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1. Introduction

Time devoted to market work differs greatly across OECD economies: total hours of
work per person of working age are currently more than 30% lower in Belgium, France,
Germany, and Italy than they are in the US. A growing literature seeks to understand
the causes of these differences.1 Any explanation for these differences must consist of
two components: driving forces and propagation mechanisms. The driving forces are
those factors that differ across these economies, and the propagation mechanism is the
economic channels through which these factors influence hours of work. Many driving
forces have been suggested in the literature, including taxes, labor market regulations,
and unions. A recent literature has emerged on the importance of product market regu-
lations for labor market outcomes. Empirical work by Boeri et al (2000), Bertrand and
Kramarz (2002), and Lopez-Garcia (2003) finds a strong negative correlation between
product market regulation and employment. Theoretical work includes contributions
by Nickell (1999), Fonseca et al (2001), Blanchard and Giavazzi (2002), Messina (2006),
and Ebell and Haefke (2004, 2006).

A full understanding of how product market regulations affect labor market out-
comes requires a systematic assessment of the channels through which these regulations
affect equilibrium outcomes in various economic environments. This paper seeks to
contribute to this effort. Specifically, we examine the effects of one prominent aspect
of product market regulations—increased entry costs— on labor market outcomes in two
static versions of a simple benchmark model of aggregate time allocation: a represen-
tative household model in which there are no trading frictions. In the first version we
assume monopolistic competition in product markets but competitive behavior in the
labor market. In the second version we allow for imperfect competition in both labor
and product markets. In both versions we assume that the household values only con-
sumption and leisure and that the preferences would be consistent with balanced growth
in a standard growth model setting.

While the setting in which we carry out our analysis is simple, it generates three
important insights about the effect of product market regulations which take the form
of entry barriers. First, from the perspective of influencing time devoted to market
work, the key driving force is the size of transfer payments relative to labor income
accruing to households as a result of the regulation. Second, the extent to which this
driving force leads to less market work is completely determined by the elasticity of labor
supply. The third insight follows from the first two: understanding the effects of product
market regulations on time allocated to market work in this setting is isomorphic to the
problem of understanding the effects of labor income taxes or consumption taxes on time
allocated to market work. In both cases the key driving force is the size of transfers

1Recent examples include Alesina et al (2006), Davis and Henrekssen (2004), Prescott (2003), and
Rogerson (2005, 2006). A related literature seeks to understand differences in unemployment rates, but
these differences are almost an order of magnitude smaller in terms of implications for differences in
hours devoted to market work.
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relative to labor income, and the key parameter of the propagation mechanism is the
labor supply elasticity. These results hold in both versions of our model.

Two conclusions follow from these results. First, the importance of product mar-
ket regulation relative to taxation of labor income and/or consumption is completely
dictated by the relative magnitude of the transfers induced by each. Second, entry bar-
riers that consist of real resource costs have no impact on the volume of market work.
Specifically, in this case it does not matter how large the barriers are, since they do
not generate any transfer payments in equilibrium. Although entry barriers of this type
do not have any effect on hours of work, it does not follow that they have no welfare
costs. Even when there is no effect on time allocated to market work, we show that
product market regulations still influence welfare through affecting other dimensions of
the resource allocation.

We also extend our analysis to a two-sector model. Our results about the impact
of regulation carry over to this setting as well, even if the regulations are sector spe-
cific. Moreover, we show that the relation between sectoral market work and sectoral
regulation is not informative about the relationship between regulation and aggregate
market work. The key message is that one cannot extrapolate from industry-level effects
to aggregate effects. Similar to the case of labor income taxes, our two-sector analy-
sis suggests an additional channel through which entry barriers may influence market
hours. In particular, if we think of one of the sectors as representing home production,
and the home sector produces goods that are substitutes for those produced in the
market, then if entry barriers lead to higher relative prices for the market goods, indi-
viduals will substitute away from market produced consumption toward home produced
consumption.

Given the setting in which our analysis takes place, our results are most related to
those obtained in Messina (2006). He too considered a representative household model
with no trading frictions. Although his model is much richer than ours, the key finding
from our analysis that is useful in interpreting his results concerns the role played by
the entry barrier. He assumes that the barrier is a payment which effectively leads to a
transfer payment to consumers. He calibrates the size of the regulation by using data
from Djankov et al (2002), which is based on measures of time costs. In our model, if
this regulation were modelled as a time cost, the impact would be zero. While Ebell and
Haefke (2006) consider a model with trading frictions, their quantitative analysis shows
that changes in regulations which reflect real resource costs have virtually no affect on
unemployment.

An outline of the paper follows. The next section lays out the basic model and
characterizes both efficient and equilibrium allocations in the absence of any product
market regulations. Section 3 characterize the effect of taxes on time devoted to market
work. These expressions will be useful in interpreting the analogous expressions derived
for the case of product market regulations, which is done in Section 4. Section 5 considers
an extension to allow for endogenous price markups, and Section 6 considers an extension
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to allow for imperfect competition in the labor market. Section 7 considers product
market regulations in a two sector model, and Section 8 concludes.

2. Benchmark Model

2.1. Environment

This section lays out the benchmark model of monopolistic competition and charac-
terizes the equilibrium allocation for the model. The economy is static. There is a
representative household with preferences defined over consumption of a final good (c)
and leisure (1− h) given by:

(1− h)1−γ − 1
α log(c) + (1− α) . (2.1)

1− γ

The parameter α satisfies 0 < α < 1 and determines the relative weight of leisure and
consumption, while the parameter γ satisfies γ ≥ 0 and defines the Frisch elasticity
of the demand for leisure, which is given by −1/γ. We adopt this specification of
preferences because it is consistent with balanced growth and permits a parsimonious
way of incorporating a range of labor supply elasticities. All of the results derived below
continue to hold in the more general case of any utility function consistent with balanced
growth.

There are two production sectors, an intermediate goods sector and a final goods
sector. Each point on the positive real line represents a potential intermediate good.
Each of these intermediate goods can be produced using a linear technology y(i) = h(i),
where h(i) is labor input for the intermediate good i, but there is a fixed cost φ > 0

associated with operating any of these technologies. We assume that the fixed cost is
in units of labor. For the purposes of the decentralization in which we will assume
many firms that each takes the actions of other firms as given, we will also assume that
each point on the real line corresponds to a different firm and that each firm owns the
intermediate good technology represented by the same point on the real line.

The final goods sector combines the available intermediate goods into the final good
via the CES production function: Z ∞

c = [ y(i)ρdi]1/ρ], (2.2)
0

and as indicated, the only use of the final good is as consumption. In the decentralization
that follows we will assume that the final goods sector is competitive, and hence for
simplicity we assume that there is a single representative firm in this sector. We assume
that the representative household owns all of the firms and hence receives any profits
that might accrue in equilibrium.
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2.2. Efficient Allocations

For comparison with later results it is useful to first characterize efficient allocations for
this economy. Given the symmetry of the environment, it is easy to show that efficient
allocations will also be symmetric, in the sense that any intermediate good technologies
that are operated in equilibrium will be operated at the same level. Of course, given
the fixed cost, only a finite mass of these technologies will be operated. Again, due
to the symmetry, efficiency will only dictate the mass of intermediate goods that are
produced and not the specific identities of these goods. Since this indeterminacy is of
no substantive interest, we simply assume that the intermediate technologies operated
lie in the interval [0, N ] and we characterize the optimal value of N.

In view of the above discussion, it is sufficient to choose values of the output of
each intermediate (y), the mass of intermediates (N), and total market work (h) to
maximize:

α log([Nyρ]1/ρ) + (1− α)
(1− h)1−γ − 1

(2.3)
1− γ

subject to feasibility, which entails:

h = N(y + φ) (2.4)

0 ≤ h ≤ 1
N ≥ 0, y ≥ 0

Given our functional forms, the solution to this problem is interior. Letting λ be the
Lagrange multiplier on the feasibility constraint, the first order conditions are:

α
= λ(y + φ) (2.5)

ρN
α

= λN
y

(1− α)
λ =

(1− h)γ
Simple substitution yields:

1− α h 1
= (2.6)

α (1− h)γ ρ

and:
ρ

y = φ. (2.7)
1− ρ

which completely characterizes the solutions for h and y. Given solutions for y and h
we can then use the feasibility constraint to find the value of N in terms of the solutions
for h and y.
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2.3. Decentralized Equilibrium

We study an equilibrium in which the consumer behaves competitively in both the
output and the labor markets and the final goods firm behaves competitively in both
the final goods market and the intermediate goods market, while intermediate goods
firms behave as monopolistic competitors in output markets and as perfect competitors
in the labor market. Given the symmetry imposed on the environment, we focus on
equilibria in which all active intermediate goods firms charge the same price and produce
the same amount. Given that we have an unbounded set of potential firms, profits in
equilibrium will be zero for any firm that operates. Given the symmetry of the model
it is clear that equilibrium will only determine the mass of firms that operate and not
the identities of these firms. We again resolve this indeterminacy by assuming that the
firms that operate lie in an interval with left endpoint equal to 0. We will normalize
the price of the final good to be equal to one and denote the symmetric price of the
intermediate goods by p, and the wage rate by w.

Formally, a symmetric equilibrium for our model is a list c∗, h∗, y∗, N∗, p∗, w∗,
d∗(p) such that
(1) (Consumer maximization) Taking w∗as given, c∗ and h∗ solve the consumer maxi-
mization problem.
(2) (Final good producer maximization) Taking p(i) = p∗ for all i and N∗ as given,
y(i) = y∗ for all i solves the final good producer’s profit maximization problem. And the
function d∗(p) represents the demand of the final good producer for any intermediate i
as a function of the price of intermediate i, holding all other prices at their equilibrium
values, and holding the number of varieties fixed at N∗.
(3) (Intermediate goods producers maximization) For each i ∈ [0, N∗], pi = p∗, y(i) =
h∗/N∗ − φ solves the profit maximization problem of intermediate producer i, taking
the demand function d∗(p) and the wage rate w∗ as given.
(4) (Free entry) All operating intermediate firms earn zero profits: (p∗ − w∗)y∗ = w∗φ.

As is well known, it is relatively easy to characterize the equilibrium for this model.
Since this derivation will be useful for the policy exercises conducted in the next section,
we sketch the derivation here. The production function of the final good producer

1

implies that the demand function d∗(p) takes the form d∗(p) = Ap ρ−1 , where A is
a constant, which in turn implies a simple markup rule for the equilibrium price of
intermediate goods: p∗ = ρ

1w∗.
The consumer maximization problem is to choose values of c and h to maximize:

(1− h)1−γ − 1
α log(c) + (1− α) (2.8)

1− γ

subject to the budget constraint c = w∗h. Substituting this into the objective function,
we obtain the first order condition:

(1− α) h
= 1. (2.9)

α (1− h)γ
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This expression completely characterizes the equilibrium value of h. The analogous
expression for the Social Planner’s solution has the same expression on the left-hand
side but instead had 1/ρ on the right hand side. Since the left-hand side is decreasing
in h, it follows that the decentralized equilibrium has too little time devoted to market
work. Although the time devoted to market work in the decentralized equilibrium
is independent of the value of ρ, the extent of the inefficiency in time allocation is
decreasing in ρ, since the Social Planner’s solution for h is decreasing in ρ. In particular,
the two solutions approach each other as ρ converges to one.

The solutions for y and N (and hence c) are also easily obtained. Specifically,
independently of the above derivation for h, the equilibrium value of y can be determined
solely from the zero profit condition given we know the equilibrium price. In particular,
zero profits requires:

(p∗ − w∗)y = w∗φ (2.10)

and using the fact that p∗ = w∗/ρ, this implies

ρ
y = φ. (2.11)

1− ρ

Note that the value of y is the same in the decentralized equilibrium as it is in the Social
Planner’s problem. It follows that the lower value of h in the decentralized equilibrium
results in a proportional decrease in the number of intermediate goods that are produced
relative to the Social Planner’s problem. The value of N is again easily determined from
the feasibility condition:

h
N = . (2.12)

(y + f)

The consumption of the final good is then easily computed as:

c = N1/ρy. (2.13)

3. Taxes and Market Work

In this section we derive expressions to characterize the effect of taxes on labor in-
come and consumption on equilibrium allocations. While our ultimate interest is in
understanding the effect of product market regulations on equilibrium allocations, and
specifically on time devoted to market work, the expressions relating taxes to alloca-
tions will prove useful in helping us interpret the expressions that we obtain for product
market regulations. We consider a policy in which labor income is taxed at the constant
proportional rate τh but distinguish policies based on what is done with the revenue.
Specifically, we contrast two scenarios, distinguished by whether the government uses
the tax revenues in a manner that affects the marginal utility of private consumption.
In the first scenario we assume that the revenue is rebated lump-sum to the representa-
tive consumer, or equivalently in this model, that the government uses the tax revenues
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to purchase the final good and then transfers these purchases of the final good to the
consumer as a lump sum transfer. This scenario implies that government spending is
a perfect substitute for private spending. The second scenario also assumes that the
government uses its revenues to purchase the final consumption good, but assumes dif-
ferently that the government discards these goods, or equivalently, uses them to in turn
produce something that consumers do not value.2 In this scenario, the government uses
revenues in a manner that does not affect the marginal utility of private consumption.
As we shall see, the reason for considering these two variations on spending is that they
have extremely different implications for equilibrium allocations, specifically for hours
of work, and will be useful in considering different regulatory policies.

In defining equilibrium in the presence of these policies we must account for the
behavior of the government sector. Let g denote government purchases of the final
consumption good and let T denote government lump-sum transfers in units of the
consumption good. Then under scenario one we must add the condition T ∗ = g∗ =
τw∗h∗, while under scenario 2 we must add the condition g∗ = τw∗h∗ but set T ∗ = 0.

Under both scenarios it is easy to show that the demand function for a given inter-
mediate takes the same form as before, implying that in equilibrium the price charged
by intermediate goods producers will continue to satisfy p∗ = w∗/ρ. We next derive the
implications for equilibrium allocations.

3.1. Lump-Sum Transfers

With lump sum transfers, the household’s budget constraint becomes:

c = (1− τ)w∗h+ T (3.1)

Substituting this into the consumers objective function yields a first order condition for
h given by:

α(1− τ)w∗

(1− τ)w∗h+ T
=
(1− α)

(1− h)γ (3.2)

Since the government budget constraint requires that T = τw∗h, this equation reduces
to:

(1− α)h
= (1− τ) (3.3)

α(1− h)γ
This equation gives the well-known result that if tax revenues are rebated lump-sum
then hours of work are decreasing in taxes.

The magnitude of this effect for a given change in τ depends on the labor supply
elasticity parameter γ. In particular, consider two economies that are identical except

2Another equivalent possibility is that the goods are used to produce a second good that enters
utility additively with respect to utility from c and 1− h.
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for their values of τ . Let τ2 > τ1, and let hi represent the equilibrium hours worked in
economy i, i = 1, 2. It follows that these values satisfy:

h1 1− h1
log( )− γ log( ) = log(1− τ1)− log(1− τ2)

h2 1− h2
It follows that for a given value of h1, the ratio h1/h2 will be increasing in γ. To describe
this in terms of the driving force/propagation mechanism characterization mentioned in
the introduction, the driving force is the size of the tax, and the propagation mechanism
is determined by the labor supply elasticity parameter γ.

To finish characterizing the equilibrium, we note that the zero profit constraint
implies the same value for y as before (i.e., y = 1−

ρ
ρφ) , so there is no effect on y. The

feasibility condition is unchanged, so N changes proportionally with h.
For comparison with later results, it is also useful to consider the case where the

tax is placed on consumption as opposed to labor income. Denoting this tax as τ c, and
assuming that the unit price paid by consumers in equilibrium is given by (1 + τ c), the
expression for hours becomes:

(1− α)h 1
= . (3.4)

α(1− h)γ 1 + τ c

3.2. Discarded Revenues

If government revenues are discarded rather than returned to the household, then the
household’s budget constraint is simply c = (1−τ)w∗h. Deriving the first order condition
for h with this budget equation now yields:

(1− α) h
= 1 (3.5)

α (1− h)γ

which is identical to the case in which there was no tax. Considering the outcomes for
y and N it is easy to show that y continues to have the same value as in the no-tax case
and therefore that N will as well. This does not imply that allocations are not affected
by taxes in this case. In particular, given the budget constraint above, given no change
in w and h, it follows that c is equal to (1− τ) of its value in the no-tax case.

4. Product Market Regulation and Market Work

Given the simple form of our model we cannot consider a rich class of regulatory policies.
However, the literature that we referred to in the introduction typically focuses on one
particular aspect of regulatory policy, and this is the size of fixed costs associated with
entry. Hence, we focus on regulatory policies as they impact on the size of the fixed
entry cost φ. However, as we show below, it is important to distinguish between two
different kinds of regulations. The first type of regulation represents real resource costs.
Examples of this include regulations that require additional resources to be used up
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in the entry process, by requiring additional studies, filing additional reports, requiring
more meetings and approval at various levels etc....The second type of regulation involves
purely a nominal cost and does not involve any use of resources. An example of this is
when entry requires the purchase of a license. In line with the analysis of tax policies, in
this case we will further distinguish between two cases based on what is done with the
revenues generated by the nominal entry cost payments: are they returned to consumers
via a lump-sum transfer or are they discarded.

In all of the above cases, equilibrium will continue to require that profits are zero.
A final case that we deal with is one in which the nature of regulation does not lead to
zero profits. In particular, we will consider a policy in which the government controls
the number of firms that operate in equilibrium, possibly by randomly issuing permits,
but that there is no market for these permits. Assuming the number of permits is less
than the equilibrium value of N in the case without permits, then any firm that receives
a permit will make positive profits in equilibrium.

4.1. Barriers to Entry I

Here we assume that the barrier takes the form of real resource cost. This means that
we model the barrier as an increase in the fixed cost φ, which recall was measured in
units of labor. To analyze this case it is not necessary to do any additional calculations
beyond those in Section 2.4. From the previous expressions derived to characterize
equilibrium we see that an increase in the value of φ has no effect on h, but leads to an
increase in y and a decrease in N . It follows that there are welfare effects associated
with this type of regulation, but that there is no effect on time devoted to market work.

4.2. Barriers to Entry II

Here we instead assume that the barrier takes the form of an entry fee. We assume that
the entry fee is equal to κ, and for convenience assume that the fee is denominated in
units of the wage rate w∗. In this subsection we assume that the proceeds from this
entry fee are thrown away by the government, i.e., that the government uses the proceeds
to purchase the final consumption good but then discards it. The household’s budget
equation does not change and as a result the first order condition for the consumer
maximization problem continues to generate the usual expression for h:

(1− α) h
= 1, (4.1)

α (1− h)γ
implying that there is no effect on hours of work. There is, however, an affect on c and
y. In particular, the zero profit condition now reads:

(
1
w∗ −w∗)y = w∗(φ+ κ), (4.2)

ρ

implying that
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ρ
y = (φ+ κ) (4.3)

1− ρ

so that y is increasing in κ. But since κ only represents a nominal cost, feasibility is the
same as before, :

h
N = (4.4)

(y + φ)

which combined with the result for y implies thatN decreases. It follows that allocations
in this case are identical to those obtained in the case where the entry cost represents a
real resource cost. Specifically, although product market regulations in this context do
affect allocations and welfare, they do not manifest themselves in changes in hours of
market work.

4.3. Barriers to Entry III

Here we continue to assume that the entry barrier is a license fee but now assume that
the government rebates the proceeds to the household. In this case the household budget
constraint becomes

c = w∗h+ T (4.5)

where T is the size of the transfer. Solving the consumer’s maximization problem, the
implied condition for h is

(1− α) w∗h+ T
= w∗. (4.6)

α (1− h)γ
It is possible to explicitly solve for T in terms of h using the other equilibrium conditions.
As above, the equilibrium value of y can be determined solely from the zero-profit
condition, and N can be determined from the feasibility condition as a function of y
and h. Knowing N as a function of h allows us to solve for T as a function of h. This
gives:

T = w∗Nκ =
(1− ρ)κ

w∗h (4.7)
φ+ ρκ

which substituted into equation (4.6) yields:

(1− α) h 1
= (4.8)

α (1− h)γ 1 + (1−ρ)κ/φ
1+ρκ/φ

However, it is perhaps more revealing to instead multiply both sides of equation
(4.6) by h, and rearrange to yield:

(1− α) h 1

α (1− h)γ = 1 + w
T
∗h

(4.9)

10



Note that the term T/w∗h represents government transfers as a fraction of total labor
income in the economy. It is instructive to compare this with the expression relating
hours of work with tax programs. Specifically, assuming a tax only on consumption and
that revenues are rebated lump-sum to consumers, we obtained the expression:

(1− α) h 1
= (4.10)

α (1− h)γ 1 + τ c

The two expressions are identical except that τ c is substituted for T/w∗h. However,
both of these terms have similar interpretations. In the case of regulation, T/w∗h is the
size of transfers relative to total labor income, while in the case of consumption taxes,
simple manipulation of the consumer and government budget constraints implies that
τ c is also the size of transfers relative to total labor income. The implications of this are
two-fold. First, if regulations take the form of nominal payments and these payments
are rebated to households, then higher regulation is associated with less time devoted to
market work. Second, in terms of the impact on time devoted to market work, this type
of regulation will operate through exactly the same channels as consumption taxes. In
particular, the key driving forcing is the size of the implied transfer payments relative
to total labor income, and the key parameter that determines the propagation of this
forcing variable is γ, which determines the labor supply elasticity.

While the comparison to consumption taxes is particularly direct in terms of the
expressions that one obtains for hours of market work, since there is an equivalence
between labor income taxes and consumption taxes, there is also a strong relationship
between this type of regulatory policy and labor income taxes. Given the expressions
derived in Section 3, we know that in the context of our model, a consumption tax of τh
is observationally equivalent to a consumption tax of τ c = 1−

1
τh
− 1. It follows that the

above discussion similarly indicates a strong relationship between this type of product
market regulation and taxes on labor income.3

A simple point to note here is that looking at the relative size of κ across economies
is not particularly useful in assessing whether the labor market effects are likely to be
large. Many researchers refer to the study of Djankov et al (2002), which shows that
time costs of setting of up business are roughly 6 days in the US and more than 60
in many European countries, implying a difference of an order of magnitude in entry
barriers. Given that these differences reflect time costs they should be modeled as
representing real resource costs. However, for the sake of illustration, we assume that
this is a pure nominal cost. A simple example shows that this magnitude is not a good
indicator for the size of the driving force. Specifically, assume that ρ = .8, and φ = 1.
Assume for the US that κ = .01, implying that in the US roughly 1% of total setup
costs are associated with regulatory barriers. In line with the above mentioned studied,
assume that κ = .1 in Europe. Evaluating the right hand side of equation (4.8) for the

3 In fact, the procedure that Prescott (2004) followed in measuring effective tax rates would have
included government fees such as those studied here in his measure of consumption taxes.
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two cases we get a value of .998 for the US and .982 for Europe, implying a relative value
of only 1.0165. That is, relative to the driving force associated with taxation of labor
income, this order of magnitude difference in entry barriers is equivalent to a difference
of less than 2% in tax rates. If we alternatively assumed that κ in the US is equal to
.1, and κ in Europe is equal to 1, implying that in Europe half of the costs associated
with starting a business are directly due to regulation, the relative magnitudes of the
right hand side of equation (4.8) is only 1.09.

Lastly, it is relatively easy to obtain expressions for the new values of y and N . Once
again, the zero-profit condition solely determines the equilibrium value of y:

ρ
y = (φ+ κ) (4.11)

1− ρ

and then the feasibility condition can be used to determine N .

4.4. Barriers to Entry IV

In this section we assume that the government directly controls entry through a process
of permits, but there is no charge for a permit. Specifically, in order to operate an inter-
mediate producer must obtain a permit, and we assume that the government restricts
the number of permits to be less than the entry that would occur in a decentralized
equilibrium. If the number of permits is less than the amount of entry in the decen-
tralized equilibrium, it follows that profits will be positive for any firm that receives a
permit. Hence, if it is costless to apply for a permit, all firms would apply. We can
then think of the government policy as simply granting permits to a randomly chosen
mass of applicants. While we have described one particular policy, it is worth noting
that this policy is similar to some others of potential interest. For example, suppose
that for some reason (e.g., political connections) the barriers to entry for some firms
are higher than they are for other firms, so that the barriers keep out potential entrants
even though profits are positive for firms that operate. The permit policy described
above is a special case of this policy in which the policy induced barrier is zero for some
firms and infinite for other firms.

Let N̄ be the mass of permits granted by the government, and assume that this
number is binding, in the sense that absent permits, additional firms would like to
operate. Denote profits earned by an intermediate producer in equilibrium by π. Since
the household owns all of the firms in the economy, these profits will be returned to the
household and the household budget constraint will now be:

c = w∗h+ π (4.12)

The fact that entry is restricted does not change the slope of the demand function
d∗(p) and hence does not change the fact that in equilibrium we will have p∗ = w∗/ρ.
Substituting the budget equation into the consumers objective function, one obtains the
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following equation to characterize the optimal choice of h:

(1− α) w∗h+ π
= w∗. (4.13)

α (1− h)γ
While we could solve for π as a function of the equilibrium value of h and obtain an
equation in only h, it is again more revealing to simply multiply both sides by h and
rearrange to obtain:

(1− α) h 1

α (1− h)γ = 1 + w
π
∗h
. (4.14)

The message from this expression is exactly the same as from equation (4.9) in the
previous subsection. Specifically, this type of policy does have an impact on hours of
work, but the key forcing variable is the magnitude of profits created by the policy
relative to total labor income, and the key factor that determines how this translates
into changes in hours is the labor supply elasticity.

To complete the analysis of this case, note that the value of N in equilibrium is
simply the number of permits granted, and the value of y is now determined by the
feasibility condition.

5. Endogenous Markups

One feature of the previous analysis is that policy does not affect the markup of price
over marginal cost in equilibrium. One might suspect that one of the key channels
through which product market regulations work is to increase markups, and that by
virtue of not having this channel the previous analysis is of limited interest. In this
section we show that adding this channel to the analysis has no impact on the previous
results.

The only change that we make to the previous model is in the technology for the
final goods sector. Specifically, rather than letting ρ be a fixed parameter, we assume
that ρ is an increasing function of the mass of different intermediate products that are
available, and write this as ρ(N). The motivation for this extension is the intuitive
notion that as more intermediate goods are produced, the more similar they are, and
hence the more substitutable they become. Formally, this should be modelled explicitly
as a property of the commodity space, and the equilibrium should deal explicitly with
the issue of how intermediate firms decide where to locate in the commodity space. We
will sidestep this issue here and simply assume that firms that operate always locate in
a symmetric fashion so that all of the intermediate goods are equally substitutable, and
that this substitutability is solely a function of N .

For a given mass N of operating intermediate goods producers, this model behaves
just as the previous model, if we set ρ = ρ(N). In particular, the final good producer’s
demand function takes the same form as before and as a result, optimal behavior on
the part of the intermediate goods producers will give p∗ = w∗/ρ. However, it now
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follows that any policy which alters the value of N will necessarily alter the markup in
equilibrium, through its effect on ρ.

Although this extension does have implications for the effects of tax and regulatory
policies on both allocations and welfare, it turns out that it has no impact on how
these policies qualitatively affect the total volume of market work. This can be seen
quite readily from an examination of the household’s utility maximization problem. In
equilibrium, the household simply maximizes:

(1− h)1−γ − 1
α log(c) + (1− α) (5.1)

1− γ

subject to the budget constraint
c = w∗h+ T, (5.2)

where we allow for the possibility that the household receives some form of transfer
payment from the government or some profits from firms. Substituting the budget
equation into the objective function one obtains the first order condition:

(1− α)w∗h+ T
= w∗ (5.3)

α (1− h)γ
which can be rearranged to give:

(1− α) h 1

α (1− h)γ = 1 + w
T
∗h
. (5.4)

In particular, if transfers are zero, because either license revenues are discarded, or
because the entry costs represent real costs, then there will be no effect on the volume
of market work. However, we know from the previous analysis that in the case of a
regulation that takes the form of a real resource cost, regulations do lead to less entry
and hence a lower value of N . This lower value of N necessarily implies that there will
be higher markups in equilibrium, but the above expression tells us that when T = 0,
the fact that the markup increases has no implications for the volume of market work
in equilibrium. It does not follow that endogenous markups have no implications for
the effect of entry barriers on allocations. The zero profit condition now implies that:

y =
ρ(N)

φ (5.5)
1− ρ(N)

so that if φ increases, the reduction in N leads to an opposing effect on y. Since
feasibility requires that:

N(y + φ) = h (5.6)

it follows that a given increase in φ will have a smaller effect on N than in the case
where markups were exogenous. Lastly, recall that consumption of the household is
given by:

c = N1/ρy (5.7)
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so that the endogenous markup will affect the drop in c associated with a given increase
in φ due to regulations.

In cases where the regulation leads to income transfers, either through rebate of
license feels or through higher profits, it remains true that the key impulse is the size
of the transfer relative to labor income and that the key parameter that determines the
magnitude of the effect is the labor supply elasticity γ. In particular, given the volume
of the transfer relative to labor income, from the perspective of what happens to hours
of market work it is completely irrelevant whether the regulation is accompanied by a
change in markups.

6. Imperfect Competition in the Labor Market

The previous analysis has assumed that labor markets are competitive. Several papers
suggest that the effect of regulation, specifically entry barriers, on labor market outcomes
is very much influenced by this assumption. In this section we extend the model to allow
for monopolistically competitive behavior in the labor market on the part of workers and
show that the results from the previous analysis continue to hold. This finding should
not be interpreted to suggest that noncompetitive wage setting cannot have interactions
with product market regulation that influence time devoted to market work. Rather,
the analysis should be interpreted as showing that the mere presence of noncompetitive
wage setting does not overturn the previous results.

The extension that we consider seems a natural way to bring noncompetitive wage-
setting into the standard model of time allocation that does not introduce trading
frictions, and follows the approach in Comin and Gertler (2006). Specifically, we now
assume a continuum of households with mass equal to one, each with the same prefer-
ences as used earlier in the analysis. What distinguishes the households is that each is
endowed with a different type of labor services. The production technology for inter-
mediate goods is now written as: Z 1

y(i) = [ h(j)ηdj]1/η (6.1)
0

where h(j) is the input of labor services from household j, and 0 < η < 1 determines
the degree of substitutability of the various labor types. Our previous analysis can be
seen as the special case of η = 1, in which case all labor services are perfect substitutes.
Once again there is a fixed cost φ associated with operating each intermediate goods
technology, but it is now more convenient to assume that this cost is measured in units
of the final consumption good rather than labor, since labor is no longer homogeneous.

We consider a decentralized equilibrium in which each household sets the wage rate
for its labor taking as given all other prices in the economy. Each intermediate producer
will behave competitively in the labor market, taking the wages of each labor type as
given. We first solve for the decentralized equilibrium in the absence of any taxes
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or regulations, though in the interest of space we focus on the equilibrium value of
h. Because this case is a relatively straightforward extension of the earlier model we
do repeat a formal definition of equilibrium. We note, however, that a symmetric
equilibrium will now involve all of the same objects as before, and a new function g∗(w)
that represents the demand for each type of labor as a function of its own wage holding
all other prices equal to their equilibrium values. Similarly to what happens in the
market for intermediate goods, it is easy to show that this function takes the form

1

Bw η−1 , where B is a constant. It follows that in equilibrium, household j will choose
c, h and w to maximize:

(1− h)1−γ − 1
α log(c) + (1− α) (6.2)

1− γ

subject to:

c = wh (6.3)
1

h = Bw η−1

Substituting into the objective function, taking first order conditions and rearranging,
one obtains the following expression that characterizes the optimal choice of h:

(1− α) h
= η. (6.4)

α (1− h)γ

This expression has a natural interpretation in terms of markups. The inverse of the
left-hand side of this equation reflects the gain to the worker of supplying an extra
unit of labor, and the right hand side says that in the monopolistically competitive
equilibrium this value will be a markup of 1/η times its value in the competitive case.

It is easy to show that the Social Planner’s choice of h is the same as before and
therefore satisfies equation (6.4) except with a value of 1/ρ on the right hand side,
and the equilibrium allocation assuming a competitive labor market would have the
value 1 on the right hand side. It follows that each source of imperfect competition
decreases hours of work relative to the efficient allocation. These expressions show that
imperfect competition in either the labor market or the market for intermediate goods
have symmetric effects on hours of work, since the right hand side of equation (6.4) is
simply ηρ times the right hand side of the equation for the efficient allocation of time.
Of course, how large the impact is on h relative to the efficient allocation depends on
the the value of γ.

While the above analysis shows that imperfect competition in either labor or product
markets induces inefficiencies in the allocation of time to market work, the issue of
interest here is how a change in product market regulation affects time devoted to
market work given imperfect competition in the labor market. It turns out that our
previous analysis of the effects on hours of work goes through without any change.
Specifically, all of our previous expressions for hours of work remain unchanged except
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for the addition of the term η on the right hand side. It follows that the presence of
labor market imperfections of the sort considered here has virtually no impact on how
changes in regulation affect market work. In particular, the result that regulations that
increase the real resource costs associated with entry has no effect on time allocated to
market work continues to hold in this model, independently of the value of η. The same
holds true for the case of license fees that are thrown away. In the case of license fees
that are rebated, it remains true that the key driving force is the size of the rebates
relative to labor income and the key parameter that dictates how this driving force is
transformed in a change in hours is the labor supply elasticity parameter γ.

The statement that the value of η does not affect how a given change in product
market regulations affect total market work should not be confused with the statement
that the value of η does not affect hours of market work. Our results most definitely
imply that differences in η do impact on hours of work, so that economies with different
values of η will have different equilibrium time allocations.

7. A Two-Sector Analysis

The framework used for the above analysis is best suited to comparing two economies
which have differences in product market regulation across all sectors. However, in
reality there are many prominent examples of product market regulations that are sector
specific. In this section we consider the simplest extension of the model to permit an
analysis of this issue. To pursue this we extend the original model to allow for two final
consumption goods. We now write preferences as:

(1− h)1−γ − 1
α log(c) + (1− α) (7.1)

1− γ

where c is now total consumption and h is total time devoted to market work. Total
consumption is a CES aggregate of the two final consumption goods, denoted by c1 and
c2:

c = (µc1
ε + (1− µ)c2)1/ε (7.2)

where ε determines the elasticity of substitution between the two goods.
The technology in sector 2 is the same as that considered previously: there is a

continuum of potential intermediate goods that have linear production functions with
unit marginal cost and face the fixed set-up cost φ, and there is a final goods producer
that aggregates the intermediate goods into the final consumption good c2:Z N

c2 = [ y(i)ρdi]1/ρ. (7.3)
0

While we could consider a symmetric structure for the production of the other final
good, for our purposes it is sufficient to consider the simpler structure in which c1 is
produced using only labor with a linear technology. We set the marginal productivity
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of this technology to one and assume that there are no fixed costs of operation in this
sector.

We consider an equilibrium in which the market for labor and the markets for final
goods are competitive, but assume that the market for intermediates used in production
of the c2 is monopolistically competitive as before. Equilibrium for this economy is a
straightforward generalization of that in the previous economies studied, so we do not
present the details here. As before, we focus on symmetric equilibria, in which the
prices of all intermediate goods are the same, denoted by py

∗. We normalize the price
of c1 to be one, denote the wage rate by w∗, and the price of c2 by p∗2. Given the
linear technology to produce c1, it must be that w∗ = 1 in equilibrium. The demand
functions for intermediate goods take on the same form as previously, and hence prices
in equilibrium will still be given by the same markup:

∗ 1
py = . (7.4)

ρ

Finally, given that the final goods producer of c2 is competitive, profits must equal zero
in equilibrium:

p∗2N
1/ρy∗ −Np∗yy∗ = 0 (7.5)

which using py
∗ = 1/ρ implies that:

ρp∗2 =
1
N

ρ−1
. (7.6)

ρ

It follows that all prices can be expressed in terms of equilibrium allocations.
The household’s optimization problem can be written as maximizing:

α ε ε (1− h)1−γ − 1
log(µc1 + (1− µ)c2) + (1− α) (7.7)

ε 1− γ

subject to the budget equation:

c1 + p2
∗c2 = h (7.8)

Letting λ be the multiplier on the budget constraint, we obtain first order conditions:

(1− α)(1− h)−γ = λ (7.9)

αµ
cε−1 = λ (7.10)

ε 1c

α(1− µ)
cε−1 = λp∗ (7.11)

ε 2 2c

Combining equations (7.9), (7.10) gives:

αµ
(1− α)(1− h)−γ =

c1(µ+ (1− µ)[ cc21 ]ε)
. (7.12)
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Equations (7.10) and (7.11) and and (7.6) imply:

c2 µ ρ−1 1
ρ ε−1= [ N ] = A(N) (7.13)

c1 (1− µ)ρ
Using equation (7.6) to substitute for p2

∗ in the budget equation gives:

N (ρ−1)/ρc2 = ρ(h− c1). (7.14)

Using equation (7.13) this can be written as:

ρh
c1 =

N (ρ−1)/ρA(N) + ρ
. (7.15)

Substituting equations (7.13) and (7.15) into the right hand side of equation (7.12) and
simplifying yields:

(1− α) h
= 1 (7.16)

α (1− h)γ
which is exactly the same expression as in the one-sector case. Having determined the
equilibrium value of h one can easily solve for the other components of the equilibrium
allocation.

One can show that the previous analysis continues to carry over to the current
context as well. In particular, if there is a regulation that involves a license fee κ to
enter the intermediate goods sector, then aggregate market work will satisfy:

(1− α) h+ T
= 1 (7.17)

α (1− h)γ

where T is the magnitude of the transfer from the government to the representative
household. This gives rise to the same type of expression as derived earlier in the one
sector case.

An interesting feature of the two-sector analysis is that we can also address how
industry specific regulations affect the sectoral allocation of hours. In this regard, it is
of interest to rewrite expression (7.15) as:

h1 ρ
=
A(N)N (1−ρ)/ρ + ρ

(7.18)
h

which can be simplified to:

h1 1

h
=

µ 1 ε
(
ε
ε
(
−
ρ−
1)
1)
ρ

(7.19)
(1−µ) ε−1ρ 1−εN + 1

This expression gives the fraction of total work that is carried out in sector 1. This
expression is useful in interpreting findings from industry level studies. In particular,
consider the case of a regulation that increases entry costs in the intermediate goods
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sector, and assume that this increase takes the form of real resource outlays, i.e., an
increase in the value of φ. As was true in the one-good model, our above analysis tells us
that this regulation will have no effect on aggregate market work. However, this type of
regulation will lead to a decrease in the mass of intermediate goods firms that operate,
and equation (7.19) shows how this decrease in N will translate into a change in the
relative amount of work done in each of the two sectors. The size of this effect depends
on the two elasticity parameters, ε and ρ, but recalling that ρ satisfies 0 < ρ < 1, the
sign of the response will be determined by the sign of ε. In particular, if ε > 0, then
hours of market work in sector 2 will decrease, while if ε < 0, hours of market work in
sector 2 will actually increase. The key point however, is that the change in industry
hours is not informative about the effect of this type of regulation on aggregate hours
of work.

There is an alternative interpretation of our two-sector analysis which is also of po-
tential interest. Specifically, rather than interpreting the two sectors to be two different
market sectors, one could interpret sector 1 to be the home sector and sector 2 to be the
market sector. In this case, any movement of hours between the two sectors will show
up as changes in market work even if changes in total work are constant. In the case
just discussed in the previous paragraph, if we assume that home and market goods are
relatively good substitutes, so that ε > 0, then a regulation which increases the real
resource costs of entry in the intermediate goods sector will lead to a fall in hours of
market work. Of course, this fall in market work will be accompanied by an offsetting
increase in the amount of homework. Recent work on cross-country comparisons of
time use (see e.g., Freeman and Schettkat (2002), Olovsson (2004) and Ragan (2005))
indicate that homework is higher in the countries of continental Europe, so this channel
may be significant. Of course, as shown in Olovsson (2004), Ragan (2005) and Rogerson
(2005, 2006b), it is also true that adding home production influences how market hours
respond to other driving forces, such as taxes.

8. General Preferences

The previous analysis has focused on preferences that are consistent with balanced
growth. While there is good reason to use this condition to discipline preferences in
the context of issues involving labor supply, it is also of interest to understand how our
results carry over to other specification of preferences. The key point that we want to
make in this section is that the strong link between how labor taxes and entry barriers
affect hours of work continues to hold with more general preferences.

We begin with the analysis of labor income taxes. If we had simply started with
a utility function u(c, 1 − h), then the expressions that we would have derived for the
effect of taxes would have been:

u2((1− τ)wh, 1− h)
= (1− τ)w (8.1)

u1((1− τ)wh, 1− h)
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in the case where the tax revenues are not returned by a lump-sum transfer, and

u2(wh, 1− h)
= (1− τ)w (8.2)

u1(wh, 1− h)
for the case in which revenues are returned via a lump-sum transfer. The difference
between these expressions and those derived earlier is that the wage rate w now appears.
In equilibrium, wages are an increasing function of N , and since taxes will influence N ,
the wage rate w will vary in response to tax policies, thereby introducing additional
effects. However, in the first expression above, it should be noted that the effect on h is
determined by the change in w(1− τ) in conjunction with the properties of preferences.
In the second case there are two effects: holding w constant, the increase in τ leads to
lower hours worked, but then there is the additional effect on hours due to the change
in w.

Next consider the case of changes to entry barriers. If the entry barrier represents
real time costs, then hours will be determined by the condition:

u2(wh, 1− h)
= w (8.3)

u1(wh, 1− h)
where once again, the wage w, will be decreasing in N , which is directly affected by
the entry barrier. Comparing this expression to equation (8.1), the key point is that
the mechanics are identical: the equations are of the exact same form, and the driving
forces enter in exactly the same form. One should not conclude that the driving force
is larger in the case of taxes, since the effect on w is larger in the entry barrier case due
to the fact that the entry barrier has a direct effect on N .

If we instead considered the case in which the entry barrier represents a fee that is
transferred to consumers via a lump-sum transfer, then the condition for hours becomes:

u2(wh+ T, 1− h)
= w (8.4)

u1(wh+ T, 1− h)
As before, in equilibrium, T is proportional to wh, so that letting this constant of
proportionality be equal to b, this can be written as:

u2((1 + b)wh, 1− h)
= w (8.5)

u1((1 + b)wh, 1− h)
But making the change of variable w̃ = (1 + b)w, and defining (1− τ̃) = 1/(1 + b), this
expression can be rewritten as:

u2(w̃h, 1− h)
= (1− τ̃)w̃ (8.6)

u1(w̃h, 1− h)
Comparing this expression with equation (8.2), one again notes that they take on the
same form.
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To summarize, the point of this section has been to argue that even with general
preferences, the strong connection between the mechanisms through which labor taxes
and entry barriers affect hours of market work remains. In particular, this analysis
suggests that both tax policy and entry barriers give rise to two key driving forces:
changes in the return to working, and transfers. How these driving forces translates
into changes in hours of work is in turn dictated by the labor supply elasticities implicit
in preferences.4

9. Conclusions

The goal of this paper was to assess the effect of product market regulations which take
the form of increased entry costs on time allocated to market work in the context of a
standard aggregate model of time allocation. Several results have emerged. The effect
of product market regulation on time allocated to market work can be understood in
exactly the same way as the effect of labor or consumption taxes on the time allocated
to market work. The key driving force in both cases is the implicit transfer of resources
to households as a fraction of total labor income, and the key feature of the model that
influences the propagation of this driving force is the labor supply elasticity. A direct
implication of this is that regulations which increase the real resource costs associated
with entry have no impact on time devoted to market work. Our analysis also showed
that differences in the magnitude of entry barriers associated with regulation are not
very informative about the impact of regulations on market work, since large differences
in regulatory barriers may be associated with small differences in effective transfer pay-
ments. Our results were robust to allowing for endogenous markups, a particular form
of imperfect competition in the labor market, and to having multiple final goods. The
multi-sector model also indicates that analysis of outcomes in individual sectors are
unlikely to yield information regarding the effect of labor market regulation on total
market work. Taken at face value, our results indicate that stories which stress product
market regulation rather than taxes as a key driving force face a key challenge. Since
the propagation mechanisms are identical, the relative importance of the two is deter-
mined by the relative importance of the implied transfer payments. We are aware of
no evidence that suggests that differences in implicit transfers associated with product
market regulation are comparable to the differences in revenues associated with either
labor or consumption taxation. Of course, this conclusion should be qualified by the
statement that our findings take place in the context of a benchmark model. Recent
work that stresses the interaction of trading frictions in the labor market and the effects
of product market regulations suggest channels which may overturn this finding.

4There is an important quantitative issue that this analysis does not address. Namely, what are the
relative quantitative effects of tax policies and entry barriers on wages.
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