1.

In the exogenous inflation economy, shocks to inflation are uncorrelated to output growth and

stochastic volatility—the factor loadings and prices of risk on output growth and stochastic volatility

in the nominal pricing kernel are the same as in the real pricing kernel. Average nominal yields in

the exogenous inflation economy are equal to the real yields plus expected inflation and inflation

volatility with an adjustment for properties of the inflation process. The inflation shocks are

positively autocorrelated with a factor loading and a price of risk that are both positive. The average

nominal yield curve has approximately the same shape as the real yield curve—it is downward

sloping.

In the endogenous inflation economy, inflation is a linear combination of output growth, stochastic

volatility, and the monetary policy shock. From Panel A of Table 2, endogenous inflation’s loading

on output, πx, is negative. This implies that the nominal pricing kernel’s output growth factor

loading and price of risk are lower than in the exogenous inflation economy. As a consequence,

output growth contributes much less to the autocovariance of the pricing kernel with endogenous

inflation. The factor loading and price of risk for stochastic volatility are also lower in the en-

dogenous inflation economy. The policy shocks are positively autocorrelated, but the sign of the

loading and the price of risk for the policy shock are of opposite sign. The average nominal yield

curve in the endogenous inflation economy is therefore flatter than both the real yield curve and
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the nominal yield curve with exogenous inflation.

Turning to the volatilities in the bottom plot, the exogenous inflation economy exhibits more

volatility in short rates and less volatility in long rates than found in the data. This is a fairly

standard finding for term structure models with stationary dynamics (see Backus and Zin (1994)).

The volatility of long rates is mainly driven by the loading on the factor with the largest innovation

variance and that factor’s autocorrelation. The closer that autocorrelation is to zero, the faster

that yield volatility decreases in bond maturity. In our calibration, output growth has the largest

innovation variance and a fast rate of mean reversion, equal to 0.36. Yield volatility drops quite

quickly as bond maturity increases. In general, the lower the loading on output growth, the slower

that yield volatility drops as bond maturity increases. Because endogenous inflation is negatively

related to output growth, the factor loading on output growth is lower. Yield volatility drops at

a slower rate versus maturity in the endogenous inflation economy than in the exogenous inflation

economy.

Figure 5, Panel B of Table 1, and Panel B of Table 2 report yield curve properties with a higher

intertemporal elasticity of substitution ρ = 0, or a log time aggregator. Piazzesi and Schneider

(2006) study a model with the same preferences, but without stochastic volatility. The factor

loading on output growth in the real economy is higher than in the economy with ρ = −0.5

reported in Figure 4 (compare Panel A to Panel B of Table 1.) The average real yield curve and

the average nominal yield curve with exogenous inflation are less downward sloping when ρ = 0

than when ρ = −0.5. Similarly, increasing ρ further to 0.5 (see Figure 6) or 1.0 (see Figure 7)

leads to a less downward sloping real yield curve. Since increasing ρ decreases the factor loading

on output growth, it also decreases the volatility of real yields: see the bottom plots in Figures 4

to 7.

As ρ increases, the representative agent’s intertemporal elasticity of substitution increases implying

less demand for smoothing consumption over time. Increasing ρ decreases the representative agent’s

demand for long term bonds for the purpose of intertemporal consumption smoothing, and leads

to lower equilibrium prices and higher yields for real long term bonds. The average real yield
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curve therefore is less downward sloping as ρ increases. Increasing ρ also reduces the sensitivity of

long-term real yields to output growth, leading to less volatile long-term yields: See the bottom

plots in Figures 4 to 7.

Nominal yields in the economies with exogenous inflation are approximately equal to the real yields

plus a maturity independent constant. But in the economies with endogenous inflation, inflation

and output growth have a negative covariance leading to a decrease in the factor loading on output

growth with endogenous inflation–see Panels C and D of Tables 1 and 2. For ρ ≥ 0.5—see Figures 6

and 7, the average nominal yield curve is upward sloping, and the shape of the volatility term

structure decays similarly to that in the data.

The final three columns of Table 2 reports unconditional moments of inflation in the economy

with endogenous inflation. There are a few notable features. First, the unconditional moments are

not particularly sensitive to the intertemporal elasticity of substitution. Second, the unconditional

variance of inflation in the calibrated economy is an order of magnitude higher than than in the

data: 0.0033 in empirical data and about 0.02 in these economies. Finally, inflation is much more

autocorrelated in the data—the AR(1) coefficient is 0.85 in the data and about 0.4 in the model

economies.

Figure 8, Figure 9, and Table 3 report results from changing the Taylor rule parameters. We keep

the remaining parameters fixed at the values used to generate Figure 7. The top plot in Figure 8

shows that increasing τx, the interest rate’s responsiveness to output growth shocks, leads to a

reduction in average nominal yields, a steepening in the average yield curve, and from the bottom

plot an increase in yield volatility.

From Panel A of Table 3, increasing τx decreases the constant in the nominal pricing kernel,

decreases the factor loading, decreases the price of risk for output growth, and also increases the

factor loading for stochastic volatility. The loading on output growth in the pricing kernel drops

because the sensitivity of the inflation rate to output growth drops, and the sensitivity of inflation

to the to stochastic volatility increases by a large amount—from 6.66 to 8.55.
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The top plot in Figure 9 shows that increasing τp, the interest rate responsiveness to inflation,

leads to a reduction in average nominal yields, a flattening in the average yield curve, and from the

bottom plot a decrease in yield volatility.

From Panel B of Table 3, increasing τp decreases the constant in the nominal pricing kernel,

increases the factor loading on output growth, increases the price of risk for output growth, decreases

the factor loading for stochastic volatility, and also drops the factor loading on the monetary

policy shock. The constant in the pricing kernel drops because the constant in the inflation rate

drops, the factor loading on output growth increases because the sensitivity of the inflation rate to

output growth increases, and the sensitivity of inflation to stochastic volatility decreases by a large

amount—from 6.66 to 3.58.

Overall, the experiments reported in Figure 8 and Figure 9 show that properties of the term

structure depend on the form of the monetary authorities interest rate feedback rule. In particular,

the factor loading on stochastic volatility is quite sensitive to the interest rate rule. Since stochastic

volatility is driving time-variation in interest rate risk-premiums in this economy, monetary policy

can have large impacts on interest rate risk premiums in this economy.

6 Related Research

The model we develop is similar to a version of Bansal and Yaron (2004) that includes stochastic

volatility; however, our simple autoregressive state-variable process does not capture their richer

ARMA specification. Our work is also related to Piazzesi and Schneider (2006) who emphasize that

for a structural model to generate an upward-sloping nominal yield curve requires joint assumptions

on preferences and the distribution of fundamentals. Our work highlights how an upward-sloping

yield curve can also be generated through the monetary authority’s interest rate feedback rule.

Our paper adds to a large and growing literature combining structural macroeconomic models

that include Taylor rules with arbitrage-free term structures models. Ang and Piazzesi (2003),
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following work by Piazzesi (2005), have shown that a factor model of the term structure that

imposes no-arbitrage conditions can provide a better empirical model of the term structure than a

model based on unobserved factors or latent variables alone. Estrella and Mishkin (1997), Evans

and Marshall (1998), Evans and Marshall (2001), Hördahl et al. (2003), Bekaert et al. (2005), and

Ravenna and Seppala (2006) also provide evidence of the benefits of building arbitrage-free term-

structure models with macroeconomic fundamentals. Rudebusch and Wu (2004) and Ang et al.

(2004) investigate the empirical consequences of imposing a Taylor Rule on the performance of

arbitrage-free term-structure models.

For an alternative linkage between short-maturity and long-maturity bond yields, see Vayanos and

Vila (2006) who show how the shape of the term structure is determined in the presence of risk-

averse arbitrageurs, investor clienteles for specific bond maturities, and an exogenous short rate

which could be driven by the central bank’s monetary policy.

7 Conclusions

We demonstrate that an endogenous monetary policy that involves an interest-rate feedback rule

can contribute to the riskiness of multi-period bonds by creating an endogenous inflation process

that exhibits significant covariance risk with the pricing kernel. We explore this through a recursive

utility model with stochastic volatility which generates sizable average risk premiums. Our results

point to a number of additional questions. First, the Taylor rule that we work with is arbitrary. How

would the predictions of the model change with alternative specification of the rule? In particular,

how would adding monetary non-neutralities along the lines of a New Keynesian Phillips curve as

in Clarida et al. (2000) and Gallmeyer et al. (2005) alter the monetary-policy consistent pricing

kernel? Second, what Taylor rule would implement an optimal monetary policy in this context?

Since preferences have changed relative to the models in the literature, this is a nontrivial theoretical

question.

In addition, the simple calibration exercise in this paper is not a very good substitute for a more
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serious econometric exercise. Further research will explore the tradeoffs between shock specifica-

tions, preference parameters, and monetary policy rules for empirical yield curve models that closer

match historical evidence.

Finally, it would be instructive to compare and contrast the recursive utility model with stochastic

volatility to other preference specifications that are capable of generating realistic risk premiums.

The leading candidate on this dimension is the external habits models of Campbell and Cochrane

(1999). We are currently pursuing an extension of the external habits model in Gallmeyer et al.

(2005) to include an endogenous, Taylor-rule driven inflation process.
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Figure 1: Time series properties of the yield curve, 1970:1 to 2005:4.
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Figure 2: Average yield curve behavior.
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Figure 4: Average yield curve and volatilities for the Epstein-Zin model with stochastic volatil-
ity. The parameters are ρ = −0.5, α = −4.835, β = 0.999,τ̄ = 0.003, τx = 1.2475 : τp = 1.000. The top
plot is average yields and the bottom plot is yield volatility. The historical moments are plotted with stars
(∗∗), properties of the real curve are plotted with a dashed line (−−), properties of the yield curve in the
exogenous inflation economy are plotted with a dashed-dotted line (- – -), and properties of the yield curve
in the economy with endogenous inflation are plotted with a solid line (—).
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Figure 5: Average yield curve and volatilities for the Epstein-Zin model with stochastic volatil-
ity. The parameters are ρ = 0.0, α = −4.061, β = 0.998, τ̄ = 0.003, τx = 0.973, τp = 0.973. The top plot
is average yields and the bottom plot is yield volatility. The historical moments are plotted with stars (∗∗),
properties of the real curve are plotted with a dashed line (−−), properties of the yield curve in the exoge-
nous inflation economy are plotted with a dashed-dotted line (- – -), and properties of the yield curve in the
economy with endogenous inflation are plotted with a solid line (—).
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Figure 6: Average yield curve and volatilities for the Epstein-Zin model with stochastic volatil-
ity. The parameters are ρ = 0.5, α = −4.911, β = 0.994, τ̄ = −0.015, τx = 3.064 : τp = 2.006. The top
plot is average yields and the bottom plot is yield volatility. The historical moments are plotted with stars
(∗∗), properties of the real curve are plotted with a dashed line (−−), properties of the yield curve in the
exogenous inflation economy are plotted with a dashed-dotted line (- – -), and properties of the yield curve
in the economy with endogenous inflation are plotted with a solid line (—).
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Figure 7: Average yield curve and volatilities for the Epstein-Zin model with stochastic volatil-
ity. The parameters are ρ = 1.0, α = −6.079, β = 0.990, τ̄ = −0.004, τx = 1.534, τp = 1.607. The top
plot is average yields and the bottom plot is yield volatility. The historical moments are plotted with stars
(∗∗), properties of the real curve are plotted with a dashed line (−−), properties of the yield curve in the
exogenous inflation economy are plotted with a dashed-dotted line (- – -), and properties of the yield curve
in the economy with endogenous inflation are plotted with a solid line (—).
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Figure 8: The effects of increasing τx. The baseline parameters are ρ = 1.0, α = −6.079, β = 0.990,
τ̄ = −0.004, τx = 1.534, τp = 1.607. Historical data is plotted with stars (∗∗), results with the baseline
parameters are plotted with a solid line (—), and results when the feedback from output growth to short-
term interest rates is increased by 10% are plotted with a dashed line (- - ). The top plot is average yields.
The bottom plot is yield volatility.
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Figure 9: The effects of increasing τp. The baseline parameters are ρ = 1.0, α = −6.079, β = 0.990,
τ̄ = −0.004, τx = 1.534, τp = 1.607. Historical data is plotted with stars (∗∗), results with the baseline
parameters are plotted with a solid line (—), and results when the feedback from inflation to short-term
interest rates is increased by 10% are plotted with a dashed line (- - ). The top plot is average yields. The
bottom plot is yield volatility.
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Table 1: Factor loadings and prices of risk

Constant Factor loadings (γ’s) on Prices of risk (λ’s) on
xt vt pt st εx

t+1 εv
t+1 εp

t+1 εs
t+1

Panel A: ρ = −0.5, α = −4.835, β = 0.999, τ̄ = 0.003, τx = 1.2475, τp = 1.000

Real kernel 0.01 0.54 25.45 – – 8.25 -902.98 – –
Exogenous inflation 0.01 0.54 25.45 0.85 – 8.25 -902.98 1.00 –
Endogenous inflation 0.02 0.14 21.63 – -1.44 7.15 -906.90 – -1.56

Panel B: ρ = 0.0, α = −4.061, β = 0.998, τ̄ = 0.003, τx = 0.973, τp = 0.973

Real kernel 0.01 0.36 20.07 – – 7.34 -677.11 – –
Exogenous inflation 0.01 0.36 20.07 0.85 7.34 -677.11 1.00
Endogenous inflation 0.02 0.00 33.56 – -1.51 6.34 -663.24 – -1.63

Panel C: ρ = 0.5, α = −4.911, β = 0.994, τ̄ = −0.015, τx = 3.064, τp = 2.006

Real kernel 0.01 0.18 32.23 – – 8.93 -972.61 – –
Exogenous inflation 0.01 0.18 32.23 0.85 8.93 -972.61 1.00
Endogenous inflation 0.02 -0.45 38.34 – -0.56 7.18 -966.33 -0.61

Panel D: ρ = 1.0, α = −6.079, β = 0.990, τ̄ = −0.004, τx = 1.534, τp = 1.607

Real kernel 0.02 0.00 51.82 – – 10.99 -1398.00 – –
Exogenous inflation 0.02 0.00 51.82 0.85 – 10.99 -1398.00 1.00 –
Endogenous inflation 0.03 -0.44 58.30 – -0.74 9.76 -1391.30 -0.80

The table reports the affine term structure parameters for the real term structure, the nominal
term structure in the exogenous inflation economy, and the nominal term structure in the economy
with endogenous inflation. The parameters in each panel are computed using a different set of
preference parameters. We fix a level of the intertemporal elasticity parameter ρ and choose the
remaining preference parameters—the risk aversion coefficient α and the rate of time preference
β to minimize the distance between the average nominal yields and yield volatilities in the data
and the those implied by the economy with an exogenous inflation rate. We pick the Taylor-rule
parameters to minimize the distance between the average nominal yields and yield volatilities in
the data and the those implied by the economy with an endogenous inflation rate.
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Table 2: Properties of Endogenous Inflation

π̄ πx πv πs E(pt) σ(pt) AR(1)

Panel A: ρ = −0.5, α = −4.84, β = 0.999, τ̄ = 0.003, τx = 1.25, τp = 1.00

0.01 -1.11 -3.92 -1.56 0.01 0.02 0.37

Panel B: ρ = 0.0, α = −4.06, β = 0.998, τ̄ = 0.003, τx = 0.97, τp = 0.97

0.01 -1.00 13.87 -1.63 0.01 0.02 0.44

Panel C: ρ = 0.5, α = −4.91, β = 0.994, τ̄ = −0.012, τx = 3.06, τx = 2.01

0.02 -1.75 6.28 -0.61 0.01 0.03 0.37

Panel D: ρ = 1.0, α = −6.08, β = 0.990, τ̄ = −0.004, τx = 1.53, τp = 1.61

0.01 -1.23 6.66 -0.80 0.01 0.02 0.37

The table reports properties of pt in the economy with endogenous inflation. The equilibrium infla-
tion rate coefficients on output, stochastic volatility, and the monetary policy shock are reported.
Additionally, the unconditional mean, the unconditional standard deviation, and the first-order
autocorrelation of inflation are reported.
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Table 3: Comparative Statics for the Taylor Rule Parameters

Nominal pricing kernel Equilibrium inflation
Constant Factor loadings (γ’s) Prices of risk (λ’s) loadings

xt vt st εx
t+1 εv

t+1 εs
t+1 π̄ πx πv πs

Panel A: τx increased by 10% from 1.53 to 1.69

Baseline 0.03 -0.44 58.30 -0.74 9.76 -1391.30 -0.80 0.01 -1.23 6.66 -0.80
Increased τx 0.02 -0.49 60.13 -0.74 9.63 -1389.40 -0.80 0.01 -1.35 8.55 -0.80

Panel B: τp increased by 10% from 1.61 to 1.77

Baseline 0.03 -0.44 58.30 -0.74 9.76 -1391.30 -0.80 0.01 -1.23 6.66 -0.80
Increased τp 0.02 -0.39 55.30 -0.66 9.90 -1394.40 -0.71 0.01 -1.09 3.58 -0.71

The table reports the effect of changing the Taylor rule parameter τx or τp on the affine term struc-
ture parameters as well as properties of pt in the endogenous inflation economy. The equilibrium in-
flation rate coefficients on output, stochastic volatility, and the monetary policy shock are reported.
The baseline parameters are ρ = 1.0, α = −6.08, β = 0.990, τ̄ = −0.004, τx = 1.53, τp = 1.61.
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