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1. Introduction

In continuous-time settings, jumps in financial prices seem necessary to account for
thick tails in asset returns, and the corresponding implied volatility smiles in near-
maturity options.1 In a seminal contribution, Merton (1976) assumes that the stock
price follows an exogenous jump-diffusion with constant volatility. Subsequent research
considers econometric refinements such as: stochastic volatility, priced jumps, jumps in
volatility, correlation between jumps in returns and volatility, and infinite activity.2 ,3

For example, Bakshi, Cao, and Chen (1997) and Bates (2000) consider price processes
with exogenous jumps and stochastic volatility, concluding that additional discontinu-
ities in volatility are necessary to match option valuations. Duffie, Pan, and Singleton
(2000) consequently analyze an extension with discrete volatility changes while exoge-
nously specifying the relation between volatility and returns. A related line of research
(e.g., Madan, Carr, and Chang, 1998) advocates in favor of pure jump processes, which
permit infinite activity with many small events and fewer large discontinuities. In all
of this literature, jumps in valuations, and their relation to volatility, are exogenously
specified.4

In this paper, we propose that equilibrium valuation is a powerful method to gener-
ate endogenous discontinuities in asset prices, and provides a structural alternative to
ad hoc jump specifications. We consider an exchange economy with regime-switching
fundamentals and endogenously obtain a number of return characteristics that prior
literature specifies exogenously and emphasizes as appealing. Our approach builds on a
standard consumption-based asset-pricing economy with homogeneous investors, where
dividends and consumption may be identical as in Lucas (1978), or correlated but not
identical as in Campbell and Cochrane (1999). We specify consumption and dividends
as continuous diffusions, but permit discrete changes in their drift rates and volatilities
through a stationary regime-switching Markov state vector. This setup produces en-
dogenous jumps in stock prices, and equilibrium characterizes the feedback between
volatility fluctuations and price discontinuities. Our paper therefore bridges a gap

1Numerous studies provide evidence for jumps in stock or other financial returns, based either directly
on returns or on the prices of derivative assets. See, for example, Andersen, Benzoni, and Lund (2002),
Ball and Torous (1985), Bates (1996), Carr, Geman, Madan, and Yor (2002), Carr and Wu (2003),
Eraker, Johannes, and Polson (2003), Jarrow and Rosenfeld (1984), Jorion (1988), Maheu and McCurdy
(2004), and Press (1967).

2Jump processes are classified as having finite or infinite activity depending on whether the number
of jumps in a bounded time interval is finite or infinite.

3Examples include Barndorff-Nielsen (1998), Bates (1996, 2000), Carr and Wu (2004), Carr, Geman,
Madan, and Yor (2002), Duffie, Pan, and Singleton (2000), Eberlein, Keller, and Prause (1998), Liu,
Pan, and Wang (2005), Naik and Lee (1990), and Pan (2002).

4Endogenous jumps arise in models of real investment with non-convex adjustment costs (e.g., Casas-
sus, Collin-Dufresne and Routledge, 2004). The exercise of a real option is the source of the discontinuity
in this earlier literature, which thus tends to focus on lower frequency dynamics.
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between jump-diffusions and the extensive discrete-time literature relating exogenous
movements in dividend volatility to endogenous “feedback” effects in returns (e.g., Abel,
1988; Barsky, 1989; Calvet and Fisher, 2005; Campbell and Hentschel, 1992).

We incorporate shocks of heterogeneous durations into our economy by adopting
the Markov-Switching Multifractal (MSM) of Calvet and Fisher (2001). Under this
assumption, dividend volatility is the product of a vector of state components that
follow independent regime-switching processes. The components are assumed to have
identical marginal distributions but heterogeneous durations. Thus, some may switch on
average only once every several years or decades, while others can have average durations
measured in days or less. This multifactor volatility specification is highly parsimonious
and requires only a few parameters regardless of the size of the state vector. Previous
research shows that MSM is consistent with the slowly declining autocovariograms,
fat tails, and power variations of financial series. It further provides a closed form
likelihood, and substantially outperforms standard benchmarks volatility models both
in- and out-of-sample.5

The present paper now embeds an MSM specification for dividends and consumption
within a continuous-time equilibrium and explores the consequences for endogenous
prices. We find that the asset value then displays jumps of heterogeneous frequencies,
and the largest jump sizes are endogenously triggered by the most persistent volatility
shocks. The model thus produces many small jumps and fewer large jumps, which
has been emphasized as appealing by Madan, Carr, and Chang (1998), Carr, Geman,
Madan, and Yor (2002), and others. Our equilibrium contributes to this literature by
endogenizing the heterogeneity of jump sizes and the association between jump-size and
frequency.

We then consider the impact of allowing the number of volatility state variables to
become countably infinite. Under mild conditions, the dividend process weakly con-
verges to a multifractal diffusion,6 building on results from Calvet and Fisher (2001).
Even more striking, the equilibrium price:dividend ratio converges to an infinite inten-
sity pure jump process with heterogeneous frequencies. Prices are then conveniently
decomposed into the continuous multifractal diffusion and the infinite intensity pure
jump process, creating a new stochastic process that we accordingly call a multifractal
jump-diffusion. A jump in stock prices occurs in the neighborhood of any instant, but
the process is continuous almost everywhere.

5MSM has been shown to outperform GARCH, Markov-Switching GARCH and Fractionally Inte-
grated GARCH (Calvet and Fisher, 2002, 2004; Calvet, Fisher, and Thompson, 2006; Lux, 2006).

6One definition of multifractality relates to the local behavior of sample paths. For example, Itô
diffusions have local variations of the order (dt)1/2, but multifractals permit variations of the order
(dt)β(t), where the local scale β (t) takes a continuum of values in any finite interval. This rich infin-
itesimal behavior is intertwined with appealing properties over finite intervals, as made clear by the
empirical contributions discussed above.
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For simplicity, the majority of the paper focuses on time-separable preferences. The
stochastic discount factor is then continuous, and endogenous jumps in stock valua-
tions are “unpriced” in the sense that they do not affect expected excess returns (e.g.,
Merton, 1976). In the final section, we show that it is straightforward to obtain priced
jumps by considering non-separable preferences. Specifically, previous work in discrete
time (Calvet and Fisher, 2005) uses Epstein-Zin utility to permit that switches in the
state vector simultaneously impact the SDF and P/D ratio, and hence are priced. The
equilibrium impact of non-separable recursive utility easily extends to continuous-time,
providing additional flexibility in structural modelling of endogenous jump-diffusions.

We emphasize that the main goal of paper is to show that equilibrium conditions
can help to generate a parsimonious but rich model of asset prices, including jumps
in valuations, multifrequency volatility shocks, negative correlation between jumps and
volatility, infinite activity, and priced jumps. For expositional clarity, the model is not
presented at the highest level of generality. We anticipate that extensions to hetero-
geneous investors, incomplete markets, and more general preferences will broaden the
applicability of our approach. These topics deserve further research.

The remainder of the paper is structured as follows: Section Two sets out the gen-
eral consumption-based model with regime-switching dividends and endogenous price
jumps. Section Three introduces the MSM dividend specification and derives the equi-
librium price process with multifrequency jumps. Section Four considers the weak limit
as the number of frequencies goes to infinity, and derives the multifractal jump-diffusion.
Section Five extends the approach to stochastic differential utility and endogenous jump
premia. All proofs are in an Appendix unless stated otherwise.

2. An Equilibrium Model with Endogenous Price Jumps

This section develops a continuous-time equilibrium model with regime-shifts in the
mean and volatility of consumption and dividend growth.7

2.1. Preferences, Information and Income

We consider an exchange economy with a single consumption good defined on the set
of instants t ∈ [0,∞). The information structure is represented by a filtration {Ft} on
the probability space (Ω,F ,P).

7Following the seminal contribution of Hamilton (1989), several authors have considered discrete-
time settings with regime-shifts in the drifts and volatilities of consumption and/or dividends (e.g.,
Calvet and Fisher, 2005; Cechetti, Lam, and Mark, 1990; Garcia, Luger, and Renault, 2003; Lettau,
Ludvigson, and Wachter, 2004). In continuous time, Veronesi (1999,2000) and David and Veronesi
(2002) investigate the impact of investor learning about Markov-switches in the drift rate of a Lucas
economy and an IID consumption economy. In the settings they consider, information diffuses slowly,
and hence beliefs and prices have continuous sample paths.
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The economy is specified by two independent stochastic processes: a bivariate
Brownian motion Zt = (ZY (t), ZD(t)) ∈ R2 and a random state vector Mt ∈ Rk̄

+,
where k̄ is a finite integer. The processes Z and M are adapted to the filtration {Ft}
and mutually independent. The bivariate Brownian Z has zero mean and covariance
matrix µ

1 ρY,D
ρY,D 1

¶
,

where the correlation coefficient ρY,D = Cov(dZY , dZD)/dt is strictly positive. The
vectorMt is a stationary Markov process with right-continuous sample paths. We make
no other regularity assumptions in the rest of the Section. The process Mt can have
either a discrete or continuous support, and its sample paths may be discontinuous.

The economy is populated by a finite set of identical investors h ∈ {1, ..,H}, who
have homogeneous information, preferences and endowment. Investors know at t the
realization of the processes Z and M up to this date, and have information set It =
{(Zs,Ms); s ≤ t}. The common utility is given by

Ut = E
∙Z +∞

0
e−δsu(ct+s)ds

¯̄̄̄
It

¸
,

where the discount rate is a positive constant: δ ∈ (0,∞). The Bernoulli utility u(·)
is twice continuously differentiable, and satisfies the usual monotonicity and concav-
ity conditions: u0 > 0 and u00 < 0. We also assume that the Inada conditions hold:
limc→0 u0(c) = +∞ and limc→+∞ u0(c) = 0.

Agents continuously receive an exogenous endowment stream Yt ∈ (0,∞). The rate
of income flow Yt follows a geometric Brownian motion with stochastic drift gY (Mt) and
volatility σY (Mt), where gY (·) and σY (·) are deterministic measurable functions defined
on Rk̄

+ and taking values on the real line. Specifically,

Assumption 1 (Endowment process). The stochastic drift and volatility satisfy
E
hR t
0 |gY (Ms)| ds

i
< ∞ and E

hR t
0 σ

2
Y (Ms)ds

i
< ∞ for all t. The exogenous income

stream is given by

ln(Yt) ≡ ln(Y0) +
Z t

0

∙
gY (Ms)− σ2Y (Ms)

2

¸
ds+

Z t

0
σY (Ms)dZY (s)

at every instant t ∈ [0,∞).
The moment conditions guarantee that the stochastic integrals are well-defined. By Ito’s
lemma, the income flow satisfies the stochastic differential equation

dYt
Yt

= gY (Mt)dt+ σY (Mt)dZY (t). (2.1)

Note that Yt is sometimes called cumulative income process in the literature.
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2.2. Financial Markets and Equilibrium

Agents can trade two financial assets: a bond and a stock. The bond has an instan-
taneous rate of return rf (t), which is endogenously determined in equilibrium. Its net
supply is equal to zero.

The stock is a claim on the stochastic dividend stream {Dt}t≥0, which is specified
by

Assumption 2 (Dividend process). The dividend stream is given by

ln(Dt) ≡ ln(D0) +

Z t

0

∙
gD(Ms)− σ2D(Ms)

2

¸
ds+

Z t

0
σD(Ms)dZD(s),

where gD(·) and σD(·) are measurable functions defined on Rk̄
+ and valued in R such

that E
hR t
0 |gD(Ms)| ds

i
<∞ and E

hR t
0 σ

2
D(Ms)ds

i
<∞ for all t.

By Ito’s lemma, dividend growth satisfies:

dDt

Dt
= gD(Mt)dt+ σD(Mt)dZD(t). (2.2)

We leave the exact specification of the drift gD(·) and volatility σD(·) fully general in
the rest of Section 2. The dividend process has continuous sample paths, but its drift
and volatility can exhibit discontinuities.

Let Ns denote the per-capita net supply of the stock. The choice of Ns has been
widely discussed in the literature (e.g. Anderson and Raimondo, 2006; Santos and
Veronesi, 2005), because the constraint Dt ≤ Ct is difficult to verify when Ct and Dt

are imperfectly correlated diffusions. The resolution of this modeling issue is beyond
the scope of this paper. We simply assume that Ns = 1 when Dt = Yt (Lucas tree
economy), or Ns = 0 otherwise. The latter is a simplifying assumption that has often
been used in the continuous-time equilibrium literature (e.g. Duffie and Zame, 1989;
Huang, 1987; Karatzas and Shreve, 1998).

Each agent selects a consumption-portfolio strategy (ch, Nh, Bh) defined on Ω ×
[0,∞) and taking values on R+ × R× R, where ch(ω, t), Nh(ω, t) and Bh(ω, t) respec-
tively denote consumption, stockholdings and bondholdings in every date-event (ω, t).
A strategy is called admissible if it is adapted and satisfies the usual individual budget
contraint. We assume that financial markets are frictionless.

Definition (General Equilibrium). An equilibrium consists of a stock price process
P, an interest rate process rf , and a collection of individual admissible consumption-
portfolio plans (ch, Nh, Bh)1≤h≤H , such that: (1) for every h, the plan (ch, Nh, Bh)
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maximizes utility given the budget constraint; (2) securities and good markets clear:

1

H

HX
h=1

Nh(t, ω) = Ns,
1

H

HX
h=1

Bh(t, ω) = 0, and
1

H

X
h

ch(t, ω) = Y (t, ω)

for almost all (t, ω).

The proof of equilibrium existence in continuous-time economies has been the object of
a wide literature.8 We focus here on the simple case of an autarkic equilibrium, in which
individual consumption equals individual income: ch(t, ω) = Y (t, ω) for every h,t, ω.

To reflect the identity between consumption and income, let Ct ≡ Yt, ZC ≡ ZY ,
gC (.) ≡ gY (.) , σC (.) ≡ σY (.), and ρC,D ≡ ρY,D. The special case where gC and σC
are constant implies IID consumption growth - a standard assumption in asset pricing
that is broadly consistent with postwar US data (e.g. Campbell, 2003). Recently,
however, Bansal and Yaron (2004), Hansen, Heaton and Li (2005), Lettau, Ludvigson
and Wachter (2004) and others have argued that consumption may contain small, highly
persistent componenents with large price impacts. The more general dynamics (2.1)
accommodate this possibility.

The stochastic discount factor (SDF) is equal to instantaneous marginal utility:

Λt = e−δtu0(Ct).

It satisfies the stochastic differential equation:

dΛt
Λt

= −rf (Mt)dt− α(Ct)σC(Mt)dZC(t),

where α(c) ≡ −cu00(c)/u0(c) denotes the coefficient of relative risk aversion and π(c) ≡
−cu000(c)/u00(c) is the coefficient of relative risk prudence. The instantaneous interest
rate is

rf (Mt) = δ + α(Ct)gC(Mt)− α(Ct)π(Ct)σ
2
C(Mt)/2. (2.3)

It increases with investor impatience and the growth rate of the economy, and is reduced
by the precautionary motive.

In equilibrium, the stock price Pt is given by

Pt
Dt

= E
∙Z +∞

0
e−δs

u0(Ct+s)

u0(Ct)

Dt+s

Dt
ds

¯̄̄̄
It

¸
.

8Bick (1990), Cox, Ingersoll and Ross (1985), Duffie and Skiadas (1994), Duffie and Zame (1989), He
and Leland (1993) and Raimondo (2005) establish the existence of equilibrium in single-agent economies.
The case of heterogeneous investors is considered by Anderson and Raimondo (2006), Bank and Riedel
(2001) and Mas-Colell and Richard (1991).
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The joint distribution of (Ct+s;Dt+s/Dt) depends on the stateMt and the consumption
level Ct, but not on the initial dividend level Dt. The valuation ratio is therefore a
deterministic function of Mt and Ct, which will henceforth be denoted by Q(Mt, Ct).
Shifts in the state Mt induce discontinuous changes in the P/D ratio and the stock
price. We find it convenient to use lower cases for the log of prices, dividends and P/D.

Proposition 1 (Equilibrium stock price). The stock price follows a jump diffusion,
which can be written in logs as the sum of the continuous dividend process and the
price:dividend ratio:

pt = dt + q(Mt, Ct).

A price jump occurs when there is a discontinuous change in the Markov state Mt

driving the continuous dividend and consumption processes.

The endogenous price jumps contrast with the continuity of the fundamentals and the
SDF.

2.3. Equilibrium Dynamics under Isoelastic Utility

As noted by Campbell (2003), consumption and wealth have increased manyfold over
the past two centuries, but real interest rates, risk premia and valuation ratios have
not consistently trended up or down. To capture the apparent stationarity of aggregate
stock returns and the P:D ratio in a representative agent setting, power utility is often
useful because of its scale invariance.9 We correspondingly assume that every investor
has the same constant relative risk aversion α ∈ (0,∞), i.e.

u(c) ≡
½

c1−α/(1− α) if α 6= 1,
ln(c) if α = 1.

We easily show:

Proposition 2 (Equilibrium with isoelastic utility). The price:dividend ratio is a
deterministic function of the Markov state:

q(Mt) = lnEt
µZ +∞

0
e−

s
0 [rf (Mt+h)−gD(Mt+h)+ασC(Mt+h)σD(Mt+h)ρC,D]dhds

¶
, (2.4)

where Et denotes the conditional expectation given Mt.

9There is of course abundant evidence that individual investors do not have isoelastic utility. For
instance, richer agents are widely known to invest a higher share in risky assets than poorer agents
(e.g. Carroll, 2002). The implications of such wealth effects are central to finance and economics and
well-deserving of further research, but lie outside the scope of the present paper.
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The P/D ratio increases with the anticipation of high growth and low volatility of future
dividends (for a given distribution of consumption drift and volatility).

Over an infinitesimal time interval, the stock price changes by

d(pt) = d(dt) +∆(qt),

where ∆(qt) ≡ qt − qt− denotes the finite variation of the price:dividend ratio in case of
a regime change. Consider the effect of a Markov switch that increases the volatility of
current and future dividends (without impacting consumption). The P/D ratio falls and
induces a negative realization of ∆(qt). Market pricing can thus generate an endoge-
nous negative correlation between volatility changes and price jumps. This contrasts
with earlier jump models where the relation between discontinuities and volatility is
exogenously postulated (e.g. Duffie, Pan and Singleton, 2000; Carr and Wu, 2004).

The conditional excess return

− 1
dt
Et
µ
dΛt
Λt

dPt
Pt

¶
= ασC(Mt)σD(Mt)ρC,D

varies through time with the volatilities of the SDF and dividends. Early work on
derivative valuation considered the case where jump risk is diversifiable and therefore
“unpriced” in the sense that required returns are not affected (e.g., Merton, 1976). In
our above model, the SDF Λt is continuous due to the assumptions of time-separable
utility and continuous consumption paths. Hence, the possibility of a price discontinuity
in the next instant does not contribute to the conditional risk premium, and jumps
are “unpriced.” To obtain priced jumps is nonetheless straightforward. For example,
Calvet and Fisher (2005) in discrete time use Epstein-Zin utility to obtain an equity risk
premium associated with the switches in Mt. Section 5 thus considers non-separable
preferences, which can generate discontinuities in the SDF and priced jumps that impact
the equity risk premium. For expositional simplicity and to emphasize other issues, we
focus in Sections 2-4 on separable isoelastic utility.

We readily acknowledge that the economy in this paper is quite specific and does
not have the level of generality sometimes considered in continuous-time general equi-
librium theory (e.g. Anderson and Raimondo, 2006; Duffie and Zame, 1989; Huang,
1987; Karatzas and Shreve, 1998; Raimondo, 2005). Our objective is somewhat differ-
ent and consists of proposing a novel and simple class of Markov-switching economies
that endogenously generate equilibrium jumps. Our results are robust to some degree of
investor heterogeneity if markets are complete. Consider for instance an Arrow-Debreu
economy in which agents have heterogeneous coefficients of relative risk aversion αh and
homogeneous discount rates δ > 0. Huang (1987) shows that equilibrium asset prices
are then supported by an isoelastic representative investor. Financial incompleteness
would seem to be a natural assumption, however, in the Markov-switching environ-
ments we consider. Earlier work suggests that rich price dynamics can then arise (e.g.
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Constantinides and Duffie, 1996; Calvet, 2001). Extensions to incomplete markets and
investor heterogeneity seem likely to broaden the applicability of our approach, and are
well-deserving of further research.

3. A Multifrequency Jump-Diffusion for Equilibrium Stock Prices

We now show how to parsimoniously incorporate multifrequency shocks into the econ-
omy. We specify in Section 3.1 the dynamics of the dividend process Dt with a finite
number of volatility frequencies. We then discuss in Section 3.2 how to select the con-
sumption process and thus complete the construction of the multifrequency exchange
economy. The outcome of these specifications is an endogenous multifrequency jump-
diffusion for prices, investigated in Section 3.3.

3.1. Dividends with Multifrequency Volatility

We introduce shocks of multiple frequencies by assuming that dividends follow an MSM
process (Calvet and Fisher, 2001, 2004), as is now explained. The basic principle of the
construction is that the Markov state vector

Mt = (M1,t;M2,t; ...;Mk,t) ∈ Rk̄
+

has components with heterogeneous durations. Persistence is highest for the first com-
ponent, and progressively diminishes with the component index k.

We assume that each componentMk,t is itself a Markov process. For parsimony, these
components are mutually independent: Mk,t and Mk0,t0 are statistically independent
if k 6= k0. Given the Markov state Mt at date t, its dynamics over an infinitesimal
interval are conveniently defined as follows. For each k ∈ {1, .., k̄}, the change inMk,t is
triggered by a Poisson arrival with intensity γk. The component Mk,t+dt is drawn from
a fixed distribution M if there is an arrival, and otherwise remains at its current value:
Mk,t+dt =Mk,t. The construction can be summarized as:

Mk,t+dt drawn from distribution M with probability γkdt
Mk,t+dt =Mk,t with probability 1− γkdt.

The Poisson arrivals and new draws from M are independent across k and t.
We observe that the components Mk,t differ in their transition probabilities but

not in their marginal distribution M . Each component therefore follows a Markov
process that is identical except for time scale. These features greatly contribute to the
parsimony of the model. As with any process driven by Poisson arrivals, the sample
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paths of a componentMk,t are right-continuous and have a limit point to the left of any
instant, i.e. are ‘cadlag’ functions.10

The construction can accommodate any distribution M with positive support. We
normalize the distribution by imposing that it has a unit mean: E(M) = 1. The
parameter σ̄D is then the unconditional standard deviation of the dividend growth
process: V ar(dDt/Dt) = σ̄2Ddt. For parsimony, we henceforth consider that components
are drawn from a family of distributions specified by a single parameter m0 ∈ R. We
also tightly parameterize the intensities of arrival by assuming

γk = γ1b
k−1, k ∈ {1, .., k̄}. (3.1)

The parameter γ1 determines the persistence of the lowest frequency component, and b
the spacing between component frequencies.

We consider in the remainder of this paper that the state Mt only affects volatility.
Specifically, dividends have a constant growth rate

gD(Mt) ≡ ḡD,

and a stochastic volatility equal to the renormalized product

σD(Mt) ≡ σ̄D

⎛⎝ k̄Y
k=1

Mk,t

⎞⎠1/2 , (3.2)

where σ̄D is a positive constant.11 The components of the state vector interact mul-
tiplicatively, and for this reason are called multipliers. These conditions conclude the
specification of the Markov-Switching Multifractal (MSM) volatility process. Calvet and
Fisher (2001) introduce MSM, and subsequent work demonstrates its empirical validity
in financial data (Calvet and Fisher, 2004, 2005; Calvet, Fisher, and Thompson, 2006).
We summarize the structure of the dividend process in

Assumption 3 (Multifrequency dynamics). The dividend process has a constant
drift and an MSM volatility with a finite number k̄ of frequencies.

Figure 1 illustrates the construction of MSM. We assume for simplicity that the
distribution M is a binomial that can take the high value m0 ∈ [1, 2) or the low value
10Cadlag is a French acronym for continue à droite, limites à gauche. We refer the reader to Billingsley

(1999) for further details.
11The conditions E t

0
|gD(Ms)| ds = |ḡD|t <∞ and E t

0
σ2D(Ms)ds = σ̄2Dt <∞ are then trivially

satisfied.
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m1 ∈ (0, 1] with equal probability.12 The normalization E(M) = 1 implies that m1 =
2−m0. The top three panels represent the sample path of the volatility componentsMk,t

for k varying from 1 to 3.We see that the number of switches tends to increase with k due
to the geometric progression of arrival intensities (3.1). The bottom panel represents the
dividend variance σ2D(Mt) ≡ σ̄2D M1,tM2,tM3,t, where σ̄D = 1. The dividend variance
exhibits peaks and troughs, which helps to capture the changing variability of dividend
news. The construction generates cycles of different frequencies, consistent with the
economic intuition that there are volatile decades and less volatile decades, volatile
years and less volatile years, and so on.

Figure 2 then shows the complete construction of a dividend process with eight
frequencies. The first panel shows the volatility σ2D(Mt), where for comparison the
first three components are identical to those reported in Figure 1. In contrast to
the previous three-stage construction, this panel now shows much greater detail with
more pronounced peaks and intermittent bursts of volatility. The larger number of
volatility components accommodates a broad range of long-run, medium-run, and short-
run dynamics. The second panel illustrates the impact of these various frequencies on
dividend growth. Finally, the last panel reports the dividend process Dt. These last two
panels confirm that MSM generates both short and long-swings in volatility and thick
tails in the dividend growth series, while by design there are no jumps in dividends
themselves.

We finally emphasize two theoretical properties of our approach. First, MSM permits
the state space to be very large. For instance with a binomial distributionM , the number
of states is equal to 2k̄. The example considered in Figure 2 is based on 28 or 256 states.
Second, MSM is very parsimonious. In a general Markov chain, the size of the transition
matrix is equal to the square of the number of states. For instance a general Markov
chain with 28 states generally needs to be parametrized by 216 = 65, 536 elements. In
comparison, the MSM dividend dynamics are fully characterized by

(ḡD, σ̄D,m0, γ1, b) ∈ R5,
where ḡD and σ̄D quantify the mean and standard deviations of dividend growth, m0

parameterizes the distribution M , γ1 is the intensity of the most persistent compo-
nent, and b quantifies the growth rates of intensities. The five-parameter specification
accommodates an arbitrary number of frequencies.

3.2. Multifrequency Economies

The previous section specified the dividend process. We now turn to the specification
of aggregate consumption, which will close the description of the exchange economy.
12Earlier research shows the empirical usefulness of the binomial distribution in MSM (e.g. Calvet

and Fisher, 2004).
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Case 1: Lucas tree economy. In a general equilibrium model, a natural specification
is to consider that the stock is a claim on aggregate consumption: Dt = Ct. The seven
parameters (ḡD, σ̄D,m0, γ1, b, α, δ) then fully specify the jump-diffusion price process.
By Proposition 2, the P/D ratio is given by

Et
µZ +∞

0
e−[δ−(1−α)ḡD]s−

α(1−α)
2

s
0 σ2D(Mt+h)dhds

¶
. (3.3)

An increase in volatility reduces the price:dividend ratio only if α < 1, which is consistent
with earlier research in discrete time (e.g., Barsky, 1989; Abel, 1988).13

Case 2: IID consumption. We can alternatively assume that consumption has a
constant drift and volatility. The interest rate (2.3) is then constant through time. The
equilibrium model is specified by the dividend parameters (ḡD, σ̄D,m0, γ1, b), the utility
coefficients (α, δ), the consumption parameters (ḡC , σ̄C), and the correlation ρC,D.

By Proposition 2, the price:dividend ratio is equal to

Et
µZ +∞

0
e−(rf−ḡD)s−αρC,Dσ̄C

s
0 σD(Mt+h)dhds

¶
.

High volatility feeds into low asset prices for any choices of relative risk aversion α. This
approach fits well with the equilibrium/volatility feedback literature, which suggests
that aggregate stock prices decrease with the volatility of dividend news (e.g. Bekaert
and Wu, 2000; Calvet and Fisher, 2005; Campbell and Hentschel, 1992; French, Schwert
and Stambaugh, 1987; Pindyck, 1984).

Case 3: Multivariate MSM. We develop in the Appendix a multivariate extension
of MSM that permits more flexible specifications of consumption and the SDF. This
approach helps to construct SDF models with a stochastic volatility only partially cor-
related to the stochastic volatility of dividends. While this construction is appealing for
empirical applications, we choose for expositional simplicity to focus on Cases 1 and 2
in the remainder of the paper.

3.3. The Equilibrium Stock Price

Jumps in our model are triggered by regime-changes in the volatility components. Since
heterogeneous components switch at a range of frequencies, the model avoids the difficult

13When future consumption becomes riskier, the ratio is affected by two opposite effects. First, the
covariances become more negative and reduce the price:dividend ratio. Second, the precautionary motive
increases the expected marginal utility of future consumption, which lowers interest rates and tends to
increase P/D.
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choice of a unique frequency and size for “rare events,” which is a common issue in
specifying traditional jump-diffusions.14

We can analytically quantify the link between jump frequency and size when the
multipliers exhibit small variations around unity. More formally, we consider the para-
metric family of state processes Mt(ε) = 1 + ε(νt − 1), t ∈ R+, ε ∈ [0, 1), where ν is
itself a fixed MSM state vector. The components of Mt(ε) are equal to unity at every
instant if ε = 0. For any given νt, we show in the Appendix how to linearize the P/D
ratio around ε = 0.

Proposition 3 (First-order expansion of P/D). The log of the P/D ratio is ap-
proximated around ε = 0 by the first-order Taylor expansion:

q[Mt(ε)] = q̄ − q1

k̄X
k=1

Mk,t(ε)− 1
δ0 + γk

+ o(ε). (3.4)

In the Lucas tree economy, we have δ0 = δ − (1 − α)ḡD + α(1 − α)σ̄2D/2, q̄ = − ln(δ0)
and q1 = α(1 − α)σ̄2D/2. When consumption is IID, we instead have δ0 = rf − ḡD +
αρC,Dσ̄C σ̄D, q̄ = − ln(δ0) and q1 = αρC,Dσ̄C σ̄D/2.

When the distributionM is close to unity, the P/D ratio is approximated by a persistence-
weighed sum of the volatility components. Low-frequency multipliers deliver persistent
and discrete switches, which have a large impact on the P/D ratio. By contrast, higher
frequency components have no noticeable effect on prices, but give additional outliers
in returns through their direct effect on the tails of the dividend process. The price
process is thus characterized by a large number of small jumps (high frequency Mk,t), a
moderate number of moderate jumps (intermediate frequency Mk,t), and a small num-
ber of very large jumps. Intuition and earlier empirical research suggest that this is a
good characterization of the dynamics of stock returns.

We illustrate in Figure 3 the endogenous multifrequency pricing dynamics of the
model, in the case where consumption is IID. The top two panels present a simulated
dividend process, in growth rates and in logarithms of the level respectively. The middle
two panels then display the corresponding stock returns and log prices. We observe that
the price series exhibits much larger movements than dividends, due to the presence
of endogenous jumps in the P/D ratio. To see this clearly, the bottom two panels

14 In the simplest exogenously specified jump-diffusions, it is often possible that discontinuities of
heterogeneous but fixed sizes and different frequencies can be aggregated into a single collective jump
process with an intensity equal to the sum of all the individual jumps, and a random distribution of sizes.
A comparable analogy can be made for the state vector Mt in our model, but due to the equilibrium
linkages between jump size and the duration of volatility shocks, and the state dependence of price
jumps, no such reduction to a single aggregated frequency is possible for the equilibrium stock price.
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represent consecutively: 1) the “feedback” effects, defined as the difference between
log stock returns and log dividend growth, and 2) the price:dividend ratio. Consistent
with Proposition 3, we observe that endogenous market pricing causes a few infrequent
but large jumps in prices, with smaller but more numerous small discontinuities. The
simulation demonstrates that the difference between stock returns and dividend growth
can be large, even when variations in the P/D ratio are relatively modest and quite
realistic, varying between 26 and 33.

The pricing model thus captures multifrequency stochastic volatility, endogenous
multifrequency jumps in returns, and endogenous correlation between volatility and
return innovations. We find it appealing that many of these features are derived not
from exogenous econometric assumptions but from equilibrium conditions.

4. Price Dynamics with an Infinity of Frequencies

We now investigate how the price diffusion evolves as k̄ → ∞, i.e. as components of
increasingly high frequency are added into the state vector. This can help guide our
judgement about the number of components that are useful in empirical applications.
Two apparently contradictory observation can be made. On the one hand, Figures 1
and 2 suggest that the volatility process σD(Mt) exhibits increasingly extreme behavior
as k̄ increases. On the other hand, the equilibrium jump-diffusion for prices seems to be
quite insensitive to higher frequency components. We show in this Section how these
two observations can be reconciled by deriving the limit behavior of the price dynamics.

4.1. Time Deformation

We begin by reviewing the limit behavior of MSM when the number of high-frequency
components k goes to infinity. The parameters (ḡD, σ̄D,m0, γ1, b) are fixed. Let Mt =
(Mk,t)

∞
k=1 ∈ R∞+ denote an MSMMarkov state process with countably many frequencies.

The process Mt is defined for t ∈ [0,∞), has mutually independent components, and
each component Mk,t is characterized by the transition probability γk = γ1b

k−1. For a
finite k̄, stochastic volatility is defined as the product of the first k̄ components of the
state vector: σD,k̄(Mt) ≡ σ̄D (M1,tM2,t...Mk,t)

1/2.
Since instantaneous volatility σD,k̄(Mt) depends on an increasing number of compo-

nents, the differential representation (2.2) becomes unwieldy as k̄ →∞. We instead find
it convenient to characterize the dividend dynamics in terms of the time deformation

θk̄(t) ≡
Z t

0
σ2D,k̄(Ms)ds.

Given a fixed instant t, the sequence {θk̄(t)}∞̄k=1 is a positive martingale with bounded
expectation; by the martingale convergence theorem, the random variable θk̄(t) con-
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verges to a limit distribution when k̄ → ∞. A similar argument applies to any vector
sequence {θk̄(t1); ...; θk̄(td)}, guaranteeing that the stochastic process θk̄ has at most
one limit point. We verify that a limit process does indeed exist by checking that the
sequence (θk̄)k̄ is tight.

15 Intuitively, tightness prevents the process from oscillating too
wildly as k̄ → ∞. As shown in Calvet and Fisher (2001), the tightness property holds
on a bounded time interval [0, T ] under the following sufficient condition.

Assumption 4. E(M2) < b

This inequality restricts the fluctuations exhibited by the time deformation process by
requiring that volatility shocks be sufficiently small or that intensities grow sufficiently
fast. When T is finite, the sequence θk̄ then weakly converges to a limit process θ∞,
which generates continuous sample paths (Calvet and Fisher, 2001).

We now check that the same results hold when the time domain is unbounded.
Consider the space D[0,∞) of cadlag functions defined on [0,∞), and let d◦∞ denote the
Skohorod distance. We show in the Appendix:

Proposition 4 (Time deformation with countably many frequencies). Under
Assumption 4, the sequence (θk̄)k̄ weakly converges as k̄ →∞ to a measure θ∞ defined
on the metric space (D[0,∞), d◦∞). Furthermore, the sample paths of θ∞ are continuous
almost surely.

The limiting process has a Markov structure analogous to MSM with a finite k̄. We
interpret Mt = (Mk,t)

∞
k=1 as the state vector of the limiting time deformation θ∞.

Using the time-deformation approach, the dividend process for a finite k̄ can be
represented by

dk̄(t) ≡ d0 + ḡDt− θk̄(t)/2 +B[θk̄(t)],

where B is a standard Brownian. By Proposition 4, dk̄(t) therefore converges to

d∞(t) ≡ d0 + ḡDt− θ∞(t)/2 +B[θ∞(t)]

as k̄ →∞.
The dividend process converges even though volatility σD,k̄(Mt) seems to have a

degenerate behavior as k̄ → ∞. This apparent contradiction is best understood by
examining the local properties of the limit dividend process. The local variability of a
sample path is characterized by the local Hölder exponent

β(t) = max{β ∈ R+ s.t. |d(t+∆t)− d(t)| = O(|∆t|β)}.
15We refer the reader to Billingsley (1999) for a detailed exposition of weak convergence in function

spaces.
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The local Hölder exponent quantifies the order of variation of the process around instant
t. In jump diffusions, the coefficient β(t) is equal to 0 at points of discontinuity, and
to 1/2 otherwise. In contrast, the continuous dividend process with countably many
frequencies implies that β(t) takes a continuum of values in any time interval, which is
a defining property of a multifractal diffusion.16

4.2. Limiting Equilibrium Price Process

We now examine the equilibrium impact of increasingly many frequencies in the volatil-
ity of dividends. A particularly striking example is provided by the Lucas tree economies
discussed in Section 3.2. We consider

Assumption 5. α ≤ 1 and ρ = δ − (1− α)ḡD > 0.

For finite k̄, the equilibrium price:dividend ratio is given by (3.3), or equivalently

qk̄(t) = lnE
∙Z +∞

0
e−ρs−

α(1−α)
2

[θk̄(t+s)−θk̄(t)]ds
¯̄̄̄
(Mk,t)

k̄
k=1

¸
. (4.1)

The price process has therefore the same distribution as

pk̄(t) ≡ dk̄(t) + qk̄(t).

When the number of frequencies goes to infinity, the dividend process has a well-defined
limit. We check in the Appendix that the P/D ratio (4.1) is a positive submartingale,
which also converges to a limit as k̄ →∞. These observations help to establish:

Proposition 5 (Jump diffusion with countably many frequencies). Consider
the maintained Assumptions 1−5. When the number of frequencies goes to infinity, the
log-price process weakly converges to

p∞(t) ≡ d∞(t) + q∞(t),

where

q∞(t) = lnE
∙Z +∞

0
e−ρs−

α(1−α)
2

[θ∞(t+s)−θ∞(t)]ds
¯̄̄̄
(Mk,t)

∞
k=1

¸
is a pure jump process. The limiting price is thus a jump diffusion with countably many
frequencies.

16Multifractal diffusions were introduced in Calvet, Fisher and Mandelbrot (1997) and Calvet and
Fisher (2002). We refer the reader to this earlier work for a more detailed discussion of local properties.
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In an economy with countably many frequencies, the log-price process is the sum of (1)
the continuous multifractal diffusion d∞(t); and (2) the pure jump process q∞(t). We
correspondingly call p∞(t) a multifractal jump-diffusion.

We observe that when k̄ = ∞, the state space is a continuum while the Lucas
tree economy is still specified by the seven parameters (ḡD, σ̄D,m0, γ1, b, α, δ). The
equilibrium P/D ratio q∞(t) exhibits rich dynamic properties. Within any bounded
time interval, there exists almost surely (a.s.) at least one multiplier Mk,t that switches
and triggers a jump in the stock price. This property implies that a jump in price occurs
a.s. in the neighborhood of any instant. The number of switches is also countable a.s.
within any bounded time interval, implying that the process has infinite activity and is
continuous almost everywhere. Equilibrium valuation therefore generates a limit P/D
ratio that follows an infinite intensity pure jump process.

We illustrate in Figure 4 the convergence of the equilibrium price processes as k̄
becomes large. The first panel shows a simulation with k̄ = 2 volatility components,
and the following panels consecutively add higher frequency components to obtain paths
with k̄ = 4, k̄ = 6, and k̄ = 8 components. Consistent with the theoretical construction,
the figure is obtained by randomly drawing a trajectory of the Brownian motion ZC in
stage k̄ = 0, which is therafter taken as fixed. Similarly, each multiplier Mk,t is drawn
only once, so that (Mk,t)

k̄
k=1 does not vary when we move from stage k̄ to stage k̄+1. The

figure suggests that the price process becomes progressively insensitive to the addition
of new high-frequency components, and the sample path of the price process stabilizes.
This illustrates the main result of Proposition 5: For low k̄, adding components has a
significant impact, and as k̄ increases the process converges.

The results of this section provide useful guidance on the choice of the number of
frequencies in theoretical and empirical applications. On the one hand, the convergence
of the price process implies that the marginal contribution of additional components
is likely to be small in applications concerned with fitting the price or return series.
It is then convenient to consider a number of frequencies k̄ that is sufficiently large
to capture the heteroskedasticity of financial series, but sufficiently small to remain
tractable. On the other hand, countably many frequencies might prove useful in more
theoretical contexts, in which the local behavior of the price process needs to be carefully
understood. Examples could include the construction of learning models or the design
of dynamic hedging strategies.

5. Recursive Utility and Priced Jumps

In the previous sections, we have focused for simplicity on the case of time-separable
preferences, which imply a continuous SDF Λt in our representative agent economy with
continuous consumption. Jumps in stock valuations are then “unpriced” in the sense
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that they do not contribute to expected excess returns. Previous work in discrete time
(Calvet and Fisher, 2005) uses Epstein-Zin utility to permit that switches in the state
vector Mt impact the SDF and are priced in equilibrium. The recursive preference
approach easily generalizes to continuous-time and gives priced jumps, as we now show.

We assume that agents have a stochastic differential utility Vt (Duffie and Epstein,
1992), which is specified by a normalized aggregator f(c, v) and satisfies the fixed point
equation

Vt = Et
∙Z T

0
f(Ct+s, Vt+s)ds+ VT

¸
(5.1)

for any instants T ≥ t ≥ 0. We consider for simplicity the standard aggregator

f(c, v) ≡ δ

1− ψ−1
c1−ψ

−1 − [(1− α)v]θ

[(1− α)v]θ−1
,

where α is the coefficient of relative risk aversion, ψ is the elasticity of intertemporal
substitution, and θ = (1−ψ−1)/(1−α). The case where θ = 1 corresponds to isoelastic
utility as considered previously.

Under the consumption process in Assumption 1, the recursive utility has functional
form V (c,Mt) = ϕ(Mt)c

1−α/(1 − α).17 The stochastic discount factor is then Λt =
1
δ exp

hR t
0 fv(Cs, Vs)ds

i
fc(Ct, Vt) (Duffie and Epstein, 1992; Duffie and Skiadas, 1994),

or equivalently
Λt = [ϕ(Mt)]

1−θC−αt e−
δ
θ
t+δ(1− 1

θ )
t
0 [ϕ(Ms)]−θds.

The exponential expression contains smooth terms and an integral and is therefore
continuous, as is consumption. On the other hand, the first factor in the equation is a
function of ϕ(Mt), which switches with the current state and is discontinuous. In the
simplifying case where θ = 1 (power utility), the first factor [ϕ(Mt)]

1−θ drops out and
the SDF has continuous sample paths, reducing to Λt = e−δtC−αt . Thus, with power
utility the marginal utility of consumption is not state dependent. On the other hand,
if θ 6= 1, the term [ϕ(Mt)]

1−θ is discontinuous and the marginal utility of consumption
depends on the current state. Switches in the state vector Mt thus cause jumps in the
SDF.
17The fixed point equation (5.1) can be written as f(Ct, Vt)dt+Et(dVt) = 0. Let ϕ1,..., ϕd denote the

value of ϕ in all possible states m1, ...,md. The fixed point equation is then

δ

θ
(ϕ1−θi − ϕi) + ϕi (1− α)gC(m

i) +
α(α− 1)

2
σ2C(m

i) +
j 6=i

ai,j(ϕj − ϕi) = 0,

where ai,j = P Mt+dt = mj |Mt = mi /dt. Existence and uniqueness can then be analyzed using stan-
dard methods.
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Since switches inMt trigger simultaneous jumps in the stochastic discount factor and
the P:D ratio, we anticipate an impact to expected returns. Let γ denote the probability
that a change occurs; for instance γ =

Pk̄
k=1 γk when Mt is an MSM state variable.

The conditional equity premium is

− 1
dt
Et
µ
dΛt
Λt

dPt
Pt

¶
= ασC(Mt)σD(Mt)ρC,D + γE

µ
−∆Λ
Λ

∆P

P

¶
.

When θ 6= 1 the final term is generally non-zero, confirming that the occurrence of a
jump is priced in equilibrium.

The ability of our framework to accommodate priced jumps is potentially useful for
empirical applications. For example, in discrete-time Calvet and Fisher (2005) use non-
separable preferences to obtain priced switches in a calibration that simultaneously fits,
with reasonable levels of risk-aversion, the equity premium, equity volatility, and the
drifts and volatilities of consumption and dividends. Further, in a recent contribution,
Bhamra, Kuehn, and Strebulaev (2006) extend our framework by considering levered
claims on the priced asset. They find that the ability to capture priced jumps is empir-
ically important in simultaneously reconciling the equity premium, default spreads, and
empirically observed default rates. We anticipate that future work will use our struc-
tural approach to modelling priced jumps in other applications, including, for example,
pricing derivative assets such as options.

6. Conclusion

We specify a continuous-time asset-pricing economy with endogenous multifrequency
jumps in stock prices. Equilibrium valuation gives a number of appealing features that
are often assumed exogenously in previous literature, including: 1) heterogeneous jump
sizes with many and frequent small jumps and few large jumps; and 2) endogenous
correlation between jumps in prices and volatility. Further, jumps may be priced in
equilibrium, in which case the equity premium is larger.

We consider the weak limit of our economic equilibrium as the number of compo-
nents driving fundamentals becomes large. Under appropriate conditions, the stock
price converges to a new mathematical object called a multifractal jump-diffusion. The
equity value can be decomposed into: 1) a multifractal diffusion related to the exoge-
nous dividend process; and 2) an infinite-intensity pure jump process corresponding
to endogenous variations in the price:dividend ratio. Stock price jumps occur in the
neighborhood of any instant, but sample paths are continuous almost everywhere.

Our results focus on two special cases of consumption-based asset pricing economies:
IID consumption growth and a Lucas tree. In an appendix, we show how the economy
may be generalized to accommodate intermediate cases where consumption and dividend
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growth state variables are correlated but not identical. Future work may further develop
these cases.
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7. Appendix A - Proofs

Proof of Proposition 1. The price dividend ratio satisfies

Q(Mt) = E
µZ +∞

0

Λt+s
Λt

Dt+s

Dt
ds

¯̄̄̄
Mt

¶
.

Since

d lnΛt =
£−rf (Mt)− α2σ2C(Mt)/2

¤
dt− ασC(Mt)dZC(t),

d lnDt =
£
gD(Mt)− σ2D(Mt)/2

¤
dt+ σD(Mt)dZD(t),

we infer that

ln
Λt+s
Λt

+ ln
Dt+s

Dt
=

Z s

0

∙
gD(Mt+h)− rf (Mt+h)− σ2D(Mt+h) + α2σ2C(Mt+h)

2

¸
dh

+

Z s

0
[σD(Mt+h)dZD(t+ h)− ασC(Mt+h)dZC(t+ h)]

is conditionally Gaussian with mean
R s
0

h
gD(Mt+h)− rf (Mt+h)− σ2D(Mt+h)+α

2σ2C(Mt+h)
2

i
dh

and variance
R s
0 [α

2σ2C(Mt+h) + σ2D(Mt+h) − 2αρC,DσC(Mt+h)σD(Mt+h)]dh. We then
easily check that

E
µ
Λt+s
Λt

Dt+s

Dt

¯̄̄̄
Mt

¶
= e

s
0 [gD(Mt+h)−rf (Mt+h)−αρC,DσC(Mt+h)σD(Mt+h)]dh,

and conclude that equation (2.4) holds.

Proof of Proposition 3. Given an initial state νt, the P/D ratio of the Lucas tree
economy with random state (Ms(ε))s≥0 can be written as

Q(ε) = E
µZ +∞

0
e−δ

0s−α(1−α)
2

s
0 (σ

2
D[Mt+h(ε)]−σ̄2D)dhds

¯̄̄̄
νt

¶
,

We note that Q(0) = 1/δ0. By the dominated convergence theorem, the function Q is
differentiable and

Q0(0) = −q1E
⎧⎨⎩
Z +∞

0
e−δ

0s

⎡⎣Z s

0

k̄X
k=1

(νk,t+h − 1)dh
⎤⎦ ds

¯̄̄̄
¯̄ νt
⎫⎬⎭ .
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Since Et(νk,t+h − 1) = e−γkh(νk,t − 1), we infer that

Q0(0) = −q1
k̄X

k=1

(νk,t − 1)E
µZ +∞

0
e−δ

0s
Z s

0
e−γkhdh ds

¶

= −q1
k̄X

k=1

νk,t − 1
δ0(δ0 + γk)

.

Hence

Q(ε) = Q(0)

⎛⎝1− q1

k̄X
k=1

νk,t − 1
δ0 + γk

ε

⎞⎠+ o(ε).

We take the log and conclude that (3.4) holds. A similar argument holds in the IID
consumption case.

Proof of Proposition 4. We showed in Calvet and Fisher (2001) that the restriction of
(θk̄) on any bounded subinterval [0, T ] is uniformly equicontinuous and has a continuous
limiting process. Theorem 16.8 in Billingsley (1999) implies that the sequence θk̄ is also
tight on D[0,∞). We conclude that the sequence θk̄ converges in D[0,∞) to a limit
process θ∞ with continuous sample paths.

Proof of Proposition 5. Consider

Qk̄(t) ≡ E
∙Z +∞

0
e−ρse−λ[θk̄(t+s)−θk̄(t)]ds

¯̄̄̄
Mt

¸
,

where λ = α(1 − α)/2 > 0. We easily check that Qk̄(t) is a positive and bounded
submartingale:

Qk̄(t) ≤ Ek̄
£
Qk̄+1(t)

¤ ≤ 1/ρ.
The P/D ratio Qk̄(t) therefore converges to a limit distribution, which we now easily
characterize.

Consider the function Φ : D[0,∞)→ D[0,∞) defined for every cadlag function f by
the integral transform

(Φf)(t) =

Z +∞

0
exp {−ρs− λ[f(t+ s)− f(t)]} ds.

The function Φ is bounded with respect to the Skohorod distance since (Φf)(t) ∈ [0, 1/ρ]
for all t. We also check that it is continuous. Since θk → θ∞, we infer that Φθk weakly
converges to Φθ∞. Hence Qk̄(t)→ Q∞(t), and the proposition holds.
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8. Appendix B - Multivariate Extensions

The asset pricing models in Section 3 are based on univariate MSM, and assume either
IID consumption or Lucas tree economies. We now introduce an extension of MSM that
permit intermediate comovements of consumption and dividends.

Allowing the SDF and the dividend process to have correlated regime-shifts is impor-
tant for several reasons. First, the recent asset-pricing literature shows that consumption
may be exposed to a slowly varying component (e.g. Bansal and Yaron, 2004). Second,
if the arrivals are correlated with the SDF, then they are priced and can therefore help
to explain the equity premium.

8.1. Bivariate MSM in Continuous Time

We now generalize to a continuous-time setting the multivariate discrete-time specifica-
tion of MSM (Calvet, Fisher and Thompson, 2006). We consider two economic processes
α and β, which could for instance correspond to consumption and dividends. For every
frequency k, the processes have volatility components

Mk,t =

"
Mα

k,t

Mβ
k,t

#
∈ R2+.

The period-t volatility column vectors Mk,t are stacked into the 2× k̄ matrix

Mt = (M1,t;M2,t; ...;Mk,t).

As in univariate MSM, we assume thatM1,t,M2,t...Mk,t at a given time t are statistically
independent. The main task is to choose appropriate dynamics for each vector Mk,t.

Economic intuition suggests that volatility arrivals are correlated but not necessarily
simultaneous across economic series. For this reason, we allow arrivals across series to
be characterized by a correlation coefficient ρ∗ ∈ [0, 1]. Assume that the volatility vector
Mk,s has been constructed up to date t. Over the following interval of infinitesimal length
dt, each series c ∈ {α, β} is hit by an arrival with probability γkdt. The probability of
an arrival on β conditional on an arrival on α is [(1− ρ∗)γk + ρ∗]dt. Symmetrically, the
probability of no arrival on β conditional on no arrival on α is also given by [(1−ρ∗)(1−
γk) + ρ∗]dt.

The construction of the volatility components Mk,t is then based on a bivariate
distribution M = (Mα,Mβ) ∈ R2+.18 If arrivals hit both series, the state vector Mk,t+dt

is drawn from M . If only series c ∈ {α, β} receives an arrival, the new component

18We can for instance choose a bivariate binomial. See Calvet, Fisher and Thompson (2006) for
further details.
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M c
k,t+dt is sampled from the marginal M c of the bivariate distribution M . Finally,

Mk,t+dt =Mk,t if there is no arrival.
As in the univariate case, the transition probabilities

¡
γ1, γ2, ..., γk

¢
are defined as

γk = γ1b
k−1, (8.1)

where γ1 > 0 and b ∈ (1,∞). This completes the specification of bivariate MSM in
continuous time.

8.2. Extension of the Asset Pricing Results

We assume that the SDF and dividend processes have constant drifts but stochastic
volatilities

σΛ(Mt) = σ̄Λ(M
α
1,tM

α
2,t...M

α
k,t
)1/2,

σD(Mt) = σ̄D(M
β
1,tM

β
2,t...M

β

k,t
)1/2.

The construction thus permits correlation in volatility across series through the bivariate
distribution M , and correlation in returns through the Brownian motions ZΛ and ZD.
This flexible specification permits to construct a more general class of jump diffusions
for stock prices.

The generalized model might also be useful for option pricing. In our environment,
the price of a European option f(PT ) is therefore given by19

f0 = E0
∙
ΛT
Λ0

f(PT )

¸
As in Hull and White (1987), let f [(Mt)t∈[0,T ]] = E0

£
ΛT f(PT )/Λ0| (Mt)t∈[0,T ]

¤
denote

the option price conditional on the state history. The law of iterated expectations
implies

f0 = E0f
¡
(Mt)t∈[0,T ]

¢
.

If consumption or the SDF is IID, jumps are not priced and the standard results derived
in Hull and White (1987) will hold. Jumps are priced, on the other hand, in multivariate
MSM settings, which can lead to richer characterizations of option prices.

19See Anderson and Raimondo (2005), David and Veronesi (2002), Garcia, Luger and Renault (2003)
and Garleanu, Pedersen and Poteshman (2006) for recent work on consumption-based option pricing.
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Figure 1: Construction of Multifractal Volatility. This figure illustrates the construction of mul-
tifractal volatility with three volatility components and T = 10, 000 periods. The first panel shows the randomly
drawn values of the lowest frequency component M1,t over time. The second and third panels respectively show
the middle frequency component M2,t and the high frequency component M3,t. The last panel gives the variance
σ2

t = σ̄2
DM1,tM2,tM3,t, where we set σ̄D = 1 so that the variance equals the product of the components displayed in

the top three panels. The simulation uses the binomial MSM construction with m0 = 1.4, b = 2, and γ1 = .0002.
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Figure 2: The Multifractal Dividend Process. This figure illustrates the construction of a multifractal dividend
path over T = 10, 000 periods. The first panel shows a simulation of multifractal volatility with k̄ = 8 volatility
components. The volatility parameters m0 = 1.4, b = 2 and γ1 = 0.0002 are identical to Figure 1, and σ̄D = 0.01.
The random draws used for the first three components M1,t, M2,t, and M3,t are also identical to Figure 1. Hence, the
displayed volatility in the first panel is the outcome of following the construction in Figure 1 to a higher level of k̄ and
rescaling for a different σ̄D. The second and third panels then show how the volatility process maps into dividend
growth and dividends. The second panel displays dividend growth, ∆dt =

`
ḡD − σ2

t /2
´
∆+σtεt, where εt are standard

iid normals, ∆ = 1, and ḡD = 0.0001. The third panel shows the logarithm of dividends, i.e., dt = d0 +
Pt

s=1 ∆ds.
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Figure 3: Equilibrium Price and Return Dynamics. This figure illustrates the relation between exogenous
dividends and equilibrium prices when consumption is iid. The top two panels display simulated dividend growth
rates and dividend levels, constructed in the same manner as Figure 2. The parameters used in the specification
are m0 = 1.35, σ̄D = 0.7, b = 2.2, and ḡD = 0.0001. The middle two panels demonstrate the result of equilibrium
pricing. In these panels we use the preference and consumption parameters α = 25, δ = 0.00005, ḡC = 0.00005,
ρC,DσD = 0.0012. The left-hand side displays returns, and the right side shows the log price realization. Both show
more variability, and in particular jumps, relative to the dividend processs. To isolate the endogenous pricing effects
in returns and prices, the bottom left panel shows the volatility “feedback” effect, defined as the difference between
log returns and log dividend growth, i.e., ∆pt − ∆dt, or the difference between the middle left and top left panels.
To show the same endogenous pricing effects in levels, the bottom right hand panel shows the price:dividend ratio.
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Figure 4: Convergence to Multifractal Jump-Diffusion. This figure illustrates convergence of the equilibrium
price process as the number of high-frequency volatility components becomes large. The panels show consecutively
simulations of the log price process pk̄(t) = d0 + ḡDt − θk̄(t)/2 + B [θk̄(t)] + qk̄(t) for k̄ = 2, 4, 6, 8. All panels hold
constant the Brownian B(t). The multipliers Mk,t are also drawn only once, and then held constant as higher level
multipliers are added. The construction is thus recursive in k̄, with each increment requiring the previously drawn
non-deformed dividends and multipliers from the preceding level, plus new random draws for the next set of (higher
frequency) multipliers being incorporated. We observe large differences between the panels corresponding to k̄ = 2
and k̄ = 4, more moderate changes between k̄ = 4 and k̄ = 6, and only modest differences between k̄ = 6 and
k̄ = 8. In this set of simulations, we use the Lucas economy specification with T = 2, 500, m0 = 1.4, b = 3.25,
γ1 = 0.25b7 ≈ 0.0001, σ̄C = 0.0125, ḡD = 0.00008, δ = 0.00003, and α = 0.5. The results are consistent with
Proposition 5, which ensures that as the number of frequencies k̄ grows, the log price pk̄(t) weakly converges to a
multifractal jump-diffusion.




