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Abstract. We develop a new approach to dealing with real options problems with uncertain maturity.

This type of situation is typical for R&D investments and mine or oil exploration projects. These types of

projects are characterized by significant on-going investment costs until completion. Since time to completion

is uncertain, the total investment costs will also be uncertain. Despite the fact that these projects include

complicated American abandonment/switching options until completion and European options at completion

(because of fixed final investment costs) we obtain simple closed form solutions. We apply the framework

to situations in which the owner of the project has monopoly rights to the outcome of the project, and

to situations in which there are two owners who simultaneously invest, but where only one of them may

obtain the rights to the outcome. We expand the real options framework to incorporate game theoretic

considerations, including a generalization of mixed strategies to continuous-time models in the form of

abandonment intensities.

1. Introduction

The valuation and analysis of investment projects in which time to completion is uncertain, such as R&D
investments and mine or oil exploration projects, is a very difficult task since there is uncertainty not only
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2 REAL OPTIONS WITH UNCERTAIN MATURITY AND COMPETITION

about the outcome when the investment project is completed but also about the total investment costs. The
problem gets even more complicated if the situation involves competitive interactions, such as the case when
two different firms at the same time are competing to develop a pharmaceutical drug for a particular disease.

The real options approach has been applied to the valuation of R&D investment projects and to mine or
oil exploitation projects. These type of projects involve not only uncertain cash flows after completion, but
also uncertain costs and time to completion. So far in the literature, solutions to these type of problems
have involved complex numerical solution techniques. Pindyck (1993) introduces a stochastic process to
govern uncertain time to completion. Schwartz and Moon (2000) extend this approach to value an R&D
project with both uncertain costs and also uncertain value of the completed project. The solution involves
a complex numerical procedure to solve elliptical PDEs. Schwartz (2004) solves the same R&D investment
problem using Monte Carlo simulation methods applying the Longstaff-Scwhartz procedure (cf. Longstaff
and Schwartz, 2001) to value the American abandonment feature of the problem. Miltersen and Schwartz
(2004) extend this framework to deal with competitive interactions and Hsu and Schwartz (2006) analyze
the design of research incentives in R&D research. Both of the last two papers also apply Monte Carlo
simulation solution techniques. One problem with the Monte Carlo numerical solution techniques used to
solve these types of problems is that it cannot easily handle temporary suspensions of the projects. Hence, it
is very difficult to compare investment projects with and without the temporary suspension option to isolate
its value. Moreover, the numerical methods applied are designed to estimate the value of the projects, but
they do not estimate the abandonment/swiching threshold levels very accurately.

In this paper we take a different approach. Without loosing the essential ingredients of the problem, we
simplify the framework enough to get closed form solutions. Our simplified framework can be applied to many
interesting and important cases of investments with uncertain time to completion. Moreover, our simplified
framework allows us to look at cases not only where the owner of the investment project has exclusive rights
to the outcome of the investment project if completed successfully, such as, e.g., an investment project where
the owner of a property explores for gold, but also to look at cases where two (or more) firms are researching
for the same product and at most one of them will be successful.

The main simplification we propose in our framework is that completion of the project is governed by an
independent exponential distributed random variable.1 This implies that the value of the projects will be a
solution to an ordinary differential equation, instead of a partial differential equation. Normally, the values
of finite time option problems are solutions to partial differential equations, and since the type of investment
projects we consider involve both American and European options, it is impossible to obtain closed form
solutions without the simplification we propose. Carr (1998) uses a similar simplification as a numerical
procedure to approach the value of financial American put options.

In our framework the owner of the investment project pays a certain amount of on-going investment costs
per unit of time until a product or a mine is discovered. The completion date at which the product or the
mine is discovered is uncertain. Since the completion date is uncertain, the on-going investment costs paid
until completion will also be uncertain. At the completion date, when the product or mine is discovered,
the owner of the investment project has to decide whether it is worth while to make a final investment
in building a plant to produce the product or extract the mineral. To make this decision the owner of the
investment project compares the final investment costs with the present value of the net cash flows that could

1This implies that the conditional probability of completion per unit of time is constant. This assumption might be somewhat
unrealistic for some situations.
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be generated by selling the product or mineral. This present value of the net cash flows we will call the value
of the outcome of the investment project. We assume that the value of the outcome evolves stochastically
through time and that it can be observed or estimated by the owner of the project at any point in time.
The idea here is that as investment and/or time progresses, the owner of the investment project changes his
estimate of the present value of the net cash flows that could be derived from the investment project and
that this updated information may influence the owner’s willingness to continue with the investment project.

Within this framework we analyze two general types of models. In the first type of models, monopoly
models, the owner of the project has exclusive rights to (the value of) the outcome of the investment project
if and when it is completed. In the second type of models, duopoly models, two owners of similar investment
projects compete to be the first to complete their investment projects because only the first to complete will
get the right to (the value of) the outcome.

We analyze three different monopoly models. In the first model we allow the owner of the investment
project to abandon the investment project if the future prospects are not good enough. Since the owner
of the investment project is paying on-going investment costs to keep the investment project alive, for low
enough values of the outcome it will be optimal to abandon the investment project.

In the second model we allow the owner of the investment project to switch from an active investment
project into a passive investment project and vise-versa. When the investment project is active the owner
incurs on-going investment costs and there is a positive probability of completing the project. When the
investment project is passive there are no on-going investment costs but also no possibility of completion. If
the value of the outcome is high enough it will be worth while to pay the on-going investment costs to have
the possibility of completion. In the passive state there are no on-going investment costs, so if the value
of the outcome is low enough, the owner would like to switch to the passive state. Hence, there will be a
threshold value of the outcome above which it is optimal to have the investment project active and below
which it is optimal to have it passive. Moreover, it will never be optimal to abandon the investment project,
since it is costless to keep it passive.

Finally, we consider a model with both switching and abandonment options. In this model the owner can
switch between two different levels of investment activity, high and low. At the high investment activity
level, the owner pays high on-going investment costs and the probability of completion per unit of time
is high. That is, there is a high chance of discovering a product or a mine per unit of time. At the low
investment activity level, the on-going investment costs are lower but the probability of completion per unit
of time is also lower. In this setting there will be a threshold value of the outcome above which it is optimal
to have a high investment activity level and below which it is optimal to have a low investment activity level.
Moreover, there will be another threshold value of the outcome below which it is optimal to abandon the
investment project.

In all these three models the owner of the investment project has monopoly rights to the value of the
outcome, that is, there is no competition as to whom owns the right to the value of the outcome when the
investment project is eventually completed. We then look at another type of models where there are two
different owners of investment projects, but only the one whose investment project is completed first gets
the value of the outcome. Here the values of the investment projects and the decisions to abandon or switch
will depend not only on the value of the outcome but also on the competitive interactions between the two
owners (players). To be able to solve these types of problems we need to expand the real options framework
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we have developed to incorporate game theoretic considerations, where the optimal actions of each player
depend on the (optimal) actions of the other player. To simplify the analysis we assume that the two players
are identical with respect to the size of their investment costs and their probability of completion.

We again analyze models with abandonment and with switching. In order to analyze the abandonment
option we first consider the case where one of the players (the leader) has a un-modeled advantage over the
other player (the follower), such as slightly less investment costs or more financial resources available. In this
model the two players have different abandonment threshold levels. We then look at the model where the
two players are truly identical and we analyze the game that occurs. We obtain three (Nash) equilibria. One
of these equilibria involves a strategy for each of the two players where they each chooses an abandonment
intensity. The abandonment intensity gives for each player the probability of abandoning their individual
investment projects at each instant of time. This equilibrium concept is a natural extension of mixed strategy
equilibria to continuous-time models and as far as we are aware it has not appeared in the literature.

We finally analyze the duopoly model with the switching option between a passive and an active state.
In this case the switching threshold levels for the two players are again determined as a Nash equilibrium in
a game between the two players.

The simplified framework we develop allows us to obtain simple closed form solutions to the values of
the investment projects and the threshold levels2 of all the models described above. We are therefore able
to easily perform comparative statics of each model and compare the different models. We hope that this
simple and flexible framework will generate more insight and more analysis and solutions of many interesting
real options problems.

The monopoly models are presented in Section 2 and the duopoly models in Section 3. Section 4 develops
some extensions of the models and Section 5 concludes. To simplify the presentation some of the derivations
are given in the Appendix.

2. Monopoly Models

In this section we consider models in which the owner of the investment project does not face any com-
petition as to whom will have the right to the value of the outcome at completion of the investment project.
In that sense the owner has a monopoly right to the value of the outcome of the investment project.

Consider an investment project that requires on-going investment costs at the rate of k per unit of time.
The investment project will be completed at a random date τ at which date the owner of the investment
project has the option to pay final (fixed) investment costs K in order to obtain the (net present) value of
the outcome V . In this setup the value of the investment project at the random completion date, τ , would
be max{Vτ − K, 0}.

For the case of an R&D investment project, k would represent the rate of expenses for the R&D program,
τ would represent the random date at which the research project is completed, K would represent the costs of
building a plant for manufacturing the products obtained from the research project, and V would represent
the net present value of the benefits from selling the products.

Similarly, for the case of a mine or an oil exploration project, k would represent the rate of expenses for
the exploration phase, τ would represent the random date at which a natural resource may be discovered,

2In the combined abandonment and switching model the two threshold levels have to be found numerically, but a very simple
goal-seek in, e.g., Excel finds these two values in less than a tenth of a second.
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K would represent the costs of developing the mine or the oil field, and V would represent the net present
value of the benefits from exploiting the natural resource discovered.

We assume that the value of the outcome, V , can be observed (estimated) at any date t by the owner
of the investment project. This value we denote Vt. We assume that the dynamics of V is given by the
geometric Brownian motion

(1) dVt = Vtμdt + VtσdWt.

Here σ is the instantaneous volatility of the value process, μ is its instantaneous drift, and W represents a
Brownian motion.

We assume that the random time to completion, τ , is exponentially distributed with intensity, λ, and
that the time to completion is independent of the value process, {Vt}t∈[0,∞). Hence, the expected time
to completion is T = 1

λ without taking into account any abandonment possibilities nor any possibilities of
switching to different levels of intensity, λ. Finally, we assume that the riskless interest rate, r, is constant.
In order to avoid the possibility of infinite values of the investment projects which we consider in this paper,
we assume that the instantaneous drift of the value process, μ, is strictly less than the riskless rate, r, i.e.
μ < r. The memorylessness feature of the exponential distribution implies that the expected time (and the
whole distribution of the time) to completion of the investment project does not dependent on calendar time.
Hence, time to completion and the completion date will have the same distribution, so we will not distinguish
between these two terms. Moreover, the value of the investment project at a given date, t, depends only on
the value of the outcome, Vt, and not on the calendar date t itself. This property considerably simplifies the
analysis and allows us to obtain closed form solutions for many important and interesting cases.

2.1. Model with Abandonment Option. We first consider the model with abandonment. In addition
to the option to the value of the outcome at the completion date, τ , the owner has the option to abandon
the investment project at any date before completion. This means that the owner would loose the option to
the value of the outcome but on the other hand she/he will save the remaining (future) on-going investment
costs. Given that the owner of the investment project is spending on-going investment costs at the rate k

per unit of time there will be a threshold level, AM , so that if the value of the outcome, V , drops below this
threshold level at a certain date, then it will be optimal to abandon the investment project at that date.
We denote the value of the investment project M(V ).3 The investment project is a contingent claim on the
value of the outcome, V . Applying standard arguments, M(V ) must satisfy the system of ODEs4

1
2
σ2V 2M ′′(V ) + μV M ′(V ) − (r + λ)M(V ) − k = 0 when AM < V < K(3a)

3For notational simplicity and clarity we write the value of the investment project as a function of current value of the outcome
instead of the date t value of the dynamic value process Vt.
4Either we can assume that there exists a sufficiently dynamically complete financial market and that we have modeled the
dynamics of the value process, V in Equation (1), under a risk neutral measure, or we can assume that the owner assesses the
value of the investment project at date t as

(2) M(Vt) = max
ν∈S

Et

[
1{τ≤ν}e−r(τ−t) max{Vτ − K, 0} −

∫ min{τ,ν}

t
ke−r(s−t)ds

]
.

Here ν represents the stopping time for abandonment which the owner chooses to follow. Et denotes expectations given all
information at date t and 1{τ≤ν} denotes the indicator function that the stopping time for completion, τ , occurs before the

stopping time for abandonment, ν. The owner maximizes her/his value of expected future cash flows by choosing the optimal
abandonment stopping time, ν, from the set, S, of all optional stopping times. The assessment in Equation (2) reflects a risk
neutral owner.
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and

1
2
σ2V 2M ′′(V ) + μV M ′(V ) − (r + λ)M(V ) − k + λ(V − K) = 0 when K < V.(3b)

Here we have implicitly assumed that the abandonment threshold level, AM , is below the final investment
costs K (this K is also the exercise price of the option to the value of the outcome).5 Equation (3a) describes
the value of the investment project when the value of the outcome, V , is below the exercise price, K, that is,
if the option to the value of the outcome is out of the money (should the investment project be completed
immediately). For the rest of the paper we will say that the investment project is out of the money to describe
this situation. (Obviously, to describe the opposite situation, namely that V ≥ K, we say that the investment
project is in the money.) Equation (3a) reflects the fact that with intensity λ (i.e., with probability λ per
unit of time) the investment project would be completed and because the investment project is out of the
money, the value of the investment project will jump down to zero. This corresponds to a loss in value of
M(V ).6 In addition, the owner has to pay on-going investment costs at the rate k per unit of time in order
to keep the investment project alive. Equation (3b) describes the value of the investment project when it is
in the money. This equation reflects the fact that with intensity λ the value of the investment project would
jump to the completion value, V −K. This corresponds to a jump in value of V −K−M(V ). In addition, the
owner still has to pay on-going investment costs at the rate k per unit of time in order to keep the investment
project alive. We can solve each of the two ODEs, (3a) and (3b), separately for given boundary conditions.
We denote the general solution for ODE (3a) M1(V ) and the general solution for ODE (3b) M2(V ). The
boundary conditions will be used to tie the different general solutions for the different areas of the value of
the outcome, V , together into one continuous (and differentiable) value function for the investment project
for all values of the outcome, V . The general solutions to each of these two ODEs, (3a) and (3b), are

M1(V ) = m11V
y1 + m12V

y2 − k

r + λ
when AM ≤ V ≤ K(4a)

and

M2(V ) = m21V
y1 + m22V

y2 +
λV

r + λ − μ
− k + λK

r + λ
when K ≤ V.(4b)

Here the powers, y1 and y2, are given by

y1 =
(1
2σ2 − μ) +

√
(μ − 1

2σ2)2 + 2(r + λ)σ2

σ2
> 1(5a)

and

y2 =
(1
2σ2 − μ) −

√
(μ − 1

2σ2)2 + 2(r + λ)σ2

σ2
< 0.(5b)

5We analyze the (much simpler) situation when AM is above K in Appendix A.
6One may argue that it is unrealistic to assume that the investment project is valueless if it is completed at a time when the
value of the outcome, V , is below the fixed investment costs, K. The owner would still be able to claim the right to her/his
discovery (either by patenting or other legal actions) and eventually put it into production at a later date. That is, a more
realistic assumption would be that at the date of completion of the investment project the owner receives a perpetual American
call option on the value of the outcome with exercise price equal to the final investment costs, K. We analyze this extension of
the model in Section 4.
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Note that y1 > 1 and that y2 < 0. Since the value of the investment project can never exceed the value
of the outcome, V , we know that limV →∞

M2(V )
V must be finite (in fact, it must be less than one). This

implies that m21 = 0 since y1 > 1. Hence, we can eliminate the V y1 term in Equation (4b). Moreover, we
can substitute T = 1

λ for the expected (remaining) time to completion of the investment project to get

M1(V ) = m11V
y1 + m12V

y2 − kT

1 + rT
when AM ≤ V ≤ K(6a)

and

M2(V ) = m22V
y2 +

V

1 + (r − μ)T
− kT + K

1 + rT
when K ≤ V.(6b)

The value of the investment project has the following boundary conditions

M1(AM ) = 0,(7a)

M ′
1(AM ) = 0,(7b)

M1(K) = M2(K),(7c)

and

M ′
1(K) = M ′

2(K).(7d)

Condition (7a) reflects the fact that at the abandonment threshold level, AM , the value of the investment
project is zero. Condition (7b) is the usual smooth pasting condition at the abandonment threshold level.
Condition(s) (7c) (and (7d)) reflect(s) the fact that the value function should be continuous (and differen-
tiable) at the point when the two differential equations (3a) and (3b) meet at the final investment costs, K.
We can solve the system of equations (7) in the four unknowns, m11, m12, m22, and AM . The solution is

m11 =
(1 + (r − y2μ)T )K1−y1

(y1 − y2)(1 + (r − μ)T )(1 + rT )
,(8a)

AM =
( y2kT

(y2 − y1)(1 + rT )m11

) 1
y1

,(8b)

m12 = −y1m11A
y1−y2
M

y2
,(8c)

and

m22 = m12 +
(1 + (r − y1μ)T )K1−y2

(y1 − y2)(1 + (r − μ)T )(1 + rT )
.(8d)

Finally, the value of the investment project is

(9) M(V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when V < AM ,

m11V
y1 + m12V

y2 − kT
1+rT when AM ≤ V < K,

m22V
y2 + V

1+(r−μ)T − kT+K
1+rT when K ≤ V.

We made an implicit assumption when setting up the system of ODEs (3) above, namely that the abandon-
ment threshold level, AM , is below the final investment costs, K. If it turns out that by solving the system
of equations (7), the solution to AM from Equation (8b) is greater than K, we must reconsider the whole
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Parameters for the dynamics of the value process, V

Instantaneous drift μ 3% per year
Instantaneous volatility σ 40% per year

Parameters for the investment project
Expected time to completion T 5 years
On-going investment costs rate k $1 per year
Final (fixed) investment costs K $5

Other parameters
Riskless interest rate r 5% per year

Table 1. Parameter values for numerical illustration: the base case.

problem, because in this situation the investment project is always in the money when it is kept alive. We
analyze this situation, which turns out to be much simpler, in Appendix A. In this situation the value of
the investment project is

(10) M(V ) =

⎧⎨
⎩

0 when V < ÃM ,

m32V
y2 + V

1+(r−μ)T − kT+K
1+rT when ÃM ≤ V.

Here ÃM and m32 are

ÃM =
y2(1 + (r − μ)T )(kT + K)

(y2 − 1)(1 + rT )
(11a)

and

m32 = − Ã1−y2
M

y2(1 + (r − μ)T )
.(11b)

Note that the abandonment threshold level in this situation (denoted ÃM ) is, in general, different from AM

from Equation (8b). For notational simplicity, however, we will always refer to AM as the abandonment
threshold level for the rest of the paper even though strictly speaking we should distinguish between AM and
ÃM depending on whether AM < K or ÃM ≥ K. These two events are mutually exclusively and collectively
exhaustive.7

To illustrate the nature of the solution, we consider an investment project that requires on-going invest-
ment costs of $1 (million) per year until completion. We assume that the expected time to completion is
5 years and that at completion the investment project requires final investments of $5 (million) in order to
obtain the cash flows of the outcome. The instantaneous drift of the value process is 3% and its instanta-
neous volatility is 40% per year. Finally, the interest rate is 5% per year. The parameters of this numerical
illustration, which we call our base case, is summarized in Table 1.

7Thorough extensive numerical investigations have confirmed that in the parameter space, {(μ, σ, r, λ, k,K) ∈ R
6|μ < r, σ >

0, r > 0, λ > 0, k ≥ 0, K ≥ 0}, the sets {AM ≥ K} and {ÃM ≥ K} are (generically) identical. This is also the case for the

sets {AM > K} and {ÃM > K} and also {AM = K} and {ÃM = K}. However, we have not formally proven this result
analytically.
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Figure 1. Values of investment projects (denoted M1(V ), M5(V ), and M10(V )) as a
function of the value of the outcome, V , for three different values of expected time to
completion, T = 1, T = 5, and T = 10 years. The figure also shows the corresponding
abandonment threshold levels (denoted A1

M , A5
M , and A10

M ) on the horizontal axis for the
three different values of expected time to completion. The exact levels are A1

M = 4.37,
A5

M = 5.26, and A10
M = 6.26. Finally, the figure also shows the completion values of the

investment project (denoted V − K) as a function of the value of the outcome. All other
parameters are given in Table 1.

In Figure 1 we show the values of the investment projects as a function of the value of the outcome, V ,
for three different values for the expected time to completion, T = 1, T = 5, and T = 10 years. We denote
the corresponding values of the investment projects as M1(V ), M5(V ), and M10(V ). As can be seen from
the figure the values of the investment projects are higher when the expected time to completion is shorter.
Since the owner of the investment project pays on-going investment costs in the order of $1 per unit of time
the investment project is more valuable with shorter expected time to completion. For realistic values of
on-going investment costs the typical situation is that the value of the investment project decreases with
longer expected time to completion. However, for very low values of on-going investment costs rate, k, (say
k is in the order of 1–4% of the value of the final investment costs, K) the value of the investment project
may be increasing in the expected time to completion. This is so because the value increasing effect of



10 REAL OPTIONS WITH UNCERTAIN MATURITY AND COMPETITION

postponing the final investment costs, K, at completion may dominate the value decreasing effect of paying
the on-going investment costs for a longer time.8 Hence, in general, the value of the investment project may
be non-monotonic in the expected time to completion.

In Figure 1 we also show the corresponding abandonment threshold levels on the horizontal axis for the
three different values of the expected time to completion, denoted A1

M , A5
M , and A10

M . When the expected
time to completion is 5 years or 10 years the corresponding abandonment threshold levels are above the final
investment costs, K, and are therefore derived from Equation (11a). The exact levels are A5

M = 5.26 and
A10

M = 6.26. When the expected time to completion is 1 year the corresponding abandonment threshold level
is below the final investment costs, K, and it is therefore derived from Equation (8b). The exact level is
A1

M = 4.37.
Finally, in Figure 1 we also show the completion values of the investment projects as function of the value

of the outcome. We denote these values V − K. In most cases the value of the investment projects is below
the corresponding completion values mainly because the owner has to pay the on-going investment cost in
order to keep the investment projects alive. However, for investment projects that are out of the money or
at least not too far in the money, (early) completion can result in a negative jump in value, because the
value of the project (before completion) includes the chance of a higher completion value.

When the abandonment threshold level is above the final investment costs, K, an increase in the expected
time to completion of the investment project will typically lead to an even higher abandonment threshold
level since the effect that the owner has to pay the on-going investment costs for a longer time typically
dominates. However, when the abandonment threshold level is below the final investment costs, K, an
increase in the expected time to completion of the investment project may lead to a lower abandonment
threshold level since the effect that a longer expected time to completion increases the likelihood that the
investment project will be completed in the money dominates the effect that the owner has to pay the
on-going investment costs for a longer time. In Figure 2 we show the abandonment threshold levels as
a function of expected time to completion, T , with our base case parameters. As we have just explained,
typically, the abandonment threshold levels will be an increasing function of the expected time to completion.
However, for short expected time to completion (for T below 0.36 years with our base case parameters), the
abandonment threshold levels decrease with increased expected time to completion. Hence, even with our
base case parameters, Figure 2 demonstrates that the abandonment threshold levels may be a non-monotonic
function of the expected time to completion. For T = 0, the abandonment threshold level is clearly equal to
the final investment costs, K = 5. Finally, note that the abandonment threshold level function in Figure 2
is smooth around the level 5 on the vertical axis where the abandonment threshold level shifts from being
defined by Equation (8b) to being defined by Equation (11a), as claimed in footnote 7.

2.2. Model with Switching Option. Now consider the same investment project as in sub-section 2.1 but
with the following modification. The owner of the investment project can temporarily suspend investing in
the project. When the investment project is suspended both the on-going investment costs rate, k, and the
intensity of completion, λ, switch to zero. In other words, the owner has the option to switch from an active

8In general this effect may again be dominated by another value decreasing effect. That is, if the value of the outcome, V , is
high enough compared to the final investment costs, K, then the value decreasing effect of having to wait a longer time to get
the value of the outcome may dominate the value increasing effect of postponing of the final investment costs. This effect is
caused by our assumption that the instantaneous drift, μ, of the value process is less than the riskless interest rate, r. Moreover,
the greater the difference between r and μ, the stronger is this effect.
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Figure 2. Abandonment threshold levels (denoted AM ) as a function of expected time to
completion, T . All other parameters are given in Table 1.

investment project to a passive (mothballed) investment project and vice versa costlessly. Clearly, in this
model it would never be optimal to abandon the investment project since there are no costs of keeping the
investment project passive. Abandonment is a non-reversible decision, whereas switching allows for multiple
changes of state. Since when the investment project is passive there is no possibility of completion, there
will be a threshold level, SN , so that if the value of the outcome, V , is above this threshold level at a certain
date, then it would be optimal to be in the active state at that date, and if V is below this threshold level it
would be optimal to be in the passive state at that date. We call SN the switching point. It is easy to see
that SN will be above the final investment costs, K, since by mothballing the investment project when it is
out of the money, the owner can avoid that the investment project is ever completed out of the money. Let
N(V ) denote the value of the investment project for this model. Following arguments similar to the previous
model, N(V ) must satisfy the system of ODEs

1
2
σ2V 2N ′′(V ) + μV N ′(V ) − rN(V ) = 0 when V < SN(12a)

and

1
2
σ2V 2N ′′(V ) + μV N ′(V ) − (r + λ)N(V ) − k + λ(V − K) = 0 when SN < V.(12b)
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Equation (12a) describes the value of the investment project when it is passive. This equation reflects
the fact that there is no chance (or risk) that the project will be completed as long as it is passive, i.e.
λ = 0, and that there are no on-going investment costs when the investment project is passive, i.e. k = 0.
Equation (12b) describes the value of the investment project when it is active. This equation has the same
terms as Equation (3b) because, as we have argued, the investment project is always in the money when
it is active. The general solutions to each of the two ODEs, (12a) and (12b), which we denote N1(V ) and
N2(V ), are

N1(V ) = n11V
x1 + n12V

x2 when V ≤ SN(13a)

and

N2(V ) = n21V
y1 + n22V

y2 +
V

1 + (r − μ)T
− kT + K

1 + rT
when SN ≤ V.(13b)

Here the powers, x1 and x2, are given by

x1 =
(1
2σ2 − μ) +

√
(μ − 1

2σ2)2 + 2rσ2

σ2
> 1(14a)

and

x2 =
(1
2σ2 − μ) −

√
(μ − 1

2σ2)2 + 2rσ2

σ2
< 0.(14b)

The powers y1 and y2 are still defined by the system of equations (5). Comparing the powers x1 and x2

with the corresponding powers y1 and y2, we see that y1 > x1 > 1 and that y2 < x2 < 0. In our general
solution in Equation (13a) we can eliminate the V x2 term, since the value of the investment project must
be zero when the value of the outcome, V , converge to zero. Since x2 < 0, the coefficient in front of the
V x2 term must be zero in order for the value of the investment project not to explode as the value of the
outcome, V , converge to zero. In addition, using the same arguments as in sub-section 2.1, we know that
limV →∞

N2(V )
V must be finite. Hence, we can eliminate the V y1 term in Equation (13b). The value of the

investment project has the following boundary conditions

N1(SN ) = N2(SN )(15a)

and

N ′
1(SN ) = N ′

2(SN ).(15b)

The two conditions, (15a) and (15b), reflect the fact that the value function should be continuous and
differentiable at the point when the two differential equations (12a) and (12b) meet at the switching point,
SN . In order to find the optimal switching point itself, SN , we solve

(15c) λ(SN − K) = λN2(SN ) + k.

Equation (15c) is based on the following instantaneous trade-off argument. At each instant in time the owner
considers the instantaneous costs and benefits from switching between an active and a passive investment
project. The increased instantaneous benefits from switching from a passive state to an active state is the
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increased intensity of completion which has a value flow λ(V − K) per unit of time. On the other hand the
increased instantaneous costs of switching are (i) the increased intensity of loosing the investment project
(an inevitable consequence of completion) which has a value flow λN2(V ) per unit of time9 and (ii) the
increased on-going investment costs at the rate k per unit of time.

Note that Equation (15c) also implies that the value function, N(V ), will be two times differentiable at
the switching point, SN . To see this note that N2 is a solution to the ODE (12b), hence,

(16)
1
2
σ2S2

NN ′′
2 (SN ) = rN2(SN ) − μSNN ′

2(SN ) + λN2(SN ) + k − λ(SN − K).

Using Equation (15c), we can eliminate the last terms in Equation (16), so we have

(17)
1
2
σ2S2

NN ′′
2 (SN ) = rN2(SN ) − μSNN ′

2(SN ).

On the other hand N1 is a solution to the ODE (12a), hence,

(18)
1
2
σ2S2

NN ′′
1 (SN ) = rN1(SN ) − μSNN ′

1(SN ).

Using Equations (15a) and (15b) we conclude that the right hand sides of Equations (17) and (18) are
identical, hence the left hand sides must also be identical. Since SN > 0 and σ > 0, we conclude that

(19) N ′′
1 (SN ) = N ′′

2 (SN ).

In order to find the value of the investment project, we solve the system of equations (15) in the three
unknowns, n11, n22, and SN , to get

SN =
(x1 + (x1 − y2)rT )(1 + (r − μ)T )(kT + K)

(x1 − 1 + (x1 − y2)(r − μ)T )(1 + rT )
,(20a)

n11 =
y2(1 + (r − μ)T )(kT + K) + (1 − y2)(1 + rT )SN

(x1 − y2)(1 + (r − μ)T )(1 + rT )Sx1
N

,(20b)

and

n22 =
x1(1 + (r − μ)T )(kT + K) − (x1 − 1)(1 + rT )SN

(x1 − y2)(1 + (r − μ)T )(1 + rT )Sy2
N

.(20c)

From Equation (15c) it is clear that SN > kT + K. To see this note that kT + K would have been the
optimal switching point if the owner did not take into account the costs of losing the investment project.
That is, if the term λN2(SN ) would not have been present on the right hand side of Equation (15c) then the
optimal switching point would have been kT + K. Since N2(SN ) is strictly positive, the optimal switching
point must be higher than kT + K. Finally, the value of the investment project is

(21) N(V ) =

⎧⎨
⎩

n11V
x1 when V < SN ,

n22V
y2 + V

1+(r−μ)T − kT+K
1+rT when SN ≤ V.

The solution to the switching point from Equation (20a), which essentially is based on the instantaneous
trade-off argument from Equation (15c), also has the property that it maximizes the value function, N(V ),
globally. That is, if we consider the value of the investment project, now denoted N(V ; S), not only as a
function of the value of the outcome, V , but also as the function of a given pre-committed switching point,

9Note that it does not matter whether we use N1(SN ) or N2(SN ) for the value of the investment project at the switching point
since by Equation (15a) the two functions have the same value at the switching point, SN .



14 REAL OPTIONS WITH UNCERTAIN MATURITY AND COMPETITION

S, then the switching point solution, SN , from Equation (20a), maximizes the function S �→ N(V ; S) for
any choice of V .

Note that this switching option model has the standard perpetual American call option as a limit case.
That is, if λ = ∞, switching to an active investment project will trigger immediate completion. This
corresponds to the decision of exercising a perpetual American call option written on the value of the
outcome, V , and with the final (fixed) investment costs, K, as exercise price. Inserting T = 0 (corresponding
to λ = ∞) into Equation (20a) gives the well-known optimal exercise threshold level10

(22) SN =
x1

(x1 − 1)
K

and the well-known value

(23) N(V ) =

⎧⎨
⎩

V
x1

(
V

SN

)x1−1

when V < SN ,

V − K when SN ≤ V.

In Figure 3 we show the values of the investment projects as a function of the value of the outcome, V ,
for three different values of the expected time to completion, T = 1, T = 5, and T = 10 years. We denote
the corresponding values of the investment projects as N1(V ), N5(V ), and N10(V ). As can be seen from
the figure, we have the same observation as for the model with the abandonment option, namely that the
values of the investment projects are higher when the expected time to completion is shorter. Now, since
there are no costs of keeping the investment projects passive, the projects have strictly positive values even
for very low values of the outcome. For comparison we also show in Figure 3 the value of the corresponding
investment project with abandonment option for T = 5 years. We denote this value M5(V ). For very high
values of the outcome the value of the investment project with the abandonment option and the one with
the switching option converge since for very high values of the outcome the option to abandon and to switch
are far out of the money and therefore their values become negligible compared to the intrinsic values of the
investment projects which are identical for the two models.

In Figure 3 we finally show the corresponding switching points on the horizontal axis for two of the three
different values of the expected time to completion, denoted S1

N and S5
N . The switching point for T = 10 is

to the right of the figure. The exact levels are S1
N = 32.04, S5

N = 37.58, and S10
N = 44.79.

In Figure 4 we show the switching points as a function of the expected time to completion, T , with
our base case parameters. We denote the switching points SN . Typically the switching points will be an
increasing function of the expected time to completion but, as in the abandonment model, for short expected
time to completion (for T below 0.72 years with our base case parameters), it may be a decreasing function
of time even for realistic parameter values. For T = 0, the switching point is equal to x1

x1−1K = 35.75 with
our base case parameters as derived in Equation (22).

2.3. Model with both Abandonment and Switching Options. Next we consider the model where the
owner of the investment project can switch between two activity levels, low and high. At the low activity
level the on-going investment costs rate is k and the intensity of completion is λ, and, hence, the expected
time to completion is T = 1

λ . At the high activity level the intensity of completion is increased to λ̄ > λ

but the on-going investment costs rate is also increased to k̄ > k. Note that at the high activity level the

10The size for the on-going investment costs rate, k, is irrelevant since the waiting time until completion is zero, so the present
value of those costs will be zero. Note also that as λ goes to infinity, y2 will go to minus infinity.
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Figure 3. Values of investment projects (denoted N1(V ), N5(V ), and N10(V )) as a func-
tion of the value of the outcome, V , for three different values of expected time to completion,
T = 1, T = 5, and T = 10 years. The figure also shows the corresponding switching points
(denoted S1

N and S5
N) on the horizontal axis for two of the three different values of expected

time to completion. The switching point for T = 10 is off the chart. The exact levels are
S1

N = 32.04, S5
N = 37.58, and S10

N = 44.79. For comparison the figure also shows the value
of the investment project with the abandonment option (denoted M5(V )) instead of the
switching option for T = 5 and its corresponding abandonment threshold level (denoted
A5

M ). All other parameters are given in Table 1.

expected time to completion is reduced to T̄ = 1
λ̄

< T . When the value of the outcome is high, the owner
will prefer to reduce the expected time to completion even if this requires a higher on-going investment costs
rate, and when the value of the outcome is low, the owner will prefer to reduce the on-going investment costs
rate even though the expected time to completion will be longer. Moreover, when the value of the outcome
is very low the owner may even want to abandon the investment project. For the case of an R&D investment
project we can imagine that the owner can switch between two different levels of research activity. A low
research activity level with low on-going costs rate, k, and a corresponding long expected time to completion,
T , versus a high research activity level with higher on-going costs rate, k̄, but also shorter expected time
to completion, T̄ . The owner will of course also have the option to abandon the R&D investment project
definitively. Clearly the decision of which research activity level to choose and eventually when to abandon
will depend on the net present value of the benefits from selling the products, V . As in the first model we
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Figure 4. Switching points (denoted SN ) as a function of expected time to completion, T .
All other parameters are given in Table 1.

studied in sub-section 2.1, there will be a threshold level, AO, such that when the value of the outcome is
below this level it is optimal for the owner of the investment project to abandon it; and as in the second
model we studied in sub-section 2.2, there will be another threshold level, SO, where it will be optimal to
switch between the two possible activity levels. As in sub-section 2.2 we assume that there are no switching
costs. We solve this model in Appendix B.

In Figure 5 we show the values of an investment project of this kind as a function of the value of the
outcome, V . In this investment project the owner can switch to a lower level of activity with a lower on-
going investment costs rate, k = 0.3, but also a longer expected time to completion, T = 10 years. All
other parameters are as in our base case. We denote this value O(V ). For this model the optimal switching
point between the two activity levels is SO = 51.41 (which is to the right of the figure) and the optimal
abandonment threshold level is AO = 3.03 with our base case parameters. For comparison we also plot the
values of the corresponding investment project with only the abandonment option in the base case. That
is, here the owner has expected time to completion of T = 5 years and an on-going investment costs rate of
k = 1. In this model the owner’s only option is to abandon her/his investment project, which she/he will do
at the abandonment threshold level AM = 5.26. We denote this value M(V ). Also for comparison, we plot
the values of the corresponding investment project with only the switching option in the base case. That
is, here the owner can switch between a passive and an active investment project. The passive investment
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Figure 5. Values of an investment project (denoted O(V )) as a function of the value of
the outcome, V , in which the owner can switch to a lower level of activity with a lower
on-going investment costs rate, k = 0.3, but also a longer expected time to completion,
T = 10 years. The optimal switching point between the two activity levels is SO = 51.41
and the optimal abandonment threshold level is AO = 3.03. For comparison the figure also
shows the values of the corresponding investment project with only the abandonment option
(denoted M(V )). The abandonment threshold level for this model is AM = 5.26. The figure
also shows the values of the corresponding investment project with only the switching option
(denoted N(V )). The switching point for this model is SN = 37.58. Both switching points
(SO and SN ) are off the chart. All other parameters are given in Table 1.

project has an on-going investment costs rate of k = 0 and no chance of completion, i.e. T = ∞, whereas
the active investment project has expected time to completion of T = 5 years and an on-going investment
costs rate of k = 1. In this model the owner’s only option is to switch between the passive and the active
investment project, which she/he will do at the switching point SN = 37.58 (which is also to the right of
the figure). We denote this value N(V ). Interestingly, as the value of the outcome, V , increases, the values
of the three investment projects converge. This is so because for very high values of the outcome the option
to abandon and/or switch are far out of the money and therefore their values become negligible compared
to the intrinsic values of the investment projects which are identical for all three investment projects.
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3. Duopoly Models

In the previous section we considered models in which the owner of the investment project does not face
any competition as to whom will have the right to the value of the outcome when the investment project is
completed. Now we consider models in which there are two different owners of investment projects. Only
the one whose project is completed first, gets the value of the outcome, V , and the other gets nothing. That
is, we make a winner-takes-it-all assumption. A typical illustration of this would be when two competing
research teams are working to develop similar products and the one who completes first is able to patent the
product and obtain all the benefits. To simplify the analysis we consider models in which both owners (which
we will now call players) have the same rate of on-going investment costs, k, the same final investment costs,
K, and the same expected time to completion, T . We also assume that the two exponential distributions
governing the time to completion of the two investment projects are independent. As in the previous section
we will consider first the abandonment option and then the switching option.

3.1. Model with Abandonment Option. Since there is only one stochastic process governing the value
of the outcome for both players and the two players have the same characteristics, both will meet the optimal
abandonment threshold level at the same point in time. This abandonment threshold level will be as least
as high as the abandonment threshold level in the corresponding monopoly model, AM , from Equation (8b),
which we derived in sub-section 2.1. Hence, both players will prefer that the other player abandons so that
she/he would get the investment project as a monopolist. The decision as to whom abandons is the result of
a game. To break the tie we first consider the case where one of the players, the leader, has an unmodeled
advantage over the other player, the follower. This advantage could be slightly lower investment costs or
more capital, etc. In this case, we assume that the follower abandons first and leaves the monopoly value to
the leader. The threshold level at which the follower will abandon we will denote, AQ. Clearly, as we have
argued, AQ ≥ AM . After having analyzed the leader-follower case we will consider the case where the two
players are identical and analyze the game that occurs.

3.1.1. Leader and Follower. If the two players know in advance whom will be the player who will abandon
first, the abandonment threshold levels will reflect this and be different for each of the two players.
3.1.1.1. The Follower . First we analyze the follower’s investment project. As in the two previous abandon-
ment models we analyzed in sub-sections 2.1 and 2.3 we will have to consider both the situation where we
assume that the abandonment threshold level, AQ, is below the final investment costs, K, and the situation
where it is above. Here we assume that AQ < K. In Appendix C we analyze the situation when AQ ≥ K.
Let Q(V ) denote the value of the investment project for the follower. This value must satisfy the system of
ODEs

1
2
σ2V 2Q′′(V ) + μV Q′(V ) − (r + 2λ)Q(V ) − k = 0 when AQ < V < K,(24a)

and

1
2
σ2V 2Q′′(V ) + μV Q′(V ) − (r + 2λ)Q(V ) − k + λ(V − K) = 0 when K < V.(24b)

Equation (24a) describes the value of the follower’s investment project when it is out of the money. This
equation reflects the fact that with intensity 2λ either the follower’s or the leader’s investment project will be
completed out of the money. If it is the follower’s investment project which is completed out of the money the
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value of her/his investment project would jump down to zero (cf. footnote 6). If it is the leader’s investment
project which is completed out of the money, we assume that the value of the follower’s investment project
also jumps down to zero.11 In addition, the follower has to pay on-going investment costs at the rate k per
unit of time to keep the investment project alive. Equation (24b) describes the value of follower’s investment
project when it is in the money. This equation reflects the fact that with intensity 2λ either the follower’s
or the leader’s investment project will be completed in the money. If it is the follower’s investment project
which is completed, the value of her/his investment project would jump to the completion value, V − K.
But, if it the leader’s investment project which is completed, the value of the follower’s investment project
will jump to zero because of our winner-takes-it-all assumption. In addition, the follower has to pay on-going
investment costs at the rate k per unit of time to keep the investment project alive. The general solutions
to each of the two ODEs, (24a) and (24b), which we denote Q1(V ) and Q2(V ), are

Q1(V ) = q11V
z1 + q12V

z2 − k

r + 2λ
when AQ ≤ V ≤ K(25a)

and

Q2(V ) = q21V
z1 + q22V

z2 +
λV

r + 2λ − μ
− k + λK

r + 2λ
when K ≤ V.(25b)

Here the powers, z1 and z2, are given by

z1 =
(1
2σ2 − μ) +

√
(μ − 1

2σ2)2 + 2(r + 2λ)σ2

σ2
> 1(26a)

and

z2 =
(1
2σ2 − μ) −

√
(μ − 1

2σ2)2 + 2(r + 2λ)σ2

σ2
< 0.(26b)

Comparing the powers z1 and z2 with the corresponding powers y1 and y2 from the corresponding monopoly
model from the system of equations (5), we see that z1 > y1 > 1 and that z2 < y2 < 0. Using the same
arguments as for the previous models, we know that limV →∞

Q2(V )
V must be finite. Hence, we can eliminate

the V z1 term in Equation (25b). In addition, we can substitute T = 1
λ for the expected (remaining) time to

completion of the investment project to get

Q1(V ) = q11V
z1 + q12V

z2 − kT

2 + rT
when AQ ≤ V ≤ K(27a)

and

Q2(V ) = q22V
z2 +

V

2 + (r − μ)T
− kT + K

2 + rT
when K ≤ V.(27b)

11This reflects that the leader still has a right to her/his discovery (either by patenting or other legal actions) even though it
turns out that it is not worth putting into production immediately. As we indicated in footnote 6 on page 6 a more realistic
assumption would be that the owner (in this case the leader) receives a perpetual American option at the completion date
of her/his investment project. The important assumption here is that if the leader’s investment project is completed, then
the follower’s investment project becomes valueless because of the winner-takes-it-all assumption. We think this is the most
realistic and appealing assumption. As an alternative, we could assume that if the leader’s investment project is completed out
of the money, then the follower suddenly becomes a monopolist and that the value of her/his investment project will jump to
the corresponding monopoly value, M(V ), which we derived in sub-section 2.1. This case is also solvable, although the optimal
abandonment threshold level can only be found numerically.
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The value of the follower’s investment project has the following boundary conditions

Q1(AQ) = 0,(28a)

Q′
1(AQ) = 0,(28b)

Q1(K) = Q2(K),(28c)

and

Q′
1(K) = Q′

2(K).(28d)

These boundary conditions are the same as the boundary conditions used in the corresponding monopoly
model with abandonment, cf. the system of equations (7) in sub-section 2.1. In order to find solutions for
the four unknowns, q11, q12, q22, and AQ, we solve the system of equations (28). The solution is

q11 =
(2 + (r − z2μ)T )K1−z1

(z1 − z2)(2 + (r − μ)T )(2 + rT )
,(29a)

AQ =
( z2kT

(z2 − z1)(2 + rT )q11

) 1
z1

,(29b)

q12 = −z1q11A
z1−z2
Q

z2
,(29c)

and

q22 = q12 +
(2 + (r − z1μ)T )K1−z2

(z1 − z2)(2 + (r − μ)T )(2 + rT )
.(29d)

Finally, the value of the follower’s investment project is

(30) Q(V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when V < AQ,

q11V
z1 + q12V

z2 − kT
2+rT when AQ ≤ V < K,

q22V
z2 + V

2+(r−μ)T − kT+K
2+rT when K ≤ V.

Note the close similarity to the corresponding monopoly solution from Equation (9) and the system of
equations (8) in sub-section 2.1. It is not so obvious when one looks at the ODE, but from the solution it
is clear that the value of the follower’s investment project is identical to half the value of the corresponding
monopoly investment project with double the on-going investment costs rate and half the expected time
to completion.12 Therefore, the abandonment threshold level for the follower, AQ, is also identical to the

12Ex post, after having discovered this result, it is easy to see that it is possible to derive it directly from the ODEs. Take the
system of ODEs (24) describing the value of the follower’s investment project, Q(V ). In order to get two times this solution,
i.e. 2Q(V ), we need to double the cash flow rates. That is, X(V ) = 2Q(V ) would be a solution to the system of ODEs

1

2
σ2V 2X′′(V ) + μV X′(V ) − (r + 2λ)X(V ) − 2k = 0 when AX < V < K,(31a)

and

1

2
σ2V 2X′′(V ) + μV X′(V ) − (r + 2λ)X(V ) − 2k + 2λ(V − K) = 0 when K < V.(31b)

The boundary conditions for X(V ) are the same as for Q(V ), cf. Equations (28). Now comparing the system of ODEs (31)
to the corresponding system of ODEs (3) for the monopoly model from sub-section 2.1 and also the boundary conditions, cf.
Equations (7), it is clear that X(V ) is the value of a monopoly investment project with intensity 2λ (corresponding to an

expected time to completion of T
2

) and an on-going investment costs rate of 2k.
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abandonment threshold level for the corresponding monopoly investment project with double the on-going
investment costs rate and half the expected time to completion.

If it turns out that the solution to AQ from Equation (29b) is greater than K, we must reconsider the
problem. We do this in Appendix C. In this situation, the value of the follower’s investment project is

(32) Q(V ) =

⎧⎨
⎩

0 when V < ÃQ,

q32V
z2 + V

2+(r−μ)T − kT+K
2+rT when ÃQ ≤ V.

Here ÃQ and q32 are

ÃQ =
z2(2 + (r − μ)T )(kT + K)

(z2 − 1)(2 + rT )
(33a)

and

q32 = − Ã1−z2
Q

z2(2 + (r − μ)T )
.(33b)

Note again that the abandonment threshold level in this situation (denoted ÃQ) is, in general, different from
AQ from Equation (29b). For notational simplicity, however, we will always refer to AQ as the abandonment
threshold level for the follower for the rest of the paper even though strictly speaking we should distinguish
between AQ and ÃQ depending on whether AQ < K or ÃQ ≥ K.
3.1.1.2. The Leader . After having found the abandonment threshold level for the follower, AQ, we can turn
to the valuation of the leader’s investment project. The abandonment threshold level for the leader, AP , will
always be lower than the abandonment threshold level for the follower, AQ. Hence, the follower will always
have abandoned before the leader considers abandoning her-/himself. So the leader will find her-/himself
in the corresponding monopoly situation before she/he considers abandoning. Hence, the abandonment
threshold level for the leader will be the same as the abandonment threshold level in the corresponding
monopoly model. That is, AP = AM . Moreover, the value of the leader’s investment project will be equal
to the value of the corresponding investment project in the monopoly model, M(V ), as soon as the follower
has abandoned. Hence, we only need to analyze the value of the leader’s investment project for values of
the outcome, V , above the abandonment threshold level for the follower, AQ. As it was the case when
we analyzed the value of the follower’s investment project, we have to consider both the situation when
AQ < K and and when AQ ≥ K. Here we analyze the situation when AQ < K. In Appendix D we analyze
the situation when AQ ≥ K. Let P (V ) denote the value of the leader’s investment project. This value must
satisfy the system of ODEs

1
2
σ2V 2P ′′(V ) + μV P ′(V ) − (r + 2λ)P (V ) − k = 0 when AQ < V < K,(34a)

and

1
2
σ2V 2P ′′(V ) + μV P ′(V ) − (r + 2λ)P (V ) − k + λ(V − K) = 0 when K < V.(34b)

The system of equations (34) for the value of the leader’s investment project is identical to the system of
equations (24) for the value of the follower’s investment project and the explanations for the terms are the
same. Since the value of the leader’s investment project is equal to the value of the corresponding investment
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project in the monopoly model as soon as the follower has abandoned we have

P (V ) = M(V ) when AM ≤ V ≤ AQ.(35a)

Using the same arguments as for the follower we get the solutions to each of the two ODEs, (34a) and (34b),
which we denote P1(V ) and P2(V ), as

P1(V ) = p11V
z1 + p12V

z2 − kT

2 + rT
when AQ ≤ V ≤ K,(35b)

and

P2(V ) = p22V
z2 +

V

2 + (r − μ)T
− kT + K

2 + rT
when K ≤ V.(35c)

The value of the leader’s investment project has the following boundary conditions

P1(AQ) = M(AQ),(36a)

P1(K) = P2(K),(36b)

and

P ′
1(K) = P ′

2(K).(36c)

Condition (36a) reflects the fact that at the abandonment threshold level for the follower, AQ, the value of
the leader’s investment project is the same as the value of the corresponding monopoly investment project.
Note that the value of the leader’s investment project is not (necessarily) differentiable at the abandonment
threshold level for the follower. This is so because (i) the leader does not take any active decisions at this
point,13 and (ii) the value process of the leader’s investment project only follows this path once (opposite a
switching point where the value processes of the two players’ investment projects may pass back and forth
over this threshold level infinitely many times). Conditions (36b) and (36c) are the usual continuity and
differentiability conditions at the final investment costs, K. We can solve the system of equations (36) in
the three unknowns, p11, p12, and p22. The solution is14

p11 =
(2 + (r − z2μ)T )K1−z1

(z1 − z2)(2 + (r − μ)T )(2 + rT )
,(37a)

p12 =
(
m11A

y1
Q + m12A

y2
Q − p11A

z1
Q − kT

(1 + rT )(2 + rT )

) 1
Az2

Q

,(37b)

and

p22 = p12 +
(2 + (r − z1μ)T )K1−z2

(z1 − z2)(2 + (r − μ)T )(2 + rT )
.(37c)

Note that the solution to p11 from Equation (37a) is identical to q11 for the follower from Equation (29a).
Note also the similarity between p22 from Equation (37c) and q22 for the follower from Equation (29d).

13It is the follower who determines when to abandon her/his investment project, so her/his value should smooth paste at this
threshold level, cf. Equation (28b).
14Note that M(V ) on the right hand side of Equation (36a) is actually M1(V ) from Equation (6a), since AM < AQ < K.
Therefore we get the terms m11 and m12 in the solution to p12 in Equation (37b).
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Finally, the value of the leader’s investment project is

(38) P (V ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 when V < AM ,

M(V ) when AM ≤ V < AQ,

p11V
z1 + p12V

z2 − kT
2+rT when AQ ≤ V < K,

p22V
z2 + V

2+(r−μ)T − kT+K
2+rT when K ≤ V.

We analyze the situation when AQ from Equation (29b) is greater than K in Appendix D. In this situation
the value of the leader’s investment project is

(39) P (V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when V < AM ,

M(V ) when AM ≤ V < ÃQ,

p32V
z2 + V

2+(r−μ)T − kT+K
2+rT when ÃQ ≤ V.

Here p32 is

(40) p32 =

⎧⎪⎨
⎪⎩

(
m22Ã

y2
Q − kT+K

(1+rT )(2+rT ) + ÃQ

(1+(r−μ)T )(2+(r−μ)T )

)
1

Ã
z2
Q

when AM < K(
m32Ã

y2
Q − kT+K

(1+rT )(2+rT ) + ÃQ

(1+(r−μ)T )(2+(r−μ)T )

)
1

Ã
z2
Q

when AM ≥ K.

Substituting the value of the corresponding monopoly investment project, M(V ), into Equation (39) is
straight forward but a little care is needed.15 See Appendix D for details.

In figure 6 we show the values of both the leader’s and the follower’s investment projects as a function of
the value of the outcome, V , with our base case parameters. We denote the values of the leader’s investment
project as P (V ) and the values of the follower’s investment project as Q(V ). For comparison we also show
the values of the corresponding monopoly investment project. These values we denote M(V ). We also show
the corresponding abandonment threshold levels on the horizontal axis for the follower and for the leader.
We denote the abandonment threshold level for the follower AQ. The abandonment threshold level for the
leader is the same as the abandonment threshold level in the corresponding monopoly model. Therefore, we
denote this abandonment threshold level, AM . The exact levels are AQ = 6.30 and AM = 5.26 with our base
case parameters. For values of the outcome below the abandonment threshold level for the follower, AQ, the
value of the leader’s investment project is the same as the value of the corresponding monopoly investment
project.

It is interesting to note that the value of the leader’s investment project is actually a decreasing function
of the value of the outcome for values of the outcome just above the abandonment threshold level for the
follower (for V between 6.30 and 6.56 with our base case parameters). The reason for this is as follows:
Suppose we are in the situation when the follower has not yet abandoned. A small increase in the value of
the outcome, V has two effects. There is a value decreasing effect on the leader’s investment project because
of the reduced likelihood that the follower will abandon and there is a (natural) value increasing effect of
a higher value of the outcome at completion of the leader’s investment project. For values of the outcome
close to the threshold level where the follower will abandon, the value decreasing effect dominates.

15Basically, one needs to be careful to substitute the correct version of M(V ) into Equation (39) depending on whether AM < K
or AM ≥ K.
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Figure 6. Values of both the leader’s (denoted P (V )) and the follower’s (denoted Q(V ))
investment projects as a function of the value of the outcome, V . For comparison the figure
also shows the values of the corresponding monopoly investment project (denoted M(V )).
The figure also shows the values of the investment projects using the coin-toss solution
(denoted 1

2 (P + Q)(V )), cf. Paragraph 3.1.2.1 below. Finally, the figure also shows the
corresponding abandonment threshold levels on the horizontal axis for the follower (denoted
AQ) and for the leader (denoted AM ). The exact levels are AQ = 6.30 and AM = 5.26. All
other parameters are given in Table 1.

For high levels of the outcome the values for the leader’s and the follower’s investment projects converge
because the advantage of being the leader becomes relatively small compared to the intrinsic values of the
investment projects which are identical for the leader’s and the follower’s investment projects.

3.1.2. Identical Players. When the two players are truly identical we need to analyze the abandonment
decision as a game. The value of each of the two players’ investment projects when both keep investing we
will denote R̂(V ). M(V ) is the value of the investment project in the corresponding monopoly model from
sub-section 2.1. It is easy to see that R̂(V ) ≤ M(V ). The two players consider whether to continue investing
or whether to abandon by studying the normal form representation of the game in Table 2. If the value
of the outcome, V , is high enough to make R̂(V ) strictly positive, it is easy to see (by eliminating strictly
dominated strategies) that the unique Nash equilibrium in pure strategies is that both players continue
investing in their investment projects. When the value of the outcome is below the abandonment threshold
level in the corresponding monopoly model, i.e. when V ≤ AM , it is no longer profitable to continue investing
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Player two

Continues investing Abandons

Continues investing R̂(Vt), R̂(Vt) M(Vt), 0
Player one

Abandons 0, M(Vt) 0, 0

Table 2. Normal form representation of the (one-shot) abandonment decision game. R̂(V )
denotes the value of each of the two players’ investment projects when both keep investing.
M(V ) denotes the value of the investment project in the corresponding monopoly model
from sub-section 2.1.

even for a monopolist, so then the unique Nash equilibrium in pure strategies is that both players abandon
their investment projects. Finally, when the value of the outcome is in the area when R̂(V ) < 0 < M(V ),
then there are two Nash equilibria in pure strategies. These are characterized by the fact that one of the
players continues investing and the other player abandons. This is exactly the leader-follower case, which we
have just analyzed. However, if the players are (truly) identical there is no mechanism to select one of the
two equilibria from the other. A co-operative solution in this case would be that the two players agree to
meet and to flip a coin in order to break the tie and decide whom should be the leader and whom should be
the follower. We will term this solution the Coin Toss Solution. From an ex-ante point of view both players
prefer this solution, since this gives each of the two players the highest ex-ante value of their individual
investment projects.
3.1.2.1. Coin-Toss Solution. If the players have agreed that they will meet to flip a coin in order to determine
whom should be the leader and whom should be the follower, and it is clear that the looser ex post, after
the coin has been tossed, would honor the agreement and actually abandon, then both players would like to
know the outcome of the coin toss as soon as the value of the outcome, V , hits (or is below) the abandonment
threshold level for the follower, AQ, from Equation (29b),16 in the corresponding leader-follower case. This
is so because AQ is the optimal abandonment threshold level for the looser of the coin toss. As long as V

is above AQ the players do not need to know the outcome of the coin toss since it would not change their
investment decisions—both players would optimally continue investing for values of the outcome, V , above
AQ.

Before the players flip the coin to determine whom should be the follower and whom should be the leader
they each have a fifty-fifty chance of being the leader or being the follower. Hence, the value of each of the
two players’ investment projects in this case will be half the value of the leader’s investment project and half
the value of the follower’s investment project from the corresponding leader-follower case.

In Figure 6 we show the values of the investment projects using the coin-toss solution as a function of the
value of the outcome, V , with our base case parameters. We denote these values 1

2 (P + Q)(V ). Obviously,
these are the values of each of the two players’ investment projects for a given value of the outcome before
the coin is flipped. At the point in time when the coin is flipped the value of the winner’s investment project
jumps up to the value of the leader’s investment project, P (V ), and the value of the looser’s investment

16Note that if AQ from Equation (29b) is above the fixed investment costs, K, then the relevant abandonment threshold level

for the follower is ÃQ from Equation (33a) and not AQ from Equation (29b).
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project jumps down to the value of the follower’s investment project, Q(V ). It is interesting to note that
also the values of the investment projects using the coin-toss solution is a decreasing function of the value
of the outcome for values of the outcome just above the abandonment threshold level for the follower, AQ,
(for V between 6.30 and 6.44 with our base case parameters). However, the interval in which the values of
the investment projects using the coin-toss solution is a decreasing function of the value of the outcome is
smaller than the interval where the values of the leader’s investment project is a decreasing function of the
values of the outcome because the values of the follower’s investment project is always an increasing function
of the value of the outcome.

For values of the outcome in the interval between the abandonment threshold levels for the leader and for
the follower, i.e., for V ∈ (AM , AQ), the interpretation of the values 1

2 (P +Q)(V ) is still that it is the values
to each of the two players before the coin is flipped. One reason why these values can be of interest is that
the initial date-zero value of V may be in this range, i.e., V0 ∈ (AM , AQ). In this case the players should
flip the coin immediately and the looser should abandon as soon as the outcome is realized.
3.1.2.2. Variable Abandonment Intensity Solution. A problem with the Coin-Toss Solution, however, is that
it is not sequentially rational for the looser of the coin toss to actually abandon if she/he thinks that the
whole game can be repeated if she/he stays in. In continuous time repeated games can be defined in different
ways. The basic problem is that if there is not at least some finite time interval between points in time when
the game outlined in Table 2 can be repeated, then there is basically no costs of playing another round
and therefore none of the players will ever abandon. That is, we are not able to trade off the present value
of the on-going costs of keeping investing (for another round) and the present value (of the probability) of
becoming the monopolist.

One way to introduce this trade off is to let each player choose an abandonment intensity at each instant in
time. It turns out that intensities play the same role in a continuous-time model as mixed strategies does in a
non-repeated game or even in a repeated game setting in discrete time. A player’s choice of an abandonment
intensity (i.e., a probability to abandon per unit of time) quantifies her/his tendency to abandon versus
continuing investing in her/his investment project in the right way in a continuous-time model since all the
benefits and costs are also in rates per unit of time.

To be precise, we assume that each player has an associated Cox process with an intensity chosen by the
player. This intensity may vary over time. However, since the only state variable in our model is the value of
the outcome, V , and this process is Markovian, the intensity can at most depend on the current realization of
this process. We denote player i’s chosen abandonment intensity γi(V ), for i = 1, 2. The strategy of player
i is to continue investing in her/his investment project until the associated Cox process jumps. When the
Cox process jumps, player i should abandon her/his investment project. That is, player i abandons her/his
investment project with (instantaneous) probability γi(V ) per unit of time. We assume that, conditional on
V , the two Cox processes governing the actual abandonments of each of the two players are independent.
Player i’s strategy is completely determined by her/his chosen abandonment intensity, γi(V ). Hence, we will
call γi(V ) player i’s abandonment strategy.

For values of the outcome, V , above the abandonment threshold level for the follower, AQ, in the corre-
sponding leader-follower case both players will continue investing for sure so they will both optimally choose
to have zero abandonment intensities, i.e., γi(V ) = 0 for V > AQ and i = 1, 2. For values of the outcome,
V , at or below the abandonment threshold level in the corresponding monopoly model, AM , both players
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will abandon immediately so they will both optimally choose infinitely high abandonment intensities, i.e.,
γi(V ) = ∞ for V ≤ AM and i = 1, 2. For values of the outcome, V , in the interval between AM and AQ,
both players will optimally choose non-trivial abandonment intensities which trades off the on-going costs
of keeping investing in their individual investment projects and their individual value of (the probability
of) becoming the monopolist. Clearly, as soon as one of the players abandons her/his investment project,
the other player automatically becomes the monopolist, and therefore, it is optimal for her/him to switch
her/his abandonment intensity to zero.

The interesting question is how the two players should choose their individual abandonment strategies,
γi(V ), for i = 1, 2, as their (instantaneous) responses in an instantaneously repeated game in continuous
time for all possible values of the outcome, V , in the (relevant) interval between AM and AQ.

Let Ri(V ) denote the value of player i’s investment project in this case, i = 1, 2. Note that this value, in
general, will depend on both players chosen abandonment strategies, γj(V ), j = 1, 2.

An essential argument in our approach to finding the abandonment strategies is that the chosen strate-
gies should be sequentially rational. That is, when the associated Cox process of one of the players, say
player i, jumps, indicating that player i should abandon her/his investment project, then it is essential that
abandonment is not a dominated strategy for player i. If player i’s value of continuing investing in her/his
investment project, Ri(V ), is strictly positive, then abandonment (which clearly has value zero) would be
dominated by continuing investing for player i. Hence, player i’s value of continuing investing in her/his
investment project cannot be strictly positive. On the other hand, if player i’s value of continuing investing
in her/his investment project is strictly negative, then the strategy of continued investing (with the cho-
sen abandonment intensities for both players, γi(V ), i = 1, 2) would be strictly dominated by immediate
abandonment (corresponding to an infinitely high abandonment intensity) for player i. That is, the chosen
abandonment intensity for the players, γi(V ), i = 1, 2, for values of the outcome, V , in the interval between
AM and AQ can only lead to sequentially rational strategies if Ri(V ) = 0 for all values of the outcome, V ,
in the interval between AM and AQ and i = 1, 2.

As it was the case in all the previous abandonment models we have analyzed in this paper, we have
to consider different situations, depending on where the threshold levels for abandonment are compared
to the final investment costs, K. For this case we will have three situations to analyze. We will have (i)
AM < AQ < K, (ii) AM < K ≤ ÃQ, and (iii) K ≤ ÃM < ÃQ. Here we analyze the first situation when
AM < AQ < K. In Appendix F we analyze the two other situations, which are conceptually similar.

As we have just argued, Ri(V ) = 0 for V ∈ (AM , AQ] and i = 1, 2. On the other hand, using arguments
similar to all the other models analyzed in this paper, since player i is still investing in her/his investment
project, Ri(V ) is still a solution to the ODE

(41)
1
2
σ2V 2R′′

i (V ) + μV R′
i(V ) − (

r + 2λ + γi(V ) + γj(V )
)
Ri(V )

+ γj(V )Mi(V ) − ki = 0 when AM < V < AQ.

Here we use index j to refer to the other player, i.e. j = 3 − i. Mi(V ) denotes player i’s value of the
investment project in the corresponding monopoly model from sub-section 2.1.17 Since both players assign
the same value to the investment project in the corresponding monopoly model there is, strictly speaking, no

17In sub-section 2.1 we used subscripts on M(V ) to denote the different general solutions to the different ODEs in the system
of ODEs (3). Here we use subscripts to denote player specific values of becoming the monopolist.



28 REAL OPTIONS WITH UNCERTAIN MATURITY AND COMPETITION

need for the index i on the value M(V ), but we think it clarifies our arguments if we allow for player specific
values of becoming the monopolist. For the same reason, we also allow for a player specific rate of on-going
investment costs, ki, in ODE (41). The ODE (41) describes the value of player i’s investment project when
it is out of the money. The ODE has the same terms as the ODE (24a) for the value of the follower’s
investment project and the ODE (34a) for the value of the leader’s investment project in the corresponding
leader-follower case and the explanations to these terms are the same. In addition, the ODE (41) has two
extra terms,

(
γi(V ) + γj(V )

)
Ri(V ) and γj(V )Mi(V ). The term

(
γi(V ) + γj(V )

)
Ri(V ) reflects the fact that

with intensity γi(V )+ γj(V ) either player i or player j will abandon. If it is player i who abandons then the
value of her/his investment project clearly jumps to zero. This corresponds to a loss in value of Ri(V ). If it is
player j who abandons, then player i becomes the monopolist and therefore the value of her/his investment
project jumps to Mi(V ). This corresponds to a jump in value of Mi(V ) − Ri(V ). This explains the second
term, γj(V )Mi(V ).

Since Ri(V ) is zero over the whole interval (AM , AQ], we know that both R′
i(V ) and R′′

i (V ) must also be
zero in the whole open interval (AM , AQ). Hence, from Equation (41) we conclude that the only way that the
chosen strategies for the two players can be sequentially rational is if player j chooses her/his abandonment
strategy to be

(42) γ∗
j (V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ when V ≤ AM ,

ki

Mi(V ) when AM < V ≤ AQ,

0 when AQ < V.

Clearly the same arguments apply to player i’s abandonment strategy. So player i chooses her/his abandon-
ment strategy to be γ∗

i (V ) from Equation (42).
The question is now whether the abandonment strategies (γ∗

1 (V ), γ∗
2 (V )), from Equation (42), form a

Nash equilibrium. We show formally that this is the case in Appendix E. Basically the argument is that as
long as both players use the abandonment strategies, γ∗

i (V ), i = 1, 2, both players’ values of their individual
investment projects, Ri(V ), are zero. The question is now whether any of the players, say player i, has
any incentives to deviate from using the abandonment intensity γ∗

i (V ), given that she/he knows that the
other player (player j) uses the abandonment intensity γ∗

j (V ). When player i’s value of her/his investment
project, Ri(V ), is zero, and she/he knows that player j uses the abandonment intensity, γ∗

j (V ), then player i is
instantaneously indifferent between any choice of her/his own abandonment intensity—including immediate
abandonment. So there is no other strategy, i.e. no other choice of abandonment intensity, for player i that
is strictly better than using the abandonment intensity, γ∗

i (V ). Since this argument applies for both players,
the abandonment strategies (γ∗

1 (V ), γ∗
2 (V )), from Equation (42), form a Nash equilibrium. Moreover, player

i is only indifferent between any choice of her/his own abandonment intensities exactly when player j uses the
abandonment intensity γ∗

j (V ), and similarly, player j is only indifferent between any choice of her/his own
abandonment intensities exactly when player i uses the abandonment intensity γ∗

i (V ), so there is only one
Nash equilibrium where the two players use non-trivial abandonment strategies for values of the outcome,
V in the interval (AM , AQ]. However, as we formally show in Appendix E, there are exactly three Nash
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equilibria. The two other Nash equilibria are the two pure strategy equilibria corresponding to the cases
where one of the players is the follower and the other one is the leader analyzed in sub-sub-section 3.1.1.18

Since the two players have the same benefits of becoming a monopolist, M(V ), and also have the same
rate of on-going investment costs, k, it is clear from Equation (42) that the two players choose identical
abandonment intensities. We will denote this common abandonment intensity function, γ∗(V ).19 Moreover,
the two players will also have identical values of their individual investment projects. We will denote this
value R(V ). As we have already argued, R(V ) = 0 for all values of the outcome below (and including)
AQ. For values of the outcome, V , above the abandonment threshold level for the follower, AQ, in the
corresponding leader-follower case, the value of each of the two players’ investment projects is a solutions to
the same system of ODEs as we set up both for the follower (24) and the leader (34). Hence, the solutions
to each of the two ODEs, which we denote R1(V ) and R2(V ), are20

R1(V ) = r11V
z1 + r12V

z2 − kT

2 + rT
when AQ ≤ V ≤ K,(43a)

and

R2(V ) = r22V
z2 +

V

2 + (r − μ)T
− kT + K

2 + rT
when K ≤ V.(43b)

Moreover, the boundary conditions are

R1(AQ) = 0,(44a)

R′
1(AQ) = 0,(44b)

R1(K) = R2(K),(44c)

and

R′
1(K) = R′

2(K).(44d)

Conditions (44a) and (44b) are actually continuity and differentiability conditions at the abandonment
threshold level for the follower, AQ, in the corresponding leader-follower case. The right hand side of
these equations are zero because, as we have argued, R(V ) = 0 for V ∈ (AM , AQ] and R′(V ) = 0 for
V ∈ (AM , AQ).21 Conditions (44c) and (44d) are the usual continuity and differentiability conditions at the
final investment costs, K. The boundary conditions (44) are identical to the boundary conditions for the
follower in the corresponding leader-follower case from the system of equations (28). So because both the
general solutions to the system of ODEs are the same as for the value of the follower’s investment project,
compare Equations (27) and (43), and also the boundary conditions are the same, compare Equations (28)
and (44), the two players’ investment projects have exactly the same value as the value of the follower’s

18Readers familiar with game theory can compare our variable abandonment intensity game with the battle of the sexes game
in e.g., Gibbons (1992a,b, Chapter 1). This game also has three Nash equilibria. Two pure strategy equilibria and one (Pareto
inferior) mixed strategy equilibrium.
19The common value of the investment project in the corresponding monopoly model, M(V ), to substitute into Equation (42)
is M1(V ) from Equation (6a).
20To keep the notation consistent with the previous sub-sections of this paper, the subscripts on R(V ) now refer to the different
general solutions of the different ODEs from the system of ODEs (24) (and (34)) and not to the individual players’ values of
their individual investment projects.
21Since we want R(V ) to be differentiable at the value AQ, we also have that R′(AQ) = 0.
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investment project in the corresponding leader-follower case. That is, the value of each of the two players’
investment projects is

(45) R(V ) = Q(V ).

Since the value of each of the two players’ investment projects, when they play the variable abandonment
intensity game, is the same as the value of the follower’s investment project in the corresponding leader-
follower case, the variable abandonment intensity Nash equilibrium is, however, Pareto inferior to both
of the two pure strategy leader-follower equilibria. But as we have argued previously, if the players are
(truly) identical and they are not allowed to communicate, there is no mechanism to select one of the two
leader-follower equilibria from the other.22

The values of the follower’s investment project (denoted Q(V )) shown in Figure 6 also represents the
values of the two identical players’ investment projects when they play the variable abandonment intensity
game. There is however an important difference in the investment decisions. The follower abandons her/his
investment project as soon as the value of the outcome hits (or is below) the abandonment threshold level,
AQ. The two players playing the variable abandonment intensity game, on the other hand, keep investing in
their individual investment projects also for values of the outcome below the abandonment threshold level,
AQ. The values of their individual investment projects just happens to be zero for all values of the outcome,
V in the range between the abandonment threshold level for the corresponding monopoly model, AM , and
the abandonment threshold level for the follower in the corresponding leader-follower case, AQ, because of
the variable abandonment intensity game they are playing with each other in this range. The players apply
just the right intensity of abandonment in order to balance the other player’s chances of getting the monopoly
value and her/his on-going costs of keeping investing. Eventually when one of the two players abandons in
this range the value of the other player’s investment project jumps up to the corresponding monopoly value
(denoted M(V ) in Figure 6).

In Figure 7 we show the abandonment intensities for each of the two players as a function of the value
of the outcome, V , with our base case parameters. We denote the abandonment intensities γ∗(V ). In the
figure we also show the abandonment threshold level for the follower in the corresponding leader-follower
case and the abandonment threshold level in the corresponding monopoly model on the horizontal axis. We
denote the abandonment threshold level for the follower in the corresponding leader-follower case as AQ and
the abandonment threshold level in the corresponding monopoly model AM . The exact levels are AQ = 6.30
and AM = 5.26 with our base case parameters. For values of the outcome below AM the abandonment
intensities are infinitely high and for values of the outcome above AQ the abandonment intensities are zero.
This means that the abandonment intensity jumps at the abandonment threshold levels for the follower in
the corresponding leader-follower case, AQ. That is, γ∗(AQ) = 3.89 with our base case parameters. But for
any V > AQ, γ∗(V ) = 0. Finally, note how dramatically the abandonment intensities increase as the value
of the outcome, V , becomes smaller. This is so because as V becomes smaller so does the value of becoming
the monopolist but the on-going costs of keeping investing stays at the same rate, k.

22This is also the case in the battle of the sexes game (Gibbons, 1992a,b, Chapter 1). In this game the mixed strategy equilibrium
is also Pareto inferior to the two pure strategy equilibria. But again, if the two players are not allowed to communicate, there
is no mechanism to select one of the two pure strategy equilibria from the other.
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Figure 7. Abandonment intensities (denoted γ∗(V )) as a function of the value of the out-
come, V . The figure also shows the abandonment threshold levels for the follower (denoted
AQ) in the corresponding leader-follower case and the abandonment threshold level in the
corresponding monopoly model (denoted AM ) on the horizontal axis. The exact levels are
AQ = 6.30 and AM = 5.26. For values of the outcome below AM the abandonment intensi-
ties are infinitely high and for values of the outcome above AQ the abandonment intensities
are zero. All other parameters are given in Table 1.

Player two

Active Passive

Active λ(V − K) − 2λU1(V ) − k, λ(V − K) − 2λU2(V ) − k λ(V − K) − λU1(V ) − k,−λU2(V )
Player one

Passive −λU1(V ), λ(V − K) − λU2(V ) − k 0, 0

Table 3. Normal form representation of the switching game.

3.2. Model with Switching Option. Finally we will consider the model where two identical players each
can switch (costlessly) between an active and a passive investment project. As it was the case in sub-
section 2.2, where we analyzed the corresponding monopoly model, we find the switching points of the two
players by an instantaneous trade-off argument. Again, as it was the case in the corresponding monopoly
model, it is clearly optimal for both players to be in passive state when the investment projects are out of
the money. Hence, each of the players’ switching points will be above the final investment costs, K. Let
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U i(V ) denote the value of player i’s investment project. The players decide whether to be active or passive
by considering the normal form representation of the game in Table 3. Take Player one. The instantaneous
benefits of being active is the value flow from the intensity of completion, λ(V − K). The instantaneous
costs of being active is the intensity of loosing the investment project, which has a value flow of λU1(V ), and
the on-going investment costs at the rate k. If the other player (Player two) is active there is an additional
instantaneous cost, namely the intensity of loosing the investment project in case she/he finishes her/his
investment project. This instantaneous cost also has a value flow of λU1(V ). Player one incurs this flow of
costs whether she/he is active or passive her-/himself. We can apply exactly the same arguments for Player
two.

Based on the normal form representation of the game in Table 3 we see that Active is a strictly dominating
strategy for player i for values of the outcome, V , such that

λ(V − K) > λU i(V ) + k

and that Passive is a strictly dominating strategy for player i for values of the outcome, V , such that

λ(V − K) < λU i(V ) + k.

Hence, if the two players have the same value functions, they will use the same switching point, which we
will denote, SU . So if the two players are identical, they will use the same switching point and have the
same values of their individual investment projects. So we can skip the superscript on U(V ) for the values
of the two players’ investment projects. Moreover, we find the switching point, SU , by solving

(46) λ(SU − K) = λU(SU ) + k.

Following arguments similar to the previous models, U(V ) must satisfy the system of ODEs

1
2
σ2V 2U ′′(V ) + μV U ′(V ) − rU(V ) = 0 when V < SU ,(47a)

and

1
2
σ2V 2U ′′(V ) + μV U ′(V ) − (r + 2λ)U(V ) − k + λ(V − K) = 0 when SU < V.(47b)

Equation (47a) is the same as Equation (12a) for the corresponding monopoly model and similarly, Equa-
tion (47b) is the same as Equation (24b) for the follower and Equation (34b) for the leader. Moreover,
the explanations for the terms are the same. Using the same arguments as in the monopoly model, cf.
sub-section 2.2, we get the solutions to each of the two ODEs, (47a) and (47b), which we denote U1(V ) and
U2(V ), as

U1(V ) = u11V
x1 when V ≤ SU ,(48a)

and

U2(V ) = u22V
z2 +

V

2 + (r − μ)T
− kT + K

2 + rT
when SU ≤ V.(48b)

The value of each of the two players’ investment projects has the following boundary conditions

U1(SU ) = U2(SU )(49a)
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and

U ′
1(SU ) = U ′

2(SU ).(49b)

These conditions are the usual continuity and differentiability conditions at the switching point, SU . In
order to find solutions for the three unknowns, u11, u22, and SU , we solve the system of equations from (46)
and (49). The solution is

SU =
(x1 + (x1 − z2)(1 + rT ))(2 + (r − μ)T )(kT + K)

(x1 − 1 + (x1 − z2)(1 + (r − μ)T ))(2 + rT )
,(50a)

u11 =
z2(2 + (r − μ)T )(kT + K) + (1 − z2)(2 + rT )SU

(x1 − z2)(2 + (r − μ)T )(2 + rT )Sx1
U

,(50b)

and

u22 =
x1(2 + (r − μ)T )(kT + K) − (x1 − 1)(2 + rT )SU

(x1 − z2)(2 + (r − μ)T )(2 + rT )Sz2
U

.(50c)

Note the close similarity to the corresponding monopoly solution from the system of equations (20) in sub-
section 2.2. Note also that by the same arguments as in sub-section 2.2, we can use Equation (46) to argue
that SU > kT + K as long as U(SU ) > 0. Moreover, since U(V ) < N(V ) for all V ≥ 0 it is clear that
SU < SN . Finally, the value of each of the two players’ investment project is

(51) U(V ) =

⎧⎨
⎩

u11V
x1 when V < SU ,

u22V
z2 + V

2+(r−μ)T − kT+K
2+rT when SU ≤ V.

Note that the value function for each of the two players’ investment projects, U(V ), is not two times
differentiable at the duopoly switching point, SU , (unless λ = 0) because of the way the switching point is
selected in the game between the the two players, cf. Equation (46).

If we again look at the special case of the perpetual American option as we did in sub-section 2.2, we see
that by inserting T = 0 into Equation (50a) we get the well-known competitive exercise threshold level for
the perpetual American option

(52) SU = K

and thereby a value of zero of the option in this special case. Note that in this special case U(V ) = 0 for all
V , so it is not a violation of Equation (46) to have SU = K.

In Figure 8 we show the values of the two players’ investment projects as a function of the value of
the outcome, V , with our base case parameters. We denote these values U(V ). For comparison we also
show in the figure the values of the corresponding monopoly investment project and the values of the
corresponding investment projects using the coin-toss solution. We denote the values of the corresponding
monopoly investment project N(V ) and the values of the corresponding investment projects using the coin-
toss solution 1

2 (P +Q)(V ). (Note that the scale on the horizontal axis in Figure 8 is different from Figure 6,
where we had also shown the coin-toss solution.) In Figure 8 we also show the corresponding switching
points on the horizontal axis. The switching point for the duopoly model we denote SU and the switching
point for the monopoly model we denote SN . The exact levels are SU = 13.05 and SN = 37.58 with our base
case parameters. For high levels of the outcome the values of the two players’ investment projects converge
to the value of the corresponding investment project using the coin-toss solution (and thereby also to both
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Figure 8. Values of the two players’ investment projects (denoted U(V )) as a function of
the value of the outcome, V . For comparison the figure also shows the values of the corre-
sponding monopoly investment project (denoted N(V )) and the values of the corresponding
investment projects using the coin-toss solution (denoted 1

2 (P + Q)(V )). The figure also
shows the corresponding switching points (denoted SU and SN ) on the horizontal axis. The
exact levels are SU = 13.05 and SN = 37.58. All other parameters are given in Table 1.

the values of the leader’s and the follower’s investment projects, cf. Figure 6) because the options to switch
and to abandon become far out of the money and thereby their values become relatively small compared to
the intrinsic values of the investment projects which are identical for the two players’ investment projects
and the corresponding investment projects using the coin-toss solution. Finally, a careful look at Figure 8
shows that the curvature of the value function, U(V ), changes at the duopoly switching point, SU . This
indicates that this function is not two times differentiable at the duopoly switching point, SU .

In Figure 9 we show the switching points for the duopoly model as a function of the expected time to
completion, T , with our base case parameters. We denote the switching points for the duopoly model SU .
For comparison we also show in this figure the corresponding switching point for the monopoly model, cf.
sub-section 2.2. We denote the switching points for the monopoly model SN . The monopoly switching points
are also shown in Figure 4, although in a different scale. The monopoly switching points are substantially
higher than the corresponding duopoly switching points for all values of the expected time to completion, T ,
due to the lack of competition. For T = 0, the switching point in the duopoly model is equal to K (as derived
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Figure 9. Switching points for both the duopoly model (denoted SU ) and the monopoly
model (denoted SN ) as a function of expected time to completion, T . All other parameters
are given in Table 1.

in Equation (52)) and for the monopoly model it is equal to x1
x1−1K = 35.75 (as derived in Equation (22))

with our base case parameters.
This analysis has some important policy implications. First of all, competition accelerates investments

and therefore reduces (expected) time to completion. For values of the outcome between the switching point
for the duopolists, SU (which with our base case parameters is around 5–12 depending on the intensity of
completion, λ), and the switching point for the monopolist, SN (which with our base case parameters is
around 32–36 depending on the intensity of completion, λ), a monopolist would remain passive whereas the
duopolists would be active. As we explain in the conclusion (Section 5) we could easily compute the expected
time to completion for both of the two cases in closed form and make an exact comparison. Secondly, since the
switching point would never go below the final investment costs, K, even with a large number of competing
investment projects we see that in this model just the step from one monopolist to two duopolists brings us
most of the way from monopoly to full competition.

4. Extensions

In this section we analyze the model where at the completion of the project the owner obtains a perpetual
American option on the value of the outcome. Up to now we have assumed that at the completion date of the
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investment project, the owner must exercise immediately the option to pay the final fixed investment costs.
That is, if the project is in the money at the completion date, τ , then the value of the investment project is
V − K. Moreover, if the investment project happens to be completed at a time when it is out of the money
we have up to now assumed that it is valueless. Now we extend the model by giving the owner the option
to delay paying the fixed final investment costs in order to obtain the value of the outcome. This extension
is especially interesting when the project is completed out of the money. Take, e.g, an R&D investment or
a mine exploration project where a product/mine has been discovered (i.e., we are at the completion date),
but the owner would like to wait until the optimal time to build the plant and launch the product/mineral.

We will only develop this extension for the monopoly model with the abandonment option, which we
analyzed in sub-section 2.1. Similar analysis could be done for all the other models we have developed in this
paper. Instead of the exercise value of the investment project, max{V −K, 0}, at the completion date, τ , the
owner gets the value of a perpetual American call option. We denote the value of the perpetual American
call option H(V ). Since the owner is paying on-going investment costs at the rate k, there will still be an
abandonment threshold level, which we denote AL, so that the owner abandons her/his investment project
when the value of the outcome is below AL. However, since H(V ) is always greater than (or equal to) the
exercise value of the American call option, max{V −K, 0}, it is clear that the abandonment threshold level,
AL, for this extension is less than the corresponding abandonment threshold level, AM , for the monopoly
model with abandonment analyzed in sub-section 2.1. Let L(V ) denote the value of the investment project
for this extension. L(V ) must satisfy the ODE

1
2
σ2V 2L′′(V ) + μV L′(V ) − (r + λ)L(V ) − k + λH(V ) = 0 when AL < V.(53)

If we compare the ODE (53) to the system of ODEs (3) for the value of the investment project in sub-
section 2.1, we have simply changed the completion value from max{V − K, 0} in the system of ODEs (3)
to the value of a perpetual American call option, H(V ), in the ODE (53). It is well-known that the value of
the American perpetual call option, H(V ), is

(54) H(V ) =

⎧⎨
⎩

h11V
x1 when V < EH ,

V − K when EH ≤ V,

where the optimal exercise threshold level, EH , is

(55) EH =
x1

x1 − 1
K

and the coefficient in the value function, h11, is

(56) h11 =
1

x1E
x1−1
H

.

Substituting the value of the American perpetual call option from Equation (54) into the ODE (53), and
using the boundary conditions for value matching and smooth pasting at the abandonment threshold level
AL and continuity and differentiability at the exercise threshold level for the American call option EH , we
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get the value of the investment project as23

(57) L(V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when V < AL,

l11V
y1 + l12V

y2 − kT
1+rT + h11V x1

1+(r−x1μ− 1
2x1(x1−1)σ2)T

when AL ≤ V < EH ,

l22V
y2 + V

1+(r−μ)T − kT+K
1+rT when EH ≤ V.

Here the coefficients, l11, l12, and l22, are

l11 =

y2K
(1+rT )EH

+ 1−y2
1+(r−μ)T − (x1−y2)h11

(1+(r−x1μ− 1
2x1(x1−1)σ2)T )E

x1−1
H

(y1 − y2)E
y1−1
H

,(58a)

l12 = −
y1h11A

y1
L + x1h11A

x1
L

1+(r−x1μ− 1
2x1(x1−1)σ2)T

y2A
y2
L

,(58b)

and

l22 = l12 +
(
l11E

y1
H +

K

1 + rT
− EH

1 + (r − μ)T
+

h11E
x1
H

1 + (r − x1μ − 1
2x1(x1 − 1)σ2)T

) 1
Ey2

H

(58c)

In order to find the abandonment threshold level, AL, we need to solve the remaining boundary condition,

(59) L(AL) = 0,

numerically using the closed form solutions from the system of equations (58).
Figure 10 shows that the value in this case, L(V ), is always larger than the monopoly case we discussed

in sub-section 2.1, M(V ), especially for lower values of the outcome, V . For very high values of the outcome
these two values will converge since the completion will bring immediate exercise of the American call option.
The figure also shows the completion values for these two cases, H(V ) and V − K.

5. Conclusions

In this paper we develop a simple, yet powerful, framework to deal with real investment projects with
uncertain investment costs and time to completion. We apply the framework to situations in which the
owner of the project has monopoly rights to the outcome of the project, and to situations in which there
are two owners who simultaneously invest, but where only one of them (the first to complete) may obtain
the rights to the outcome. We obtain analytical solutions to important cases with abandonment and/or
switching to different levels of investment activity. Hence, we are able to easily compare the project values
and abandonment/switching threshold levels for the different cases.

Our framework can also be applied to derive closed form solutions to the expected time to completion,
probability of completion, expected cost until completion, etc. Basically, all of these key values satisfy very
similar ODEs as the value of the investment project. One simply adjusts the payoff rates and the discount
rates in the ODEs. Hence, the formulas for these key values have the same structure as the formula for the

23As in the other models with abandonment options we have analyzed in this paper, there are different situations. Here we
analyze the most common (and also most complicated) situation when AL < EH . However, even though it may seem quite
exotic, we cannot rule out that for extremely high on-going costs, k, the abandonment threshold level for the investment project,
AL, is so high that it is above the exercise threshold level, EH , for the American option received at completion. In this situation
the value of the investment project is identical to the standard monopoly model analyzed in sub-section 2.1. That is, if ÃM

from Equation (11a) is greater than (or equal to) EH from Equation (55), then the value of the investment project—even with
the American option extension—is still given by Equation (10) in sub-section 2.1.
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Figure 10. Values of the extended investment project (denoted L(V )) as a function of
the value of the outcome, V , and its corresponding abandonment threshold level (denoted
AL). The figure also shows completion values of the investment project (denoted H(V ))
as a function of the value of the outcome and its corresponding exercise threshold level
(denoted EH). The exact levels are AL = 3.79, and EH = 35.75. For comparison the
figure also shows the value of the (standard) investment project with the abandonment
option (denoted M(V )) and its corresponding abandonment threshold level (denoted AM ).
The exact level is AM = 5.25. Finally, the figure also shows the completion values of the
(standard) investment project (denoted V − K) as a function of the value of the outcome.
All other parameters are given in Table 1.

value of the investment projects. Moreover, the value of the investment project can also be divided into three
parts: the value of the outcome at completion, the value of all the on-going investment costs until completion
(or abandonment), and the value of the fixed investment costs at completion. However, it is always necessary
first to solve for the value of the project in order to find the optimal abandonment/switching levels.

The duopoly models we have developed easily extend to more than two players. For example in the
abandonment case, the leader-follower solution easily extends to more than two players if we know the order
in which they abandon. Given this solution, the variable abandonment intensity solution also easily extends
to more than two players.
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Anther interesting extension of our framework would be to include asymmetric information between the
two players. For example, each player knows her/his own on-going investment cost rate exactly, but she/he
only knows the distribution of the other player’s on-going costs. The knowledge of the other player’s on-going
investment costs is updated as time progresses observing that he/she still has not abandoned.

Finally, a possible application of our framework is to analyze the design of research incentives for non-
profitable R&D investments as analyzed numerically by Hsu and Schwartz (2006).

Appendix A. Monopoly Model with Abandonment Option: Derivation of the value of the

investment project when AM ≥ K.

Assume that the abandonment threshold level is above the final investment costs, K. In this situation,
the value of the investment project (still denoted M(V )) must satisfy the ODE

1
2
σ2V 2M ′′(V ) + μV M ′(V ) − (r + λ)M(V ) − k + λ(V − K) = 0 when ÃM < V.(60)

Note that we denote the abandonment threshold level ÃM to emphasize that it may be different from the
solution obtained in Equation (8b). The general solution of the ODE (60), which we denote M3(V ), is

M3(V ) = m32V
y2 +

V

1 + (r − μ)T
− kT + K

1 + rT
when ÃM ≤ V.(61)

Using the same arguments as in sub-section 2.1, we have eliminated the V y1 term in Equation (61). The
boundary conditions are

M3(ÃM ) = 0(62a)

and

M ′
3(ÃM ) = 0.(62b)

In this situation we just solve the system of equations (62) in the two unknowns m32 and ÃM . The solution
is

ÃM =
y2(1 + (r − μ)T )(kT + K)

(y2 − 1)(1 + rT )

and

m32 = − Ã1−y2
M

y2(1 + (r − μ)T )
.

Finally, the value of the investment project is

M(V ) =

⎧⎨
⎩

0 when V < ÃM ,

m32V
y2 + V

1+(r−μ)T − kT+K
1+rT when ÃM ≤ V.

Appendix B. Derivation of the Monopoly Model with both Abandonment and Switching

Options

As in the first model we analyzed in sub-section 2.1 we will have to consider both the situation where we
assume that the abandonment threshold level, AO, is below the final investment costs, K, and the situation
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where it is above. So first we assume that AO < K. Let O(V ) denote the value of the investment project
for this model. O(V ) must satisfy the system of ODEs

1
2
σ2V 2O′′(V ) + μV O′(V ) − (r + λ)O(V ) − k = 0 when AO < V < K,(63a)

1
2
σ2V 2O′′(V ) + μV O′(V ) − (r + λ)O(V ) − k + λ(V − K) = 0 when K < V < SO,(63b)

and

1
2
σ2V 2O′′(V ) + μV O′(V ) − (r + λ̄)O(V ) − k̄ + λ̄(V − K) = 0 when SO < V.(63c)

The general solutions to each of the three ODEs, (63a), (63b), and (63c), which we denote O1(V ), O2(V ),
and O3(V ), are

O1(V ) = o11V
y1 + o12V

y2 − kT

1 + rT
when AO ≤ V ≤ K,(64a)

O2(V ) = o21V
y1 + o22V

y2 +
V

1 + (r − μ)T
− kT + K

1 + rT
when K ≤ V ≤ SO,(64b)

and

O3(V ) = o31V
w1 + o32V

w2 +
V

1 + (r − μ)T̄
− k̄T̄ + K

1 + rT̄
when SO ≤ V.(64c)

Here the powers, w1 and w2, are given by

w1 =
(1
2σ2 − μ) +

√
(μ − 1

2σ2)2 + 2(r + λ̄)σ2

σ2
> y1 > 1(65a)

and

w2 =
(1
2σ2 − μ) −

√
(μ − 1

2σ2)2 + 2(r + λ̄)σ2

σ2
< y2 < 0.(65b)

The powers y1 and y2 are still defined by the system of equations (5). Comparing the powers w1 and w2

with the corresponding powers y1 and y2, we see that w1 > y1 > 1 and that w2 < y2 < 0. Using the same
arguments as for the previous models, we know that limV →∞

O3(V )
V must be finite. Hence, we can eliminate

the V w1 term in Equation (64c). The value of the investment project has the following boundary conditions

O1(AO) = 0,(66a)

O′
1(AO) = 0,(66b)

O1(K) = O2(K),(66c)

O′
1(K) = O′

2(K),(66d)

O2(SO) = O3(SO),(66e)

and

O′
2(SO) = O′

3(SO).(66f)
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Condition (66a) reflects the fact that at the abandonment threshold level, AO, the value of the investment
project is zero. Condition (66b) is the usual smooth pasting condition at the abandonment threshold level.
Conditions (66c) and (66d) are the usual continuity and differentiability conditions at the final investment
costs, K, and similarly, Conditions (66e) and (66f) are the usual continuity and differentiability conditions
at the switching point, SO. In order to find the optimal switching point, SO, we solve

(66g) (λ̄ − λ)(SO − K) = (λ̄ − λ)O3(SO) + (k̄ − k).

Equation (66g) is based on the following instantaneous trade-off argument. At each instant in time the owner
considers instantaneous costs and benefits from switching between the two activity levels. The increased
instantaneous benefits from switching from the low to the high activity level is the increased intensity of
completion which has a value flow (λ̄ − λ)(V − K) per unit of time. On the other hand the increased
instantaneous costs of switching are (i) the increased intensity of loosing the investment project which has a
value flow (λ̄ − λ)O3(V ) per unit of time and (ii) the increased on-going investment costs at the rate k̄ − k

per unit of time. By the same arguments as in the switching model from sub-section 2.2, Equation (66g)
also implies that the value function, O(V ), will be two times differentiable at the switching point, SO. That
is,

(67) O′′
2 (SO) = O′′

3 (SO).

In order to find solutions for the seven unknowns, o11, o12, o21, o22, o32, AO, and SO, we must solve the
system of equations (66). We are able to solve five of these equations in closed form as functions of AO and
SO using the Equations (66a), (66b), (66c), (66d), and (66f):

o11 = − y2kT

(y1 − y2)(1 + rT )Ay1
O

,(68a)

o12 =
y1kT

(y1 − y2)(1 + rT )Ay2
O

,(68b)

o21 = o11 − 1 + (r − y2μ)T
(y1 − y2)(1 + (r − μ)T )(1 + rT )Ky1−1

,(68c)

o22 = o12 +
(1 + (r − y1μ)T )K1−y2

(y1 − y2)(1 + (r − μ)T )(1 + rT )
,(68d)

and

o32 =
(
y1o21S

y1−1
O + y2o22S

y2−1
O +

1
1 + (r − μ)T

− 1
1 + (r − μ)T̄

)S1−w2
O

w2
.(68e)

In order to find AO and SO, we need to solve the two remaining equations, (66e) and (66g), numerically using
the closed form solutions from the system of equations (68). Finally, the value of the investment project is

(69) O(V ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 when V < AO,

o11V
y1 + o12V

y2 − kT
1+rT when AO ≤ V < K,

o21V
y1 + o22V

y2 + V
1+(r−μ)T − kT+K

1+rT when K ≤ V < SO,

o32V
w2 + V

1+(r−μ)T̄
− k̄T̄+K

1+rT̄
when SO ≤ V.
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If it turns out that the numerical solution to AO is greater than K, we reconsider the problem. In this
situation, the value of the investment project (still denoted O(V )) must satisfy the system of ODEs

1
2
σ2V 2O′′(V ) + μV O′(V ) − (r + λ)O(V ) − k + λ(V − K) = 0 when ÃO < V < S̃O(70a)

and

1
2
σ2V 2O′′(V ) + μV O′(V ) − (r + λ̄)O(V ) − k̄ + λ̄(V − K) = 0 when S̃O < V.(70b)

Note that we denote the abandonment threshold level ÃO and the switching point S̃O to emphasize that
they may be different from the (numerical) solutions obtained above. The general solutions to each of the
two ODEs, (70a) and (70b), which we denote O4(V ) and O5(V ), are

O4(V ) = o41V
y1 + o42V

y2 +
V

1 + (r − μ)T
− kT + K

1 + rT
when ÃO ≤ V ≤ S̃O(71a)

and

O5(V ) = o52V
w2 +

V

1 + (r − μ)T̄
− k̄T̄ + K

1 + rT̄
when S̃O ≤ V.(71b)

Using the same arguments as in the previous models, we have eliminated the V w1 term in Equation (71b).
The boundary conditions are

O4(ÃO) = 0,(72a)

O′
4(ÃO) = 0,(72b)

O4(S̃O) = O5(S̃O),(72c)

and

O′
4(S̃O) = O′

5(S̃O).(72d)

In order to find the optimal switching point, S̃O, we solve

(72e) (λ̄ − λ)(S̃O − K) = (λ̄ − λ)O5(S̃O) + (k̄ − k).

In order to find solutions for the five unknowns, o41, o42, o52, ÃO, and S̃O, we must solve the system of
equations (72). We are able to solve three of these equations in closed form as functions of ÃO and S̃O using
the Equations (72a), (72b), and (72d):

o41 = − (1 − y2)(1 + rT )ÃO + y2(1 + (r − μ)T )(kT + K)
(y1 − y2)(1 + (r − μ)T )(1 + rT )Ãy1

O

,(73a)

o42 = − (y1 − 1)(1 + rT )ÃO − y1(1 + (r − μ)T )(kT + K)
(y1 − y2)(1 + (r − μ)T )(1 + rT )Ãy2

O

,(73b)

and

o52 =
(
y1o41S̃

y1−1
O + y2o42S̃

y2−1
O +

1
1 + (r − μ)T

− 1
1 + (r − μ)T̄

) S̃1−w2
O

w2
.(73c)
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In order to find ÃO and S̃O, we need to solve the two remaining equations, (72c) and (72e), numerically using
the closed form solutions from the system of equations (73). Finally, the value of the investment project is

(74) O(V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when V < ÃO,

o41V
y1 + o42V

y2 + V
1+(r−μ)T − kT+K

1+rT when ÃO ≤ V < S̃O,

o52V
w2 + V

1+(r−μ)T̄
− k̄T̄+K

1+rT̄
when S̃O ≤ V.

Appendix C. Duopoly Model with Abandonment Option: Derivation of the value of the

follower’s investment project when AQ ≥ K.

Assume that the abandonment threshold level for the follower is above the final investment costs, K. In
this situation, the value of the investment project (still denoted Q(V )) must satisfy the ODE

1
2
σ2V 2Q′′(V ) + μV Q′(V ) − (r + 2λ)Q(V ) − k + λ(V − K) = 0 when ÃQ < V.(75)

Note that we denote the abandonment threshold level for the follower ÃQ to emphasize that it may be
different from the solution obtained above in Equation (29b). The general solution to the ODE (75), which
we denote Q3(V ), is

Q3(V ) = q32V
z2 +

V

2 + (r − μ)T
− kT + K

2 + rT
when ÃQ ≤ V.(76)

Using the same arguments as in the previous models, we have eliminated the V z1 term in Equation (76).
The boundary conditions are

Q3(ÃQ) = 0(77a)

and

Q′
3(ÃQ) = 0.(77b)

In this situation we just solve the system of equations (77) in the two unknowns q32 and ÃQ. The solution is

ÃQ =
z2(2 + (r − μ)T )(kT + K)

(z2 − 1)(2 + rT )

and

q32 = − Ã1−z2
Q

z2(2 + (r − μ)T )
.

Finally, the value of the follower’s investment project is

Q(V ) =

⎧⎨
⎩

0 when V < ÃQ,

q32V
z2 + V

2+(r−μ)T − kT+K
2+rT when ÃQ ≤ V.

Appendix D. Duopoly Model with Abandonment Option: Derivation of the value of the

leader’s investment project when AQ ≥ K.

Assume that the abandonment threshold level for the follower is above the final investment costs, K.
For values of the outcome, V , above the abandonment threshold level for the follower, ÃQ, the value of the



44 REAL OPTIONS WITH UNCERTAIN MATURITY AND COMPETITION

leader’s investment project (still denoted P (V )) must satisfy the ODE

1
2
σ2V 2P ′′(V ) + μV P ′(V ) − (r + 2λ)P (V ) − k + λ(V − K) = 0 when ÃQ < V.(78)

The value of the leader’s investment project is equal to the value of the corresponding investment project in
the monopoly model as soon as the follower has abandoned so in this situation we have

P (V ) = M(V ) when AM ≤ V ≤ ÃQ.(79a)

The general solution to the ODE (78), which we denote P3(V ), is

P3(V ) = p32V
z2 +

V

2 + (r − μ)T
− kT + K

2 + rT
when ÃQ ≤ V.(79b)

Using the same arguments as in the previous models, we have (again) eliminated the V z1 term in Equa-
tion (79b). The boundary condition is

(80) P3(ÃQ) = M(ÃQ).

In this situation we just solve Equation (80) in the unknown p32. The solution is24

(81) p32 =

⎧⎪⎨
⎪⎩

(
m22Ã

y2
Q − kT+K

(1+rT )(2+rT ) + ÃQ

(1+(r−μ)T )(2+(r−μ)T )

)
1

Ã
z2
Q

when AM < K(
m32Ã

y2
Q − kT+K

(1+rT )(2+rT ) + ÃQ

(1+(r−μ)T )(2+(r−μ)T )

)
1

Ã
z2
Q

when AM ≥ K.

Finally, the value of the leader’s investment project is

(82) P (V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when V < AM ,

M(V ) when AM ≤ V < ÃQ,

p32V
z2 + V

2+(r−μ)T − kT+K
2+rT when ÃQ ≤ V.

For completeness we will substitute M(V ) into both Equation (38) and Equation (82). If AQ < K then also
AM < K. In this situation we get P (V ) from Equation (38) and M(V ) from Equation (9). The solution to
P (V ) expands to

P (V ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 when V < AM ,

m11V
y1 + m12V

y2 − kT
1+rT when AM ≤ V < AQ,

p11V
z1 + p12V

z2 − kT
2+rT when AQ ≤ V < K,

p22V
z2 + V

2+(r−μ)T − kT+K
2+rT when K ≤ V.

If ÃQ ≥ K and AM < K then we get P (V ) from Equation (82) and M(V ) from Equation (9). In this
situation the solution to P (V ) expands to

P (V ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 when V < AM ,

m11V
y1 + m12V

y2 − kT
1+rT when AM ≤ V < K,

m22V
y2 + V

1+(r−μ)T − kT+K
1+rT when K ≤ V < ÃQ,

p32V
z2 + V

2+(r−μ)T − kT+K
2+rT when ÃQ ≤ V.

24Note that M(V ) on the right hand side of Equation (80) can be either M2(V ) from Equation (6b) or M3(V ) from Equation (61)

(in Appendix A) depending on whether AM < K or ÃM ≥ K (which is equivalent to AM ≥ K, cf. footnote 7). Therefore we
will either have an m22 or an m32 term in the solution to p32 in Equation (81).
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Finally, if ÃQ ≥ K and AM ≥ K then we get P (V ) from Equation (82) and M(V ) from Equation (10). In this
situation the abandonment threshold level in the corresponding monopoly model is ÃM from Equation (11a)
and the solution to P (V ) expands to

P (V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 when V < ÃM ,

m32V
y2 + V

1+(r−μ)T − kT+K
1+rT when ÃM ≤ V < ÃQ,

p32V
z2 + V

2+(r−μ)T − kT+K
2+rT when ÃQ ≤ V.

Appendix E. Proof that the Variable Abandonment Intensities Solution is a Nash

Equilibrium.

To prove that the abandonment strategies (γ∗
1 (V ), γ∗

2 (V )), from Equation (42), form a Nash equilibrium,
we look at each of the players best response correspondences. Player i’s best response correspondence is
player i’s set of best responses25 (in form of a set of abandonment intensities) to any given abandonment
intensity, γj , chosen by player j, for a given value of the outcome, V . We denote player i’s best response
correspondence γ∗

i (γj ; V ).
In order to find player i’s (set of) best responses to any given strategy, γj , chosen by player j, we study

player i’s instantaneous benefits and costs for a given value of the outcome, V , in the interval (AM , AQ], and
for given strategies chosen by the two players, γi and γj . Player i’s instantaneous benefits are the intensity
of becoming the monopolist, which only happens if player j abandons. This has a value flow γjMi(V ) per
unit of time. (There is no value flow from the intensity of completion since player i’s investment project
is out of the money.) Player i’s instantaneous costs are (i) the intensity of loosing the investment project
either due to abandonment from one of the players or due to completion (out of the money), which has a
value flow

(
2λ + γi + γj

)
Ri(V ) per unit of time, and (ii) the on-going costs at the rate ki per unit of time.

Hence, player i’s instantaneous net benefits (denoted πi(γi, γj ; V )) are

(83) πi(γi, γj ; V ) = γjMi(V ) − (
2λ + γi + γj

)
Ri(V ) − ki.

Since we know that Ri(V ) = 0, πi(γi, γj ; V ) reduces to

(84) πi(γi, γj ; V ) = γjMi(V ) − ki.

Take a given value of the outcome, V , in the interval (AM , AQ]. If player j chooses an abandonment
intensity, γj , which is strictly less than γ∗

j (V ) from Equation (42), then player i’s instantaneous net benefits,
πi(γi, γj ; V ), is strictly negative, since Mi(V ) is positive. Hence, the best response for player i would be
immediate abandonment. On the other hand, if player j chooses an abandonment intensity, γj , which is
strictly greater than γ∗

j (V ) from Equation (42) then player i’s instantaneous net benefits, πi(γi, γj ; V ), is
strictly positive. Hence, the best response for player i would be to continue investing with zero abandonment
intensity. Finally, if player j chooses exactly the abandonment intensity γ∗

j (V ) from Equation (42), then
player i’s instantaneous net benefits, πi(γi, γj; V ), is zero for any choice of his own abandonment intensity,
γi, (including immediate abandonment). Hence, player i is completely indifferent between any choice of his

25The best response correspondence is a generalization of the best response function. Generally, a function returns one value
for a given input. A correspondence returns a set of values for a given input. Player i may have more than one best response to
a given strategy from the other player (player j). The correspondence returns all these responses as a set. (Clearly player i is
indifferent between playing any of these strategies in the set, otherwise they would not all be part of his set of best responses.)
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�

�

0 γ∗
1 (V ) ∞

γ1

γ∗
2(V )

∞

γ2

�

Player one is the leader and player two is the follower

�
Player one is the follower and player two is the leader

�

Both players play the variable abandonment intensity game

�

Player two’s best response correspondence

�

Player one’s best response correspondence

Figure 11. The two players’ best response correspondences for a given value of the out-
come, V , in the interval (AM , AQ]. Player one’s best response correspondence (the dotted
line) is plotted as a function of player two’s abandonment intensity, γ2. That is, the inde-
pendent variable is on the vertical axis and the outcome is on the horizontal axis. Player
two’s best response correspondence (the solid line) is plotted as a function of player one’s
abandonment intensity, γ1. The three dots indicate the three Nash equilibria.

own abandonment intensity. To summarize, player i’s the best response correspondence is

(85) γ∗
i (γj ; V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{∞} when γj < γ∗
j (V ),

[0,∞] when γj = γ∗
j (V ),

{0} when γj > γ∗
j (V ).

Clearly the same arguments apply to player j’s best response correspondence. So player j’s best response
correspondence is γ∗

j (γi; V ) from Equation (85).
For a given value of the outcome, V , in the interval (AM , AQ], we plot the two players’ best response

correspondences in Figure 11. Player one’s best response correspondence (the dotted line) is plotted as a
function of player two’s abandonment intensity, γ2. That is, the independent variable (γ2) is on the vertical
axis and the outcome (i.e. the set of best responses) is on the horizontal axis. Player two’s best response
correspondence (the solid line) is plotted as a function of player one’s abandonment intensity, γ1. We see that
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the two players’ best response correspondences cross three times indicating three Nash equilibria. These are
the two leader-follower equilibria and the variable abandonment intensity solution. Hence, we have shown
that the abandonment strategies (γ∗

1 (V ), γ∗
2 (V )), from Equation (42), form a Nash equilibrium. Note the

similarity between this argument and the standard arguments used to explain why a mixed strategy is a
Nash equilibrium in a simple non-repeated game, (cf. Gibbons, 1992a,b, Chapter 1).

Appendix F. Identical Players with Variable Abandonment Intensities: Derivation of the

abandonment intensities when AQ ≥ K.

Assume that we are in the situation when AM < K ≤ ÃQ. We have already argued that Ri(V ) = 0 for
V ∈ (AM , ÃQ] and i = 1, 2. Since player i is still investing in her/his investment project, Ri(V ) is still a
solution to the system of ODEs

(86a)
1
2
σ2V 2R′′

i (V ) + μV R′
i(V ) − (

r + 2λ + γi(V ) + γj(V )
)
Ri(V )

+ γj(V )Mi(V ) − ki = 0 when AM < V < K,

and

(86b)
1
2
σ2V 2R′′

i (V ) + μV R′
i(V ) − (

r + 2λ + γi(V ) + γj(V )
)
Ri(V )

+ γj(V )Mi(V ) + λ(V − K) − ki = 0 when K < V < ÃQ.

From the system of ODEs (86) we conclude that the only way that the chosen strategies for the two players
can be sequentially rational is if the two players choose their abandonment strategies to be

(87) γ∗
j (V ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞ when V ≤ AM ,

ki

Mi(V ) when AM < V ≤ K,

ki−λ(V −K)
Mi(V ) when K < V ≤ ÃQ,

0 when ÃQ < V.

The argument why the abandonment strategies (γ∗
1 (V ), γ∗

2 (V )), from Equation (87), form a Nash equilibrium
is the same as in the previous situation. Player i’s instantaneous net benefits in this situation is

(88) πi(γi, γj; V ) =

⎧⎨
⎩

γjMi(V ) − (
2λ + γi + γj

)
Ri(V ) − ki when AM < V ≤ K,

λ(V − K) + γjMi(V ) − (
2λ + γi + γj

)
Ri(V ) − ki when K < V ≤ ÃQ,

for values of the outcome, V , in the relevant range, i.e. V ∈ (AM , ÃQ]. Since again the two players have the
same benefits of becoming a monopolist, M(V ), and also have the same rate of on-going investment costs,
k, the two players choose identical abandonment intensities. We again denote this common abandonment
intensity function γ∗(V ),26 and their common individual investment project value R(V ). For values of the
outcome, V , above the abandonment threshold level for the follower, ÃQ, in the corresponding leader-follower
case, the value of each of the two players’ investment projects is a solutions to the same ODE as we set up

26The common values of the investment projects in the corresponding monopoly model, M(V ), to substitute into Equation (87)

is M1(V ) from Equation (6a) when AM < V ≤ K and M2(V ) from Equation (6b) when K < V ≤ ÃQ.
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both for the follower (75) and the leader (78). Hence, the solutions to the ODE, which we denote R3(V ), is

R3(V ) = r32V
z2 +

V

2 + (r − μ)T
− kT + K

2 + rT
when ÃQ ≤ V.(89)

Moreover, the boundary conditions are

R3(ÃQ) = 0(90a)

and

R′
3(ÃQ) = 0.(90b)

Because both the general solutions to the system of ODEs are the same as for the value of the follower’s
investment project, compare Equations (76) and (89), and also the boundary conditions are the same,
compare Equations (77) and (90), the two players’ investment projects have exactly the same value as the
value of the follower’s investment project in the corresponding leader-follower case. That is,

(91) R(V ) = Q(V ).

Finally, assume that we are in the situation when K ≤ ÃM < ÃQ. We have already argued that Ri(V ) = 0
for V ∈ (ÃM , ÃQ] and i = 1, 2. Since player i is still investing in her/his investment project, Ri(V ) is still a
solution to the ODE

(92)
1
2
σ2V 2R′′

i (V ) + μV R′
i(V ) − (

r + 2λ + γi(V ) + γj(V )
)
Ri(V )

+ γj(V )Mi(V ) + λ(V − K) − ki = 0 when ÃM < V < ÃQ.

From the ODE (92) we conclude that the only way that the chosen strategies for the two players can be
sequentially rational is if the two players choose their abandonment strategies to be

(93) γ∗
j (V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ when V ≤ ÃM ,

ki−λ(V −K)
Mi(V ) when ÃM < V ≤ ÃQ,

0 when ÃQ < V.

The argument why the abandonment strategies (γ∗
1 (V ), γ∗

2 (V )), from Equation (93), form a Nash equilibrium
is the same as in the previous situations. Player i’s instantaneous net benefits in this situation is

(94) πi(γi, γj ; V ) = λ(V − K) + γjMi(V ) − (
2λ + γi + γj

)
Ri(V ) − ki,

for values of the outcome, V , in the relevant range, i.e. V ∈ (ÃM , ÃQ]. Since again the two players have the
same benefits of becoming a monopolist, M(V ), and also have the same rate of on-going investment costs,
k, the two players choose identical abandonment intensities. We again denote this common abandonment
intensity function γ∗(V ),27 and their common individual investment project value R(V ). For values of the
outcome, V , above the abandonment threshold level for the follower, ÃQ, in the corresponding leader-follower
case, the value of each of the two players’ investment projects is a solutions to the same ODE as we set up

27The common value of the investment project in the corresponding monopoly model, M(V ), to substitute into Equation (93)
is M3(V ) from Equation (61) from Appendix A.
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both for the follower (75) and the leader (78). Hence, the solutions to the ODE, which we denote R3(V ), is

R3(V ) = r32V
z2 +

V

2 + (r − μ)T
− kT + K

2 + rT
when ÃQ ≤ V.(95)

Moreover, the boundary conditions are

R3(ÃQ) = 0(96a)

and

R′
3(ÃQ) = 0.(96b)

Because both the general solutions to the system of ODEs are the same as for the value of the follower’s
investment project, compare Equations (76) and (95), and also the boundary conditions are the same,
compare Equations (77) and (96), the two players’ investment projects have exactly the same value as the
value of the follower’s investment project in the corresponding leader-follower case. That is,

(97) R(V ) = Q(V ).
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