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1 Introduction

Nominal wage stickiness is a central characteristic of postwar U.S. aggregate data. Existing

estimates of the wage Phillips curve document a low sensitivity of changes in wage inflation

with respect to deviations of real wages from the marginal disutility of labor. A number of

recent studies model wage stickiness as arising from Calvo-type staggering. The purpose of

this paper is to compare two variants of the Calvo-type wage-stickiness model.

The first variant we consider is the one due to Erceg, Henderson, and Levin (2000),

hereafter EHL. In this model, each household is the monopolistic supplier of a differentiated

type of labor input and equilibrium effort intensity varies across households. The other

version of wage stickiness we consider is the one developed in Schmitt-Grohé and Uribe

(2006a,b), hereafter SGU. In this variant, households supply a homogeneous labor input

that is transformed by monopolistically competitive labor unions into a differentiated labor

input and every household works equal hours in equilibrium.

We embed both versions of wage stickiness into the medium-scale macroeconomic model

of Altig et al. (2005). This model features a large number of nominal and real rigidities,

including price stickiness, money demand by households and firms, habit formation, variable

capacity utilization, investment adjustment costs, and imperfect competition in product and

labor markets. The Altig et al. model is of particular empirical interest because it has been

shown to account well for the observed effects of monetary and supply-side shocks.

We first establish analytically that up to a log-linear approximation the SGU and EHL

variants of wage stickiness yield identical expectations-augmented wage Phillips curves. It

follows that econometric estimates of this relationship are necessarily mute about which type

of wage stickiness fits the data better. We derive the precise mapping from the wage Phillips

curve coefficient to the deep structural parameter governing the degree of wage stickiness in

the SGU and EHL models. We find that in the context of the EHL framework, the available

empirical estimates of linear wage Phillips curves imply that nominal wages are reoptimized

every 3 to 4 quarters. At the same time, we find that according to the SGU model, available

estimates of the relationship between wage inflation and wage markups imply that nominal

wages are reoptimized much less frequently, only about every 10 to 12 quarters.

We demonstrate that up to a log-linear approximation the SGU and EHL variants of wage

stickiness yield identical equilibrium conditions, provided the wage stickiness parameter is

in each case calibrated to be consistent with empirical estimates of the wage Phillips curve.

This result implies that, for a given policy regime, both variants of wage stickiness give rise

to identical equilibrium dynamics up to first order. A further consequence of this equivalence

result is that the impossibility of identifying whether wage stickiness stems from the SGU
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or the EHL mechanism is not limited to econometric studies estimating the wage Phillips

curve in isolation, but extends to studies estimating the deep structural parameters of the

model from the complete set of log-linearized equilibrium conditions (such as Altig et al.,

2005, Levin et al., 2006, and Smets and Wouters, 2004).

We characterize Ramsey optimal policy under SGU and EHL wage stickiness. The fact

that the SGU and the EHL models induce the same equilibrium dynamics up to first order

does not imply that Ramsey optimal policy under both types of wage stickiness is also

identical. This is because the first-order conditions of the Ramsey problem include not

only the complete set of equilibrium conditions, but also additional constraints involving

the derivatives of the equilibrium conditions with respect to all endogenous variables. We

find, however, that Ramsey dynamics are numerically the same under the SGU and EHL

formulations. Notably, the Ramsey policy calls for stabilizing price inflation. The optimal

standard deviation of inflation is 0.6 percent at an annualized rate.

We characterize optimal, operational interest-rate rules for the SGU and EHL formula-

tions of wage stickiness. We consider interest-rate rules whereby changes in the interest rate

are set as a linear function of lagged price and wage inflation and lagged output growth. We

find that the same operational interest-rate rule is optimal in the SGU and EHL models. The

optimal rule is a pure inflation targeting rule, featuring a large coefficient on price inflation

and a mute response to wage inflation and output growth. This result is in sharp contrast

with the findings of Erceg et al. (2000), Canzoneri, Cumby, and Diba (2005), and Levin et al.

(2006). These authors find that under EHL wage stickiness, the best rule takes the form of

a pure wage-inflation targeting rule. We show that this discrepancy in results is attributable

to differences in the definition of what constitutes an operational interest-rate feedback rule.

Our findings that Ramsey dynamics and the optimal operational interest-rate rule are

numerically the same under the SGU and EHL variants of Calvo-type wage stickiness lead

us to conjecture that the welfare function of the Ramsey planner must be quite similar under

both formulations. We confirm this conjecture by deriving analytically the welfare criterion

of the Ramsey planner under SGU and EHL wage stickiness in the much simpler economic

environment of Erceg et al. (2000). In particular, we show that up to second order the

unconditional expectations of the period utility function are the same under the SGU and

EHL variants as the subjective discount factor approaches unity.

The remainder of the paper is organized in six sections. Section 2 presents the SGU

and EHL variants of nominal wage stickiness. Section 3 establishes that available estimates

of linear wage Phillips curves cannot discriminate between the SGU and EHL models. It

also derives the mapping from the coefficient of the Phillips curve to the wage stickiness

parameters in the two models. Section 4 demonstrates that Ramsey dynamics are the same
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under SGU- and EHL-type wage stickiness. Section 5 shows that the same operational rule

is optimal under both formulations of wage stickiness. Section 6 characterizes analytically

second-order accurate welfare functions. Section 7 concludes. Matlab code to replicate the

numerical results presented in this paper is available on the authors’ websites.

2 Modeling Calvo-Type Wage Stickiness

In this section, we derive the SGU and EHL variants of Calvo-style wage stickiness. We

develop in detail the conditions describing equilibrium in the labor market, as this is the di-

mension along which the two approaches differ. The remaining blocks of the macroeconomic

model into which we embed the SGU and EHL wage stickiness mechanisms are shared by

these two formulations and are those presented in Schmitt-Grohé and Uribe (2006b). The

Schmitt-Grohé and Uribe (2006b) model is a medium-scale economy featuring a number of

nominal and real rigidities. In addition to nominal wage stickiness, the model allows for

sticky prices, money demands by households and firms, monopolistic competition in prod-

uct and labor markets, habit formation, investment adjustment costs, and variable capacity

utilization. Contrary to a common practice in the related literature, we do not allow for

subsidies in product and labor markets to undo the distortions stemming from imperfect

competition in those markets. In this model economy, business cycles are driven by stochas-

tic variations in the growth rate of total factor productivity, investment-specific technological

progress, and government spending.

2.1 SGU Wage Stickiness

The economy is assumed to be populated by a large representative family with a continuum

of members. Consumption and hours worked are identical across family members. The

household’s preferences are defined over per capita consumption, ct, and per capita labor

effort, ht, and are described by the utility function

E0

∞∑

t=0

βtU(ct − bct−1, ht), (1)

where Et denotes the mathematical expectations operator conditional on information avail-

able at time t, β ∈ (0, 1) represents a subjective discount factor, and U is a period utility

index assumed to be strictly increasing in its first argument, strictly decreasing in its sec-

ond argument, and strictly concave. The parameter b > 0 introduces habit persistence. To

facilitate comparison with the EHL model, we will at times appeal to the following spe-
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cific functional form of the utility index, which is separable in consumption and leisure,

logarithmic in habit-adjusted consumption, and iso elastic in labor:

U(ct − bct−1, ht) = ln(ct − bct−1) −
h1+ξ

t

1 + ξ
. (2)

Firms hire labor from a continuum of labor markets of measure 1 indexed by j ∈ [0, 1].

In each labor market j, wages are set by a monopolistically competitive union, which faces

a demand for labor given by
(
W j

t /Wt

)−η̃
hd

t . Here W j
t denotes the nominal wage charged

by the union in labor market j at time t, Wt ≡
[∫ 1

0
W j

t

1−η̃
dj
]1/(1−η̃)

is an index of nominal

wages prevailing in the economy, and hd
t is a measure of aggregate labor demand by firms.

A formal derivation of this labor demand function is presented in Schmitt-Grohé and Uribe

(2006b). In each particular labor market, the union takes Wt and hd
t as exogenous. The

case in which the union takes aggregate labor variables as endogenous can be interpreted as

an environment with highly centralized labor unions. Higher-level labor organizations play

an important role in some European and Latin American countries, but are less prominent

in the United States. Given the wage it charges, the union is assumed to supply enough

labor, hj
t , to satisfy demand. That is, hj

t =
(

wj
t

wt

)−η̃

hd
t , where wj

t ≡ W j
t /Pt and wt ≡ Wt/Pt.

The total number of hours allocated to the different labor markets/unions must satisfy the

resource constraint ht =
∫ 1

0
hj

tdj. Combining these two restrictions yields

ht = hd
t

∫ 1

0

(
wj

t

wt

)−η̃

dj. (3)

Households are assumed to have access to a complete set of nominal state-contingent

assets. Specifically, each period t ≥ 0, consumers can purchase any desired state-contingent

nominal payment Xt+1 in period t + 1 at the dollar cost Etrt,t+1Xt+1. The variable rt,t+1

denotes a stochastic nominal discount factor between periods t and t + 1. The household’s

period-by-period budget constraint is given by:

Etrt,t+1xt+1 + ct =
xt

πt

+ hd
t

∫ 1

0

wj
t

(
wj

t

wt

)−η̃

dj. (4)

The variable xt ≡ Xt/Pt−1 denotes the real payoff in period t of nominal state-contingent

assets purchased in period t − 1. The variable πt ≡ Pt/Pt−1 denotes the gross rate of

consumer-price inflation.

We introduce nominal wage stickiness by assuming that each period in a fraction α̃ ∈ [0, 1)

of randomly chosen labor markets the nominal wage cannot be reoptimized. In these labor
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markets nominal wages are indexed to past price inflation, denoted πt−1, and long-run real

wage growth, denoted µz∗. The household chooses processes for ct, ht, xt+1, and wj
t so as to

maximize the utility function (1) subject to (3) and (4), the wage stickiness friction, and a

no-Ponzi-game constraint, taking as given the processes wt, h
d
t , rt,t+1, and πt, and the initial

condition x0. The household’s optimal plan must satisfy constraints (3) and (4). In addition,

letting βtλtwt/µ̃t and βtλt denote Lagrange multipliers associated with constraints (3) and

(4), respectively, the Lagrangian associated with the household’s optimization problem is

L = E0

∞∑

t=0

βt

{
U(ct − bct−1, ht) + λt

[
hd

t

∫ 1

0

wi
t

(
wi

t

wt

)−η̃

di− ct − rt,t+1xt+1 +
xt

πt

]

+
λtwt

µ̃t

[
ht − hd

t

∫ 1

0

(
wi

t

wt

)−η̃

di

]}
.

The first-order conditions with respect to ht and wi
t, in that order, are given by

−Uh(ct − bct−1, ht) =
λtwt

µ̃t
(5)

and

wi
t =

{
w̃t if wi

t is set optimally in t

wi
t−1µz∗πt−1/πt otherwise

,

where w̃t denotes the real wage prevailing in the 1 − α̃ labor markets in which the union

can set wages optimally in period t. Because the labor demand curve faced by the union is

identical across all labor markets where the wage rate is optimized in period t, and because

the cost of supplying labor is the same for all markets, one can assume that wage rates, w̃t,

are identical across all labor markets updating wages in a given period. In any labor market

i in which the union could not reoptimize the wage rate in period t, the real wage is given

by wi
t−1µz∗πt−1/πt, as nominal wages are fully indexed to past price inflation and long-run

productivity growth.

It remains to derive the optimality condition with respect to the wage rate in those

markets where the wage rate is set optimally. To this end, it is of use to track the evolution

of real wages in a particular labor market that last reoptimized in period t. In general,

s periods after the last wage reoptimization in a particular labor market, the real wage

prevailing in that market is given by w̃t

∏s
k=1

(
µz∗πt+k−1

πt+k

)
. And similarly, s periods after

the last wage reoptimization in a particular labor market, the labor demand in that market

is given by
(

w̃t

wt+s

∏s
k=1

(
µz∗πt+k−1

πt+k

))−η̃

hd
t+s. The part of the household’s Lagrangian that is
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relevant for optimal wage setting is given by

Lw = Et

∞∑

s=0

(α̃β)sλt+s



∏s

k=1

(
µz∗πt+k−1

πt+k

)

wt+s




−η̃

hd
t+s

[
w̃1−η̃

t

s∏

k=1

(
µz∗πt+k−1

πt+k

)
− w̃−η̃

t

wt+s

µ̃t+s

]
.

Using equation (5) to eliminate µ̃t+s, the first-order condition with respect to w̃t is given by

Et

∞∑

s=0

(α̃β)sλt+s



w̃t

∏s
k=1

(
µz∗πt+k−1

πt+k

)

wt+s




−η̃

hd
t+s

[
(η̃ − 1)

η̃
w̃t

s∏

k=1

(
µz∗πt+k−1

πt+k

)
− −Uh(t+ s)

λt+s

]
= 0.

(6)

This expression states that in labor markets in which the wage rate is reoptimized in period

t, the real wage is set so as to equate the union’s future expected average marginal revenue to

the average marginal cost of supplying labor. The union’s marginal revenue s periods after

its last wage reoptimization is given by η̃−1
η̃
w̃t

∏s
k=1

(
µz∗πt+k−1

πt+k

)
. Here, η̃/(η̃ − 1) represents

the markup of wages over marginal cost of labor that would prevail in the absence of wage

stickiness. In turn, the marginal cost of supplying labor is given by the marginal rate of

substitution between consumption and leisure, or −Uh(t+s)
λt+s

= wt+s

µ̃t+s
. The variable µ̃t is a

wedge between the disutility of labor and the average real wage prevailing in the economy.

Thus, µ̃t can be interpreted as the average markup that unions impose on the labor market.

The weights used to compute the average difference between marginal revenue and marginal

cost are decreasing in time and increasing in the amount of labor supplied to the market.

We wish to write the wage-setting equation in recursive form. To this end, define

f 1
t =

(
η̃ − 1

η̃

)
w̃tEt

∞∑

s=0

(βα̃)sλt+s

(
wt+s

w̃t

)η̃

hd
t+s

s∏

k=1

(
πt+k

µz∗πt+k−1

)η̃−1

and

f 2
t = −w̃−η̃

t Et

∞∑

s=0

(βα̃)swη̃
t+sh

d
t+sUh(ct+s − bct+s−1, ht+s)

s∏

k=1

(
πt+k

µz∗πt+k−1

)η̃

.

One can then express f 1
t and f 2

t recursively as

f 1
t =

(
η̃ − 1

η̃

)
w̃tλt

(
wt

w̃t

)η̃

hd
t + α̃βEt

(
πt+1

µz∗πt

)η̃−1(
w̃t+1

w̃t

)η̃−1

f 1
t+1, (7)

f 2
t = −Uh(ct − bct−1, ht)

(
w̃t

wt

)−η̃

hd
t + α̃βEt

(
w̃t+1πt+1

µz∗w̃tπt

)η̃

f 2
t+1. (8)

With these definitions at hand, the first-order condition of the household’s problem with
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respect to w̃t collapses to

f 1
t = f 2

t . (9)

Aggregation in the Labor Market

Recall that the demand function for labor of type j is given by hj
t =

(
W j

t

Wt

)−η̃

hd
t . Taking into

account that at any point in time the nominal wage rate in all labor markets in which wages

are set optimally in period t is identical and equal to W̃t, it follows that labor demand in

period t in every labor market in which wages were reoptimized in period t, which we denote

by tht, is given by tht =
(

W̃t

Wt

)−η̃

hd
t . This expression, together with the facts that each period

a fraction 1 − α̃ of unions reoptimizes nominal wages and that ht =
∫ t

−∞ shtds, where sht

denotes the demand for labor in period t in every labor market where the wage rate was last

reoptimized in period s, implies that

ht = (1 − α̃)hd
t

∞∑

s=0

α̃s

(
W̃t−s

∏s
k=1(µz∗πt+k−s−1)

Wt

)−η̃

.

Let s̃t ≡ (1 − α̃)
∑∞

s=0 α̃
s
(

W̃t−s
∏s

k=1(µz∗πt+k−s−1)

Wt

)−η̃

be a measure of the degree of wage

dispersion across different types of labor. Then the above expression can be written as

ht = s̃th
d
t . (10)

In turn, the state variable s̃t evolves over time according to

s̃t = (1 − α̃)

(
w̃t

wt

)−η̃

+ α̃

(
wt−1

wt

)−η̃ (
πt

(µz∗πt−1)

)η̃

s̃t−1. (11)

We note that because all job varieties are ex-ante identical, any wage dispersion (i.e., s̃t > 1)

is inefficient. This is reflected in the fact that s̃t is bounded below by 1 (see Schmitt-Grohé

and Uribe, 2006b, for a proof). Inefficient wage dispersion introduces a wedge that makes

the number of hours supplied to the market, ht, larger than the number of productive units

of labor input, hd
t . In an environment without long-run wage dispersion, up to first order

the dead-weight loss created by wage dispersion is nil even in the short run. Formally, a

first-order approximation of the law of motion of s̃t yields a univariate autoregressive process

of the form ˆ̃st = α̃ˆ̃st−1. This situation emerges, for example, when nominal wages are fully

indexed to long-run productivity growth and lagged price inflation, as is the case in the

present model. When wages are fully flexible, α̃ = 0, wage dispersion disappears, and thus

s̃t equals 1.

7



It follows from our definition of the wage index, Wt ≡
[∫ 1

0
W j

t

1−η̃
dj
]1/(1−η̃)

, that the real

wage rate wt evolves over time according to the expression

w1−η̃
t = (1 − α̃)w̃1−η̃

t + α̃w1−η̃
t−1

(
µz∗πt−1

πt

)1−η̃

. (12)

Equations (7)-(12) describe equilibrium in the labor market in the SGU model.

The Wage Phillips Curve in the SGU Model

Because most available estimates of the degree of wage stickiness are based on linearized

versions of the wage Phillips curve, it is of use to compare this relationship in the SGU and

EHL setups. Here we derive a log-linear approximation to the wage Phillips curve in the

SGU model. To facilitate comparison with the linearized wage Phillips curve that obtains in

the EHL model (to be derived in the next section), we assume that the period utility function

takes the specific form given in equation (2). Let πW
t ≡ Wt/Wt−1 denote wage inflation in

period t. Then log-linearizing equations (7)-(12) around a steady state yields

π̂W
t − π̂t−1 = βEt(π̂

W
t+1 − π̂t) + γ

[
ξĥd

t − ŵt − λ̂t

]
, (13)

where

γ =
(1 − α̃β)(1 − α̃)

α̃
. (14)

A hat on a variable denotes its log-deviation from the deterministic steady state. Our econ-

omy displays long-run stochastic growth in wages and the marginal utility of consumption

stemming from variations in the growth rate of neutral and investment specific factor pro-

ductivity (see Schmitt-Grohé and Uribe, 2006b). For this reason, the variables wt and λt

display a stochastic trend in equilibrium. For these two variables, a hat denotes deviations

of a stationarity-inducing transformation of the respective variable. The inflation rate πt

appears in the wage Phillips curve because of our maintained assumption that wages are

indexed to past inflation.

Existing empirical studies (e.g., Altig et al., 2005 and Levin et al. 2006) estimate the

linear wage Phillips curve given above. Such estimates do not provide directly a measure of

the degree of wage stickiness α̃. Instead, they deliver an estimate of the coefficient γ on the

wage markup. In the SGU model, γ is related to α̃ by equation (14). In the next section, we

show that the EHL model implies a wage Phillips curve identical to the one given in (13).

The only difference between the linear Phillips curve in the SGU and EHL models lies in the

mapping between γ and α̃.
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2.2 EHL Wage Stickiness

In this section, we present the household problem under the EHL wage-stickiness assumption.

The goal is to derive counterparts to equations (7)-(14). In the EHL model, the economy is

assumed to be populated by a large number of differentiated households indexed by j with

j ∈ [0, 1]. The preferences of household j are defined over per capita consumption, cjt , and

labor effort, hj
t , and are described by the utility function

E0

∞∑

t=0

βtU(cjt − bcjt−1, h
j
t). (15)

To facilitate aggregation, we assume that the period utility index is separable in habit-

adjusted consumption and labor effort and isoelastic in labor as in equation (2).

Household j is assumed to be a monopolistic supplier of labor of type j. The household

faces a demand for labor given by
(
W j

t /Wt

)−η̃
hd

t . The household takes Wt and hd
t as ex-

ogenous. Given the wage it charges, household j is assumed to supply enough labor, hj
t , to

satisfy demand. That is,

hj
t =

(
W j

t

Wt

)−η̃

hd
t . (16)

The household’s period-by-period budget constraint is given by:

Etrt,t+1x
j
t+1 + cjt =

xj
t

πt

+ hd
tw

j
t

(
wj

t

wt

)−η̃

. (17)

Each period t, a random fraction α̃ of households cannot reoptimize their nominal wage.

Household j chooses processes for cjt , h
j
t , x

j
t+1, and wj

t , so as to maximize the utility func-

tion (15) subject to (16) and (17), the wage stickiness friction, and a no-Ponzi-game con-

straint, taking as given the processes wt, h
d
t , rt,t+1, and πt, and the initial condition xj

0.

The household’s optimal plan must satisfy constraints (16) and (17). In addition, letting

βtλj
twt/µ̃

j
t and βtλj

t denote Lagrange multipliers associated with constraints (16) and (17),

respectively, the Lagrangian associated with household j’s optimization problem is

Lj = E0

∞∑

t=0

βt



U(cjt − bcjt−1, h

j
t) + λj

t


wj

t

(
wj

t

wt

)−η̃

hd
t − cjt − rt,t+1x

j
t+1 +

xj
t

πt




+
λj

twt

µ̃j
t


hj

t −

(
wj

t

wt

)−η̃

hd
t





 .
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The first-order conditions with respect to hj
t and wj

t , in that order, are given by

−Uh(h
j
t ) =

λj
twt

µ̃j
t

(18)

and

wj
t =

{
w̃j

t if wj
t is set optimally in t

wj
t−1µz∗πt−1/πt otherwise

,

where w̃j
t denotes the real wage set by household j if it is free to reoptimize this variable in

period t. The household’s first-order condition with respect to w̃j
t is given by

0 = Et

∞∑

s=0

(α̃β)sλj
t+s



w̃j

t

∏s
k=1

(
µz∗πt+k−1

πt+k

)

wt+s




−η̃

hd
t+s

[
(η̃ − 1)

η̃
w̃j

t

s∏

k=1

(
µz∗πt+k−1

πt+k

)
− −Uh(h

j
t+s)

λj
t+s

]
.

(19)

Following EHL (2000), we assume that households can insure against the risk of not being

able to reoptimize the nominal wage. This assumption implies that the marginal utility of

income, λj
t , is indeed the same across all households j ∈ [0, 1]. From this result and the fact

that every household faces the same labor demand function, it follows that all households

reoptimizing wages in a given period will choose to set the same nominal wage. Therefore,

we drop the superscript j from the variables λj
t and w̃j

t . Then, the only difference between

the optimality condition (19) and its counterpart in the SGU model, equation (6), is that

the argument of the marginal disutility of labor is household-specific in the EHL model (and

given by hj
t+s) whereas in the SGU model the argument of the marginal disutility of labor

is aggregate per capita labor effort (ht+s). It follows that in the special case of preferences

that are linear in hours worked (ξ = 0 in equation (2)), the SGU and EHL models deliver

identical expressions for the optimality condition with respect to the wage rate. This result

is intuitive: if agents are risk-neutral with respect to hours worked, it is irrelevant whether

households pool employment uncertainty (as in the SGU model) or not (as in the EHL

model).

At this point existing models that use wage stickiness à la EHL (2000) proceed to log-

linearizing the optimality condition for wages given in equation (19), yielding the well-known

linear wage Phillips curve. Because our eventual goal is to compute Ramsey dynamics and

to perform welfare evaluations, we are interested in deriving the true nonlinear wage Phillips

curve. To this end, we derive a recursive representation of equilibrium condition (19). We

explain this derivation in some detail, as it is a novel feature of the present paper. Let f 1
t

be defined as in equation (7). As before, let the number of hours worked in period t + s by
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a household who received a wage change signal for the last time in period t be denoted by

tht+s. Then define f 2
t as

f 2
t = −w̃−η̃

t Et

∞∑

s=0

(βα̃)swη̃
t+sh

d
t+sUh(tht+s)

s∏

k=1

(
πt+k

µz∗πt+k−1

)η̃

.

With these definitions at hand, the first-order condition with respect to w̃t, given in equa-

tion (19), can be written as f 1
t = f 2

t . To express f 2
t recursively proceed as follows. Note that

tht+s is given by

tht+s =

(
W j

t+s

Wt+s

)−η̃

hd
t+s

=

(
w̃t

wt+s

s∏

k=1

µz∗πt+k−1

πt+k

)−η̃

hd
t+s.

Clearly, the variable tht+1+s is related to t+1ht+1+s by the expression,

tht+1+s =

(
w̃tµz∗πt

w̃t+1πt+1

)−η̃

t+1ht+1+s.

Now we resort to the assumption made earlier that Uh is homogenous of degree ξ in h (see

equation (2)). Then we have that

Uh(tht+1+s) =

(
w̃tµz∗πt

w̃t+1πt+1

)−ξη̃

Uh

(
t+1ht+1+s

)
.

This expression allows us to rewrite f 2
t recursively as follows:

f 2
t = −Uh(tht)

(
w̃t

wt

)−η̃

hd
t + α̃βEt

(
w̃t+1πt+1

µz∗w̃tπt

)η̃(1+ξ)

f 2
t+1, (20)

where tht is given by

tht =

(
W̃t

Wt

)−η̃

hd
t . (21)

Labor market equilibrium in the EHL model is given by equation (7), (9), (12), (20), and

(21).
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3 Can Existing Econometric Evidence Distinguish Be-

tween the SGU and the EHL Models?

To derive a log-linear approximation to the wage Phillips curve in the EHL model, we con-

tinue to assume that the period utility function takes the specific form given in equation (2).

Log-linearizing equations (7), (9), (12), (20), and (21) yields equation (13) with

γ =
(1 − α̃β)(1 − α̃)

α̃

1

1 + η̃ξ
. (22)

Existing econometric studies that estimate the degree of wage stickiness using aggregate

data are based on linear models. Studies that are limited to estimating the wage Phillips

curve deliver an estimate of the coefficient γ in equation (13).Because both the EHL and SGU

models give rise to a linearized Phillips curve of the form given in equation (13), estimates

of γ are not sufficient to tell the SGU and EHL models apart.

Furthermore, even is one were to estimate the complete set of linearized equilibrium

conditions using aggregate data (as in Altig, et al. Levin et al., and others), the SGU and

EHL models would continue to be observationally equivalent. This is because the parameter

α̃ appears only in the coefficient γ and because one can show that up to first order, all

equations of the general equilibrium model are identical in the SGU and EHL models (

except, of course, for the mapping between the coefficient γ and α̃).

Given an estimate of γ, one will draw different conclusions about the size of α̃ depending

on whether one assumes that the model displays EHL or SGU-type of wage stickiness. Let

α̃SGU denote the degree of wage stickiness that one would infer from given values for γ, ξ, β,

and η̃ in the SGU model of wage stickiness and similarly let α̃EHL be the inferred degree of

wage stickiness in the EHL model. It is clear from equations (14) and (22) that α̃SGU and

α̃EHL are linked by the following implicit function

(1 − α̃SGUβ)(1 − α̃SGU)

α̃SGU
=

(1 − α̃EHLβ)(1 − α̃EHL)

α̃EHL

1

1 + η̃ξ
(23)

Clearly, for a given value of γ the implied degree of wage stickiness is always higher in the

SGU than in the EHL model, or

α̃SGU > α̃EHL.

Figure 1 displays the graph of the implicit function linking α̃SGU to α̃EHL given in equa-

tion (23). In constructing the graph, we draw from the calibration used in Altig et al. (2005)

and set β = 1.03−1/4, ξ = 1, and η̃ = 21. Consider, for example, a value of 0.69 for α̃EHL,
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Figure 1: The Relation Between α̃SGU and α̃EHL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

αEHL

αS
G

U

The figure displays the graph of the implicit function given in equation (23) for
β = 1.03−1/4, ξ = 1, and η̃ = 21.
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which is the degree of wage stickiness estimated by Altig et al. in their high-markup case

under the assumption of EHL-type wage stickiness. The corresponding value for α̃SGU is

0.9261. Thus, under the Altig et al. estimation of γ the SGU model implies that nominal

wages are reoptimized on average every 13 quarters, whereas the EHL model implies that

they are reoptimized every 3 quarters.

4 Ramsey Policy in the SGU and EHL Models

The Ramsey optimization problem consists in maximizing a weighted average of lifetime

utility of all households in the economy subject to the set of equations defining a competitive

equilibrium. Thus far, we have established that for a given monetary regime and up to first

order the SGU and EHL models of wage stickiness result in identical equilibrium dynamics

provided that in both models α̃ is chosen appropriately. This is because the linearized

equilibrium conditions of both models are the same. Furthermore, as we will show shortly, the

objective function of the Ramsey planner is the same in the SGU and EHL models. However,

it does not follow directly from these results that Ramsey dynamics must be the same in

the SGU and EHL models up to first order. The reason is that linear approximations to

the equilibrium conditions of the Ramsey problem involve higher than first-order derivatives

of the competitive equilibrium conditions. We therefore resort to a numerical analysis to

compare Ramsey dynamics under the SGU and EHL models.

4.1 The Ramsey Planner’s Objective Function

The SGU economy is populated by a representative household. As a consequence, the

Ramsey planner’s objective function coincides with that of the representative household.

Recalling that ht = s̃th
d
t (see equation (10) and imposing the specific functional form for the

period utility function given in equation (2), we can write the Ramsey planner’s objective

function as

Vt ≡ Et

∞∑

j=0

βj

[
ln(ct+j − bct+j−1) −

(s̃t+jh
d
t+j)

1+ξ

1 + ξ

]
, (24)

with

s̃t = (1 − α̃)

(
w̃t

wt

)−η̃

+ α̃

(
wt−1µz∗πt−1

wtπt

)−η̃

s̃t−1.

In the EHL economy, households are heterogeneous. In equilibrium consumption is identi-

cal across households but labor supply varies cross sectionally. We assume that the Ramsey

planner cares about all households equally. Therefore, the planner’s objective function is
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given by

Vt ≡ Et

∞∑

j=0

βj

[
ln(ct+j − bct+j−1) −

∫ 1

0

(hi
t+j)

1+ξ

1 + ξ
di

]
.

Recall that because households must satisfy labor demand at the posted wage, we gave that

hi
t = (wi

t/wt)
−η̃hd

t (see equation (16)). Let s̃t be defined by s̃1+ξ
t =

∫ 1

0
(wi

t/wt)
−η̃(1+ξ)di. It

follows that in the EHL model the Ramsey planner’s objective function is given by equa-

tion (24), which is identical to its counterpart in the SGU model. However, the evolution

of s̃t differs in the two models. In effect, taking into account that in the EHL model only a

fraction 1 − α̃ of households are allowed to reoptimize wages in any given period and that

every reoptimizing household charges the same wage, we can express the above expression

for s̃t recursively as follows:

s̃1+ξ
t = (1 − α̃)

(
w̃t

wt

)−η̃(1+ξ)

+ α̃

(
µz∗πt−1wt−1

πtwt

)−η̃(1+ξ)

s̃
(1+ξ)
t−1 .

The Ramsey problem in the SGU model consists in maximizing equation (24) subject

to the equilibrium conditions given in sections A.1 and A.2 of the appendix. The Ramsey

problem in the EHL model consists in maximizing equation (24) subject to the equilibrium

conditions given in sections A.1 and A.3 of the appendix.

4.2 The Optimal Degree of Inflation Stabilization

We compute Ramsey dynamics by approximating the Ramsey equilibrium conditions up to

first order. We calibrate the SGU and EHL models to the U.S. economy following Schmitt-

Grohé and Uribe (2006b). Table 1 presents the values of the deep structural parameters

implied by our calibration strategy. The only structural parameter that takes a different

value in the SGU and EHL models is the degree of wage stickiness α̃. As discussed earlier,

there is a one-to-one relationship between α̃SGU and α̃EHL that makes both models consistent

with the empirical estimates of the wage Phillips curve. Altig et al. estimate α̃EHL to be

0.69. The corresponding value for α̃SGU is 0.9261. We adopt these values in our calibration

of α̃ in the EHL and SGU models, respectively.

Table 2 displays the standard deviation, first-order autocorrelation, and correlation with

output growth of price inflation, wage inflation, the nominal interest rate and the growth

rates of output, consumption, and investment. The table shows that the SGU and EHL

models imply identical second moments under the Ramsey policy. This result suggests that

differences in the characteristics of optimal monetary policy reported in studies using SGU-

or EHL-type wage stickiness must be attributed not to the way wage stickiness is modeled,
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Table 1: Structural Parameters

Parameter Value Description

β 1.031/4 Subjective discount factor (quarterly)
θ 0.36 Share of capital in value added
ψ 0.5317 Fixed cost parameter
δ 0.025 Depreciation rate (quarterly)
ν 0.6011 Fraction of wage bill subject to a CIA constraint
η 6 Price-elasticity of demand for a specific good variety
η̃ 21 Wage-elasticity of demand for a specific labor variety
α 0.8 Fraction of firms not setting prices optimally each quarter
α̃SGU 0.9261 Fraction of labor markets not setting wages optimally in SGU model
α̃EHL 0.69 Fraction of labor markets not setting wages optimally in EHL model
b 0.69 Degree of habit persistence
φ1 0.0459 Transaction cost parameter
φ2 0.1257 Transaction cost parameter
ξ 1 Preference parameter
κ 2.79 Parameter governing investment adjustment costs
γ1 0.0412 Parameter of capacity-utilization cost function
γ2 0.0601 Parameter of capacity-utilization cost function
χ 0 Degree of price indexation
µΥ 1.0042 Quarterly growth rate of investment-specific technological change
σµΥ

0.0031 Std. dev. of the innovation to the investment-specific technology shock
ρµΥ

0.20 Serial correlation of the log of the investment-specific technology shock
µz 1.00213 Quarterly growth rate of neutral technology shock
σµz 0.0007 Std. dev. of the innovation to the neutral technology shock
ρµz 0.89 Serial correlation of the log of the neutral technology shock
ḡ 0.4549 Steady-state value of government consumption (quarterly)
σεg 0.008 Std. dev. of the innovation to log of gov. consumption
ρg 0.9 Serial correlation of the log of government spending

Note. All parameter values are as in Schmitt-Grohé and Uribe (2006b) except
for those assigned to ψ and ḡ, which change because the number of hours worked
in the steady state in both models is different due to different specifications for
the period utility function.
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Table 2: Second Moments under Ramsey Optimal Stabilization Policy

Variable SGU Model EHL Model
Standard Deviation

Nominal Interest Rate 0.5 0.5
Price Inflation 0.6 0.6
Wage Inflation 0.9 0.9
Output Growth 0.9 0.9
Consumption Growth 0.5 0.5
Investment Growth 1.8 1.8

Serial Correlation
Nominal Interest Rate 0.8 0.8
Price Inflation 0.9 0.9
Wage Inflation 0.4 0.4
Output Growth 0.5 0.5
Consumption Growth 0.9 0.9
Investment Growth 0.7 0.7

Correlation with Output Growth
Nominal Interest Rate -0.3 -0.3
Price Inflation -0.5 -0.5
Wage Inflation 0.2 0.2
Output Growth 1 1
Consumption Growth 0.4 0.4
Investment Growth 0.6 0.6

Welfare
Unconditional (EV0) -183.1090 -183.0913
Conditional (V0) -183.0456 -183.0508

Standard deviations are measured in percentage points per year. Conditional welfare
is computed under the assumption that the initial state is the deterministic Ramsey
steady state. In computing (conditional and unconditional) welfare levels the welfare
criterion was appropriately transformed to induce stationarity.
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but rather either to other differences in the theoretical environments employed across studies,

or to calibrations of the parameter α̃ that do not satisfy the one-to-one mapping linking these

two parameters given by equation (23).

Table 2 shows that under the Ramsey-optimal policy the volatility of inflation is low

at 0.6 percentage points at an annual rate. We take this number to suggest that inflation

stability should be a central goal of optimal monetary policy. Furthermore, the results shown

in the table suggest that in the Ramsey-optimal competitive equilibrium price inflation is

somewhat smoother than wage inflation. Finally, a remarkable feature of monetary policy

is that a significant degree of inflation stability is brought about with little volatility in the

policy instrument. In effect, the Ramsey-optimal standard deviation of the nominal interest

rate is only 0.5 percentage points at an annualized rate.

5 Optimal Operational Interest-Rate Rules

Thus far, we have established that the Ramsey-optimal policies in the SGU and EHL models

induce the same dynamics at business-cycle frequency. In this section, we ask what simple

interest-rate feedback rule comes closest to implementing the Ramsey policy in the SGU and

EHL models. We are particularly interested in comparing the values of the policy coefficients

under each of the two sticky-wage formulations.

Our focus is on simple operational interest-rate feedback rules. The conditions we impose

for a rule to be simple and operational are three: (a) The interest rate must be set as a

function of a small number of easily observable macroeconomic variables; (b) the rule must

result in a locally determinate competitive equilibrium; and (c) the rule must imply dynamics

for the nominal interest rate that respect the zero lower bound.

We consider interest-rate feedback rules whereby the nominal interest rate is set as a

linear function of lagged price and wage inflation and lagged output growth. Formally, we

study rules pertaining to the following two families:

ln

(
Rt

R∗

)
= απ ln

(πt−1

π∗

)
+ αW ln

(
πW

t−1

π∗µz∗

)
+ αy ln

(
yt−1

yt−2µz∗

)
(25)

and

ln

(
Rt

Rt−1

)
= απ ln

(πt−1

π∗

)
+ αW ln

(
πW

t−1

π∗µz∗

)
+ αy ln

(
yt−1

yt−2µz∗

)
, (26)

where R∗ denotes the target value for the gross nominal interest rate, π∗ denotes the target

value for the gross rate of price inflation, and µz∗ denotes the long-run gross growth rate

of the economy. We set R∗ and π∗ equal to their respective values in the deterministic
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steady state of the Ramsey equilibrium, which for our calibration take the values 4.4 and

-0.4 percent per year. We set the parameter µz∗ to 1.8 percent per year, which coincides

with the steady-state growth rate of the economy.

We limit attention to interest-rate rules that feature only lagged values of inflation and

output because we believe that it would be unrealistic to assume that the central bank

has knowledge of these indicators contemporaneously. To the extent that this is the case,

contemporaneous rules would fail to be operational. A second significant characteristic of

the rules we propose is that the policymaker is assumed to respond to deviations of output

growth from its long-run average. This characteristic represents a departure from much

of the related literature which focuses on an output-gap measure defined as deviations of

actual output from the level that would obtain in a flexible-price, flexible-wage economy.

We stay away from this latter measure of the output gap because we regard such concept

as less operational than the one we propose. This is because computing the flexible-price,

flexible-wage level of output requires knowledge of the values taken by all state variables on

a period-by-period basis. The output measure we propose requires knowledge only about

the long-run growth rate of the economy.

The interest-rate rule given in equation (25) is cast in terms of deviations of the nominal

interest rate from a constant target value R∗. This specification, hence, presumes knowledge

on the part of the central bank of the parameter R∗. In turn, given a target value of the

inflation rate (π∗), knowledge of R∗ requires information about the long-run level of the

real interest rate. When estimates of the long-run real interest rate are imprecise, such

informational requirement may render the policy rule given in (25) nonoperational. A way

to avoid this problem is to formulate the interest-rate rule in terms of changes in the nominal

interest rate as in equation (26).

The optimal operational interest-rate rule is the operational interest-rate rule that max-

imizes the unconditional expectation of the welfare criterion given in equation (24). To

numerically compute the optimal rule, we discretize the policy parameter space (απ, αW , αy)

with a grid of points from 0 to 3 and step size 0.1 for each of the three policy coefficients.

That is, we evaluate unconditional welfare for 313 or 29,791 policy rules. For each of these

specifications, we compute a second-order accurate approximation to the unconditional ex-

pectation of the welfare criterion, EV0, using the computer code developed by Schmitt-Grohé

and Uribe (2004a). (Matlab code to compute the optimal operational rule is available on

the authors’ websites.)

To ensure compliance with criterion (b) for operationality of the policy rule, which re-

quires the associated competitive equilibrium to be locally unique, we eliminate all points

in the policy parameter space for which the equilibrium is either indeterminate or locally
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Table 3: Optimal Operational Interest-Rate Rules

Coefficient SGU Model EHL Model
Level Rule

απ 3 3
αW 0 0
αy 0 0

Difference Rule
απ 3 3
αW 0 0
αy 0 0

The level rule is given by equation (25), and the difference rule is given by equation (26).

inexistent. Criterion (c) for operationality of the policy rule demands that the zero bound on

nominal interest rates be observed. This restriction adds an occasionally binding constraint

to the set of equilibrium conditions. Because our numerical solution algorithm is based on

a perturbation argument, it is ill suited to accommodate occasionally binding constraints.

Consequently, we approximate the zero-bound constraint by requiring that two standard de-

viations of the nominal interest rate implied by the optimal rule not exceed the deterministic

steady-state value of the nominal interest rate. Formally, we impose

2 std(lnRt) < ln(R∗).

Table 3 displays the optimal operational interest-rate-rule coefficients in the SGU and

EHL models of wage-stickiness. We find that the optimal rule is identical for both models. It

takes the form of a pure inflation targeting rule in the sense that it responds aggressively to

deviations of price inflation from target and is completely insensitive to variations in either

wage inflation or output growth. Furthermore, the finding that the optimal interest-rate rule

responds only to price inflation holds regardless of whether the rule is specified in the level

of the interest rate or in its difference.

Our optimal operational interest-rate rule differs sharply from the ones obtained by Erceg

et al. (2000), Canzoneri et al. (2005), and Levin et al. (2006) in related papers comparing

price and wage inflation targeting in economic environments with Calvo-style nominal inertia

in product and labor markets. These authors find that the best rule takes the form of a pure

wage-inflation targeting rule. Of these studies, the one by Levin et al. uses an economic

environment closest to the one studied in the present paper. Levin et al. limit attention to

difference rules that respond only to contemporaneous values of wage and price inflation and
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find the optimal coefficients to be αW = 3.2 and απ = 0. We note that this rule does not

qualify as operational under our definition, because it does not satisfy our requirement that

operational rules respond to lagged measures of inflation. Moreover, in the context of our

model the Levin et al. pure wage-inflation targeting rule would continue to be nonoperational

even if we relaxed the definition of operationality to allow for current-looking rules. For the

Levin et al. rule violates our criterion (c) for operationality, which requires the nominal

interest rate not hit its zero bound too frequently.1

Our baseline calibration assigns a larger degree of stickiness in product markets than in

labor markets (α = 0.8 versus α̃EHL = 0.69). This asymmetry, however, is not responsible

for our result concerning the optimality of a pure price-targeting rule. To substantiate this

claim, we reset the parameters α and α̃EHL at the common value of 0.75. This value is about

the average of the degrees of price and wage inertia assumed in our baseline calibration and

coincides with the one adopted by Erceg et al. (2000) and Canzoneri et al. (2005). We find

that under this parameterization the optimal operational rule continues to call for targeting

price inflation exclusively (απ = 3 and αW = αy = 0). The same operational rule emerges as

optimal in the SGU model, which requires setting α̃SGU at 0.943 to be in line with a value

of 0.75 for α̃EHL. Furthermore, we find that a pure wage-inflation-targeting rule (αW = 3

and απ = αy = 0) fails to be operational in the SGU and EHL models, as it violates the

requirement of infrequent violations of the zero bound on nominal interest rates.

6 Second-Order Accurate Welfare Functions

The facts that the SGU and EHL wage-stickiness formulations deliver identical Ramsey-

optimal dynamics up to first order, identical optimal operational rules, and identical equi-

librium conditions up to first order suggest that the welfare function associated with both

models must be similar up to second order. This impression is supported by the welfare lev-

els reported at the bottom of table 2. There, we show that up to second order the Ramsey

policy induces an unconditional level of welfare of -183.1090 under the SGU specification

and of -183.0913 under the EHL specification.

In this section, we establish analytically the similarity between the welfare criteria in the

SGU and EHL models. To this end, we consider a much simpler economic environment than

the one studied thus far. In particular, we consider the sticky-price sticky-wage model of

Erceg et al. (2000). This model features no habit formation, no capital accumulation, no

money, no growth, and no variable capacity utilization. Furthermore, the Erceg et al. model

1This difficulty with the Levin et al. rule emerges not only in the context of backward-looking rules, but
also when the rule is contemporaneous. See Primiceri (2006).
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assumes the existence of subsidies to production and labor supply aimed at neutralizing

the distortions arising from the presence of monopolistic competition in product and factor

markets.

We find that up to second order, the difference in the unconditional expectation of the

period utility function under SGU and EHL wage stickiness, which we denote by E[USGU
t −

UEHL
t ], is given by:2

E[USGU
t − UEHL

t ] =

[
1 − βα̃SGU

1 − α̃SGU
− 1 − βα̃EHL

1 − α̃EHL

]
hUh(h)η̃

2γ
Var(ln(πW )).

To obtain this expression, we use the fact that up to second order both the SGU and EHL

model give rise to the same volatility of wage inflation, Var(ln(πW )). Also, the parameter γ

is the wage-markup coefficient in the linearized wage Phillips curve. Given an estimate of

the wage Phillips curve, γ takes the same value under SGU and EHL wage stickiness.

It is clear from the above expression that the unconditional expectation of the difference

in the period utility functions under the SGU and EHL wage-stickiness specifications vanishes

as the discount factor approaches unity. Formally,3

lim
β→1

E[USGU
t − UEHL

t ] = 0.

Clearly, because, as shown earlier, αSGU > αEHL, and recalling that Uh < 0, it follows

that welfare under the SGU formulation is always slightly smaller than under the EHL

specification, or EUSGU
t < EUEHL

t . This result appears to hold for the more complex model

studied earlier in the paper, as suggested by table 2.

7 Conclusion

The central goal of monetary authorities around the developed world is the stabilization of

price inflation. This policy target is explicit in some countries, like the United Kingdom, and

implicit in others, like the United States. This practice is in accordance with the prescriptions

stemming from most of the vast literature on the theory of monetary policy based on the

new Keynesian model. At center stage in this literature is the emphasis on nominal rigidities

taking the form of sticky prices.

A number of authors within the new Keynesian literature, most notably Erceg et al.

(2000), Canzoneri et al. (2005), and Levin et al. (2006), depart from the price-inflation

2The derivation of this expression is available from the authors upon request.
3Of course, this statement is true only insofar as UhhVar(ln(πW )) remains bounded as the discount factor

approaches unity.
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targeting recommendation and argue that central banks ought to concentrate their efforts

on targeting the rate of wage inflation. These authors stress the role of nominal wage

stickiness in shaping policy advise.

In a number of recent papers (Schmitt-Grohé and Uribe, 2004b and 2006a,b), we have

argued that price-inflation continues to emerge as the optimal target variable in the context

of an estimated medium-scale model featuring both nominal wage and price inertia in con-

junction with a number of other real and nominal frictions (including money demands by

households and firms, habit formation, investment adjustment costs, and variable capacity

utilization, among others). We argue that this framework is of particular empirical interest

because it has been shown to account well for observed U.S. postwar dynamics in response

to demand and supply shocks.

Levin et al. (2006) argue that our emphasis on price stability is a consequence of the

particular variant of the Calvo-style wage staggering mechanism that we used. Namely, the

SGU wage stickiness model discussed at length in the preceeding sections. In their view,

wage-inflation smoothing would emerge as the optimal monetary policy prescription if wage

stickiness was assumed to be of the EHL type. Specifically, Levin et al. (2006, p. 261) state

that “our analysis has followed Erceg, Henderson, and Levin (2000) in assuming that each

individual household provides a distinct labor service, whereas Schmitt-Grohé and Uribe

(2004[b]) assume that each household has a continuum of members providing all types of

labor services and that the household’s utility depends only on its total hours of work.

While such assumptions might seem to be merely technical details, in fact these differences

have fairly dramatic consequences for the first-order dynamics of wage inflation, the second-

order effects of cross-sectional wage dispersion, and the design of welfare-maximizing policy

rules.” The results of the present paper show that first-order equilibrium dynamics, the

Ramsey-optimal dynamics, and the form of the optimal policy rule are the same under the

SGU and the EHL variants of Calvo-type wage stickiness. Furthermore, we establish that

in the context of our medium-scale model price inflation targeting is optimal under both

formulations of wage stickiness.

The fact remains that a number of existing studies using essentially the same medium-

scale theoretical framework arrive at fairly different recommendations for the design of mon-

etary policy rules. The main contribution of the present study is to establish that these

differences are not attributable to the alternative variants of Calvo-type wage stickiness em-

ployed. In addition, our results suggest that part of the disparity in policy recommendations

originates from differences in the definition of what constitutes an operational interest-rate

rule. In particular, there appears to be no consensus in the literature on whether it is op-

erational to include contemporaneous values of output and inflation as target variables in
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the feedback rule. Also, there is no uniform treatment of the constraints that the zero lower

bound on nominal interest rates imposes on monetary policy. Most existing related studies

ignore these constraints altogether. Our stance in this paper is to admit as operational only

rules that respond to past indicators of inflation and aggregate activity and that induce low

volatility of the nominal interest rate to avoid frequent violations of the zero bound. A full

understanding of what lies behind the disparities in optimal policy across studies warrants

further investigation.
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Appendix

This appendix lists the complete set of equilibrium conditions in the SGU and EHL models.

Suitable stationarity-inducing transformations were applied to variables containing a trend in

equilibrium. A derivation of the equilibrium conditions common to both models can be found

in Schmitt-Grohé and Uribe (2006b). In the equations below, the parameter χ̃ measures the

degree of nominal wage indexation to lagged price inflation and long-run productivity growth.

To obtain the case of full indexation analyzed in the main body of the paper, set χ̃ = 1.

A.1. Equilibrium Conditions Common to the SGU and EHL Model
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A.2. Equilibrium Conditions Specific to the SGU Model
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A.3. Equilibrium Conditions Specific to the EHL Model
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