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1 Introduction

What is the optimal spatial distribution of socially connected individuals from a knowledge

flow perspective? Is it better to concentrate (all in one city) or disperse across the economy?

That may depend on one’s perspective. What is best for the city or national economy might

not be so for the connected individuals themselves. The answer lies in the way in which

knowledge flows are mediated by spatial and social proximity.

Why are we interested in the spatial distribution of socially connected individuals with

respect to knowledge flows? Endogenous growth theory casts knowledge, rather than physical

assets, in a central role for producing economic growth (Romer (1990)). However, Romer’s

model is predicated on the notion that “anyone engaged in research has free access to the

entire stock of knowledge.” In reality, access to new knowledge is highly imperfect (Griliches

(1957)). Thus, to fully understand economic growth, we must consider not only the production

of knowledge but also access to knowledge. Hence, to the extent the spatial distribution of

socially connected individuals impacts knowledge access, this feature of the economy affects

growth.

In terms of empirical evidence, one particularly salient imperfection with respect to the

“free access” ideal is the apparent geographic localization of knowledge flows (Jaffe et al.

(1993); Zucker et al. (1998)). That is, knowledge is more likely to flow between individuals

who are located more closely together. Yet geographic distance is just one of many forms of

distance that can impede the transfer of knowledge. Conversely, there are ways to be “near”

sources of knowledge while being physically separated. For example, social or professional

networks can lower the cost of accessing knowledge between members (Sorenson et al. (2006)).

How might we consider the influence of these factors simultaneously? In this paper, we

use the device of a knowledge flow production function (KFPF) to model knowledge access.

The intuition behind the function is that the likelihood of a knowledge flow between a given

pair of inventors depends on the structure of relationships between those inventors - spatial,

ethnic, professional, etc. We pay particular attention to how different types of relationships

interact. We show that aggregating knowledge flows based on this function leads to interesting

results on the factors that support knowledge access for various economic units (i.e., city and

country).
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We begin by constructing a simple KFPF in which only two factors mediate the probability

of a knowledge flow between individuals, one spatial and one social. Specifically, we focus

on whether individuals are co-located and/or co-ethnic.1 Based on this KFPF, we model

knowledge access to a city that is comprised of both ethnic and non-ethnic inventors. We

show that, from the city’s perspective, the optimal diversity in the city depends on whether

spatial and social proximity are complements (reinforcing the other to further lower the cost

of accessing knowledge) or substitutes (causing redundancy in the other).2 Then, using the

same KFPF, we model knowledge access to an economy (comprised of two cities) that has

both ethnic and non-ethnic inventors. The optimal distribution of ethnic inventors across

cities again depends on whether spatial and social proximity are substitutes or complements.

These models are used to examine the optimal allocation of the ethnic network from the

vantage points of a city and of a national economy. However, with free mobility, the actual

allocation will be the result of numerous individual inventor decisions about where to live and

work. Therefore, we also model location decisions by inventors themselves. We show that

although there are multiple equilibria, the equilibrium in which ethnic inventors are dispersed

is only stable under certain conditions. We turn to empirical analysis to see whether these

conditions hold in our data.

The KFPF is powerful in its generality and simplicity. Not only does it serve as the

central building block for our three models, but we are also able to empirically estimate

this function using patent citation data. Employing a matched sample method developed by

Jaffe et al. (1993) and refined by Thompson and Fox-Kean (2005) to control for the underlying

distribution of field-specific technological activity across geographic and ethnic spaces, we find

that co-location and co-ethnicity are substitutes rather than complements. In fact, our results

suggest that the marginal benefit of co-location is four times larger for individuals who are

not co-ethnic. In other words, in terms of facilitating access to knowledge, co-location appears

to offer much greater benefits to individuals who are not otherwise socially connected.3

1Co-ethnic networks, such as Indians in the U.S., are often characterized as rich in social capital (Kalnins
and Chung (2006); Saxenian (2002)).

2The social capital literature highlights both possibilities. Membership in multiple overlapping networks
helps reinforce the deep bonds of trust that facilitate exchange of sensitive information; yet there is also an
influential literature that stresses the importance of “weak ties” across networks in accessing non-redundant
knowledge (Granovetter (1973); Burt (1992)).

3We focus on co-ethnicity as one particular grouping for which membership raises the likelihood of sharing
social capital. Of course, there are many such possible groupings. The social capital literature provides a useful
framework for understanding knowledge-sharing networks more generally. This research has been impressively
multidisciplinary, with important contributions by sociologists (Granovetter (1973); Coleman (1988); Burt
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In the context of our models, the estimated coefficients imply that dispersion trumps

concentration from the perspectives of both the city and the nation. However, from the

perspective of ethnic inventors themselves, although a dispersed equilibrium exists, it is not

stable; spatial concentration is the only stable equilibrium. The tension between what is

optimal for the location versus what is optimal for individuals creates an interesting setting

for studying migration patterns and related policies.

Our study builds on recent work that has also stressed the role that ethnic networks play

in facilitating knowledge exchange and other valuable economic interactions (Rauch (2001)).4

In particular, Kerr (2005) reports results indicating that ethnic scientific communities play an

important role in international technology diffusion. His findings suggest that a larger ethnic

research community in the US improves technology diffusion to less advanced countries of the

same ethnicity. In addition, Kalnins and Chung (2006) provide evidence from the U.S. lodging

industry that Gujarati immigrant entrepreneurs benefit from their ethnic group’s social capital

when already-successful members are co-located and in the same industry. Furthermore,

these papers also suggest that their findings may also extend beyond ethnicity to other social

groupings.

Our paper proceeds as follows. In section 2, we introduce the KFPF and construct the

three models described above. Then, in section 3, we describe the U.S. resident Indian dias-

pora, the socially connected network that is the basis of our empirical study. Next, in section

4, we describe the methodology and data we employ for estimating the KFPF. In section 5,

we present empirical results and discuss the implications of these for the three models. We

conclude in section 6.

(1992)), political scientists (Putnam (2002)), and economists (Knack and Keefer (1997); Glaeser et al. (2002)).
4A related literature focuses on the costs and benefits of ethnic diversity. Alesina and Ferrara (2005) provide

a useful survey of how ethnic diversity affects economic performance. A major focus of this literature is on the
damage done by ethnic conflict in heterogeneous societies (Easterly and Levine (1997)). At a more micro level,
Borjas (1995) shows that ethnicity-based segregation at the level of neighborhoods slows down intergenerational
wage convergence. But Alesina and La Ferrara point out that some diverse societies are highly effective; work
is continuing on the factors that make diversity an asset. Working in the tradition of Jacobs (1961), Ottaviano
and Peri (2004) provide evidence of positive effects of diversity on the performance of U.S. cities.
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2 Theory

2.1 The Knowledge Flow Production Function

The central building block of our three models is the KFPF. This function measures the

probability of a non-redundant knowledge flow to any inventor, i, from any other inventor, j

(where j 6= i), based on well-defined structural relationships between the inventor pair (e.g.,

co-located, co-ethnic, co-specialists, etc.). We focus on the case where the existence of a

given relationship is an all-or-nothing phenomenon (and thus can be measured by a dummy

variable) but allow for a completely unrestricted set of interactions between the various types

of relationships. We assume, however, that total knowledge flow from j to i is independent of

both i’s and j’s relationships to other inventors and so abstract from issues of indirect access

to knowledge through a network.5

Letting R represent the total number of relationship types (e.g., co-located, co-member),

Kij, the probability of a knowledge flow from j to i is given by the general KFPF:

Kij = β0 +

S∑

s=1

βsDs, (1)

The intercept in equation (1) is the probability of a knowledge flow when none of the

relationships are present. S is the number of dummy variables required to represent all possible

relationship types and all possible interactions between those relationship types.6 Suppose,

for example, there are three types of possible relationships between an inventor pair. The

number of dummy variables (S) required for a completely unrestricted model is then seven

(three to capture the existence of each relationship, three to capture the interactions between

each possible pair of relationships, and one to capture the interaction when all three of the

relationships are present). The assumption that the probability of a knowledge flow between

any given pair depends only on the relationships between that pair allows for straightforward

aggregation to determine the total knowledge access for any individual inventor and also for

any given collection of inventors (e.g., all inventors in a city or nation).

In this paper, we focus on two types of relationships that potentially play an important

5See, for example, Burt (1992).
6With R relationship types, the number of dummy variables needed, S, equals the number of possible

combinations of relationship types from the set R, taken r = 1, 2, ..., R at a time. This is given by the
combinatorial formula: S =

P
R

r=1
R!

r!(R−r)!
= 2R

− 1
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role in facilitating knowledge flows between inventors: co-location and co-ethnicity. Thus, in

our case, R = 2, S = 3, and the KFPF is given simply by:

Kij = β0 + β1(Co − Locationij) + β2(Co − Ethnicityij)+

β3(Co − Locationij × Co− Ethnicityij), j 6= i

(2)

The parameter on the interaction term determines whether co-location and co-ethnicity

are complements or substitutes in the production of a knowledge flow. When β3 is positive, the

affect of co-location on the probability of a knowledge flow is greater for co-ethnic inventors;

that is, co-location and co-ethnicity are complements. Conversely, co-location and co-ethnicity

are substitutes when β3 is negative. We now use the KFPF to build three simple knowledge

flow models.

2.2 Optimal Dispersion: City-Level Model

Our first model examines how ethnic diversity influences total knowledge flows to a city. We

assume the number of inventor slots in the city is fixed at N and our interest is the inventor

allocation that maximizes the total knowledge flows received by the city. There are two types

of inventors, which we label for convenience as minority type and majority type. There are

M minority type and Z majority type inventors in the overall economy. A key assumption

(common to all three models) is that the co-ethnicity effect is only present for minority type

inventors.

The number of minority types in the city is M . Our first objective is to identify their share

in the inventor workforce (M∗

N
) that maximizes the total knowledge flow to the N inventors

in the city. The total knowledge flows received by inventors in a given city (which we call city

1) equals the sum of the knowledge flows received by the inventors in that city:

K1 =

N∑

i=1

M+Z∑

j=1

Kij , i 6= j (3)

This total knowledge flow is usefully decomposed as the sum of eight components: 1) the

flow within the local minority community; 2) the flow from the local majority community

to the local minority community; 3) the flow from the non-local minority community to the

local minority community; 4) the flow from the non-local majority community to the local
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minority community; 5) the flow within the local majority community; 6) the flow from the

local minority community to the local majority community; 7) the flow from the non-local

majority community to the local majority community; and 8) the flow from the non-local

minority community to the local majority community. This can be expressed mathematically

by a straightforward albeit unwieldy expression:

K1 =
[
M(M − 1)(β0 + β1 + β2 + β3)

]
+

[
M(N − M)(β0 + β1)

]
+

[
M(M − M)(β0 + β2)

]
+

[
M(Z − N + M)β0

]
+

[
(N − M)(N − M − 1)(β0 + β1)

]
+

[
(N − M)(M)(β0 + β1)

]
+

[
(N − M)(Z − N + M)(β0)

]
+

[
(N − M)(M − M)β0

]

(4)

The optimal share of minority type inventors in city 1 can be found by analyzing the

first-order condition:

∂K1

∂M
= (M − 1)β2 + (2M∗ − 1)β3 = 0 ⇒

M∗

N
=

1

2N
−

β2

β3

(
M − 1

2N

)
(5)

Proposition 1. A diverse inventor mix is optimal for a city if and only if β3 < 0 and the

city is of sufficiently large size.

Proof. If β3 < 0, an examination of the second-order condition reveals that equation (5)

identifies a maximum (∂2K1
∂M2 = 2β3 < 0). Inspection of equation (5) shows that this maximum

requires a diverse inventor mix to maximize knowledge flows to inventors at city 1 for a large

enough city (see Figure 1). The optimal share of minority type inventors is increasing in

the strength of the (positive) co-ethnicity effect (β2 ) and decreasing in the strength of the

(negative) interaction effect (β3).
7 If β3 > 0, equation 5 identifies a minimum. In this case,

it is optimal to fill all available slots with minority type inventors since, starting from any

positive M , increasing M always leads to an increase in the total knowledge flow (see Figure

2).8 Finally, if β3 = 0, inspection of equation 5 reveals that the knowledge flow to city 1 is

monotonically increasing in the share of minority inventors, again implying it is optimal to

7Intuitively, increasing the minority share involves a tradeoff between the benefit of increasing the number
of inventors who are part of ethnicity-based knowledge exchanges and the cost of decreasing the value of the
limited number of co-location slots. The first term in the first derivative can be viewed as the marginal benefit
of increasing the size of this population by one person. The absolute value of the second term can be viewed
as the marginal cost of diminishing the net benefit of co-location. The marginal benefit is constant and the
marginal cost is increasing with M . As usual, the optimal level of M is the one that equates marginal benefit
and marginal cost.

8We assume that the total number of minority-type inventors is greater than the total number of slots in
city 1.
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fill all available slots with minority type inventors.

2.3 Optimal Dispersion: Economy-Level Model

Our second model examines how the distribution of ethnic inventors across cities influences

total knowledge flows in the economy (which in our simple model consists of cities 1 and 2).

We focus on the optimal share of minority type inventors allocated at city 1 (M∗∗

M
). Choosing

this number to maximize the sum of knowledge flows at the two locations (K) now gives rise

to the first-order condition:9

∂K

∂M
= β3

(
4M∗∗ − 2M

)
= 0 ⇒

M∗∗

M
=

1

2
(6)

Proposition 2. An equally distributed minority inventor mix is the unique optimum for the

economy if and only if β3 < 0.

Proof. If β3 < 0 , an examination of the second-order condition reveals that equation (6)

identifies a maximum (∂2K1
∂M2 = 4β3 < 0 ). Inspection of equation (6) shows that this maximum

requires an equal distribution of inventors across the two locations (see Figure 3).10

If β3 > 0, equation (6) identifies a minimum. In this case, it is optimal to concentrate all

available minority type inventors at one location (see Figure 4).11 Finally, if β3 = 0 , a unique

optimum does not exist and the level of knowledge flows is independent of the distribution of

minority-type inventors across cities.

2.4 Optimal Dispersion: Inventor-Level Model

The two models above examine optimal dispersion of ethnic inventors from the vantage point

of a city and of the national economy. But with free mobility of inventors, the actual dispersion

across locations will be the result of numerous individual inventor decisions about where to

live and work. Thus, we now turn to examine actual dispersion assuming that each inventor

makes their location decision to maximize their own access to knowledge.

9To save space, we have not written down the knowledge access equation; it is an obvious extension of the
equation for city 1 also including city 2.

10We assume that each city is large enough to take half the minority-type inventors.
11Note that it does not matter for the total knowledge flow which of the locations is chosen for this concen-

tration. However, if only one city is large enough to accommodate the entire group, then that location should
be chosen.
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For simplicity, we continue to assume there are just two cities and make the additional

assumption that the non-ethnic populations at locations 1 and 2 are Z1 and Z2, respectively

(where Z1 ≥ Z2). An individual minority-type inventor will be indifferent between the two

locations when the knowledge accessed at each location is the same. Letting Me denote the

equilibrium number of minority-type inventors at city 1, we can use the KFPF to write the

equilibrium condition as:

Me
[
β0 + β1 + β2 + β3

]
+ Z1

[
β0 + β1

]
+ Z2β0 + (M − Me)

[
β0 + β2

]
=

(M − Me)
[
β0 + β1 + β2 + β3

]
+ Z2

[
β0 + β1

]
+ Z1β0 + Me

[
β0 + β1

] (7)

After some cancelation and re-arrangement, it will be helpful for our later discussion of

stability to rewrite this condition as:

Me

M

[
β1 + β3

]
+

Z1β1

M
=

(
1 −

Me

M

)[
β1 + β3

]
+

Z2β1

M
(8)

The equilibrium share at city 1 is then easily calculated as:

Me

M
=

1

2
−

(Z1 − Z2)β1

2(β1 + β3)M
(9)

The stability of the dispersed equilibrium described by equation 9 depends on the sign of

β1 + β3. This is most easily seen by graphing the two sides of equation 8. In Figure 5, we

show the graph for the case where β1 + β3 < 0. The intersection of the two curves identifies

a stable equilibrium. To see that the equilibrium is stable, imagine that starting from the

equilibrium some shock reduces the share of minority types at city 1. Minority-type inventors

are then able to access more knowledge at city 1 than at city 2, which will induce knowledge-

maximizing inventors to move, with the movement continuing until the initial equilibrium is

restored.

In Figure 6, we show the graph for the case where β1 + β3 > 0 . Given the upward slope

of the curves, the equilibrium identified by their intersection is now unstable. Starting again

from this equilibrium, a shock that reduces the number of minority type inventors at city 1

will lead to a situation where more knowledge can be acquired at city 2 than at city 1, leading

yet more inventors to leave city 1. This relocation process will continue until no inventors are

at city 1.
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On the other hand, if the initial shock leads to a larger share of inventors at city 1 than

identified by equation 9, then the dynamics will lead all minority inventors to move to city

1. Thus, the equilibrium analysis shows that the individual members of the diaspora will

concentrate when β1 + β3 > 0.

However, it is not necessarily the case that individual members will concentrate at the

“right” location. Individuals will choose to move to the city that maximizes their access to

knowledge, which is is conditioned on where others have located before them. If others have

located in a smaller city, the individual may be faced with a collective action problem. From

Figure 6, it is apparent that city 1 is the preferred location for concentration if Z1 > Z2 (which

is assumed in the figure). But if, for historic reasons, the diaspora happens to concentrate in

the smaller city 2, then that is where it will stay.

Finally, in the case where β1 + β3 = 0, the curves in Figures 5 and 6 become horizontal

at their intercepts. In this case, there is exactly zero co-location effect for the minority-type

inventors, which holds no matter what their initial spatial distribution. Minority types will all

concentrate in the city with the larger number of non-minority types (city 1 in the depicted

example). In contrast to the case where β1 + β3 > 0, there is no danger here of the dynamics

of location choice leading to concentration at the “wrong” location.

Summing up this section, we have found that: 1) a negative interaction effect is suffi-

cient for diversity to trump concentration for a city of a given size; 2) a negative interaction

effect is sufficient for a geographically distributed diaspora to trump concentration for a na-

tional economy; and 3) the negative interaction effect needs to be greater than the (assumed)

positive co-location effect for the dispersion equilibrium to be stable, assuming knowledge

flow-maximizing, mobile inventors.12

These models provide insight into the perhaps surprisingly broad implications of the actual

values of the KFPF coefficients. For example, a negative β3 implies that dispersion of ethnic

inventors is better than concentration from the perspectives of both the city and the overall

economy. But what are the actual values of the KFPF coefficients? To answer this, we turn

12It is interesting to note that the necessary conditions for equilibrium stability shown in the third model
are sensitive to the crowding out assumption. That is, in this model the number of majority-type inventors
in each city is fixed so the total number of inventors in each city varies depending on the location choices of
minority inventors. In other words, minority type inventors do not “crowd out” majority types but rather add
to the existing population. Alternatively, if we model cities with perfect crowding out (a fixed number of slots
in each city), the condition for a stable dispersed equilibrium is β3 < 0. Intuitively, with perfect crowding out,
a key force leading to concentration - the act of moving to a larger city makes that city even bigger and thus
more attractive from the point of view of knowledge access - is no longer present.
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to data and estimate the KFPF coefficients. We choose to focus on the U.S. resident Indian

diaspora to construct our co-ethnic sample for a number of reasons. We explain these reasons

next.

3 The U.S. Resident Indian Diaspora

The U.S. resident Indian diaspora is particularly suitable for the purposes of our study be-

cause, on average: 1) they are reasonably identifiable (by last name), 2) they are highly active

in technological innovation (we use patent citations to measure knowledge flows), 3) they iden-

tify strongly with their ethnicity (we assume co-ethnicity to be a mechanisms for knowledge

transfer), and 4) they are active across a broad range of geographies (many co-located and

non-co-located observations in the sample).

The U.S. resident Indian diaspora is highly active in technological innovation, which is evi-

dent by their employment and patenting output. They are disproportionately concentrated in

engineering (7%) and mathematical/computing professions (16%). As a comparison, roughly

1% of the native-born population works in each of these professions.13,14 In addition, not

only is the share of the Indian-American population working in technology significant, their

role in the U.S. innovation system has increased over time (Table 1).15 The share of total

USPTO-issued patents that have at least one Indian-named inventor has been rising steadily,

approximately in line with the expanding Indian-born population.

Members of the U.S. resident Indian diaspora identify strongly with their ethnicity, perhaps

partly because many are of a recent vintage. Of the 2001 Indian-American population residing

in the U.S., those born in the U.S. were fewer than those born in India (0.7 million versus 1

million).16 Furthermore, more than one third of the Indian-born came after 1996 and more

than half after 1990.17 Survey evidence underlines the strong ethnic identification: 53% visit

13Source: U.S. Census Bureau and authors’ calculations.
14In related work, Stephan and Levin (2001) and Levin and Stephan (1999) report that foreign-born and

foreign-educated scientists and engineers (not necessarily from India) contribute disproportionately in terms of
“exceptional contributions to US science” relative to what would be expected given their underlying distribution
in the scientific labor force in the U.S.

15Our method for identifying Indian inventors is described in detail in the data section. Here we are measuring
all inventors with Indian last names.

16Source: U.S. Census Bureau, Current Population Survey, March Supplement, various years.
17The Indian-born population in the U.S. numbered only 12,296 in the 1960 census. The population has

grown dramatically in the last four decades, reaching 51,000 in 1970, 206,087 in 1980, 450,406 in 1990, and
1,022,552 in 2000. H-1B visas provided a major route of legal access to the U.S. labor market in the 1990s
for highly skilled individuals with job offers. Highly skilled Indians, especially those working in the computer
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India at least once every two years, 97% watch Indian TV channels several times a week, 94%

view Indian Internet sites several times a week, 92% read an Indian newspaper or magazine

several times a week, and 90% have an Indian meal several times a week.18

The Indian diaspora is active across multiple geographic areas. Table 2 provides a snap-

shot of the Metropolitan Statistical Area (MSA) locations of patenting activity by U.S.- and

Canada-resident Indian inventors. The table also shows the total level of patenting activity in

each location and finally the share of patenting activity by Indian inventors in each MSA. For

example, the San Francisco MSA received the largest number of patents by Indian inventors

(and by all inventors). However, Indian inventors also received a relatively high share (11%)

of the overall patents issued in that MSA.

These data illustrate that although inventive activity by the diaspora is geographically

dispersed, it is not uniformly distributed (relative to the underlying distribution of overall

patenting activity) but rather somewhat concentrated in particular cities such as San Fran-

cisco, New York, Chicago, and Austin. The Herfindahl index of concentration, calculated as

∑N
i=1(S

L
i )2, where SL

i is the percentage share of patents issued in MSA i and N is the total

number of MSAs, has a value of 667 for “Indian Patents” and 385 for “All Patents.”

Finally, as we will discuss in the methodology section below, our identification strategy

will need to address technological concentration by ethnicity. We offer descriptive data on

this issue here. Table 3 shows the number of patents issued in each two-digit National Bureau

of Economic Research (NBER) technology subcategory where at least one of the inventors is

Indian.19 The table also shows the total number of patents issued in each technology class and

the share of patents where at least one of the inventors is Indian. Not surprisingly, computer

hardware and software have the largest number of patents issued to Indians, who also have a

relatively high share of the total number of patents issued in this class.

However, the table also shows that the impact of Indian inventors goes well beyond com-

puters. Indeed, the highest Indian share is for organic compounds. Even so, Indian inventors

are more technologically concentrated than overall inventors, although the difference in con-

centration is less pronounced than for geographic concentration. The value of the Herfindahl

industry, have been by far the largest beneficiaries of the H-1B visas. In fiscal year 2001, Indian-born individuals
received almost half of all H-1Bs issued, 58% of which were in computer-related fields.

18Kapur (2004).
19The three-digit patent classifications provided by the USPTO are mapped to 36 two-digit “subcategory

codes” in Jaffe et al. (2002), pp. 452-454.
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index for technological concentration, for example, is 677 for patents with “One or More

Indian Inventor” compared with 422 for “All Patents.”

4 Empirical Methodology and Data

4.1 Empirical Methodology

Our objective is to identify the separate and joint effects of inventor co-location and inventor

co-ethnicity on technological knowledge flows between inventors. The identification challenge

is that inventive activity in particular technological areas is likely to be concentrated by

location and ethnicity (Table 3 shows evidence of this). If this is true, we will observe a

high incidence of citations among co-located and co-ethnic inventors even if co-location and

co-ethnicity exert no causal influence on knowledge flows. Our identification strategy is to

match each actual cited patent with a control patent that comes from the same technological

class and time period as the actual cited patent. Assuming that the classes are sufficiently

narrowly defined, the controls will have the same distribution across technologies as the actual

citations, allowing us to control for incidental co-location and co-ethnicity effects.

With the controls selected, the effects of interest are estimated from the following simple

regression:

P (Citationij) = β0 + β1Co − Locationij + β2Co − Ethnicityij+

β3(Co − Locationij × Co− Ethnicityij) + εij ,

i 6= j.

Citation is a dummy variable that takes a value of 1 when the observation relates to an

actual citation and 0 if the observation relates to a control. The citing inventor is indexed

by i and the cited (or control) inventor is indexed by j. By construction, there are an equal

number of actual and control observations in our sample. Co-location is a dummy variable

that takes a value of 1 when the original and cited (or control) inventors are located in the

same MSA and 0 otherwise. Co-Ethnicity is a dummy variable that takes a value of 1 when

the cited (or control) inventor has an Indian surname (the original inventor always has an

Indian surname, by construction). All self cites (i = j) are excluded.20

20We also conduct robustness checks where we remove examiner-added citations. The results become slightly
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To see how this regression allows us to identify the causal effects of interest, note that if

the control matching procedure is effective and there is no causal link from co-location and

co-ethnicity to citations, the coefficients on β1, β2, and β3 should all be zero. Put differently,

if we have well-matched controls and if no causal relationships are present, then information

on co-location and co-ethnicity would not be helpful in predicting whether a given observation

is an actual citation or a control.

What economic interpretation can be given to the coefficients? Suppose we observe a

particular citation. For the cited patent, we can identify the entire set of patents from the

same technological area and time period as the actual cited patent, what we call the control

set. The coefficients allow us to calculate the increase in the probability of a citation relative to

a random patent from the control set for various combinations of co-location and co-ethnicity

between the inventors of the citing and cited patent. For example, suppose we are dealing

with a citation where the citing and cited inventors are co-located but not co-ethnic. Suppose

further that the estimated values of β0 and β1 are 0.4 and 0.2, respectively. These estimates

imply that co-location is associated with a 50% increase in the probability of a citation relative

to a random (non-co-ethnic) member of the control set.

The results allow us to test for statistically significant co-location effects (separately for

both co-ethnic and non-co-ethnic inventors), and also for co-ethnicity effects (again separately

for co-located and non-co-located inventors). A test of the significance of the interaction

coefficient, β3, provides a very direct way to determine whether co-location and co-ethnicity

are significant complements or substitutes. For example, we would not be able to reject the

null of complementarity if β3 is statistically significant and positive.

The foregoing discussion underlines the key challenge associated with our method. A test

of the null hypothesis of no co-location effect for non-co-ethnic inventors (β1 = 0), for example,

is actually a test of the joint hypothesis that we have effectively matched the controls and that

there is no causal link from co-location to knowledge flows. A rejection of this null could follow

from ineffective matching and/or the absence of a causal relationship. For this reason, we focus

in detail in the next section on the method we use to make the control matches and discuss

in the results section the likely robustness of particular findings to residual inadequacies in

the matching procedure.

stronger.
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4.2 Data and Sample Construction

Data Source

We use the “front page” bibliographic data for patents published by the USPTO as the

basis of the empirical work. These data contain the application and issue dates of each patent,

the names and locations of the inventor(s), a technology classification, and a list of patents

cited. We augment these data with a list of Indian names and the NBER Patent-Citations

data file for additional fields, including the two-digit technology classification subcategory

code.

We generate Indian name data from a list of 213,622 unique last names compiled by

merging the phone directories of four of the six largest cities in India: Bangalore, Delhi,

Mumbai (Bombay) and Hyderabad. Of these, 38,386 names appeared with a frequency of five

or more. Of these, 13,418 matched a proprietary database of US consumers.21 Finally, one

of the authors and an outside expert coded each of these names as: 1) extremely likely to

be Indian, 2) extremely unlikely to be Indian, or 3) could be either. The list of names used

for this study includes only the 6,885 last names that were coded as “extremely likely to be

Indian.”22

Unit of Analysis

Our unit of analysis is the inventor-patent-citation. Thus, a single patent that has two

inventors and cites five prior patents will generate ten unique observations. We employ this

unit of analysis rather than simply patents since we are interested in the flow of knowledge

between individuals rather than between inventions.

Control Patents

As noted above, the main methodological challenge in identifying the effects of co-ethnicity

and co-location on knowledge flows is to control for the ethnic and locational clustering of

inventive activity in particular technological areas at particular points in time. For example,

21This database was prepared by InfoUSA.
22We do not expect the frequency of false positives in our name data to be large. In a random phone survey

(N=2256), 97% of the individuals with last names from our sample list responded “yes” to the question “Are
you of Indian origin?” (Kapur (2004)). Nor do we expect the frequency of false negatives to be large. Although
we constructed our name set from the phone books of large metropolitan cities, the vast majority of Indian
overseas migration to the United States is an urban phenomenon; the likelihood of an urban household in India
having a family member in the US is more than an order of magnitude greater than a rural household. A
different problem arises when people change their last name after migration. This is more likely with Indian
women due to marriage. However, even among second-generation Asian-Americans, Indian-American women
are least likely to marry outside the ethnic group (62.5% marry within the ethnic group (Le (2004))). To the
extent that there is noise in our name data, it will bias our result downwards.
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we might observe Indian inventors in computer-related technologies residing in Silicon Valley

citing a large number of other Indian inventors working in computer-related technologies and

residing in Silicon Valley. This high level of co-ethnic and co-located cites could simply reflect

the law of averages, as a relatively large fraction of inventors employed in Silicon Valley are

of Indian origin and are working on computer-related technologies. Or it could be because

the combined effects of co-ethnicity and co-location are facilitating knowledge flows between

inventors in this sector.

To address this issue, we build on a procedure developed by Jaffe et al. (1993) and refined

by Thompson and Fox-Kean (2005) to identify a control patent for each observation.23 We

select a control patent for each observation that matches the cited patent on the following

dimensions: 1) application year and 2) technology classification. While Jaffe et al. select

controls from the set that matches the three-digit primary classification of the citing patent

and Thompson and Fox Kean enhance the methodology by selecting controls from the set

that matches on a single primary and secondary six-digit classification, we further refine the

process and select from the set that matches on the highest possible number of six-digit

classifications.24

In addition, we confirm that the control patent does not cite the original patent. If it

does, we remove the patent from the set of potential controls and select the next best control

patent. Finally, if there are no patents that match the cited patent in at least the application

year and the three-digit primary classification without being cited by the original patent, the

observation (original patent) is removed from the data set.

Co-ethnic and co-localization effects are identified as the extent to which the frequency of

citations to co-ethnic or co-located inventors is over and above what we would expect given

the ethnic and geographic distributions of inventive activity in the particular technological

area of the cited patent.25 The geographic or ethnic clustering of innovative activity in certain

23The Jaffe et al. and Thompson and Fox Kean approach involves the analysis of forward citations. To
take advantage of the substantial growth in the Indian-born population in the U.S. post-1990, our approach
is to look backward to prior patents that are being cited by the patents granted to Indian inventors between
2001 and 2003. Either approach (backwards or forwards citations) can be used to test for a disproportionate
incidence of co-located or co-ethnic knowledge flows.

24We are able to find controls that match on more than one six-digit classification for approximately 60% of
the observations in the sample (37% match on one six-digit classification and 2% only match on the three-digit
primary classification). We only use observations for which we are able to find a control patent that matches
on at least one six-digit classification. As a result, approximately 40% of our sample has controls that are
as closely matched as those in Thompson and Fox Kean, and 60% of our sample has controls that are more
closely matched.

25We also check whether “Indian patents” are cited more frequently than their non-Indian counterparts.
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technology areas itself may be due to the lowered cost of establishing social relationships but

also may be due to other local factors such as thicker factor markets. Thus, focusing on

knowledge flows that are more concentrated than the innovative activity in that particular

field may be considered a conservative approach.

Co-ethnicity Metrics

We examine the last name(s) of the inventors(s) on the cited patent associated with each

observation. If a name matches, the inventor is designated as “of Indian origin” and we say

the original and cited patents are “co-ethnic” (the former is of Indian origin by construction).

We do the same for control patents.

Co-location Metrics

We also examine the home address of the inventor for each observation.26 Inventors are

assigned to an MSA based on their city and state information. There are 268 U.S. MSAs and

consolidated metropolitan statistical areas (CMSAs) and 25 Canadian census metropolitan

areas (CMAs), hereafter collectively referred to as “MSAs.”27 We also have created 63 “phan-

tom MSAs” for individuals located in one of the 50 states or 13 provinces or territories that

are in cities not assigned to one of the Census Bureau-defined MSAs.28 We say the original

and cited patents are co-located if they both are assigned to the same MSA. Similarly, we say

the original and control patent are co-located if they meet the same criterion.

Sample Construction

We generate our sample by identifying all patents issued by the USPTO during the period

2001-2003. There are 555,741 such patents. From this set, we identify those patents that

have at least one inventor of Indian origin. There are 19,612 such patents. On average, each

of these patents has approximately 3.5 inventors and cites 16 prior patents. Since our unit

of observation is the inventor-patent-citation, this results in 1,072,684 observations. Next, we

Specifically, within cited patents with the same application year and three-digit classification code, we compare
the total number of all citations received by Indian versus non-Indian patents. We do the same within control
patents. The difference is not statistically significant.

26City and country information is used for assigning Canadian inventors to a CMA.
27While MSAs and CMAs are similar in spirit, they are defined slightly differently. The Canadian criterion

requires that the urban core have a population of at least 100,000 for a metropolitan area to exist. In contrast,
for the period 1990-2000, the United States had two criteria to determine whether or not a metropolitan area
existed: 1) where there is either a city of 50,000 or more inhabitants or 2) where there is a Census Bureau-
defined urban area, i.e., a population of at least 50,000 and a total metropolitan population of at least 100,000
(75,000 in New England). Thus, the Canadian approach is the more restrictive of the two.

28We include Canada since this nation’s Indian-born population follows similar patterns to that of the U.S.
and our prior research on knowledge flows and social relationships included Canadian MSA data (Agrawal et
al. (2006)), facilitating comparison between the two studies. Also, the results presented remain almost identical
when only U.S. MSAs are included.

17



remove those observations for which the inventor of the original patent does not have an Indian

name (although they co-invented with somebody who does have an Indian name) and those

observations for which we are unable to identify a control for the cited patent. Consequently,

our sample includes 170,950 citing-cited pairs and an equal number of citing-control pairs for

a total of 341,900 observations.

5 Results

The first and second columns of Table 4 record the estimated coefficients when the equation

is estimated by OLS (with and without citing-patent fixed effects). The third and fourth

columns record the results when a Logit specification is used for the same two samples. Since

both specifications imply almost identical conditional probabilities for the occurrence of an

actual citation, we limit our discussion to the OLS results. For both specifications without

fixed effects, the reported standard errors are robust to the non-independence of observations

drawn from clusters of observations based on the same citing patent.29

The results show that both co-location and co-ethnicity significantly increase the probabil-

ity that a “citation” is an actual citation rather than a control citation. Focusing on Column

(1), co-location increases the probability of an actual citation by just over 12 percentage points,

and co-ethnicity increases the probability of a citation by almost 7.5 percentage points. To

the extent that our method of choosing the controls is effective (more on that below), these

results are consistent with the hypotheses that co-location and co-ethnicity play strong causal

roles in facilitating knowledge flows between inventors.

The most interesting finding is the large negative and statistically significant coefficient on

the interaction term, β̂3. As discussed in Section 2, this result can be interpreted as evidence

that co-location and co-ethnicity are substitutes in facilitating knowledge flows. However, we

can reject the null hypothesis that the co-location effect is offset by a negative interaction

effect (i.e., β̂1 + β̂3 = 0) in favor of the alternative hypothesis, β̂1 + β̂3 > 0 (p-value = 0.002).

This finding can be considered in terms of the difference in marginal impact of co-location

between inventors who are co-ethnic and those who are not. Co-location increases the prob-

29To see the potential for non-independence, take the example of two co-located Indian inventors on a given
citing patent. A single citation made by this patent will generate four observations in our data set (two actual
citations and two control citations). The value of the dependent variable (and thus the error term in the
regression) will be the same for the two actual citations and also for the two control citations.
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ability of a knowledge flow by 25% for non-co-ethnic inventors but only by 6% for co-ethnic

inventors. In other words, the marginal effect of co-location is much smaller for inventors who

are already connected through some other mechanism.30

Relating these results to the models in Section 2, the results are consistent with diversity

being good for a location (β̂3 < 0) - inventive activity at a location benefits from having

inventors with a shared ethnicity, but not too many! The results are also consistent with the

impact on national knowledge flows being maximized when inventors with a shared ethnicity

are widely distributed rather than concentrated (β̂3 < 0). However, from the individual

inventor’s perspective, the dispersed equilibrium is not stable (β̂1 + β̂3 > 0).

We offer two caveats with respect to the interpretation of these data. First, while Thomp-

son and Fox-Kean (2005) demonstrate the benefits of refining the procedure for choosing

controls (which we have further refined here), they also express concern that an adequate

control selection procedure can ever be found. Although we have made significant efforts to

select control patents that closely match cited patents in terms of technology class and year,

there may still be concerns that the controls are not matched closely enough. If the matches

are not close enough such that innovative activity is concentrated by technology areas that

are more finely defined than our controls capture, our co-ethnicity estimates may be biased

upwards. In other words, β2 will be biased if innovative activity is ethnically concentrated in

technological areas more narrowly defined than those captured by the controls, perhaps for

reasons other than localized knowledge flows.

We recognize this concern and therefore consider the co-ethnicity results (β2 > 0) with

caution. However, imperfect controls are less likely to bias the main result - co-ethnicity

substitutes for co-location. Substitution is reflected in β3, the negative and statistically sig-

nificant coefficient on the interaction between co-location and co-ethnicity. Imperfect controls

would only bias this estimate if the controls for citations that are co-ethnic and co-located are

systematically better or worse than the average control. If the selected controls are system-

atically worse for co-ethnic and co-located inventors (one might imagine this is possible in a

scenario where co-located and co-ethnic inventors are working in a very specialized technology

area), this would bias our estimate upwards, in the opposite direction of our finding. However,

30This is consistent with a prior finding that co-location results in a 74% increase in the probability of a cross-
field citation (from one technology field to another) but only a 34% increase in the probability of a within-field
citation (Agrawal et al. (2006)). The lower marginal impact of co-location for within-field cites is attributed to
a greater likelihood of alternative channels for establishing social relationships through communities of practice.
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in order for the bias to work in the same direction as our finding, the control patent would

have to be systematically better for co-ethnic and co-located inventors. We are not able to

think of any reasonable conditions under which this would be true.

6 Concluding Comments

We have examined the interaction between networks based on co-location and co-ethnicity for

U.S. resident inventors of Indian origin. Our results show that co-location and co-ethnicity

play significant roles in facilitating knowledge flows, but they appear to substitute for rather

than complement one another. Our modeling shows that such substitutability is a sufficient

condition for diversity to be optimal for a location and for a geographically distributed ethnic

network to be optimal for the economy. However, the negative interaction effect must actually

outweigh the co-location effect for a dispersed equilibrium to be stable; our results indicate

this is not the case.

Overall, our paper points to the economic importance of ethnicity, geography, and knowl-

edge. However, key questions remain unanswered. Perhaps most urgent is the underlying

mechanism that gives ethnicity its economic importance. Do last names serve a cuing “repu-

tational” function for co-ethnics? Do co-ethnics benefit from lower cost access to tacit knowl-

edge arising from social interactions predicated on common social circles, places of worship, or

schools from which they graduated? Are these effects likely to be stronger or weaker for other

channels of knowledge production, such as academic publishing? We need to understand the

underlying mechanisms in order to draw any general conclusions.

Our findings, along with others (Nanda and Khanna (2006), Kapur and McHale (2005)),

also point to the need to extend the scope of immigration models beyond just labor mar-

ket effects to include the impact on knowledge flows and innovation. Moreover, our paper

suggests that through a mix of location choice (relative to the location of related innovative

activity) and recruitment decisions (in terms of social connections, or ethnic diversity in our

specific case), firms may influence their innovation productivity. Indeed, the increased pace

of recruitment of international talent in academia and private-sector labs as well as the rapid

expansion of multinational R&D to international locations over the past quarter century sug-

gests that firms may have already well recognized these important determinants of knowledge
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flow patterns.
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Table 1: USPTO-Issued Patents by Application Year

1976 1980 1985 1990 1995 2000

Total 71,040 72,129 78,646 108,684 156,777 164,340
One or More Indian Inventor 651 788 1041 1934 4557 5334
Percent Indian 0.9% 1.1% 1.3% 1.8% 2.9% 3.2%
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Table 2: Share of Patents Where at Least One Inventor is of Indian Origin by
Location, U.S. MSAs/CMSAs and Canadian CMAs (Application year 1995)

Indian All Indian
MSA Name Patents Patents Share

7362 San Francisco Oakland San Jose, CA CMSA 2156 20396 10.6%
5602 New York Northern New Jersey Long Island, NY NJ CT 2017 17816 11.3%
1122 Boston Worcester Lawrence, MA NH ME CT CMSA 792 9660 8.2%
1602 Chicago Gary Kenosha, IL IN WI CMSA 770 7672 10.0%
4472 Los Angeles Riverside Orange County, CA CMSA 460 8862 5.2%
6162 Philadelphia Wilmington Atlantic City, PA NJ DE MD 429 5758 7.5%
640 Austin San Marcos, TX MSA 427 3147 13.6%

8872 Washington Baltimore, DC MD VA WV CMSA 386 4707 8.2%
6840 Rochester, NY MSA 286 3568 8.0%
1922 Dallas Forth Worth, TX CMSA 276 3887 7.1%
2162 Detroit Ann Arbor Flint, MI CMSA 253 5017 5.0%
7602 Seattle Tacoma Bremerton, WA CMSA 239 3720 6.4%
7320 San Diego, CA MSA 235 4312 5.4%
6640 Raleigh Durham Chapel Hill, NC MSA 220 2201 10.0%
6442 Portland Salem, OR WA CMSA 212 2211 9.6%
3362 Houston Galveston Brazoria, TX CMSA 202 3438 5.9%
5120 Minneapolis St. Paul, MN WI MSA 195 4967 3.9%
6280 Pittsburgh, PA MSA 174 1633 10.7%
1692 Cleveland Akron, OH CMSA 161 2703 6.0%
1080 Boise City, ID MSA 141 1009 14.0%
535 Toronto, ON, CMA (Canada) 140 1888 7.4%
520 Atlanta, GA MSA 135 2334 5.8%

7040 St. Louis, MO IL MSA 133 2088 6.4%
6200 Phoenix Mesa, AZ MSA 124 2198 5.6%
1642 Cincinnati Hamilton, OH KY IN CMSA 121 2460 4.9%
160 Albany Schenectady Troy, NY MSA 92 1362 6.8%

3480 Indianapolis, IN MSA 86 2144 4.0%
2082 Denver Boulder Greeley, CO CMSA 81 2634 3.1%
1840 Columbus, OH MSA 75 1193 6.3%
7160 Salt Lake City Ogden, UT MSA 62 1225 5.1%
3280 Hartford, CT MSA 33 1106 3.0%
4992 Miami Fort Lauderdale, FL CMSA 29 1202 2.4%
5082 Milwaukee Racine, WI CMSA 28 1323 2.1%

Mean (MSAs listed above) 338 4238 7.0%
Mean (all MSAs with non-zero patents) 45 613 4.1%

Note: Only locations with more than 1,000 issued patents with application year 1995 are shown.
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Table 3: Share of Patents Issued Where One or More Inventors is of
Indian Origin (Application year 1995)

NBER Description One or More All Indian
Subcategory Indian Patents Share

Inventor

22 Computer Hardware & Software 528 9171 5.8%
31 Drugs 517 8873 5.8%
19 Miscellaneous-chemical 460 12205 3.8%
21 Communications 302 8532 3.5%
14 Organic Compounds 301 4011 7.5%
15 Resins 242 5023 4.8%
46 Semiconductor Devices 242 3776 6.4%
33 Biotechnology 235 5251 4.5%
69 Miscellaneous-Others 188 10680 1.8%
45 Power Systems 114 4336 2.6%
24 Information Storage 113 3388 3.3%
12 Coating 97 2202 4.4%
52 Metal Working 90 3159 2.8%
41 Electrical Devices 79 3707 2.1%
43 Measuring & Testing 76 3665 2.1%
51 Mat. Proc & Handling 76 5148 1.5%
32 Surgery & Med Inst. 73 5444 1.3%
49 Miscellaneous-Elec 64 3513 1.8%
42 Electrical Lighting 55 2154 2.6%
23 Computer Peripherials 54 2601 2.1%
59 Miscellaneous-Mechanical 54 5383 1.0%
54 Optics 44 3479 1.3%
53 Motors & Engines + Parts 35 3881 0.9%
44 Nuclear & X-rays 33 1559 2.1%
61 Agriculture,Husbandry,Food 32 2381 1.3%
55 Transportation 30 3450 0.9%
64 Earth Working & Wells 26 1303 2.0%
39 Miscellaneous-Drgs&Med 24 1010 2.4%
13 Gas 21 457 4.6%
11 Agriculture,Food,Textiles 13 802 1.6%
66 Heating 10 1104 0.9%
68 Receptacles 10 2299 0.4%
62 Amusement Devices 9 1473 0.6%
67 Pipes & Joints 9 912 1.0%
63 Apparel & Textile 7 1679 0.4%
65 Furniture,House Fixtures 6 2300 0.3%

Total 4269 140311 3.0%
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Table 4: Co-Location, Co-Ethnicity, and the Probability of a Citation

OLS Logit

Dependent Variable =
Dummy for Actual Citation

Co-Location 0.1208∗ 0.1421∗ 0.4897∗ 0.5583∗

-0.0036 -0.0033 -0.0193 -0.13
Co-Ethnicity 0.0748∗ 0.0772∗ 0.2893∗ 0.2999∗

-0.0045 -0.0046 -0.0235 -0.0181
Co-Location Co-Ethnicity −0.0872∗

−0.0904∗
−0.3491∗

−0.3538∗

-0.0089 -0.0095 -0.046 -0.0373
Constant 0.4861∗ 0.4824∗

−0.0605∗

-0.0004 -0.0009 -0.0023

Fixed Effects No Yes No Yes
Observations 341900 341900 341900 341900
Number of Citing Patents 11248 11248 11248 11248
R2 (pseudo R2 for logit) 0.0058 0.0058 0.0042

-Inventor and assignee self cites are excluded.
-See text for description of how control citations are chosen.
-∗ Indicates significance at 1% level.
-For the regressions without fixed effects, standard errors are robust to citing-
patent cluster effects.
-Fixed effects regressions allow for citing-patent fixed effects.
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Figure 1: Optimal Diversity (β3 < 0)
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Figure 3: Optimal Distribution (β3 < 0)
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32



0 1 M

M

Ki
1 Ki

2

Z1β1

M

Z2β1

M

Me

M
= 1

2 −
(Z1−Z2)β1

2(β1+β3)M

Figure 5: (β1 + β3 < 0 )

33



0 1 M

M

Ki
1 Ki

2

Z1β1

M
Z2β1

M

Me

M
= 1

2 −
(Z1−Z2)β1

2(β1+β3)M
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