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“Musicians cannot be tone-deaf; football players tend to be large; while lawyers, and 
many economists, have a propensity to talk. 
 

What matters for economic allocations in all of these cases are the direct 
manifestations of tastes.”   

 
 -- Sherwin Rosen (2002, p. 9)  

 

I.  Introduction 

 A central implication of an equalizing differences equilibrium in the labor market 

is that workers should sort themselves into jobs with different attributes based on their 

preferences for those attributes.  Workers who enjoy interacting socially, for example, 

should seek jobs that entail frequent interactions with co-workers or customers, while 

workers who are introverted by nature should eschew such jobs, all else being equal.  At 

the same time, it is in employers’ interests to search for gregarious workers when they 

seek to fill vacancies for jobs that require social interactions, and to search for more 

reclusive personalities when they seek to fill jobs that require social isolation.  The extent 

of worker sorting by preferences has implications for many labor market policies and for 

economic theory.  For example, if risk-loving workers are in jobs that have a higher risk 

of layoff, then the optimal level of unemployment insurance is lower than if workers are 

randomly sorted across jobs based on their risk aversion.  The extent of sorting in the 

labor market based on tastes -- a simple yet fundamental feature of a competitive labor 

market -- has not been adequately tested, however, owing primarily to the difficulty of 

assessing workers’ preferences toward work attributes.1   

                                                 
1 One paper that studies sorting by tastes is Viscusi and Hersch (2000), who find that smokers are more 
likely than nonsmokers to be employed in industries with high injury and illness rates.  It is unclear, 
however, whether smokers have a preference for risk generally, or whether they have addictive 
personalities.   
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 In this paper, we present evidence on whether workers who are more gregarious, 

as revealed by their behavior when they are not working, tend to be employed in jobs that 

involve more social interactions.  Because psychologists find that the tendency to be 

introverted or extroverted is a persistent personality trait (see Roberts and DelVecchio, 

2000 for a review), and because many employers administer personality tests specifically 

to identify extroverted job applicants for some positions (Hough and Oswald, 2000), we 

consider this a worthwhile attribute to study.  We conduct our analysis using three new 

data sets on the time use of working women in the United States and France.  We also 

assess the reliability of our measures using a fourth data set that consists of workers who 

were interviewed twice, two weeks apart.  By examining how individuals spend their 

time while they are not working, we are able to infer something about their preferences.

 In each data set, we find a significant and sizable relationship between the 

tendency to interact with others off the job and while working.  In addition, people’s self-

descriptions of their jobs and their personalities seem to accord reasonably well with their 

time use on and off the job.  The results suggest that sorting of workers and jobs based on 

personality types and work attributes does take place, although it is unclear if the extent 

of sorting reaches the efficient level.  Our results complement those in recent work by 

Borghans, ter Weel and Weinberg (2006a, 2006b), who find that workers who report 

being more sociable as youths tend to be employed in occupations that involve more 

people skills as adults.  Extensive sorting by tastes could explain why compensating wage 

differentials for many work attributes are often found to be small or zero (e.g., Brown, 

1980), although sorting cannot account for the weak evidence for compensating wage 

differentials for working conditions that are universally disliked or liked.   
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 Lastly, we provide direct evidence of the relationship between job characteristics 

and two measures of worker job satisfaction: global job satisfaction and mood during 

work episodes.  Our results indicate that workers who are in jobs that entail more 

frequent interactions with coworkers, low perceived risk of layoff, and higher hourly pay 

are more satisfied with their jobs and in a better mood during work time than workers in 

jobs without these characteristics, while workers in jobs with time pressure, constant and 

close supervision, and little variability from day to day are less satisfied with their jobs 

and in a worse mood during work.  We further find some evidence that in terms of 

subjective well-being, more extroverted workers, as revealed by how they spend their 

time while off work, gain more from jobs that involve frequent interactions with 

coworkers than do workers who are less extroverted.  To the extent that our data 

represent workers’ utilities, the estimates imply that workers should be willing to 

sacrifice large amounts of income for more desirable working conditions, on average.  

 In the next section, we briefly summarize the main implications of equalizing 

differences for sorting.  In Section III we describe our data.  Section IV presents our main 

findings and considers issues of the reliability of the data.  Section V provides an analysis 

of how the opportunity for social interactions on the job and other working conditions 

affect workers’ reported job satisfaction and their emotional experiences while at work.  

Section VI offers concluding remarks.   
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II.  Sorting and the Labor Market 

 We borrow liberally from Rosen’s (1986) model of equalizing differences to 

illustrate the role of sorting of workers over jobs with varying social requirements.2  

Define S as the percentage of the day that a job requires  a worker to be engaged in 

conversations with customers, clients or co-workers.  For now, we assume workers are 

productively homogenous, and ignore all other work attributes.3  To simplify, suppose S 

takes on two values, 0 or 1.  We will focus on the employee side of the matching market, 

so we take it for granted that by the nature of technology and costs some employers 

choose to offer jobs with S=1 and others with S=0.4  For example, the job of telemarketer 

naturally involves a great deal of interaction with customers, while the job of night 

security watchman involves little contact with others.   

 Write a worker’s utility function as U(W,S), where W is the wage rate.  There is 

no saving, so consumption equals the wage.  The wage has a positive effect on utility for 

all workers, while utility rises with S for some workers and falls with S for others.  In our 

data, the average worker appears happier when interacting at work than when not (as long 

as the interaction is not with their boss), so U(W,1) > U(W,0) for most workers, but 

                                                 
2 A referee has pointed out that the model underlying our analysis is also similar to Tinbergen (1956), who 
presents a model in which workers are differentiated by the extent to which they possess a certain 
productive characteristic, such as intelligence. Jobs that utilize this characteristic are in fixed supply in 
Tinbergen’s model.  Workers who are on jobs that do not fully utilize their productive characteristic receive 
a compensating differential for this mismatch. One can think of a tendency toward extroversion as a 
productive attribute (at least for some jobs), and extroverted workers who do not get to fully use their social 
skills on the job, or introverted workers who are asked to engage in more social interactions than they are 
comfortable with, demand a compensating payment as a result.   
3 Notice that we are treating a worker’s tendency to be extroverted or introverted as a taste.  We do so 
because extroversion is identified in the psychology literature as a personality trait, and because people 
engage in social interaction to varying degrees while not working.  From an employer’s perspective, a 
tendency to extroversion could also be thought of as a productive skill in some jobs.  
4 A more complete model would allow for a distribution of employers’ costs for providing or eliminating S.  
This would add very little to our story about sorting of workers as long as enough employers find it 
unprofitable to switch from S=0 to S=1 jobs given the nature of their technology and business.   

 5



clearly some people find interactions more stressful than others, and for some it may be 

that U(W,1) < U(W,0).5   

 Define z as the compensating variation necessary for a worker to be indifferent 

between accepting a job with S=0 or S=1.  That is, implicitly define z by the equation 

U(W1+z,0) = u(W1,1).  The z that makes a worker indifferent between the two types of 

jobs is her reservation compensating wage differential.  If the offered wage differential 

between S=0 and S=1 jobs, denoted ΔW = W0 - W1, is less than z for a particular worker, 

that worker would prefer to be in a job with S=1.  And if ΔW > z, that worker would 

prefer to be in an S=0 job.  Notice that z is a personal taste variable that differs over 

members of the labor force.  Extroverted workers have higher values of z than introverted 

workers.  Denote the probability density function of z across members of the labor force 

as g(z) and the cumulative distribution of z as G(z), and normalize the total labor force to 

1.  Then the supply of workers to S=0 jobs is  and the supply to S=1 

jobs is 1-G(ΔW).   

∫
Δ

Δ=
W

WGdzzg
0

)()(

 In equilibrium, the number of workers in S=1 jobs depends on the distribution of 

the cost to firms of modifying jobs.  But the sorting of workers should be clear: workers 

who have a taste for social interaction (high z) will seek jobs that entail frequent contact 

with customers, clients or co-workers and firms that offer jobs with high S will seek such 

workers, while workers with little taste for social interaction (low z) will seek jobs that 

entail a more solitary work environment.  If g(●) is normal, then we have the familiar 

selection bias term as the discrepancy between the conditional and unconditional 

expectation of z given S: 
                                                 
5 See Saffer (2005) for further evidence that individuals receive consumption value from social interaction.   
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where zμ  and σ  are the unconditional mean and standard deviation of z, and )(•φ  and 

are the normal probability density function and cumulative distribution function.)(•Φ 6   

 The extent of social interactions that a worker engages in while not working is a 

plausible proxy for z.  To test for sorting by preferences, we examine whether workers 

who have frequent contact with others while on the job also tend to interact relatively 

frequently with others while they are not working.   This test implicitly makes the 

assumption that other worker preferences are unrelated to the tendency to extroversion, or 

are not related to working conditions.  While the latter is not plausible, we can control for 

some other aspects of workers’ preferences (e.g., self-reported joy from reading) in one 

of our data sets.   

 

III.  Data   

 Our analysis makes use of four time-use data sets that we collected as part of a 

project on subjective well-being.  All of the data sets have a similar structure.  The data 

were collected using the Day Reconstruction Method (DRM), which asks respondents to 

segment their preceding day into episodes as if they were going through a movie, and 

then to briefly summarize each episode in a diary.7  Next respondents describe each 

episode by indicating: (1) when the episode began and ended; (2) what they were doing, 

by checking as many activities that applied from a list of 16 possible activities (plus 

other) that included working, watching television, socializing, etc.; (3) where they were; 

                                                 
6 A pioneering application of the normal selection-bias model is Gronau (1974).   
7 Kahneman, et al. 2004 provide a discussion of the development of the DRM.  The questionnaire is 
available from http://sitemaker.umich.edu/norbert.schwarz/files/drm_documentation_july_2004.pdf.   
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(4) whether they were interacting with anyone (including on the phone, in teleconference, 

etc.); and (5) if so, whom they were interacting with (boss, co-workers, 

clients/customers/students/patients, friends, spouse, children, etc.).  Respondents next 

reported how they felt during each episode on selected affective dimensions (such as 

happy, frustrated, angry, enjoyment), using a scale from 0 to 6, where 0 signifies that the 

emotion was not experienced at all and 6 signifies that it was very strong.   

Texas DRM.  This DRM approach was first applied to a sample of 909 working 

women in Dallas and Austin, Texas who reported on their experiences during a workday 

in November 2001.  (See Kahneman, et al., 2004 for more details about the sample and 

method.)  The data set, which we henceforth call the “Texas DRM”, consists of 535 

respondents who were recruited through random selection from the driver’s license list 

plus a screen for employment and age 18-60, and another 374 workers in three 

occupations: nurses, telemarketers and teachers.  A flag identifies the over-sampled 

occupations.  Although the results are similar, we mostly work with the randomly 

selected subsample.  Subjects were paid $75 for filling out the questionnaire, which 

usually took 45 minutes to 75 minutes to complete. Table 1 provides some descriptive 

statistics for the sample.   

Re-Interview Sample.  A slightly modified version of the original DRM was used 

for the other two samples.  In this version, respondents were asked: (1) when the episode 

began and ended; (2) where were you? (3) “Were you alone?”  (4) “Were you talking 

with anyone?” (5) With whom were you talking or interacting (list includes customers, 

co-workers, boss, friends, etc.)?  (6) What were you doing (check all that apply)?  For the 

last question, the list of activities available to choose from was expanded and included 
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“talking, conversation” in addition to “working” and 20 other activities.  Again, 

respondents could check more than one activity.8   

This modified version of the DRM was administered to a sample of 229 women in 

Austin, Texas who were interviewed on two Thursdays a fortnight apart in March and 

April 2005 to examine the reliability of the data.  Henceforth, we will call this the “Re-

Interview Sample”.  Respondents were recruited by random selection of women from the 

driver’s license list in Travis County, Texas.  The sample was limited to employed 

individuals between the age of 18 and 60.  Respondents were paid $50 upon completing 

the first questionnaire and an additional $100 upon completing the second one for a total 

of $150. The interview dates were two Thursdays, March 31, 2005 and April 14, 2005. 

Following the DRM procedure, participants reported on the previous day, which were 

Wednesdays in this case.  Completion times for the self-administered instrument ranged 

from 45 to 75 min.  Average age was 42.8 years and median household income category 

was $40,000-$50,000.   

Columbus and Rennes Samples.  In May and June of 2005 we administered the 

same questionnaire as used in the reliability survey to a sample of 810 working and 

nonworking women in Columbus, Ohio, who were recruited by random digit dialing, and 

to another sample of 820 working and nonworking women in Rennes, France, who were 

also recruited by random digit dialing.9  (For the latter survey, the questionnaire was 

translated into French.) The Rennes and Columbus questionnaires also pertained to a  

                                                 
8 The questionnaire is available at 
http://homepage.mac.com/WebObjects/FileSharing.woa/30/wo/uWFtDYyXwzkg3RSc.1/0.2.1.2.26.31.97.0
.35.0.1.1.1?user=dschkade&fpath=WB structure supplemental&templatefn=FileSharing1.html. 
9 Respondents were paid $75 for completing the questionnaire in the Columbus survey and 50 Euros 
(approximately $60 at the time) in the Rennes survey.  
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single day, which was a weekend for one third of respondents and a weekday for the 

remainder.10  We limit the sample used below to workdays.   

In addition to time-use information, respondents provided demographic 

information and answered personality-type questions, such as whether they enjoy being 

with other people.  The Texas DRM survey also contained additional questions about 

work, including occupation and subjective information about the nature of the 

respondents’ main job, such as whether “frequent interactions with co-workers is an 

important part of my job” and whether the respondent “can chat with others while on 

job.”   

Using the Texas DRM sample, we computed the proportion of time that each 

individual was not interacting with someone else during non-work episodes.  We also 

computed the proportion of time during non-work episodes that was spent interacting 

with a friend.  To measure the extent of interaction on the job, we computed the 

proportion of time each respondent spent interacting with co-workers, customers, clients, 

students, patients or their boss during episodes that involved work.11   

These variables were computed in a somewhat different fashion in the other data 

sets, because the activity list enabled respondents to indicate if they were talking or 

engaged in conversation during each episode, and because of the different phrasing of the 

interaction question.  For the Columbus, Rennes and Re-Interview samples, we computed 

                                                 
10 The questionnaires are available at 
http://homepage.mac.com/WebObjects/FileSharing.woa/30/wo/uWFtDYyXwzkg3RSc.1/0.2.1.2.26.31.97.0
.35.0.1.1.1?user=dschkade&fpath=WB structure supplemental&templatefn=FileSharing1.html. 
11 Note that an episode that involved worked is potentially different from an episode that took place at 
work.  Some episodes at work (e.g., lunch, coffee break) do not involve work, and are not included in our 
universe of episodes that involve work.  In the Texas DRM data, 10.6 percent of the time spent at work did 
not involve working; most of this time was spent eating or socializing.  Hamermesh (1990) reports that 8 
percent of work plus break time consisted of break time in 1975-76.   
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the proportion of time that each individual was alone while not working, and the 

proportion of time spent talking or engaged in conversation during work episodes.   

Table 1 presents summary statistics for the three main analysis samples.  The 

median episode duration was 45 minutes. According to the definition used in the Texas 

DRM, almost 90 percent of work time is spent interacting with others.  Because this 

figure is so high, we have computed this variable differently in the other data sets, e 

xplicitly requiring that the respondent checked that she was talking or in a conversation 

during a work episode to classify the episode as involving a social interaction.  (If we use 

a definition that comes as close as possible to that used for the Texas DRM, we find that 

72 percent of work time in Columbus and 62 percent of work time in Rennes involved 

interacting with customers, co-workers or the boss.)  Forty-four percent of working time 

in Columbus and 34 percent of working time in Rennes was spent talking or in 

conversation.   

Interactions are less common off the job than on the job, but still make up a 

majority of the time.  According to the Texas data, for example, 57 percent of the time 

that people are not working they are interacting with someone.  Sixteen percent of 

nonworking time is spent interacting with friends.  A slightly different concept was used 

in the Columbus and Rennes data.  In both cities, we find that workers are alone about a 

third of the time when they are not working, and are interacting with friends about 11 

percent of the time when they are not working.   

Based on the Bureau of Labor Statistics’ American Time Use Survey (ATUS), 46 

percent of women’s non-work time (on days in which they worked at least one hour for 

 11



pay) is spent alone, and 6 percent of non-work time is spent in the company of friends.12  

These figures are not terribly far out of line from what we find with the DRM data.  

Unfortunately, the ATUS does not ask whether individuals are alone or with someone 

while they are at work so the analysis presented below cannot be conducted with the 

ATUS.   

Tables 2a and 2b provide some evidence that individuals’ descriptions of 

themselves and their jobs correspond to their actual time allocation.  Specifically, in the 

Texas DRM we asked respondents whether people who knew them would say the 

respondent enjoys being in the company of other people less than others, about average, 

or more than others.  Respondents who answered much less or less did indeed spend less 

time with others when they were not working (See Table 2a).  We found a similar pattern 

in the Columbus and Rennes surveys.  In addition, in those surveys we asked, “How 

much pleasure and joy do you get from each of these domains of life?”  Friends was one 

of the domains inquired about. Those who marked that they received “a lot” of pleasure 

and joy from friends did spend a higher proportion of non-working time in the company 

of friends than did those who marked “some” or “little or none”.   

In the Texas DRM we also asked respondents the extent to which the following 

statement described their situation at work: “Frequent interactions with co-workers is an 

important part of my job?”  Table 2b reports the average proportion of working time 

involving no interactions, or interactions with co-workers by responses to this job 

descriptor.   Those who answered “definitely yes” spent 80 percent of their working time 

on the reference day interacting with co-workers, while those who answered “definitely 

not” spent 58 percent of their time interacting with co-workers.   
                                                 
12 We are grateful to Marie Connolly for these tabulations from the ATUS.   
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Together, these results give us some reason to believe that our time-use measures 

do reflect social engagement during individuals’ work and non-work activities.   

 
IV.  Empirical Results on Sorting 
 
A. Texas DRM  
 
 Table 3 reports estimates of Tobit models where the dependent variable is the 

proportion of time spent interacting at work using the Texas DRM sample.  The statistical 

model allows for censoring at 0 or 1.  The key explanatory variable is the proportion of 

time that the individual was not interacting with someone else during non-work episodes 

(columns 1 and 2), or the proportion time the individual was interacting with a friend 

during non-work episodes (columns 3 and 4).  Either measure of a person’s “sociability 

off work” has the expected relationship with the amount of time spent interacting at 

work.13  The effects are also sizable: a 10 percentage point increase in the share of time 

spent interacting while not working is associated with a 5 percentage point increase in the 

share of time interacting at work in column 1.   

 Variables such as education, marital status, age and tenure are included as 

explanatory variables in columns 2 and 4.  The rationale for including these variables is 

that they may be related to worker productivity, and sorting by tastes is predicted to take 

place among workers who are equally productive.  For purposes of estimating the extent 

of sorting, however, it is unclear whether all of these variables should be held constant.  

For example, suppose marriage is unrelated to productivity for women, but more 

gregarious women are more likely to become married (and also more likely to interact 

                                                 
13 If we restrict the sample to those who said the reference day was a typical day, the coefficient on non-
interacting time in columns 1 and 2 tends to rise while the coefficient on interaction time with friends in 
columns 3 and 4 tends to fall.  In neither case is the qualitative conclusion different, however.   
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with someone off the job) and more likely to work on a job that requires social 

interaction.14  In this case, we would be over-controlling for tastes.  Nonetheless, we find 

that our proxies for sociability off work remain significantly related to the extent of social 

interactions on the job despite controlling for the effects of these other variables.   

 Age is of particular interest because individuals’ may become more or less 

extroverted over time.  Interactions at home and at work both fall with age.  One concern 

is that people may become more extroverted over time if they are employed in a job that 

requires interactions.  If we interact age with proportion of time not interacting or spent 

with a friend while away from work we get mixed results, however.  Both interaction 

terms are negative, but neither is statistically significant.   

 Some of the additional variables are of interest for their own sake.  Hispanic 

workers spend about 25 percent less of their working time interacting with others than do 

non-Hispanic workers.  Controlling for 19 occupation dummies has no effect on this 

differential.  This finding may, in part, be a manifestation of language differences that 

reduce communication opportunities for Hispanics at work.  Unfortunately, we did not 

collect information on facility with English.  More than language may be at work, 

however, because we also find that Hispanics are less likely than non-Hispanics to spend 

time interacting with friends or others off work, where they presumably could interact 

with Spanish speakers.   

 Union members also spend less time interacting with others at work than do non-

union members.  Unlike Hispanic workers, however, union members are not less likely to 

                                                 
14 In case you were wondering, married women spend 9 percent (p=.025) more time interacting with 
someone when they are not at work than do single women.  Married women spend considerably less time 
interacting with friends when not working than do single women, however, which is part of the reason why 
adding the covariates has a different effect on off-work sociability in column 2 than column 4.   
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interact with friends or others when they are off work.  The lower proportion of work 

time spent interacting by union members may partially explain why union members 

typically report lower job satisfaction than nonunion members, a phenomenon first 

documented by Freeman (1978).  Work interactions tend to decline with company tenure, 

while time interacting with others away from work is unrelated to tenure.  Lastly, older 

workers are less likely to interact with others while working and while not working.   

 We have also looked at the extent of interaction during work episodes by 

occupation, assigning 19 two-digit Census occupation codes to the data.  An F-test of the 

null hypothesis that occupation dummies jointly have no predictive power for the 

proportion of time spent interacting at work has a p-value of .026.  Because the sample 

sizes are small, however, the occupational estimates are very imprecise and the results 

should be taken with a large grain of salt.  With that caveat in mind, we find that the legal 

profession (which includes legal support jobs) and healthcare practitioners have the 

highest rates of interaction at work for an occupation with more than 20 observations, 

which seems plausible.   

 To provide an independent assessment of the extent to which jobs involve social 

interactions, we assigned each worker’s job a “sociability score” based on the O’Net 

Dictionary of Occupational Titles.  The O’Net book contains detailed descriptions of the 

work activities and personality traits required for various occupations.  We linked 

workers to an occupation in the O’Net guide based on their description of their job duties 

and titles, and assigned a score ranging from 1 to 4 indicating the sociability of the job 

based on the description in O’Net.  For example, elementary school teachers were 

assigned a 4 (most social/extroverted job) based on their job description in O’Net, which 
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lists "social" as the first attribute under "Personality Type", and under "General Work 

Activities" lists "establishing and maintaining relationships" and "communicating with 

persons outside organization" and lists “speaking” as a required skill.  Other descriptions 

used to gauge the social skills used on the job included "working with others," 

"communicating with internal groups, " and "oral expression".  This process undoubtedly 

produced some mismatches between workers and occupations and necessarily involved 

judgments about job sociability based on the descriptions in O’Net, but the resulting 

measure has the virtue of being derived independently of the earlier work-related 

sociability data and, in principle, pertains to social skills required to do the job well.   

Figure 1 presents the average percentage of non-work time spent interacting with 

friends by the sociability score derived from O’Net.  Despite the crudeness of the data, 

there is a tendency for workers who are in jobs that are ranked higher on the job-related 

sociability scale to spend more time interacting with friends while they are not at work.  

The correlation at the individual level is 0.10 (p < 0.05), which is not overwhelming but 

nonetheless suggests that workers who are on jobs that require more social interactions 

tend to spend a greater proportion of their non-work time interacting with friends.   

  

B. French-American Data 

Next we consider the data from Columbus, Ohio and Rennes, France.  Two-limit 

Tobit models for the proportion of time spent talking or engaged in conversation during 

work episodes are presented in Table 4a for Columbus and Table 4b for Rennes.  A test 

of the hypothesis that the two samples can be pooled is rejected for each model at the 

0.01 level.   
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 The model in column 1 shows that workers who spend more time alone while not 

working are less likely to engage in conversations while on the job.  The effect is 

attenuated when demographic variables are included in the model in column 2, especially 

marital status, but, as mentioned, marital status may be related to workers’ 

gregariousness.  The fraction of time spent interacting with friends has a positive effect 

on interactions at work that is almost statistically significant for the Columbus sample, 

but it is small and insignificant in the Rennes sample.   In Columbus, we find an even 

larger gap in interactions at work for Hispanic workers15 than we found for the Texas 

sample, although this result should be treated extremely cautiously given that there were 

only 6 Hispanic workers in the Columbus sample.  We also find that married workers are 

more likely to engage in conversations while working.16   

Unlike in the simple model of sorting that was used to motivate this paper and our 

estimates so far, workers’ tastes are not unidimensional.  It is possible that workers who 

have a preference for social interactions may also have preferences over other working 

conditions.  Depending on the variance of preferences and the correlation among 

workers’ preferences, one does not necessarily have to find hierarchical sorting along 

tastes for extroversion and the social nature of jobs.  The Columbus and Rennes data sets 

include a large set of other self-reported preference-type variables.  As a partial check on 

the sensitivity of our results to controlling for a wider set of workers’ preferences, in 

results not shown here we included the workers’ self-reported pleasure and joy on a 

three-point scale (“little or none”, “some”, and “a lot”) from reading, spiritual and 

                                                 
15 In France it is illegal to collect ethnicity information and thus we have no comparable results for the 
Rennes sample. 
16 While not working, married women in both Columbus and Rennes spend 17 percent less of their time 
alone than do single women.  At the same time, married women spend 6 percent less of their non-work time 
with friends than do single women in Columbus, and 7 percent less in Rennes.   
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religious life, art, food and eating, nature, television and taking walks.  These variables 

were jointly statistically insignificant when they were included in each of the models in 

Tables 4a and 4b, and their inclusion hardly changed the magnitude of the off-work 

extroversion measures.  Thus, controlling for these limited measures of preferences over 

other attributes that might be related to some jobs do not appear to alter the pattern of 

sorting by tendency toward extroversion.   

A final point worth nothing is that despite the greater extent of government 

intervention in the French than in the American labor market, and the higher rate of 

unionization in France, there is no sign in these results that sorting in the labor market 

along lines of the propensity for social interactions is less efficient in Rennes than in 

Columbus.  If this finding can be replicated in other data sets, it could provide insights 

into the workings of labor market rigidities and comparative labor market institutions.   

 
C.  Limits of One Working Day  
 
 A potential concern is that the data we use to estimate the extent of social 

interactions by workers while they are working and not working are noisy because the 

data pertain to just one day in the life of the individuals in the sample.  How 

representative is one working day?  To assess this question, we analyzed a sample of 207 

women who worked on both reference days in the reliability sample.  The version of the 

DRM used in these surveys is virtually identical to that used in the Columbus and Rennes 

surveys.     

 Table 5 reports the correlations and means of key variables used in the study: the 

proportion of the day alone, the proportion of the day talking, and the proportion of the 

day spent in the company of friends.  The variables are computed over working episodes 
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and over non-working episodes, and the first two variables are also computed over the 

entire day.  The good news is that the key explanatory variable in Tables 4a and 4b, the 

proportion of time spent alone while not working, has the highest autocorrelation: 0.64.  

This suggests there is a reasonable amount of signal in one day’s measure of 

reclusiveness, but the coefficients are nonetheless attenuated because of noise inherent in 

using one day’s experience to infer a person’s personality.  The correlation between the 

proportion of non-work time spent with a friend is just 0.32.  This figure would no doubt 

be higher if we aggregated over a week, for instance.  For most people there is much day-

to-day variability in getting together with friends after work.  The effect of this variable is 

probably severely attenuated in the regressions.   

The dependent variable, the proportion of working time spent talking has a 0.44 

autocorrelation two weeks apart.  If one day’s fluctuations in interactions at work is just 

white noise, then the precision of the estimates will be reduced but they should still be 

unbiased.  To reduce the noise, we averaged over each day in the Reliability Data Set and 

regressed the average proportion of time talking during work episodes on the average 

proportion of time spent with friends during non-work episodes.  The slope coefficient 

from this bivariate regression is 0.342 with a standard error of 0.156.17  If the same 

regression is estimated just using Session 1 data, the coefficient (standard error) is 0.273 

(0.149) and if it is estimated for Session 2 the coefficient (standard error) is 0.224 

(0.149).  If the first period proportion of time spent with friends is used as an instrument 

for the second period proportion of time with friends in an Instrumental Variables 

regression that uses the second period proportion of time talking at work as the dependent 

                                                 
17 If we use the average amount of time spent alone while not working as the explanatory variable, the 
coefficient (standard error) is -.115 (0.101).     
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variable, the coefficient is considerably larger: 1.003 (0.493).  All of these results suggest 

that noise has attenuated our earlier estimates.    

 An alternative way to avoid relying on one day’s measures is to use individual’s 

own descriptions of their jobs and personalities.  As was shown in Tables 2a and 2b, 

these measures are correlated with objective circumstances on and off the job.  If we use 

the Texas DRM data to regress individuals’ assessments of whether “Frequent 

interactions with co-workers is an important part of my job?” on their assessments of 

whether people they know would say that they enjoy being in the company of others, we 

find a significant and positive relationship (r=.11; p=.01).  Reliance on self-reported 

personality and job traits is common in the personnel selection literature.  We consider a 

focus on actual time allocation to be a contribution of our study, but it is nonetheless 

reassuring that we find sorting based on a tendency for extroversion when we use self-

reported data as well.   

 

V.  Work Satisfaction and Affect at Work 

 We measure individuals’ net affect or mood as the average of the positive 

emotions less the average of the negative emotions recorded for each episode in the 

DRM.  Emotions are reported on a scale of 0 (not at all) to 6 (very much part of the 

experience).  Positive emotions are “happy” and “enjoying myself” and negative 

emotions are “impatient for it to end”, “frustrated/ annoyed”, “depressed/blue”, 

“worried/anxious” and “angry/hostile”.  These emotions were selected because they do 

not necessarily require social interaction to be present.   
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 Table 6 reports average net affect during episodes that involved selected work and 

non-work activities for the full sample and random subsample of the Texas DRM survey.  

Notice that, on average, work is ranked as a relatively unpleasant activity and leisure 

activities such as socializing and exercising have relatively high net affect ratings.  This 

pattern is not surprising – and, indeed, presumably it is the reason why wages are positive 

– but it contrasts with earlier research based on more general questions about enjoyment 

with various activities (Juster, 1985 and Robinson and Godbey, 1997).  Juster (1985), for 

example, finds that work ranks near the middle of activities in terms of enjoyment.  The 

difference appears to stem from our using a recall diary method as opposed to Juster’s 

use of an overall domain satisfaction approach, in which people’s subjective theories 

about their lives probably play a larger role.   

 Average net affect during work episodes that involve interactions with the boss is 

particularly low, while net affect is higher during interactions with customers, clients, 

students or patients.  Workers in the full sample report especially low affect when they 

are working alone.  All of the averages in Table 6 are potentially affected by sorting, as 

not every worker engaged in each activity.     

 Another limitation of self-reported feelings like those in Table 6 is that 

respondents may utilize the scales in idiosyncratic ways.  We therefore examined the 

pattern of net affect during various types of work interactions after removing individual 

fixed effects.  Specifically, we regressed net affect during each episode on three dummy 

variables indicating whether that episode involved an interaction with the boss, co-

workers, or clients, customers, students and patients, and a set of unrestricted individual 

fixed effects.  This fixed effects model is identified by workers who had at least one work 

 21



episode involving social interactions and at least one work episode without interactions 

on the survey reference day.  Within a person’s work day, we find that interactions have a 

large effect on net affect.  For the random sample, compared with not interacting with 

anyone, net affect was 0.53 (0.14) points lower when an episode involved interacting 

with the boss, 0.24 (0.12) points higher when co-workers were interaction partners and 

0.40 (0.18) points higher when customers, clients, students, or patients were involved.    

 Table 7 presents estimates of regression models at the individual level using the 

Texas DRM sample.18  The dependent variable in column (1) is responses to a 

conventional work satisfaction question: “Overall, how satisfied are you with your 

present job?”  Response categories were not at all satisfied, not very satisfied, satisfied, 

and very satisfied.  A score from 1 to 4 was assigned to these answers, and then the 

responses were rescaled to have a unit standard deviation.  Many previous studies (e.g., 

Freeman, 1978, Helliwell and Huan, 2005) have examined the determinants of global 

work satisfaction.  The dependent variable in column (2) is duration-weighted net affect 

while at work.  This measure should provide a closer approximation of workers’ actual 

emotional experiences on the job than reported work satisfaction.  Net affect is composed 

of the same emotions as in Table 6.  For comparability to work satisfaction, net affect 

was rescaled to have a unit standard deviation in the regressions.   

A rich set of working condition variables is available to model subjective well-

being at work.  Table 7 reports results using a dozen working conditions as explanatory 

variables, including the extent to which the respondent stated that her situation at work 

was described by “frequent interactions with co-workers,” “constant and close 

                                                 
18 To increase the sample size, results are reported for the full sample.  If we restrict the data to the random 
subset, however, the main results are qualitatively similar.   
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supervision” and “flexible work hours”.  Four responses categories ranging from 

“definitely not” to “definitely yes” were provided, and answers were scaled from 0 to 1, 

with 0 indicating definitely not and 1 indicating definitely yes.  Thus, the coefficients 

indicate the change in work satisfaction or net affect in standard deviation units 

associated with a change from the working condition being definitely absent to definitely 

present.  The regression models also control for the log hourly wage, education and 

demographic characteristics.   

  The working condition variables generally have their expected signs, although 

there are a few notable exceptions.  Most importantly for our purposes, having a job that 

allows frequent interactions with co-workers is positively associated with work 

satisfaction and with net affect while at work, conditional on the sorting that takes place 

in the job market.  Workers who believe their job entails frequent interactions with co-

workers report about half a standard deviation higher work satisfaction and net affect 

than do those who say their job does not entail frequent interactions.  From our earlier 

results and equation 1, we would expect that workers who receive greater enjoyment 

from social interactions would be more likely to be employed in jobs that require frequent 

interactions with others.  To test directly for this result, in results not shown here we 

added a variable that is the product of the frequent-job-interaction variable and the 

proportion of non-work time each respondent spent alone (based on their time diary) to 

the regression models.  The coefficient on this interaction variable was -0.34 and 

statistically significant (t=2.29) in the net affect regression, consistent with the view that 

more social workers derive more enjoyment from jobs that entail frequent interactions 
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with co-workers.19  The interaction effect was negative but small and statistically 

insignificant in the work satisfaction model, however.   

 Turning to the other variables in Table 7, the log wage has a positive effect on 

both work satisfaction and net affect at work.  A 10 percent increase in pay is associated 

with just over a .015 standard deviation gain in work satisfaction, which is fairly modest 

compared with the effects of several of the working condition variables, including 

interactions with co-workers.  Time pressure, close supervision, risk of job loss, and 

monotony all have sizable adverse effects on work satisfaction and on net affect during 

work.  Reporting that one’s employer provides all the resources needed to do the job well 

has a strong positive effect on satisfaction and net affect.  Although there is some 

tendency for working conditions that have an immediate and salient effect on the work 

setting, like time pressure, to have a larger effect on net affect than on work satisfaction, 

this is not always the case.  For example, constant and close supervision has a larger 

effect on work satisfaction than on net affect, as does belief that sufficient resources are 

provided to do the job well.   

 Some of the working condition variables in Talbe 7 have statistically insignificant 

effects, such as flexible hours and the presence of offensive noise.  Two notable variables 

have perverse effects:  The presence of dust, dirt and bad smells has an unexpected 

positive effect in the net affect regression and the presence of a risk of injury has a 

positive effect in the work satisfaction regression.  As a whole, however, the models yield 

reasonably strong support that pleasant working conditions are associated with greater 

                                                 
19 It is worth noting that in this regression workers who spent all of their non-work time alone were 
predicted to have higher net affect if their jobs entailed frequent interactions with co-workers than if they 
did not entail frequent interactions with co-workers. 
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job satisfaction and net affect at work, and unpleasant working conditions are associated 

with lower job satisfaction and net affect at work.   

Lastly, it is worth discussing the magnitude and interpretation of the working 

condition effects in relation to an equalizing differences equilibrium in the labor market.  

Helliwell and Huang (2005) argue that dividing the coefficient on a working condition 

variable by the coefficient on the wage rate in a job satisfaction regression provides an 

estimate of the marginal rate of substitution between log pay and working conditions.  If 

workers have homogeneous preferences, in a competitive equilibrium this ratio would 

equal the observed compensating wage differentials associated with working conditions. 

Using this approach, Helliwell and Huang find that enormous compensating wage 

differentials are required for working conditions such as low workplace trust, low task 

variety and time pressure.  Because direct evidence of compensating wage differentials 

often yields mixed or weak evidence of tradeoffs between pay and working conditions 

(e,g,, Brown, 1980),20 Helliwell and Huang conclude that the labor market is in 

disequilibrium, with “unrecognized opportunities for managers and employees to alter 

workplace environments, or for workers to change jobs, so as to increase both life 

satisfaction and workplace efficiency.”  

Our results also imply an enormous tradeoff between wages and undesirable 

working conditions.  For example, the results in column (1) of Table 7 imply that workers 

would require a log wage increase of around 2 (-.29/.15) to be equally satisfied with a job 

that entails constant time pressure as opposed to one that does not.  The net affect 

regression in column (2) implies a log wage change of more than 5 for workers to be 

                                                 
20 One recent exception is Stern (2004), who finds a sizable tradeoff between the opportunity to conduct 
and publish scientific research and starting pay among Ph.D. biologists at the start of their career.   
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equally well-off with constant time pressure.  Moving from a job with frequent 

interactions with co-workers to one without them likewise would necessitate large 

compensating payments, as would many of the other working conditions.   

What is one to make of Helliwell and Huang’s and our large implied marginal 

rates of substitution?  One possibility is that job satisfaction is not an adequate measure 

of utility because it misrepresents what happens on the ground at work.  The fact that net 

affect generally yields similar results, however, suggests that the explanation is more 

complicated.   

Another possibility is that the coefficients in the work satisfaction and net affect 

regressions reflect the preferences of inframarginal workers while the compensating 

differentials that are ground out in practice pertain to the preferences of the marginal 

worker.  This distinction matters if tastes vary across workers and workers sort into jobs 

based on their tastes, as we have emphasized.  Regression estimates like those in Table 7 

only identify conditional averages, and the averages are conditional on the workers 

sorting.  The marginal worker probably has a more benign view of social isolation than 

the average worker in a job that does not involve interactions with co-workers, for 

example.  While we believe there is some support for this interpretation, the results imply 

that such extreme compensating differentials are required for undesirable working 

conditions that we would question how far sorting by preferences can go toward 

explaining the full set of results.   

Still another possibility is that direct estimates of compensating wage differentials 

suffer from severe biases.  For example, high-ability workers receive higher pay and 

better working conditions than low-ability workers, but the estimates in the literature may 
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not adequately control for ability.  While this bias is likely present in cross-sectional 

estimates, it is unlikely to account for the weak evidence of compensating wage 

differentials in longitudinal estimates.  Moreover, if the required compensating wage 

differentials are as large as those implied in Helliwell and Huang and in Table 7, we 

would expect that they would be detectable in conventional wage equation estimates.   

A final interpretation is that the marginal worker is unaware of the relevant 

working conditions when a decision is made to accept a job, or underestimates the impact 

of social relations and other working conditions on her well-being and overestimates the 

impact of pay on her well-being, perhaps because of a focusing illusion (see Kahneman, 

et al. 2006).  In either case, this failure of decision making would cause the market to 

generate insufficient compensating differentials for working conditions.  Although we are 

reluctant to push this conclusion too far, given the similarity of the results using job 

satisfaction and net affect, we believe it deserves serious consideration.   

 

VI. Conclusion 

We have documented a positive and statistically significant relationship between a 

worker’s tendency to interact with others (particularly with friends) while not working 

and the relative frequency of work-related interactions on the worker’s job.  We interpret 

this pattern as evidence of sorting: more extroverted workers tend to work in jobs that 

require greater social interaction.   

Other interpretations are possible, however.  For example, it is possible that jobs 

that require more social interactions cause workers to become more extroverted in their 

non-working time.  Although extroversion is apparently among the more stable 
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personality traits (Roberts and DelVecchio, 2000) and Borghans, ter Weel and Weinberg 

(2006a, 2006b) find that sociability at an early age is related to later employment in 

occupations that involve more people skills, we acknowledge that work experiences 

could affect an individual’s tendency to extroversion.  It is also possible that a tendency 

towards extroversion causes some workers to spend a lot of time interacting with others 

while away from work and while at work, but that the social interactions during work 

time are not work related.   While we acknowledge this possibility, our finding of a 

positive correlation between non-work time spent interacting with friends and the 

sociability score assigned to the job based on the O’Net Dictionary of Occupational Titles 

suggests that extroverted workers are more likely than introverted workers to be 

employed in positions that require social skills.   

Biasing our results in the opposite direction, one should also recognize that many 

workers who spend their entire work day talking might seek some solitude when they are 

off work.  This effect, if it exists, is not strong enough to overturn the positive 

relationship between the prevalence of work-related and non-work-related interactions.  

Another concern is that workers’ tastes are not unidimensional.  It is possible that 

workers’ who have a preference for social interactions may also have preferences over 

other working conditions. A worthwhile direction for future work would be to develop 

measures of tastes toward other work-related conditions, such as risk, offensive noise and 

stress, and then to jointly test whether sorting occurs on jobs along those lines as well 

extroversion.  For example, the seemingly anomalous results we found for risk and 

offensive noise may be due to occupations such as hospital nurses or construction 

workers, whose jobs involve these negative characteristics but which are outweighed by 
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other positive features.  Multidimensional sorting could well resolve these puzzling 

results.   

Competitive markets are presumed to raise welfare by enabling buyers and sellers, 

workers and employers, to make efficient matches according to their tastes, talents and 

technology.  The extent to which workers are actually sorted across jobs according to 

their tastes has not previously been examined.  An important feature of our work is that 

we identify workers’ tastes toward social interactions by their revealed behavior while 

not working.  Similar results are found, however, if we use self-reported indicators of 

individuals’ personality traits.   

The approach we have taken can be used to compare the efficiency of different 

labor markets.  Although our evidence is admittedly sketchy and preliminary -- and 

dependent on the assumption that opportunities for socializing while not working are 

similar in the two countries -- we do not find much evidence of differential sorting by 

workers’ preferences for social interactions in France and the United States.  If correct, 

this finding suggests that the rigidities in the French labor market do not obstruct the 

efficient sorting of workers across jobs in a noticeable way.  A useful direction for future 

work would be to examine the extent to which the matching of workers and jobs 

according to workers’ tastes are affected by labor market institutions.   

Lastly, we find that workers express higher levels of satisfaction and higher net 

affect during work if they are employed in jobs that involve frequent interactions with co-

workers.  This effect tends to diminish for workers who spend a smaller share of their 

non-work day in the company of others.  We also find that other workplace 

characteristics, such as time pressure, close supervision, and perceived risk of job loss, 
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have a sizable effect on work satisfaction and net affect on the job.  The estimated effect 

of desirable working conditions on work satisfaction and net affect is especially large in 

comparison with the modest estimated effect of pay on work satisfaction and net affect, 

and the typically modest compensating wage differentials associated with various 

working conditions observed in the labor market.  The reasons for this divergence 

deserve further consideration.  
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Table 1: Descriptive Statistics for the Three Analysis Samples

          Texas Columbus Rennes
      All Random Smpl

Age 38.0 38.0 43.0 37.9

Annual Household Income $53,659 $47,915 $69,510 € 30,826

Married 0.44 0.42 0.61 0.40

College + (a) 0.54 0.38 0.55 0.43

Union 0.20 0.12 NA NA

Tenure 6.30 5.59 NA NA

Black 0.24 0.27 0.17 NA

Hispanic 0.22 0.24 0.01 NA

Number of Work 4.48 3.70 3.86 3.90
Episodes

Number of NonWork 9.63 9.88 9.78 11.04
Episodes

Proportion of Time Alone 0.08 0.08 0.14 0.23
while Working (b)

Proportion of Time Alone 0.44 0.43 0.32 0.33
while Not Working (b)

Proportion of Time w/Friends 0.15 0.16 0.11 0.11
while Not Working

Proportion of Time Interacting 0.89 0.89 NA NA
while Working (c )

Proportion of Time NA NA 0.44 0.34
Conversing while Working 

Maximum Sample Size 908 535 409 372
__________________
Notes:
(a) In France, college + is baccalauréat plus 3 or more years. 

(b) In Texas, time alone is time spent not interacting with anyone; in Columbus and Rennes, it is
time spent alone.

(c ) Proportion of time interacting with customers, clients, co-workers, patients, students or boss.



Table 2a: Non-Work Time Allocation by Self-Described Gregariousness

What would the people who 
know you say about you? Proportion of non-work Proportion of non-work
Enjoys being in company: time spent noninteracting time spent with friends

   Much less than others (n=50) 0.51 0.09

   About average (n=75) 0.42 0.14

   Much more than others (n=390) 0.43 0.17

p-value 0.106 0.017

Note: p-value is from a regression of percent of time on reported in each category
on self-reported enjoyment from being in company, which runs from -3 to +3. 
Sample is TX DRM, random sample.  

Table 2b: Work Time Allocation by Self-Reported Job Description

Does this statement describe
your situation at work? Proportion of work Proportion of work time
Frequent interactions with time spent noninteracting interacting with co-workers
co-workers is an important
part of my job:
   Definitely Not (n=18) 0.16 0.58

   Mostly Not (n=49) 0.10 0.71

   Mostly Yes (n=129) 0.13 0.73

   Definitely Yes (n=337) 0.06 0.80

p-value 0.001 0.000

Note: p-value is from a regression of percent of time reported in each category
on self-reported job description, which runs from 1 to 4. 
Sample is TX DRM, random sample.  



Table 3: Tobit Models for Proportion of Time Spent Interacting at Work
Texas DRM Sample, Random Component

Explanatory Variable (1) (2) (3) (4)

Prop. of time not interacting     -0.472 -0.395 --- ---
   while not working (0.146) (0.154)
Prop. of time interacting w/friend(s) --- --- 0.533 0.522
   while not working (0.214) (0.225)
Age                 --- -0.007 --- -0.008

(0.004) (0.004)
College +           --- -0.047 --- -0.102

(0.084) (0.086)
Married             --- 0.084 --- 0.140

(0.082) (0.083)
Black               --- -0.113 --- -0.104

(0.098) (0.099)
Hispanic            --- -0.281 --- -0.257

(0.099) (0.100)
Union               --- -0.151 --- -0.167

(0.114) (0.116)
Tenure              --- -0.011 --- -0.011

(0.006) (0.006)

Log Likelihood -337.229 -303.426 -339.234 -304.024
Sample Size 534 502 534 502
______________
Note: Dependent variable is proportion of time interacting with co-workers, 
clients, students, patients, or boss while working.  Tobit allows for censoring
at 0 and at 1.  Mean (SD) of dependent variable is 0.89 (.24) in columns 1 and 3, 
and .90 (.24) in columns 2 and 4. In column 1 and 3, 19 observations are censored at 0, 
129 are uncensored, and 386 are censored at 1.  In columns 2 and 4, 17 observations
are censored at 0, 120 are uncensored and 365 are censored at 1.  



Table 4a: Tobit Models for Proportion of Time Spent Interacting at Work
Columbus DRM Sample

Explanatory Variable (1) (2) (3) (4)

Prop. of time alone while -0.286 -0.136 --- ---
   not working (0.175) (0.188)
Prop. of time interacting w/friend(s) --- --- 0.447 0.449
   while not working (0.294) (0.300)
Age                 --- -0.003 --- -0.003

(0.005) (0.005)
College +           --- 0.072 --- 0.078

(0.099) (0.098)
Married             --- 0.204 --- 0.247

(0.115) (0.108)
Black               --- 0.256 --- 0.250

(0.141) (0.140)
Hispanic            --- -0.796 --- -0.807

(0.453) (0.453)
Log Likelihood -435.005 -425.489 -435.187 -424.625
Sample Size 408 403 408 403

Table 4b: Tobit Models for Proportion of Time Spent Interacting at Work
Rennes DRM Sample

Explanatory Variable (1) (2) (3) (4)

Prop. of time alone while -0.467 -0.311 --- ---
   not working (0.202) (0.216)
Prop. of time interacting w/friend(s) --- --- 0.054 0.166
   while not working (0.272) (0.288)
Age                 --- -0.003 --- -0.003

(0.005) (0.005)
College +           --- -0.065 --- -0.075

(0.100) (0.100)
Married             --- 0.204 --- 0.266

(0.112) (0.106)
Log Likelihood -367.066 -363.868 -369.752 -364.743
Sample Size 371 369 371 369
______________

Note: Dependent variable is proportion of time talking or engaged in conversation
while working.  Tobit allows for censoring at 0 and at 1.  For Panel A, mean (SD) of  
dependent variable is 0.44 (0.42) in columns 1-4; in column 1 & 3, 147 observations are
are censored at 0, 168 are uncensored and 93 are censored at 1; in column 2 & 4 
145 observations are censored at 0, 166 are uncensored and 92 are censored at 1.
For Panel B, mean (SD) of dependent variable is 0.34 (0.39) in colums 1-4; in column
1 & 3, 172 observations are censored at 0, 148 are uncensored and 51 are 
censored at 1; in column 2 & 4 171 are censored at 0, 147 are uncensored and 
51 are censored at 1.  



 
Table 5: Reliability of Data 
 
Two-Week-Apart Correlations of:  
 
 
                   Average______    
               r  Session 1 Session 2 
 
1.  Proportion of Day Alone          0.56     0.26    0.27 
 
2.  Proportion of Day Alone  
     While Not Working          0.64     0.35    0.35 
 
3. Proportion of Day Alone 
    While Working           0.30     0.15    0.16 
 
4. Proportion of Day Talking          0.46     0.44    0.44 
 
5. Proportion of Day Talking 
    While Working           0.44            0.47    0.48 
 
6. Proportion of Day Talking 
    While Not Working            0.43            0.42    0.42 
 
7.  Proportion of Day with 
     Friends While Not Working       0.32     0.13    0.15 
 
________________________________________ 
 
Notes: Sample consists of 207 women in Texas who were sampled on March 30 and 
April 13, 2005 and worked on the preceding day.  Both surveys were conducted on a 
Wednesday, and the responses refer to the preceding day.  The average respondent 
reported 9.7 nonworking episodes and 4.6 working episodes per day.  The definition of 
the variables conforms to those used in the Columbus and Rennes DRM samples.   
 

 



 

Table 6: Net Affect During Various Activities; Texas DRM Sample 

              Random       Full Smpl. 

Exercising      4.00  3.97 

Socializing      3.86  3.99  

Watching TV      3.45  3.59 

Doing Housework     2.63  2.79 

Commuting      2.15  2.22 

Working       2.06  2.13 

    While Working: 
     Not Interacting     2.05  1.65 

     Boss      1.96  1.89 

     Co-worker      2.05  2.11 

     Clients/customers/     2.15  2.28 
     students/patients 
 

 
 

 



Table 7. Work Satisfaction and Net Affect Regressions 
 

 

Work Net affect
Explanatory Variable Mean Satisfaction during work

Log hourly wage 2.78 0.15 0.12
(0.07) (0.07)

Frequent Interactions with coworkers 0.85 0.44 0.51
is an important part of my job (0.14) (0.14)

My employer provides all of the 0.69 0.98 0.48
resources needed to do my job well (0.13) (0.13)

People in my position are at risk of 0.24 -0.27 -0.28
being fired or laid off (0.13) (0.13)

Under constant and close 0.36 -0.4 -0.19
supervision (0.12) (0.13)

Have flexible hours 0.37 -0.09 0.02
(0.09) (0.10)

Works nights shifts 0.13 0.14 0.19
(0.12) (0.13)

Breaks are infrequent and short 0.48 -0.32 -0.07
(0.10) (0.11)

There is time pressure; constant 0.52 -0.29 -0.64
pressure to work fast (0.11) (0.12)

Does pretty much the same thing 0.55 -0.28 -0.22
all day (0.10) (0.11)

Involves significant risk of injury 0.16 0.35 -0.09
(0.15) (0.16)

Exposed to offensive noise 0.28 0.12 -0.1
(0.12) (0.13)

Exposed to dust, dirt and bad 0.27 -0.05 0.28
smells (0.12) (0.13)

R-squared 0.22 0.15

n 809 776
_________

Notes: Regressions also include a constant, education, age, age-squared, and hispanic ethnicity, black, 
and white indicator variables.  Standard errors shown in parentheses.  Work satisfaction and net 
affect have been scaled to have a standard deviation of 1.  

 



 

Figure 1. Average Percent of Non-work time 
spent with Friend by Social Requirements of Job
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Note: Occupational sociability score was assigned based on job descriptions from O*Net 
Dictionary of Occupational Titles, Third Edition.  Average percent of non-work time 
with friends is based on Texas DRM.   
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