
NBER WORKING PAPER SERIES

PRICE DISPERSION UNDER COSTLY CAPACITY AND DEMAND UNCERTAINTY

Diego Escobari
Li Gan

Working Paper 13075
http://www.nber.org/papers/w13075

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2007

We thank the valuable comments from Volodymyr Bilotkach, James Dana, Benjamin Eden, Paan Jindapon,
Eugenio Miravete, Carlos Oyarzun, Claudio Piga, Steven Puller, Ximing Wu, and seminar participants
at the Department of Economics, Texas A&M University, the Texas Econometrics Camp, and the
International Industrial Organization Conference at Savannah, Geogia. Stephanie Reynolds provided
capable research assistance in the collection of the data. Financial support from the Private Enterprise
Research Center at the Texas A&M University and the Bradley Foundation is gratefully appreciated.
The usual disclaimer applies. The views expressed herein are those of the author(s) and do not necessarily
reflect the views of the National Bureau of Economic Research.

© 2007 by Diego Escobari and Li Gan. All rights reserved. Short sections of text, not to exceed two
paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Price Dispersion under Costly Capacity and Demand Uncertainty
Diego Escobari and Li Gan
NBER Working Paper No. 13075
May 2007
JEL No. C23,L11

ABSTRACT

This paper tests the empirical importance of the price dispersion predictions of the Prescott-Eden-Dana
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I. Introduction 
 

It is widely observed that prices of homogeneous goods within the same market exhibit 

price dispersion. Some of the most recent evidence includes retail prices for prescription drugs in 

Sorensen (2000), and internet electronic equipment markets in Baye and Morgan (2004). Various 

models, including search frictions, information asymmetries, and bounded rationality, have been 

proposed to explain this phenomenon. Here we seek to establish the empirical importance of the 

price dispersion predictions in the Prescott (1975), Eden (1990) and Dana’s (1999b) models. 

Prescott (1975) considers an example of hotel rooms where sellers set prices before they 

know the number of buyers, then the equilibrium prices will be dispersed; lower-priced units will 

sell with higher probability, while higher-priced units will sell with lower probability. Hence, 

sellers face a tradeoff between price and the probability of making a sell. This same tradeoff is 

observed in Eden (1990), who formalizes Prescott’s model in a setting where consumers arrive 

sequentially, observe all offers and after buying the cheapest available offer they leave the 

market. He derives an equilibrium that exhibits price dispersion even when sellers are allowed to 

change their prices during trade and have no monopoly power. This flexible price version of the 

Prescott model, developed in Eden (1990, 2005a) and Lucas and Woodford (1993), is known as 

the Uncertain and Sequential Trade (UST) model. Dana (1999b) extends the Prescott model with 

price commitments for perfect competition, monopoly, and oligopoly and shows that firms offer 

output at multiple prices. In the oligopoly equilibrium, the market distribution of prices 

converges to the Prescott’s distribution as the number of firms approaches to infinity. Moreover, 

as competition is greater, average price level falls and price dispersion increases. As explained in 

Eden (2005b), from the positive economics point of view it does not matter whether prices in the 

Prescott’s model flexible of rigid. From the point of view of the seller and this paper, both will 

have the same resulting allocation. In this paper, both the flexible and the rigid version of the 

model are commonly referred as Prescott-Eden-Dana (PED hereafter) models. 

Versions of the PED model have been applied to solve a variety of economic phenomena, 

such as wage dispersion and market segmentation (Weitzman, 1989), procyclical productivity 

(Rotemberg and Summers 1990), the role of inventories (Bental and Eden 1993), real effect of 

monetary shocks (Lucas and Woodford, 1993; Eden, 1994), destructive competition in retail 

markets (Deneckere, Marvel, and Peck 1997), advance purchase discounts (Dana 1998), 

stochastic peak-load pricing (Dana 1999a), gains from trade (Eden 2005) and seigniorage 

payments (Eden 2007). Despite its wide applications, few papers test the empirical predictions of 

the PED models. 
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This paper provides a formal test of the PED models while helping to explaining price 

dispersion in the airline industry, which is considered to have one of the most complex pricing 

systems in the world. We take advantage of a unique U.S. airlines’ panel disaggregated at 

passenger level that contains the evolution of fares and inventories of seats over a period of 103 

days for 228 domestic flights departing on June 22nd, 2006. The data collection resembles 

experimental data which controls for most of the product heterogeneities observed in the industry. 

This represents the perfect control for fences that segment the market allowing our analysis to 

explain the use of seat-inventory control just under demand uncertainty, costly capacity and price 

commitments.  

 Moreover, airlines represent the perfect environment to test the price dispersion under 

demand uncertainty and costly capacity. First, air tickets expire at a point in time; once the plane 

departs carriers can no longer sell tickets. Second, capacity is fixed and can only be augmented at 

a relatively high marginal cost. Once carriers start selling tickets they are unlikely to change the 

size of the aircraft.2 This implies that we can focus on the demand side uncertainty without 

having to worry about any uncertainty in the supply given our time frame of study. Moreover, as 

in the PED models, after we control for ticket restrictions that screen costumers, all airplane 

seats are the same and buyers have unit demands. In order to explain price dispersion we enlarge 

the definition of airplane seats by an additional ‘selling probability’ dimension. Once this is 

achieved, although prices themselves may be dispersed, this dispersion can be explained by 

appropriately rescaling the price of each unit by its selling probability. 

At the risk of over-making this point, consider the following example of a perfectly 

competitive market with zero profits. Each time a carrier sells a seat, the expected marginal 

revenue is set to be equal to the marginal cost. Because of demand uncertainty, airlines hold 

inventories of seats that are sold only some of the times. For those seats that are sold only when 

demand is high, fares must be set higher to compensate for the lower probability of sale. In this 

paper we develop a measure of the different selling probabilities. Even though uncertainty is 

coming from the demand side, we follow the PED models and represent this by adjusting the 

marginal cost of capacity, or ex ante shadow cost, by these selling probabilities. 

By dividing the constant unit cost of capacity by the probability of sale, we obtain the 

Effective Cost of Capacity (ECC), and then we measure the impact of ECC on fares. As 

predicted by Prescott (1975) and Eden (1990), ECC should have a positive effect on fares. 

Moreover, as predicted in Dana (1999b), this effect should be greater in more competitive 

markets. In this paper we provide evidence supporting both predictions. On average, a 1 percent 
                                                 
2 None of the 228 flights in the sample changed the aircraft size. 
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decrease in the probability of sale would lead to a 0.219 percent increase in prices. Moreover, 

this effect was found to be larger in more competitive markets. The reason is straight forward, in 

a perfectly competitive marker where firms have no markups; every dollar increase in the ECC 

will be transferred to prices. On the other hand, in less competitive markets, part of the increase 

in the ECC will be absorbed by the markup. 

The findings in this paper can be additionally motivated as an example of a spot market 

subject to demand uncertainty and opened to advance purchases. The standard formulation of a 

spot markets subject to uncertain excess demand, assumes either implicitly or explicitly, a 

tatonnement process that restricts trade until the market-clearing price is found. As pointed out in 

Dana (1999b), a spot market subject to price commitments should be opened to advance 

purchases. As we approach the departure date, the dynamics of fares and inventories in a flight is 

an example of how the market clearing price is achieved without having to restrict trade in the 

resolution of uncertainty in the demand. Along the paper we discuss how the analysis carried out 

resembles a spot market with price commitments. 

By helping to explain one of the sources of price dispersion, this paper has an important 

implication for the airline industry as well. Borenstein and Rose (1994) calculated that the 

expected absolute difference in fares between two passengers on a route is 36 percent of the 

airline’s average ticket price. One important source of this price dispersion is the existence of 

intrafirm price dispersion due to advance-purchase discounts (APD). Substantial discounts are 

generally available to travelers who are willing to purchase tickets in advance. This kind of 

pricing practices can promote efficiency by expansions in output when demand is elastic or may 

be the only way for a firm to cover large fixed costs. Gale and Holmes (1993) justify the 

existence of APD in a monopoly model with capacity constraints and perfectly predictable 

demand. They show that firms using APD can divert demand from peak period to off-peak 

period and achieve a profit-maximizing method of selling tickets. In a similar setting, but with 

demand uncertainty, Gale and Holmes (1992) show that APD can promote efficiency by 

spreading consumers evenly across flights before timing of the peak period is known. In 

competitive markets, Dana (1998) finds that firms may offer APD when individual and aggregate 

consumer demand is uncertain and firms set prices before demand in known. The PED models 

that we test, explain why carriers offer lower priced seats to ‘earlier’ purchasers.3 Our results 

show that one source of the price variation found by Borenstein and Rose (1994) comes from the 

                                                 
3 Note that the term ‘earlier’ used refers to the case when passengers who buy before other passengers, 
rather than a temporal dimension. Travelers purchasing seats even long before departure may not benefit 
from APD if most of the seats in the airplane have already been sold. 
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fact that carriers face capacity constraints and have to deal with uncertainty in the demand. 

Moreover, we find that this source of price dispersion is greater in more competitive markets, 

result consistent with Borenstein and Rose (1994), who also found greater price dispersion in 

more competitive markets. Our findings represent a refinement of Borenstein and Rose (1994). 

They attribute this result to price discrimination using a model of monopolistic-competition with 

certain demand. We argue that if demand uncertainty is considered, part of this price dispersion 

can be explained by carriers dealing with capacity costs and uncertain demand. The present 

paper is the first empirical paper, to our knowledge, that includes uncertainty in the 

determination of prices in the airline industry. 

Despite a number of applications of the PED models, few papers test the empirical 

predictions of the model. Eden (2001) provides a test and finds a negative relationship between 

inventories and output. However, as pointed in the same article, this negative relationship is not 

necessarily an outcome of the PED models. In fact, other models, such as the model of inventory 

control, would generate the same prediction. Wan (2007) tests part the models using data from 

online book industry. She tests the effect of stock-out probability and search cost on price 

dispersion and finds evidence that higher stock-out probabilities are associated with higher prices. 

The PED models requires capacity (how many books to store or how many seats on an airplane) 

to be fixed in the short run. This is less likely to be true for the online book industry than for the 

airline industry. In addition, Wan (2007) does not test the effect of competition on the prices.4 

The organization of this paper is as follows. Section II describes the data and its 

characteristics. The theoretical motivation and the empirical specification are presented in 

Section III; first explaining the theoretical motivation, then showing how we model demand 

uncertainty with an application. Section IV explains the empirical results. Finally, Section V 

concludes the paper. 

 

II. The Data and Its Main Characteristics 

 
The main data source in this paper comes from data collected on the online travel agency 

Expedia.com® for flights that departed on June 22nd, 2006. It is a panel with 228 cross section 

observations during 35 periods making a total of 7980 observations. Each cross section 

observation corresponds to a specific carrier's non-stop flight between a pair of departing and 

destination cities. The data across time has one observation every three days. The first was 
                                                 
4 Bilotkach (2006) mentions the potential role of the PED models in explaining price airline dispersions, 
but his dataset does not allow him to formally test the model. 
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gathered 103 days prior departure, the second 100 days and so on until 7, 4, and 1 day(s) prior 

departure, making the 35 observations in time per flight. As in Stavins (2001), the date of the 

flight is a Thursday to avoid the effect that weekend travel could have. The carriers considered 

are American, Alaska, Continental, Delta, United and US Airways. The number of flights per 

carrier was chosen to make sure the share of each of these carriers on the dataset is close to its 

share on the US airlines' market. For each flight at each time period, this dataset gives us the 

cheapest available economy class fare and the number of seats that have been sold up to that 

period. 

To calculate the sold out probabilities, the analysis uses a second dataset collected also 

from Expedia.com®. Most airlines and online travel agencies do not display sold-out flights on 

their websites. The reason, according to Roman Blahoski, spokesman of Northwestern, is that 

they do not want to disappoint travelers. Keeping the online display simple may also be a motive, 

and according to Dan Toporek, spokesman of Travelocity.com®, “showing sold-out flights 

alongside available flights could be confusing.”5 Regardless of the reason, this fact allows us to 

get the information about the sold out probability in each of the routes. We initially make a 

census of all the available nonstop flights in each of the 81 routes used in the first dataset for 

seven days from February 2nd to February 8th in 2007. The total number of flights is 5,881. The 

collection is done couple of weeks before the beginning of February when we expect that no 

flights have yet been sold out, hence Expedia.com® should show them all. Then, for each of these 

seven days of the week we check Expedia.com® once again late at night the day before departure 

to see whether each of the flights has still tickets available. If the flight is no longer there, we 

assume that it has already sold all its tickets. This procedure permits us to calculate the sold out 

probabilities for each of the routes. We interpret this sold out probability as a lower bound 

because i) February is not necessarily a high demand period, and ii) because there may still be 

some tickets sold the day of the flight that did not enter the computation. 

A second important source of data is the T-100 data from the Bureau of Transportation 

Statistics. From the T-100 we obtain a panel containing the yearly average load factors at 

departure for the same routes as in the main dataset over the period 1990 to 2005. This helped us 

to calculate the expected number of tickets sold in each route. Moreover, this T-100 gave us the 

number of enplanements at each endpoint airport to construct some of the instruments. 
 

2.1 Fares, Inventories and Ticket Characteristics 
 

                                                 
5 Both quotes are from David Grossman, “Gone today, here tomorrow,” USA Today, August 2006. 



 7

A typical flight in the sample looks like the American Airlines Flight 323 from Atlanta, 

GA (ATL) to Dallas-Forth Worth, TX (DFW) depicted in Figure 1. The best way to look at the 

evolution of seat inventories, in a way that is comparable between flights, is to look at the load 

factor, defined as the ratio of seats sold at each point in time prior departure to total seats in the 

aircraft.6 Load factor will go from zero when the plane is empty to one when it is full. In Figure 1, 

the load factor for this flight increases from 0.2, 103 days prior departure to 0.88 with one day 

left to depart. The increase is not necessarily monotonic as can be observed when moving from 

34 to 31 days prior departure. This is because some tickets may have been reserved and never 

bought or maybe bought and cancelled later. In this flight fares initially look fairly stable 

between $114 and $144, but they have a sharp increase during the last two weeks before 

departure and peak its maximum at $279 the last day. 

 

FIGURE 1 [somewhere here] 

 

Figure 2 depicts the average fares for the 228 flights in the sample for each of the days 

prior to departure. The most important characteristic is how fares trend upwards from an average 

of $258, 103 days prior departure to an average of $473, the last day prior departure. This means 

that average fares almost doubled during the period of study.  

 

FIGURE 2 [somewhere here] 

 

Figure 3 shows the nonparametric regression of daily sales (as percentage of total 

capacity) on days prior departure using 7752 observation over the 228 flights. The bandwidth of 

1.14 days is obtained by least squares cross-validation. The figure suggests that as the flight date 

approaches, more seats get sold. The majority of the seats are being sold during the last month 

and there seems to be a drop in sales during the last few days close to departure. 

 

FIGURE 3 [somewhere here] 

 

                                                 
6 Airline's literature defines load factor only once the plane has departed and as the percentage of seats 
filled with paying passengers. It is calculated by dividing revenue-passenger miles by available seat miles. 
Here the load factor is defined at each point in time as the flight date approaches. Escobari (2005) also 
uses the ratio of seats sold to total seats at the ticket level to obtain some evidence of peak-load pricing. 
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It is important to know that inventories evolve not just as a result of sales at the one-way, 

non-stop flight we are considering. Seats for each city pairs in the sample can be sold as part of a 

larger trip or as part of a round trip with an extremely large amount of possible options. Along 

this paper we will be looking at the carriers’ optimal pricing decision for the one-way, non-stop 

flight of June 22nd and this will have its own dynamics. This detail is implicit in these types of 

datasets that look at non transaction data like Stavins (2001), McAfee and Velde (2006), Chen 

(2006). 

The fares used in this paper are the cheapest fare available at each point in time for a seat 

in economy class. The cheapest economy class fare at each point in time prior departure is just 

the search results found by Expedia.com® for any other online travel agency or carrier's website 

when searching for the fare of a given flight.7 It is worth pointing out that every time a carrier 

changes its prices, it also changes some characteristics associated with this fare.8 The key point 

here is that these ticket characteristics that change along with fares are irrelevant for the travelers, 

and if buying online, it is sometimes impossible for the buyer to change these characteristics. 

Carriers change these irrelevant tickets characteristics to justify the changes in fares. They do not 

want to charge two different fares for exactly the same product just because the transactions 

                                                 
7 Different types of fares sometimes available are the ones travel agencies directly negotiate with airline 
partners. One example is Clearance Fares and FlexSaver offered by Hotwire.com®. These fares come with 
substantial discounts but impose additional restrictions and involve higher uncertainty. They do not allow 
changes or refunds and do not allow the traveler to pick the flight times or airline at the moment of 
booking. Additionally, the traveler cannot earn frequent flyer miles and the fare paid does not guarantee a 
specific arrival time. Delays can be greater than a day. 
8  To show how fares can be explained with irrelevant ticket characteristics, let's look again at the fares of 
American Airlines Flight 323 depicted in Figure 1. In this example, when the price decreased from $134 to 
$114 between 103 (March 11th) and 100 (March 14th) days prior to departure, the ticket characteristics 
changed from a 10- to a 14-days-in-advance-purchase-requirement, it changed the first-day-of-travel-
requirement from February 11th to March 14th, and some blackout dates where included along with 
changes in day-and-time-of-the-flight restrictions. None of these restrictions have a real impact on the 
purchase decision or the effective quality of the ticket unless the traveler knows these characteristics and 
carries out a detailed analysis evaluating the possibility of canceling the flight later on. If the ticket is 
bought either 103 or 100 days prior the flight day, having a 10- or a 14-days-in-advance-purchase-
requirement is irrelevant. If the passenger has already decided to fly on June 22nd and is buying the ticket 
either on March 11th or March 14th, the first-day of-travel-requirement of February 11th or March 14th are 
irrelevant as well. Blackouts and day-and-time-of-the-flight restrictions are only important if the traveler 
decides to change the day of the flight and the new date happens to be exactly in one of the blackout dates. 
Changing dates will be anyway subject to further restrictions on the tickets available in the new date, and a 
penalty of 50 plus the differences in fares. The fact is that really few passengers actually know these 
restrictions even exist since you cannot modify them online and are not printed out in the ticket or the e-
ticket. This example also shows that even if the ticket is bought with more that 21 days in advance, it does 
not necessarily mean it gets the discount of a 21-days-in-advance-purchase-requirement. The same goes 
along with other restrictions; even if the traveler is willing to accept any blackout or purchase a non-
refundable ticket, if only refundable tickets are available, she may well end up buying it, sometimes 
without knowing the extra benefits. Stavins (2001), McAfee and te Velde (2006), and Chen (2006) also 
look at these type of fare changes, but do not mention this point. 
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occurred at different points in time, even if these differences in the product do not have any 

impact on the purchase decision. In the empirical test we control for the ticket restrictions that do 

have an impact on the quality of the ticket. Again, a similar assumption has been implicitly made 

in McAfee and Velde (2006) and Chen (2006) and just look at the variations in fares without 

keeping track of the corresponding variation in irrelevant ticket characteristics. Stavins (2001) 

omits most of these irrelevant ticket characteristics but includes dummy variables for some 

advance purchase restrictions. These dummy variables may explain changes in fare, but they do 

not reflect the underlying force behind why carriers offer advance purchase discounts in the first 

place. As we argue in this paper, once the relevant ticket characteristics are controlled for, the 

key underlying force is seats inventories. 

 

2.2 Representative Fare 

 

A typical concern among people who search to buy tickets online is to know whether or 

not the fare paid in one place is effectively “the cheapest.” The concern for us is to know if the 

fares found in Expedia.com® represent the actual fares offered by the carrier. We want to make 

sure that the fact that we collected the fare online does not restrict the analysis to just online fares.  

The fares reported on different sites are sometimes different. One source of discrepancy 

comes from the fact that different online travel agencies have different algorithms to report the 

fares found in the Computer Reservation Systems (CRS). This plays a roll when searching 

complex itineraries that may involve international flights. In our dataset this discrepancy does 

not arise since we are already restricting the search for a specific flight number on a specific 

departure date. A second important source of differences comes from variation across purchasing 

time and seat availability at purchase, the subject matter of this paper. The third important source 

of variation arises because different fees and commissions differ across travel agencies. 

Expedia.com® charges a lump sum booking fee of $5 for every one-way ticket, Travelocity.com® 

charges $5 as well, while Hotwire.com® charges $6. Other websites like Priceline.com®, 

CheapTickets.com® or Orbitz.com® allow fees to be a function of the base airfare, the carrier or 

the destination. For example, fees at Orbitz.com® range from $4.99 to $11.99. “Brick-and-

mortar” travel agencies charge even higher fees that can go up to $50. Buying on the phone also 

imposes additional different fees i.e. CheapTickets.com® charges $25 while Travelocity.com® 

charges $15.95 for over the phone bookings. Requesting a printed ticket will also impose 

additional variation. Even the carriers themselves charge different prices for exactly the same 

ticket. For example US Airways charges no fees if purchased through its website, but charges a 
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$5 fee for tickets purchased through the airline's reservation centers and $10 for tickets issued at 

the airport or at the city ticket offices. Moreover, the baseline fare may still be different 

depending on which Computer Reservation System (CRS) the travel agency uses to book its 

tickets.9  

Currently, there are four Computer Reservation Systems which store and retrieve travel 

information used by all travel agents. These are Amadeus, Galileo, Sabre and Worldspan. 

Airlines pay an average booking fee per segment of $4.25 when using a CRS, while travel 

agencies usually obtain CRS at no cost or receive certain payments in exchange for agreeing to 

use the system. According to the 2005 Report from American Society of Travel Agents (ASTA), 

the “brick-and-mortar” travel agencies have responded by booking part of their sales using the 

carriers’ websites and not the CRS. The main source of information of Expedia.com® is the 

Worldspan, but as well as Orbitz.com®, they have established direct connection with airlines' 

internal reservation systems to bypass Worldspan and avoid the CRS fees. 

While it is difficult to evaluate price differences for exactly the same ticket offered 

offline, for online markets the information is readily comparable. Chen (2006) using a dataset 

gathered online in 2002 obtained that for quotes found in multiple online sites the differences in 

prices are on the order of 0.3 to 2.2 percent. Even though not mentioned in her paper, these price 

differences can be tracked down just by comparing the different fees charged at each site. 

Currently, carriers like American, Alaska and United offer a promise that travelers will always 

find the cheapest fare in its own websites. If the traveler finds a cheaper fare (with more that a $5 

difference), they offer paying back the difference plus additional bonus frequent flyer miles. This 

shows the carriers' interest on selling through its own websites. In response, Orbitz.com® and 

Expedia.com® adopted similar policies. 

Based on all the multiple ways in which fares can potentially differ for exactly the same 

ticket, we have to come up with a clean measure of a “ticket's fare”. The best candidate is each 

carrier website fare which is directly under the carrier's control and is free of any additional fees 

imposed by CRS, travel agencies or the same carrier if sold offline. For all the carriers in our 

sample, the fare found in Expedia.com® is $5 more than each carrier’s website fare, thus 

obtaining the carriers' website fare is straight forward. Moreover, it is interesting to know ASTA 

reported that in 2002 the biggest on-line travel agency was Expedia.com®, with a market share of 

28.7 percent, followed by Travelocity.com® (28.5 percent) and Orbitz.com® (21.3 percent). 

                                                 
9 Additional fees common to all include taxes, special surcharges, segment fees and September 11 security 
fees. 
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Regarding online sales, we know that they have been growing significantly during the 

last couple of years. The ASTA’s report in 2005 citing PhoCusWright Inc. as the source, state 

that for leisure and unmanaged air sales, the overall online sales as a percentage of total sales 

went up from 30.8 percent in 2001 to 56.2 percent in 2004. Of these sales, 38.3 percent 

correspond to online travel agencies and 61.7 percent to sales through the airlines web sites. 

 

III. The Empirical Model 
 

3.1. A Oligopoly Model of Costly Capacity and Demand Uncertainty 

 

In this section we derive a simple oligopoly model under capacity constraints and 

demand uncertainty. The predictions of this basic model were already obtained in a more formal 

environment in Dana (1999b). The current derivation extends naturally to our formulation of 

demand uncertainty and testing procedure in the empirical section. 

Let the total number of demand states be H + 1. The uncertainty in the demand comes 

from the fact that each carrier does not know ex ante which demand state may occur.  Let Nh be 

the number of consumers who will arrive at the demand state h, where h = 0, …, H and Nh ≤ Nh+1. 

This ordering implies that all the travelers who arrive at demand state h will also arrive at a 

higher-numbered demand state h+1. Now, define a batch as the additional number of travelers 

that arrive at each demand state when compared to the immediate lower demand state, so batch h 

will be given by Nh - Nh-1 and the first batch is just N0. 

Consider the case where consumers’ reservation values for homogeneous airplane seats 

are uniformly distributed [0, θ], then the demand at state h is given by: 

hh NppD ⎟
⎠
⎞

⎜
⎝
⎛ −=

θ
1)(        (1) 

Each demand state h occurs with probability ρh. Given that all demand states have at 

least N0 potential travelers, the probability of having N0 potential travelers arriving is 

1Pr
00 ==∑ =

H

κ κρ . In general, the probability that at least Nh potential travelers arrive is the 

summation of the probabilities of demand states that have at least Nh customers, ∑ =
=

H

hh κ κρPr . 

This implies that the probability that Nh potential consumers arrive is always as high as the one 

that Nh-1 potential consumers arrive, Prh ≥ Prh+1.  Following Prescott (1975), the only cost for the 

carriers is a strictly positive cost λ incurred on all units, regardless whether these units are sold or 
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not. This cost can be interpreted as the unit cost of capacity (or shadow cost), or the cost of 

adding an additional seat in the aircraft. Unlike Dana (1999b), we assume that the unit marginal 

cost of production incurred only on the units that are sold is zero.10 Define the effective cost of 

capacity (ECC) as ECCh = λ/Prh. This ECC adjusts the unit cost of capacity by the probability 

that this unit is sold. Since some of the seats will be sold only at higher-numbered demand states, 

if these units are sold, the effective cost of capacity reflects the costs that should be covered 

whether or not they are sold. If the unit cost of capacity is $100, but this unit is sold only half of 

the times, if it gets sold, the cost that should be covered is $200.  

The number of identical carriers in the market is M. When the demand state is h=0 with 

the corresponding firm’s effective cost of capacity ECC0, the standard symmetric Nash 

equilibrium solution of a Cournot oligopoly competition is: 

( )
)1(

)(
1

00
000

0
0

+
−

==

+
⋅+

=

M
MECCNpD

M
ECCMp

θ
θδ

θ

      (2) 

where p0 is the equilibrium price, and δ0 is the total amount of seats sold. Note each firm would 

allocate δ0/M number of seats at price p0. From the second part of (2) we obtain that the potential 

number of passengers that arrive at demand state h=0 is: 

   [ ] 1
000

)1( −−⋅⋅
+

= ECC
M

MN θδθ
    (3) 

 When the demand state is h = 1, according to (1), the total demand at price p0 is given by: 

   1
0

01 1)( NppD ⎟
⎠
⎞

⎜
⎝
⎛ −=

θ
      (4) 

Note that D1(p0) ≥ D0(p0) since N1 ≥ N0, i.e., the total amount of seats demanded at price 

p0 when h = 1 is at least as large as the pre-allocated number of seats δ0. Dana (1999b) uses 

proportioning rationing to assign seats at p0. This means that everybody has a equal chance 

δ0/D1(p0)= N0/N1  to get a seat at p0. The residual demand, therefore, is: 

                                                 
10 In our setting this basically means that the only relevant cost for the carriers is the one incurred when 
deciding whether or not to hold inventories for an additional seat. The cost that is assumed to be zero is 
peanuts (or pretzels and soft drinks plus any other marginal cost, i.e. baggage transportation). In the hotel 
example these marginal costs may include cleaning the room, changing towels, sheets and in many cases 
the breakfast.  
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Again, the symmetric Nash equilibrium solutions if the demand function is R1(p|p0) in (5) 

will be:     

( ) ( )
)1(

1
1

011

1
1

+
−

−=

+
⋅+

=

M
ECCNNM

M
ECCMp

θ
θδ
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         (6) 

Compare (2) and (6), we can see that p1 ≥ p0 given that Pr1 ≤ Pr0.  

In this case, from the second part of (6) we obtain that the potential number of 

passengers that arrive at demand state h = 1 is given by: 

   [ ] 0
1

111
)1( NECC

M
MN +−⋅⋅

+
= −θδθ

    (7) 

If the demand state is h = 2, we are interested in the residual demand after those travelers 

who have bought tickets at price p0 and p1, denoted as R2(p|p0, p1).  To find out R2(p|p0, p1), we 

start with the residual demand after those who bought tickets at p0, denoted as R2(p|p0), which 

can be obtained from (6): 

   ( ) ( )0202 1| NNpppR −⎟
⎠
⎞

⎜
⎝
⎛ −=

θ
    (8) 

Travelers who are still in the market after the tickets at p0 have been sold out will now 

have the chance to purchase tickets at p1.  The number of potential consumers who will demand 

tickets at p1 is R2(p1|p0), given by (8), and the number of tickets available at price p1 is R1(p1|p0), 

given by (5), R2(p1|p0) ≥ R1(p1|p0). We apply the proportional rationing again to get the residual 

demand R2(p|p0, p1): 

( ) ( ) ( )
( )

( )
( )

( )

( )12

02
1

01
1

02

012

011
02102

1

1

1
11

|
|1|,|

NNp

NNp

NNp

NNp

ppR
ppRppRpppR

−⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

−−⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

θ

θ

θ
θ

    (9) 
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The symmetric Nash equilibrium solution for the residual demand function R2 (p|p0, p1) 

in (9) is given by: 

1
2

2 +
⋅+

=
M

ECCMp θ
,       ( ) ( )

)1(
2

122 +
−

−=
M
ECCNNM

θ
θδ   (10) 

It is important to mention that here carriers are assumed to not observe the seat 

availability of their competitors. Once carriers sell their portion δ0/M for the first batch N0 of 

potential travelers they take the next step which is pricing the second batch N1 – N0 of consumers. 

This assumption guarantees that any given carrier does not try to allocate its entire capacity to 

the first batch at the expense of their competitors. At the end of the derivation once we generalize 

the findings for a continuum of demand states, this assumption will be no longer needed. 

 This Cournot pricing strategy at each of the batches may allow the possibility that 

competitors behave strategically as in a repeated Cournot game where in each subsequent stage 

of the game firms face each time higher costs given by ECC. Since this is a finitely repeated 

game, we just obtain the subgame perfect Nash equilibrium by backward induction.  Firms will 

not be able to collude since each subgame is played as a static Cournot game.11 

 Proposition 1 generalizes previous discussions to any number of demand states. 

Proposition 1: Let aggregate demand function be given in (1). ( )011 ,,,| ppppR kk L−  is the 

residual demand when demand state is k and travelers who have bought tickets at lower prices 

p0, …, pk-1 have left the market (as in Eden (1990)).  We have: 

( ) ( )1011 1,,,| −− −⎟
⎠
⎞

⎜
⎝
⎛ −= kkkk NNpppppR

θ
L     (11) 

Proof: 

When the demand state k = 1, according to (5), the proposition holds.12 We will prove: if 

the proposition holds at demand state k, then it must hold at demand state k+1.  

Suppose the proposition at demand state k holds. When demand state is k+1, according 

to (9), the residual demand after travelers who have bought tickets at lower prices of p0, …, pk-1 

have left the market is given by: 

( ) ( )110111 1,,,| −+−+ −⎟
⎠
⎞

⎜
⎝
⎛ −= kkkk NNpppppR

θ
L .    (12) 

                                                 
11 The continuum of demand states is like an infinitely repeated game. If collusion is achieved in this 
scenario, we just require collusion payoffs in each stage game to be a function only of the same stage 
payoffs for the results in this section to hold. Again, for a stricter derivation of the same results see Dana 
(1999b). 
12 According to (9), the proposition also holds for k = 2.  
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Therefore, the residual demand after travelers who have bought tickets at lower prices of 

p0, …, pk-1, pk have left the market is given by: 
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 Note ( )01 ,,| pppR kkk L−  in (13) is from (11) and ( )011 ,,| pppR kkk L−+  is from (13). 

Equation (13) proves Proposition 1. 

From the residual demand equation of (12), it is easy to get that: 
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⋅+
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kkk θ

θδ  (14) 

For the general case, using the second part of (14) we obtain that the potential number of 

passengers that arrive at demand state h=k is given by: 

  [ ] 1
1)1(

−
− +−⋅⋅

+
= kkkk NECC

M
MN θδθ

    (15) 

 By recursive substitution, considering the construction of the ECC for each batch of 

travelers, and for a continuum and infinite number demand states we can obtain that the number 

of potential travelers that arrive at demand state h is given by: 

  ωκρλθδθ
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 From these Nh consumers that arrive at demand state h, only ∫
h

d
0

κδκ  are able to buy a 

seat. Moreover, notice that the price paid by each group ω is different and given by: 
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This is just the continuum version of the first part of equation (14).13 

                                                 
13 Equation (17) is analogous to the first equation in page 1233 in Prescott (1975), equation (10) in Eden 
(1990), equation (11) in Dana (1998) and more closely related to equation (15) in Dana (1999b) for an 
oligopoly case. The benefit from our equation (17) over Dana’s (1999b) is that by assuming a specific 
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We now just use this last equation to derive two testable implications: 
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The first part of equation (18) tells us that when the ECC increases, price also increases. 

The second part implies that as the market becomes more competitive (larger M), the marginal 

effect of ECC on fares is greater. Therefore, for a given distribution of demand uncertainty more 

competitive markets will show greater price dispersion. The expressions in equations (18) reduce 

to a monopoly when M = 1 and to a perfectly competitive market when M→∞. Note that in a 

perfectly competitive market, (18) predicts that every dollar increase in the ECC is transferred to 

prices as no markups exist to absorb part this increase. 

 

3.2 Modeling Demand Uncertainty 

 

Let’s initially assume that carriers commit to an optimal distribution of prices for each 

flight before demand is known.14 By price commitment we mean that when demand is low, a 

traveler who arrives early or arrives late will face the same price as long as the carrier has not 

sold tickets in the meantime. Prices increase only if carriers have been selling tickets. Therefore, 

the information in the price schedule can be implicitly included in the functional form specified 

for the selling probability. This basically means that the probabilities are predetermined for each 

price schedule and the specification of demand uncertainty. The price schedule will be optimal 

and firms will not want to depart from it as long as they do not start learning about the state of 

the demand. As mentioned by Dana, useful information about the demand may only be available 

close to departure or once it is too late for carriers to change fares. Furthermore, as long as 

carriers do not learn any useful information about the state of the demand during the trading 

process, we can relax the price rigidity assumption (Eden (1990)). 

Starting with the simplest scenario where each demand state is equally likely with 

probability given by ρh = α/m. This just means that demand states are uniformly distributed [0, 

m/α] with m being the total number of seats in the aircraft and α ≥ 1. The last inequality assures 

that there is a positive probability that the last seat gets sold. Following the intuition from 

                                                                                                                                                 
functional form in the demand, price can be isolated on the left hand side of the equation. Dana (1999b) 
provides a more general derivation of this result. 
14 Later in the empirical section we will allow for some deviations from price commitment. In particular, 
we allow the possibility of current shocks affecting future prices by estimating a dynamic model of 
Arellano and Bond (1991).  
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Section 3.1, having m/α demand states is the same as having m/α = H + 1 batches (Nk – Nk-1)of 

travelers with the first batch N0 showing up with the highest probability and the subsequent ones 

showing up each time with a lower probability than the previous one. Assume that the lowest 

demand state has one consumer buying a ticket (δ0 = 1) and for subsequent demand states we 

have one additional buyer each time we move to the next higher demand state (δk=1 for all k). 

Because in every demand state there is at least one consumer buying a ticket, the probability of 

selling the first seat is equal to one. In all but the lowest demand state there are at least two 

travelers, so the probability of selling the second ticket is given by one minus the probability of 

the having the lowest demand state, that is 1 – α/m. In general, the probability that seat h gets 

sold is given by: 

⎥
⎦

⎤
⎢
⎣

⎡
−= )(1Pr pq

m
hh
α

,  },...,2,1{ mh∈ ,   (19) 

which is just one minus the probability of having any demand state with lower demand than state 

h given the carrier's price distribution q(p). In this equally likely demand states case, α is a 

constant that determines the rate at which the probability that the next seat gets sold diminishes.  

Assuming that each demand state is equally likely seems too restrictive. Given our 

construction of demand uncertainty, this would imply that having only one passenger flying is as 

likely as having the plane at half capacity and that the probability of selling one additional seat 

decreases linearly. To allow for more flexibility in the characterization of demand uncertainty we 

consider the case where ρh = φh, with φ being the pdf of a normal density that has mean μ and 

standard deviation σ. From the discussion so far we know that the probability of selling seat h is 

the summation of the probabilities of all demand states that have at least h travelers. For a 

continuum of demand states, this is given by ∫
∞

=
hh dκρκPr . Therefore, the probability of selling 

seat h for the normal density will be: 

)(|1)(|Pr pqpqd hhh Φ−== ∫
∞

κφκ ,     (20) 

with Φ being the cdf of a normal distribution. 
 

 

3.3 Calibrating the Probability Density of Demand Uncertainty 

 

To obtain Prh used in calculating the ECC, it is necessary to get the values for the 

parameters α in the uniform distribution and the mean, μ, and standard deviation, σ, in the normal 
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distribution. In this subsection we calibrate the values of these parameters to mimic the demand 

uncertainty conditions in each of the routes. 

A key source of information for the calibration comes from the T-100 data from the 

Bureau of Transport Statistics. We use this dataset to obtain yearly occupancy rates, or load 

factors at time of departure. This is done in three steps. First, for each of the routes in the sample, 

we calculate its load factor for the 81 routes in the sample for the period 1990 to 2005, based on 

the T-100 data. Second, each of these 81 series is used to estimate an ARMA model. Finally, the 

estimated ARMA model is applied to obtain the 2006 value using a one-step ahead forecast.15 

For routes where the ARMA model predicts a high load factor, meaning that most of the seats 

are expected to be sold, the calibration procedure will assign higher probabilities to higher 

demand states. In this case the ECC is going to be relatively low for a large majority of the 

tickets. When the forecasted load factor is low, the probability of selling the last couple of seats 

is going to fall fast, meaning that the cost of stocking inventories is higher. 

  The problem with the information obtained from the T-100, however, is that we have a 

measure of the forecasted value of the average number of tickets sold rather than of the 

forecasted value of the average number of tickets demanded. This arises because the demand 

state is censored when transformed to the number of tickets sold. Once the aircraft is sold out the 

T-100 no longer records higher demand states. To overcome this limitation let the underlying 

demand state h*, be distributed N(μ, σ2) with the observed number of seats sold h = h* if h < m or 

else h = m. Recall here that m is the maximum number of seats available in the airplane. Then the 

expected number of tickets sold is given by the first moment of the censored normal: 
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The expression for E(h|h<m) is obtained from the mean of a truncated normal density. 

The pdf and the cdf of the normal density are evaluated at the moment the flight sells out. Hence, 

the value Φ((m-μ)/σ) is interpreted as the sold out probability. Using information on the 

probability that a flight sells out, based on the second dataset obtained from Expedia.com®, and 

the expected number of tickets sold, obtained from the ARMA models, we can use (21) to obtain 

values for μ and σ. 

Calibrating the value of α in the uniform distribution is simpler. We obtain the analog of 

equation (21), E(h)=1- α/2, by using the truncated uniform distribution. This equation can be 

                                                 
15 The details of the estimation are available upon request. 
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used directly to get α. In this case since we only have to calculate one parameter, the sold-out 

probabilities are no longer needed. The cost of requiring less information is to have less flexible 

characterization in which one single parameter α affects both the mean and the variance of the 

distribution of demand states. 

 

3.4 Estimated Equation and Interpretation 

 

Following a similar approach as Stavins (2001), we estimate a reduced-form model of 

log airfare on ECC, market concentration, carrier's market share and route-specific factors. The 

key new variable in our analysis is the ECC that measures the effect of costly capacity and 

demand uncertainty by adjusting the unit cost of capacity by the probability that the ticket gets 

sold. The construction of the dataset also allows us to control for all other relevant ticket-specific 

characteristics as explained in Section II. The equation to be estimated is given by: 

 

         ln FAREijt  = β0 + (δ0 + δ1HHIj) ECCijt + β1 DAYADVijt  + β2 DISTj + β3DISTSQj  

+ β4ROUSHAREij + β5HHIj + β6DIFTEMPj +β7DIFRAINj + β8DIFSUNj +  (22) 

 β9AVEHHINCj + β10AMEANPOPj + γ1HUBij + γ2SLOTj + ui + νijt 

 

where the subscript i refers to the flight, j to the route, and t is time. Dummy variables have 

estimated coefficients denoted by γ, otherwise β. ui denotes the unobservable flight specific 

effect and νijt denotes the remainder disturbance. Different error structures will be assumed along 

the empirical section. Each observation in the sample represents a unique ticket for a carrier on a 

route. By route we mean a combination of departure and arrival airports on a one-directional trip. 

FAREijt is price paid in US dollars. From Table 1, the sample mean fare is $291, with a minimum 

of $54 for an American Airlines flight from Dallas Fort Worth, TX to Houston International, TX 

when at least 80 percent of the plane was empty. The maximum is $1,224 in a United Airlines 

flight from Philadelphia International, PA to San Francisco International, CA when there are less 

than 9 percent of the seats available.  

The key variable in the analysis is ECC which is obtained from ECC = λ/Prh. In 

particular, when the distribution is uniform as defined in (19), we should have: 

ij

j
ijt

h
ijt

m
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α
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−
==

1Pr
,     (23) 
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where mij is the total number of seats in the aircraft and hijt – 1 is the number of seats that have 

already been sold at time t. αj is the mean of the uniform distribution. ECC is measured in the 

same units as FARE, nevertheless to be able to interpret the magnitude of the coefficient; we 

initially normalize λ to be equal to one. 

For the normal density case as presented in (20), ECC is given by: 

       ( )
1

222 2/)(exp2
Pr

−
∞

⎥
⎥
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⎤

⎢
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−−××== ∫

ijijtijt mh
jj

h
ijt dECC κσμκπσλλ

  (24) 

The values for μj and σj are allowed to change across routes, so they are indexed by route 

j. hijt and mij are directly observable from our dataset. 

Now we take a look at three different cases where the ECC should play no role in the 

pricing decisions and analyze how our construction of this measure respond in each of these 

cases. In other words, these are the cases where the model of section 3.1 should predict no price 

dispersion due to costly capacity and demand uncertainty. 

(i) For routes where we expect higher load factors, costly capacity will play a less 

important role. On the limit, when we expect to sell all the seats in the aircraft in every occasion 

E(h) = 1. In the case for uniform density αj = 0, and from (19) we get that the probability of 

selling the next seat does not decrease with the cumulative number of seats sold, Prh = 1.  For the 

normal density case μj→∞.  In both situations, there will be no rising ECC as more seats are sold. 

Holding inventories of additional seats will have no cost since we know for sure that they will be 

sold. In summary, ( ) λ=→ ECChE 1lim .  

(ii) A similar phenomenon would happen if aircrafts had infinite capacity, i.e. no 

capacity constraints. This can be interpreted as carriers being able to adjust the size of the aircraft 

anytime before departure at no additional cost. An alternative interpretation could be that the 

good is not perishable; if the good is not sold today, it can be sold anytime in the future. 

Characteristic that does not hold for airline travel since once the plane departs; carriers can no 

longer sell tickets. Again, we have λ=∞→ ECCmlim  for both the uniform and the normal. 

(iii) Finally, in the case of no demand uncertainty, carriers would just set their capacity 

levels to match to the certain number of travelers, hence the ECC would play no role, i.e., 

λσ =→ ECC0lim  for the normal, but no demand uncertainty holds also for the uniform. 

In all three scenarios the price that an airline charges would be same for every seat, and 

there will be no price dispersion. That is why models omitting demand uncertainty in their 

interpretations like Borenstein and Rose (1994) or Stavins (2001) would lead to interpret this 
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variation in prices as price discrimination rather than the effect of the combination between 

costly capacity and demand uncertainty. Failing to adjust the unit cost of capacity by the 

probability that the seat gets sold would lead to predict that the shadow cost remains constant, 

when it doesn’t.  

In addition to ECC, the specification in (22) includes the Herfindahl-Hirshman Index 

(HHI) that measures the concentration on the route. HHI is calculated using ROUSHARE, which 

is the carrier's share of total number of seats in all the direct flights on that route, not just the 

ones from the carriers from which we have fares. Even though similar estimation specifications 

like in Stavins (2001) assumes that HHI is exogenous to airfare estimation, here we provide 

instruments for both ROUSHARE and HHI. We use GEOSHARE for ROUSHARE and 

XFLTHERF for HHI, as constructed in Borenstein (1989) and Borenstein and Rose (1994). A 

short explanation of these instruments is given in the Appendix and the summary statistics of 

these two instrument variables are shown in Table 1. 

 

TABLE 1 [somewhere here] 

 

The rest of the regressors in the equation are control variables when the estimation is 

carried out using carrier fixed effects. DAYADV is the number of days prior departure, while 

DIST and DISTSQ are the distance and distance square between the two endpoint airports on a 

route. DIFTEMP, DIFRAIN, and DIFSUN, are the differences in the average end of October 

temperature, rain, and sunshine between the two endpoints. They are measured in Fahrenheit 

degrees, precipitation in inches, and in percentages respectively. Their role is to control for some 

of the travelers' heterogeneity (i.e. mix of business and tourists). AVEHHINC and AVEPOP are 

average median household income in US dollars and average population of the two cities 

respectively.16 HUB is equal to one if the carrier has a hub in the origin or destination airport, 

zero otherwise. SLOT is a dummy variable equal to one when the number of landings and 

takeoffs is regulated in either origin or destination airport.17 The summary statistics of all these 

variables are presented in Table 1.  

                                                 
16 For cities with more than one airport, the population is apportioned to each airport according to each 
airport’s share of total enplanements. Source: Table 3, Bureau of Transportation Statistics, Airport 
Activity Statistics of Certified Air Carriers: Summary Tables 2000. 
17 In some airports like Kennedy (JFK), La Guardia (LGA), and Reagan National (DCA), the U.S. 
government has imposed limits on the number of takeoffs and landings that may take place each hour. To 
take into account the scarcity value of acquiring a slot, the variable SLOT equals to one if either endpoint 
of route j is one of these airports and zero otherwise. 
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To get an estimate of the unit cost of capacity λ̂ , let kδ̂  for k = {0, 1}, denote the 

estimates of δk when the estimation of (22) is carried out assuming λ being one. As we have 

previously seen, one important implication from the perfectly competitive market is that every 

dollar increase in ECC is passed to prices (see equation (18), but assuming M  ∞). This means 

that ( ) 1ˆˆ
10 =+=∂∂ FAREHHIECCFARE δδ when HHI=0. This condition leads to the 

estimate FARE×= 0̂
ˆ δλ , evaluated at the sample mean of FARE and with 0̂δ  being interpreted 

as the share of fares that corresponds to ECC. Since there is no reason to believe that λ changes 

across market structures, we fix it at this value, λλ ˆ= . Then, the marginal effect of ECC on 

fares for any market structure will be obtained from ( )HHIECCFARE 01
ˆ/ˆ1 δδ+=∂∂ . 

Because of potential changes in costs, Stokey (1979) mentioned that the mere presence 

of price variation over time is not an adequate measure of intertemporal price discrimination. 

Here we are appropriately controlling for raising marginal costs due to aircraft’s capacity 

constraints under demand uncertainty. Given the construction of the model and under price 

rigidities, DAYADV is expected to capture the effect of a type of second degree price 

discrimination named advance purchase discounts. 

 

IV. Results of the Empirical Analysis 
 

The estimates for equation (22) using the censored normal construction of the ECC and 

carrier fixed effects are presented in Table 2. The numbers in parentheses are t-statistics 

calculated using robust standard errors. The first column shows the results when assuming that 

the effect of ECC on fares does not vary with market concentration. Consistent with the 

theoretical predictions, its effect is positive and significant, implying that higher unit costs of 

capacity increase fares. When this effect is allowed to vary with market concentration in Column 

(2), we find that greater market concentration, as measured by higher values of the HHI, 

decreases the positive marginal effect. The intuition, again, is that in competitive markets every 

dollar increase in unit cost of capacity is fully transferred to prices since there are zero markups. 

In non competitive markets when markups are positive, part of the increase in unit costs of 

capacity are absorbed by markups and the final effect on prices is lower. All the regression 

results reported are obtained using the instrument variable GEOSHARE for ROUSHARE and 

XFLTHERF for HHI, as suggested in Borenstein (1989) and Borenstein and Rose (1994).   

 



 23

TABLE 2 [somewhere here] 

 

Most of the estimates are directly comparable to the ones obtained in Stavins (2001) who 

uses a similar dataset collected in 1995.18  Even though it is useful to know our estimates are 

comparable to effects already documented in the literature, in this paper we are not directly 

interested in the coefficients of time invariant parameters. Taking advantage of the panel 

structure of the data, a more suitable specification that will be able to control for unobserved 

time invariant parameters, but will wipe out these estimates is a model with flight fixed effects. 

These estimates are presented in Table 3. Moving from carrier to flight fixed effects greatly 

improves the goodness-of-fit as measured by R2. In all specifications that include flight fixed 

effect, R2 are greater than 0.86. 

 

TABLE 3 [somewhere here] 

 

Table 3 also runs some robustness checks on the construction of the ECC. Column (1) 

still uses the censored normal, while Column (2) constructs the ECC under the censored uniform 

assumption on the distribution of demand states. Both specifications predict that greater market 

concentration decreases the positive effect of ECC on fares. However, the magnitude of the 

effect is very sensitive to the choice of the demand state distribution. The reason why the 

censored uniform predicts greater marginal effects is simple: it puts excessive weight on lower 

demand states. The censored uniform predicts that low demand states are as likely as any other 

demand state. This causes that the ECC rises too fast when the first couple of seats are sold, over 

dimensioning the costs of capacity constraints and demand uncertainty. However, what it’s 

important is to realize that the basic conclusion holds with different specifications of the 

uncertain demand. 

Our measure of the selling probability which is used to construct the ECC is a function 

of the number of seats that have already been sold. However, the number of seats that were sold 

depends on past level of fares. This questions the strict exogeneity assumption about the ECC. 

                                                 
18 The main difference is that Stavins did not have information about seat availability, thus was unable to 
control for probability of selling each ticket. Moreover, her dataset had less ticket observations over only 
twelve routes, while here we have eighty-one routes. Consequently we expect our HHI to be a very good 
approximation of the market structure. The signs for the estimated coefficients were found to be the same 
for number of days in advance purchase (DAYADV), distance and distance square, market share 
(ROUSHARE), hub, slot, difference in temperature and average household income. The only comparable 
coefficient sign that does not match is average population. We believe our estimate is a better 
approximation since she did not adjust average population by the number of airport enplanements as we 
did. More populated cities get lower airfares. 
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To account for this potential endogeneity problem, in column (3) we consider a dynamic panel 

data model where we only have to assume that the explanatory variables are weakly exogenous, 

plus still instrumenting for the HHI. The idea is to difference the regression equation (22) to 

remove any omitted variable created by unobserved flight-specific effects, and then instrument 

the right and side variables using lag values of the original regression to eliminate potential 

parameter inconsistency arising from simultaneity bias. The estimates represent GMM in first 

differences as developed in Arellano and Bond (1991). Here the error term in the model (vijt in 

equation (22)) may affect future dependent and independent variables. For example, suppose the 

airline experiences a positive shock at time t that drives up the number of tickets sold. The 

Arellano and Bond (1991) estimate allows fares and number of tickets sold at t+1 to change in 

response to such a shock, hence the specification is robust to the fact that the amount of seats 

sold up to this period is a function of prices in the previous periods. The result measure how the 

exogenous component of ECC impacts fares. This specification is robust against deviations from 

the price commitment as suggested in Eden (1990). Estimates in Column (3) are close to the ones 

in Column (1), supporting the two basic predictions of the theory. 

Regarding the exogeneity of ECC, it is important to realize that the argument in this 

paper is to analyze whether one way fares respond to a transformation of seat availability on that 

particular flight. However, one way fares are usually a small portion of the tickets sold. Most of 

the travelers flying on each of the flights in our dataset bought this leg as part of a round trip 

ticket, a connecting flight or both. The potential combinations are extremely large and the load 

factor at each point in time for any of our flights is the result of tickets sold along different 

combination of legs, maybe even passengers getting a seat with frequent flyer miles. This is an 

important argument in favor of the exogeneity of ECC and would likely explain why the 

Arellano and Bond estimates that control for potential endogeneity of ECC do not differ much 

from the other set of estimates. 

Another important result is the coefficient estimate for DAYADV, the number of days 

prior departure. As discussed in Section I, advanced-purchase discounts (APD) have been argued 

in the literature as a way to divert demand from peak periods to off peak periods (Gale and 

Holmes 1992, 1993; Dana 1999a). In Column (2), we include DAYADV as a control variable. 

The coefficient estimate is negative and significant, providing evidence that supports APD. 

Buying the ticket one day earlier reduces the fare by 87 cents. Having been controlled for the 

ECC and under the assumptions that carriers cannot learn about the state of the demand, this 87 

cents is an appropriate measure of second degree price discrimination in the form of advance 
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purchase discounts. The conditions for this to be considered intertemporal price discrimination 

are the same as the ones in Dana (1998). 

 

TABLE 4 [somewhere here] 

 

To ease the concern that DAYADV may enter into the model nonlinearly, in Table 4 we 

show the results for three additional specifications. The first one, presented in Column (1), 

includes a square term for days in advance (DAYADVSQ), while the second one, in Column (2), 

includes a cubic term (DAYADVCU). A completely flexible model where each time period is 

allowed to be different with no further restrictions is flight fixed-effects, reported in Column (3). 

Comparing the coefficients reported in Table 4 with the ones previously obtained, we conclude 

that that the positive coefficient for ECC (δ0 in equation (22)) the negative coefficient for 

ECC·HHI (δ1 in equation (22)) hold. However, magnitude of the estimates of the estimates is 

somewhat smaller. 

 

FIGURE 4 [somewhere here] 

  

To see how the different specifications assign different weights to different demand 

states, Figure 4 shows the probability of selling seat h for the uniform and the normal 

specifications. The schedules shown are calibrated to match the values for the route Orlando 

International in Orlando, FL (MCO) to La Guardia in New York, NY (LGA). The 2006 

forecasted load factor for this route is 0.82, also higher than the average across routes of 0.74, 

while the sold out probability was 0.254, higher than the sample average of 0.225. The 

forecasted value for this route is shown in the figure as the expected number of seats sold E(h) = 

0.822. Because of the nature of the censored normal, this value is lower than the average of 

demand states μj = 0.855. σj and αj are 0.048 and 0.356 respectively. Note that Figure 4 has two 

different probabilities. The probability that seat h gets sold, ρh, measured on the vertical axis and 

the probability of demand state h, Prh, measured as the absolute value of the slope. In an m = 100 

seat airplane, the censored normal predicts that the 40th passenger will come with a probability 

ρ0.4 = 0.98 which obviously does not prevent the next passengers from arriving, whereas the 

probability that the plane actually departs with exactly 40 passengers is Pr0.4 = 0.21 percent. 

Moreover, the area below each of the curves is equal to the expected load factor E(h). 

From the estimates under various specifications in Tables 2, 3 and 4 it is clear that the 

main conclusion is robust to various specifications: the effect of ECC is greater in more 
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competitive markets. Now we can extend the analysis to study the magnitude of the effect. Under 

the assumption of zero markups in perfectly competitive markets, i.e., HHI = 0, we have a direct 

interpretation of the coefficient on ECC. In Column (1) of Table 3, the coefficient for ECC is 

0.175, which means that the unit cost of capacity represents 17.5 percent of the average fare. 

Given the average fare of $291, we can calculate the shadow cost of a unit capacity, 85.50$ˆ =λ . 

The marginal effect of ECC on fares is given by ∂FARE/∂ECC=1+(-0.134/0.175)HHI. When it is 

evaluated at the sample mean of HHI (0.684), the marginal effect of ECC on fares is 0.476. This 

implies that for the average market structure one dollar increase in ECC leads to an increase in 

48 cents in fares. When evaluating the effect of ECC on fares at values of HHI of 0.25, 0.50, and 

0.75, we get this one is 0.809, 0.618 and 0.427 respectively. For a monopoly carrier from each 

dollar increase in ECC, 24 cents go to increase prices while 76 cents are absorbed by the markup.  

 

TABLE 5 [somewhere here] 

 

As noted in the construction of the sold out probability, this may be interpreted as a 

lower bound rather than an unbiased calculation of it. To see the response of the estimated 

coefficients to higher sold out probabilities, Table 5 provides the estimates when the sold out 

probability for each of the flights is increased by a lump sum 10, 20 and 30 percent in Columns 

(1), (2) and (3) respectively. Again, the main conclusion of the analysis still holds: greater effect 

of ECC on fares in more competitive markets. However, the magnitude of FARE×= 0̂
ˆ δλ  

changes; as the sold out probability increases, the share of the unit cost of capacity on fares 

increases as well.  This proportion, calculated in Table 3 as 17.5 percent, it is now 29.0, 43.0 and 

61.1 percent for average sold out probabilities of 32.5 (22.5+10), 42.5 and 52.5 percent 

respectively. It would be reasonable to believe that this proportion is greater than our original 

estimate of 17.5 percent in Column (1) of Table 3. To get an idea of the magnitude, Figure 5 

presents the same AA flight 323 from ATL to DFW shown in Figure 1. The ECC was calibrated 

with the censored normal with λ̂ = .611 * 148.14. It would be difficult to argue about the exact 

size of the markup, but the ranges we are talking about here look quite reasonable. Moreover, the 

schedule of ECC on Figure 5 seems to explain quite well the path followed by fares with the 

sharp increase for the last couple of seats. 

 

FIGURE 5 [somewhere here] 
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The estimates in Table 5 prove robustness in one additional dimension. As the marginal 

effect of ECC on fares is measured by ( )HHIECCFARE 01
ˆ/ˆ1 δδ+=∂∂ , we are interested in 

whether the ratio 01
ˆ/ˆ δδ  changes with the sold out probability. In our estimates of Column (1) in 

Table 3, this one is -0.76 (-18.80) with the t-statistic in parentheses. For columns (1), (2), and (3) 

in Table 4 this one is -0.70 (-14.63), -0.70 (-13.81), and -0.74 (-13.71) respectively. This 

provides some evidence that our estimate of the marginal effect of ECC on fares is stable, and its 

magnitude can be obtained with just a lower bound estimate of the sold out probability. 

When dropping the assumption of no markups under perfect competition and without 

any normalization or knowing the value of λ, we can come with an interpretation of the 

magnitude of the effect of costly capacity on fares. However, this one is not robust to the 

magnitude of the sold out probabilities.19  For our estimates in Column (1) in Table 3, a one 

standard deviation increase in the ECC, evaluated at sample means of HHI and fares, increases 

prices by $23.77, which corresponds to an increase of 0.14 standard deviations. 

 

TABLE 6 [somewhere here] 

 

Finally, Table 6 presents the last set of estimates. These estimates take advantage of the 

fact that if we take logarithm of ECC, we break its components in two parts. The log of λ will 

become part of the constant in the regression, while the negative value of the logarithm of the 

probability that batch h arrives (Prh) will keep the same elasticity coefficient as the ECC. In these 

results the negative value of the logarithm of the probability takes the place of ECC to make the 

signs comparable to the previous results. Column (1) tells us that a one percent increase in the 

ECC (or same as one percent decrease in the selling probability), increases fares by 0.219 

percent. Once more, as illustrated in Columns (2) and (3), the response to ECC is greater in more 

competitive markets. 

 

V. Conclusions 
 

                                                 
19 The results follow from the fact that the marginal effect of ECC on FARE is homogeneous of degree 
zero in λ. The marginal effect holds for any positive value of a: 
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This paper sets to test the empirical importance of the price dispersion predictions 

presented in Prescott (1975), formalized in Eden (1990) and extended in Dana (1999b). The 

basic idea in these theoretical models is that the equilibrium price dispersion can be explained by 

the different selling probabilities associated with each of the units sold. These selling 

probabilities play an important role in industries that face capacity constraints and uncertainty 

about the number of arriving consumers. Although the ideas in Prescott (1975) have been 

extended to multiple areas in the economic literature, few papers attempt to directly test the basic 

predictions due to the difficultness of coming up with an appropriate measure of the selling 

probabilities. 

In particular, the paper seeks to find evidence for the two main predictions. i) Lower 

selling probabilities characterized by higher effective costs of capacity will lead to higher prices. 

ii) This effect will be larger in more competitive markets. We start building a simple theoretical 

framework based on Prescott (1975), Eden (1990) and Dana (1999b) that contains these two 

main predictions. The richness of this simple model comes from the fact that it naturally extends 

to accommodate the calibration of the demand uncertainty and the empirical procedure 

developed later. 

The airline industry landscapes the ideal scenario to test this theory. First, because 

capacity is set and can only be changed at a relatively large marginal cost. Second, the product 

expires at a point in time, and third, there is uncertainty about the demand. The empirical section 

takes advantage of a unique dataset that observes the evolution of prices and inventories of seats 

of 228 flights for over a period of 103 days prior departure. We control for ticket restrictions that 

screen travelers and isolate the effect of the selling probability on prices. 

Using the information on seat inventories, plus calculations of the sold out probabilities 

(based on a second dataset), and the forecasted values of utilization rates (based on a third 

dataset), we are able to construct the distribution of demand uncertainty for each of the 81 routes 

in the sample. With this distribution we generate a measure of the selling probability and the 

effective cost of capacity (ECC) for each of the seats in an aircraft. This allows us to test the 

model by finding out if ECC has any effect on the prices, and if so, how this effect varies with 

market concentration. 

Under various specifications, our empirical tests strongly support both predictions of the 

theory. We show that for the average market structure, when ECC increases by one dollar, fares 

increase by 48 cents, whereas the remaining 52 cents is absorbed by the markup. The elasticity 

specification tells us that one percent increase in the ECC (or same as one percent decrease in the 

selling probability), increases fares by 0.219 percent. Moreover, price dispersion due to costly 
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capacity under demand uncertainty was found to be greater in more competitive markets. The 

idea is that more competitive markets have smaller markups, so an increase in marginal costs 

goes directly to prices. In more concentrated markets where markups are greater, higher costs are 

partially absorbed by the markup and the effect on fares is smaller. In addition, under the 

assumption that carriers do not learn about the state of the demand, our results support a second 

degree price discrimination effect that indicates that buying the ticket one day earlier reduces 

fares by 87 cents. During the estimation the paper takes care of various sources of potential 

endogeneity, building a set of instruments for the market structure and benefiting from the panel 

structure of the data by running a dynamic model. 

Although the dataset collected enjoys some very nice features, it has some drawbacks 

that limit extending the results to the airline industry as a whole. The one-way non-stop ticket is 

only a portion of the tickets sold in each flight, and often it is a small portion. The price schedule 

posted by carriers as the flight date approaches and tickets are sold is a great example of the PED 

models, but in order for the results in this paper to hold for the entire industry, we require that the 

prices of other tickets vary accordingly with the one-way ticket fares. One of the authors 

believed that this is true, but the other was skeptical. Showing this formally is beyond the scope 

of this paper and would require working with a dataset that encompasses more complex 

itineraries. 

 

Appendix 

 
The construction of the instruments follow Borenstein (1989) and Borenstein and Rose 

(1994). In particular, the instrument for ROUSHARE is called GEOSHARE, defined as: 
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with y indexes all airlines and x indexes the observed airline. 1yENP  and 2yENP  are airline y’s 
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This instrument assumes that the concentration of the flights on a route that is not performed by 

the observed airline is exogenous with respect to the price of the observed carrier.  More on these 

instruments can be found in Borenstein (1989) and Borenstein and Rose (1994). 
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Table 1: Summary Statistics 

 Mean Standard 
Deviation Minimum Maximum Observations 

FARE (US$) 291.087 171.879 54.000 1224.000 7933 
DAYADV 52.289 30.154 1.000 103.000 7933 
DIST 1104.380 620.720 91.000 2604.000 7933 
ROUSHASEA .665 .314 .119 1.000 7933 
HHI .684 .287 .259 1.000 7933 
HUB .737 .440 .000 1.000 7933 
SLOT .298 .458 .000 1.000 7933 
DIFTEMP 6.210 4.137 .000 19.000 7933 
DIFRAIN 2.010 1.484 .000 4.900 7933 
DIFSUN 7.911 8.461 .000 45.000 7933 
AVEHHINC (US$) 35580 4620 25198 53430 7933 
AVEPOP 1044072 631862 187704 2897818 7933 
GEOSHARE .674 .324 .025 1.000 7933 
XFLTHERF .708 .285 .252 1.000 7933 
ECC - Censored Normal 1.557 .940 1.000 11.668 7933 
ECC - Censored Normal / 
Constant Sold Out Prob. 1.548 .787 1.000 4.442 7933 

ECC - Censored Uniform 1.453 1.086 1.005 55.887 7931 
Observed Load Factor at 
last obs. of each flight .881 .153 .227 1.000 228 

Observed Sold Out 
Probability .227 .104 .037 .571 81 

Forecasted Load Factor 
(ARMA) .738 .083 .469 .890 81 
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Table 2: Estimation Results for the Censored Normal 

 (1) (2) 

Variables Coefficient t-statistic Coefficient t-statistic  

ECC .092 (13.470) .163 (8.868) 

ECC·HHI   -.091 (-4.388) 

DAYADV -.003 (-12.395) -.003 (12.198) 

DIST .002 (37.285) .002 (37.180) 

DISTSQ -3.4e-7 (-25.577) -3.4e-7 (-25.435) 

ROUSHARE .252 (5.818) .254 (5.866) 

HHI -.079 (-1.660) .066 (1.119) 

HUB -.024 (-1.759) -.026 (-1.868) 

SLOT -.246 (-14.445) -.253 (-14.755) 

DIFTEMP .003 (2.322) .003 (2.341) 

DIFRAIN -.0171 (-33.264) -.174 (-33.305) 

DIFSUN .004 (5.149) .004 (4.987) 

AVEHHINC 1.7e-5 (12.562) 1.7e-5 (12.515) 

AVEPOP -1.2e-7 (-11.844) -1.2e-7 (-11.554) 

Carrier FE Yes Yes 

Flight FE No No 

Period FE No No 

R-square .482 .484 

The results reported here are obtained using GEOSHARE as the excluded 
instrument variable for ROUSHARE and XFLTHERF as the excluded 
instrument variable for HHI.  
The independent variable is log(FARE), N = 7933 with 228 routes. t-
statistics (in parenthesis) are based on White robust standard errors. 
Carrier fixed effects not reported. The estimation was carried out with an 
unbalanced panel of 7933 observation because some fares were no longer 
available for flights that sold out a couple of days before departure. The 
missing observations account for less that 0.6 percent of the sample and 
we don't expect this to bias the estimates. 
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Table 3: Summary of Robustness Checks 

 (1) (2) (3) 

 Censored normal Censored uniform 
Censored normal 

Arellano and Bond 

Variables Coefficient t-statistics Coefficient t-statistics Coefficient z-statistics 

LNFARE(-1)     .589 (43.103) 

ECC .175 (11.883) .520 (11.512) .185 (12.131) 

ECC·HHI -.134 (-8.058) -.519 (-11.503) -.122 (-6.403) 

DAYADV -.003 (-24.023) -.003 (-25.687) -4.3e-4 (-4.055) 

Carrier FE No No No 

Flight FE Yes Yes Yes 

Period FE No No No 

R-square .865 .876 n.a. 

The independent variable is log(FARE), N=7933 for columns (1) and (2), and 7472 for column (3) with 
228 cross sectional observations in all cases. t-statistics is based on White robust standard errors. The 
construction of the ECC is based on the censored normal in column (1) and (3) and is based on the 
censored uniform on Column (2). 
 

 

 

Table 4: Nonlinearities in Time 

 (1) (2) (3) 

 Censored normal Censored normal Censored normal 

Variables Coefficient t-statistics Coefficient t-statistics Coefficient t-statistics 

ECC .121 (8.155) .097 (6.634) .096 (6.561) 

ECC·HHI -.113 (-6.960) -.105 (-6.592) -.106 (-6.699) 

DAYADV -.010 (-18.502) -.024 (-18.802)   

DAYADVSQ 6.4e-5 (14.920) 3.8e-4 (15.800)   

DAYADVCU   -1.9e-6 (-14.318)   

Carrier FE No No No 

Flight FE Yes Yes Yes 

Period FE No No Yes 

R-square .870 .875 .880 

The independent variable is log(FARE), N=7933 with 228 cross sectional observations. t-statistics based 
on White robust standard errors. The construction of the ECC is based on the censored normal. 
DAYADVSQ and DAYADVCU are DAYADV square and cube respectively. 
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Table 5: Sensitivity to Sold-out Probabilities 

 (1) (2) (3) 

 Censored normal Censored normal Censored normal 

 sold-out prob +10 percent Sold-out prob +20 percent Sold-out prob +30 percent 

Variables Coefficient t-statistics Coefficient t-statistics Coefficient t-statistics 

ECC .290 (11.784) .430 (11.387) .611 (10.553) 

ECC·HHI -.203 (-7.245) -.301 (-7.037) -.451 (-6.923) 

DAYADV -.003 (-20.133) -.003 (-18.398) -.003 (-17.989) 

Carrier FE No No No 

Flight FE Yes Yes Yes 

Period FE No No No 

R-square .864 .863 .862 

The independent variable is log FARE, N=7933 with 228 cross sectional observations. t-statistics based on 
White robust standard errors. The construction of the ECC based on the censored normal with different 
sold out probabilities across routes. Columns (1), (2), and (3) increase the sold out probability in each or 
the routes by a lump sum 10, 20, and 30 percent respectively. 
 

Table 6: Elasticities 

 (1) (2) (3) 

 Censored normal Censored normal 
Censored normal 

Arellano and Bond 

Variables Coefficient t-statistics Coefficient t-statistics Coefficient z-statistics 

LNFARE(-1)     .592 (43.385) 

(-)LN(Pr) .219 (15.644) .398 (12.177) .397 (10.331) 

(-)LN(Pr)·HHI   -.252 (-6.722) -.201 (-3.947) 

DAYADV -.002 (-17.985) -.002 (-17.691) 1.1e-4 (.863) 

Carrier FE No No No 

Flight FE Yes Yes Yes 

Period FE No No No 

R-square .850 .855 n.a. 

The independent variable is log(FARE), N=7933 for columns (1) and (2), and 7472 for column (3) with 
228 cross sectional observations in all cases. t-statistics based on White robust standard errors. The 
construction of the ECC based on the censored normal.  
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Figure 1 

Fares and Load Factors at Different days from Departure 

(Flight AA 323 ATL-DFW) 
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Figure 2 

Average Fares at Different Days from Departure 

 
 

Figure 3 

Nonparametric Regression of Daily Sales on Days Prior Departure 
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Figure 4 

Probability that seat h gets Sold (MCO-LGA) 

 
 
 

Figure 5 

Fares and Effective Cost of Capacity at Different Days Prior Departure 
(Flight AA 323 ATL-DFW) 

 




