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I. Introduction 

Regression models for stock or portfolio returns on market-wide factors have long been a staple of 

financial economics. Such factor models are used in event studies (e.g., Fama, Fisher, Jensen and Roll, 

1969), in tests of asset pricing theories such as the Capital Asset Pricing Model (CAPM, Sharpe, 1964) 

and in other applications.  For example, when the market return rm is the factor, the regression model for 

the return rt+1 is:  

 

                                            rt+1 = α + β rm,t+1 + ut+1,                     (1) 

 

where E(ut+1)=E(ut+1rm,t+1)=0.  The slope coefficients are the “betas,” which measure the market-factor 

risk. When the returns are measured in excess of a reference asset like a risk-free Treasury bill return, the 

intercepts are the “alphas,” which measure the expected abnormal return.  For example, when rm is the 

market portfolio excess return, the CAPM implies that α=0, and the model is evaluated by testing that null 

hypothesis. 

Recent work in conditional asset pricing allows for time-varying betas modeled as linear 

functions of lagged predictor variables, following Maddala (1977).  Prominent examples include Shanken 

(1990), Cochrane (1996), Ferson and Schadt (1996), Jagannathan and Wang (1996) and Lettau and 

Ludvigson (2001).  The time-varying beta coefficient is βt = b0 + b1 Zt, where Zt is a lagged predictor 

variable.  In some cases the intercept or conditional alpha is also time-varying, as αt = α0 + α1Zt (e.g. 

Christopherson, Ferson and Glassman, 1998).  This results in the following regression model: 

 

                         rt+1 = α0 + α1Zt + b0 rm,t+1 + b1 rm,t+1Zt +  ut+1,  (2) 

 



 
 

3 

where E(ut+1)=E(ut+1Zt)=E(ut+1rm,t+1)=E(ut+1[Zt rm,t+1])=0.  The conditional CAPM implies that α0=0 and 

α1=0.  

This paper studies the sampling properties of regressions like Equation (2).  We focus on the joint 

affects of two important issues.  The first is naive data mining and the second is spurious regression.  

Naive data mining in this context refers to the practice of searching the data for predictor variables, 

perhaps collectively by a group of researchers through a series of studies, and then effectively using the 

same data to evaluate the model without accounting for the number of searches.  Spurious regression 

arises when the persistence or high autocorrelation of a predictor variable tricks the standard test statistics 

into finding a “significant” relation where none exists.  These two issues have been studied separately in 

many previous papers.  However, in spite of the large number of studies that rely on regressions like (2), 

none of the work of which we are aware addresses the effects of data mining and spurious regression on 

these regressions.  That is the goal of this paper. 

Ferson, Sarkissian and Simin (2003) study the combined effects of data mining and spurious 

regression in the context of simpler models where the only variable on the right-hand side is the lagged 

predictor: 

 

      rt+1 = δ0 + δ1 Zt + vt+1.                   (3) 

 

They focus on the slope coefficient and find that the effects of data mining and spurious regression 

interact and reinforce each other.  The more persistent variables which generate spurious regressions are 

more likely to be discovered by data mining, so the spurious regression problem is worse in the presence 

of data mining.  At the same time, standard corrections for data mining are inadequate in the presence of 

persistent lagged variables, so persistence magnifies the impact of data mining.   

 These results have profound potential implications for asset pricing regressions like (2) because the 
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conditional asset pricing literature using the regression (2) has, for the most part, used variables that were 

discovered based on predictive regressions like (3).  This motivates our study of how data mining and 

spurious regression biases influence the asset pricing regressions.  We make the assumption -- which 

characterizes the existing literature well -- that the lagged variables are mined on the basis of their 

performance in the predictive regression (3).  The lagged instruments may be mined to predict the market 

factor or to predict the test asset returns; we study both cases.  We assume that the market factor comes 

from theory and is not mined from data.1   

Our results indicate that the conditional betas estimated from the conditional asset pricing 

regressions are relatively robust to the effects of spurious regression and data mining for lagged 

predictors. The estimates of the average of the conditional alphas over time also are reasonably well 

specified. However, the estimates of time variation in alpha are subject to biases.  If the model is 

estimated without the time-varying alpha term, the conditional betas are mildly biased. Our results help 

justify the use of regressions like (2) in asset pricing studies, and suggest some refinements and caveats in 

their interpretation. 

The rest of the paper is organized as follows.  Section II briefly reviews the effects of data mining 

and spurious regression in the simple predictive regressions.  Section III further motivates our analysis of 

the conditional asset pricing regressions.  Section IV describes our simulation design and Sections V and 

VI present the results. Section VII offers concluding remarks.   

 

II. Spurious Regression and Data Mining 

The lagged predictor variables identified in the asset pricing literature frequently are highly persistent.  

Short term Treasury bill yields, monthly book-to-market ratios, the market dividend yield and some yield 

                                                  
1 There may be some debate about this if the factors are taken to be those of Fama and French (1993, 1996); see Lo and 
MacKinlay (1990), Ferson, Sarkissian and Simin (1999) or Conrad, Cooper, and Kaul (2003). 
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spreads have first-order autocorrelations of 0.97 or higher in the monthly data commonly used.  This 

suggests that spurious regression problems may arise when these variables are the predictors.  

 The problem of spurious regression in simple predictive models like Equation (3) was perhaps 

first studied by Yule (1926), who observed that two trending series that are actually independent of each 

other are likely to appear to be related in given sample.  Granger and Newbold (1974) study the problem 

in the context of the levels of macroeconomic variables.  Following Granger and Newbold, we interpret a 

spurious regression as one in which the “t-ratios” in the regression are likely to indicate a significant 

relation when the variables are really independent.  The problem may come from the numerator or the 

denominator of the t-ratio: the coefficient or its standard error may be biased.  Ferson, Sarkissian and 

Simin (2003) show that the problem in the predictive regression (3) lies with the standard errors. When 

the null hypothesis that the regression slope δ1=0 is true, the error term vt+1 of the regression (3) inherits 

its autocorrelation from the dependent variable.  If the asset return on the left hand side consists of a 

persistent expected return plus noise, the return has some degree of persistence.  Assuming stationarity, 

the slope coefficient is consistent, but standard errors that do not account for the serial dependence 

correctly are biased and inconsistent. 

Many studies of spurious regression examine nonstationary models, where the autocorrelation of 

the regressor is equal to 1.0 (e.g. Phllips (1986), Campbell and Shiller (1988) or Marmol, 1998), or where 

the process is local to unity, such that the autocorrelation approaches 1.0 as the sample size, T, gets large 

(e.g. Phillips (1998), Valkanov (2003) or Campbell and Yogo, 2006).  In such cases the sampling 

distributions for simple predictive regressions like (3) can often be described by functions of integrals of 

Brownian motions.  It may be possible to extend this kind of analysis to regressions like (2) with data 

mining in future work.  We focus on stationary data, allowing for realistically high autocorrelations, in 

our analysis.  This is largely for tractability, but it also reflects a view that local-to-unity approximations 

are most appropriate when overlapping, longer horizon returns are measured.  Most of the asset pricing 
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literature that motivates this study uses monthly, non-overlapping returns data. 

The theoretical foundations for spurious regression bias with stationary but close-to-unit-root 

regressors is provided by Phillips (1986, 1998), Marmol (1998), Tsay and Chung (2000), Granger, Hyung, 

and Jeon (2001), and Jansson and Moreira (2006).  Lanne (2002) and Boudoukh, Richardson, and Whitelaw 

(2005) study regressions to predict long-horizon returns.  Spurious regression bias is also observed in 

models for stock returns using dummy variables as the predictors (see Powell, Shi, Smith, and Whaley 

2006), in error-correction regressions (see Berkowitz and Giorgianni, 1996), and in predictive models for 

the variance of stock returns (see Paye, 2006). Phillips (2001) studies problems using bootstrap methods 

in the presence of spurious regressions.  

  Besides spurious regression bias, the financial economics literature has examined other statistical 

issues with predictive regressions for stock returns.  Boudoukh and Richardson (1994) provide an overview.  

Goetzmann and Jorion (1993), Nelson and Kim (1993), Bekaert, Hodrick, and Marshall (1997) and 

Stambaugh (1999) study biases due to dependent stochastic regressors.  Stambaugh (1999) studies a predictive 

regression where the analyst observes and uses the correct regressor, but a finite sample bias arises because the 

future value of the regressor is correlated with the left-hand side stock return.  Amihud and Hurvich (2004) 

examine solutions for this bias in a multiple regression context.  In our problem, the lagged variable used by 

the analyst is independent of the correct regressor, so the Stambaugh bias does not arise.  The bias in our case 

is due to the joint effects of data mining and spurious regression bias.  Other useful studies of issues that 

debate the predictability of stock returns with lagged information variables include Kim, Nelson and Startz 

(1991), Torous, Valkanov and Yan (2003), Lewellen (2004), Ferson, Heuson and Su (2005), Ang and Bekaert 

(2006), and Chapman, Simin and Yan (2003).   

Data mining refers to the practice of searching through the data to find predictor variables.  With 

naïve data mining the same data are effectively used in model estimation, prediction or testing.  Searching 

through 100 independent variables, one expects to find about five that are “significant” at the 5% level.  



 
 

7 

To conduct correct inference in such a setting, it is necessary to control for the number of searches 

undertaken.  Leamer (1978), Hastie, Tibshirani and Friedman (2001) and White (2000), among others, 

describe statistical approaches that control for the number of searches.  In financial economics the 

problem is usually complicated by the fact that many researchers use the same data sets.  Thus, the data 

are effectively mined by an unknown number of previous researchers (see, e.g. Lo and MacKinlay, 1990). 

Figure 1, taken from simulations described in Ferson, Sarkissian and Simin (2003), illustrates the 

interaction between data mining and spurious regression.  The critical values for significant t-statistics for 

the δ1 coefficient increase with the number of variables mined and with the extent of spurious regression.  

In the presence of spurious regression, persistent variables are likely to be mined, and the two effects 

reinforce each other.  For example, if the expected return accounts for 10% of the stock return variance, 

we only have to consider mining in a set of 5 to 10 instruments to obtain critical values as high as those 

obtained with 50 to 100 instruments and no spurious regression.  The figure illustrates that, even with a 

modest amount of data mining, the combined effects have a powerful impact. 

 

III. Regressions with Time-varying Alphas and Betas 

The conditional asset pricing literature using regressions like (2) has evolved from the literature on pure 

predictive regressions.  First, studies identified lagged variables that appear to predict stock returns.  Later 

studies, beginning with Gibbons and Ferson (1985), used the same variables to study asset pricing 

models.  Thus, it is reasonable to presume that data mining is directed at the simpler predictive 

regressions.  The question now is: How does this affect the validity of the subsequent asset pricing 

research that uses these variables in regressions like (2)?  That is the central question addressed by this 

study. 

  Table 1 summarizes representative studies that use the regression model (2).  It lists the sample 
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period, number of observations and the lagged instruments employed.  It also indicates whether the study 

uses the full model (2), with both time-varying betas and alphas, or restricted versions of the model in 

which either the time-varying betas or time-varying alphas are suppressed.  Finally, the table summarizes 

the largest t-statistics for the coefficients α1 and b1 reported in each study.  If we find that the largest t-

statistics are insignificant in view of the joint effects of spurious regression and data mining, then none of 

the coefficients are significant.  We return to this table later and revisit the evidence. 

Using regression models like Equation (2), the literature has produced a number of “stylized 

facts.” First, studies typically find that the intercept is smaller in the “conditional” model (2) than in the 

“unconditional” model (1):  ⏐α⏐ > ⏐α0⏐. The interpretation of these studies is that the conditional CAPM 

does a better job of “explaining” average abnormal returns than the unconditional CAPM.  Examples with 

this finding include Cochrane (1996), Ferson and Schadt (1996), Ferson and Harvey (1997, 1999), Lettau 

and Ludvigson (2001) and Petkova and Zhang (2005).  Second, studies typically find evidence of time 

varying betas: The coefficient estimate for b1 is statistically significant.  Third, studies typically find that 

the conditional models fail to completely explain the dynamic properties of returns: The coefficient 

estimate for α1 is significant, indicating a time-varying alpha.  Our objective is to study the reliability of 

such inferences in the presence of persistent lagged instruments and data mining. 

 

IV. The Simulation Design 

The data in our simulations are generated according to:  

 

                                     rt+1 = βt rm,t+1 + ut+1,            (4) 

     βt = 1 + Zt
*,                          

     rm,t+1 = μsp + k Z*
t + wt+1. 
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We use the simulated data to run the regression model (2), focusing on the t-statistics for the coefficients 

{α0, α1, b0, b1}. The variable Z*
t in Equation (4) is an unobserved latent variable that drives both expected 

market returns and time-varying betas.  The term βt in Equation (4) is a time-varying beta coefficient.  As 

*
tZ has mean equal to zero, the expected value of beta is 1.0.  When k≠0 there is an interaction between 

the time variation in beta and the expected market risk premium.  A common persistent factor drives the 

movements in both expected returns and conditional betas.  Common factors in time-varying betas and 

expected market premiums are important in asset pricing studies such as Chan and Chen (1988), Ferson 

and Korajczyk (1995) and Jagannathan and Wang (1996), and in conditional performance evaluation, as 

in Ferson and Schadt (1996).  There is a zero intercept, or “alpha,” in the data generating process (4), 

consistent with asset pricing theory.   

  Because the spurious regression problem is driven by biased estimates of the standard error, at 

least in the context of the regression (3), the choice of the standard error estimator is crucial.  In a 

simulation exercise, it is possible to find an efficient unbiased estimator, since we know the “true” model 

that describes the simulated regression error.  Of course, this will not be known in practice.  To mimic the 

practical reality, the analyst in our simulations uses the popular heteroskedasticity-and-autocorrelation 

consistent (HAC) standard errors from Newey and West (1987), with an automatic lag selection 

procedure.  The number of lags is chosen by computing the autocorrelations of the estimated residuals, 

and truncating the lag length when the sample autocorrelations become “insignificant” at longer lags.2 

 

Modeling the Market Return 

  The market return data, rm,t+1, are generated as follows.  We set the parameter μsp = 0.0071 to 

                                                  
2 Specifically, we compute twelve monthly sample autocorrelations and compare the values with a cutoff at two 
approximate standard errors: 2/√T, where T is the sample size.  The number of lags chosen is the minimum lag length at 
which no higher order autocorrelation is larger than two standard errors.  



 
 

10 

equal the monthly average return of the S&P500 stock index in excess of the one-month Treasury bill.  

The variance of the error is σw
2 = σsp

2 - k2 Var(Z*), where σsp = 0.057 matches the S&P500 return and 

Var(Z*) = 0.055, is the estimated average monthly variance of the market betas on 58 randomly selected 

stocks from CRSP over the period 1926-1997.3   The predictor variables follow an autoregressive process:  
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The assumption that the true expected return is autoregressive follows studies such as Lo and MacKinlay 

(1988), Conrad and Kaul (1988), Fama and French (1988b) and Huberman and Kandel (1990). 

The errors (εt
*,εt) are drawn randomly as a normal vector with mean zero and covariance matrix, 

∑. The covariance matrix is diagonal, Zt and Zt
* are independent, and the true value of δ1 in the regression 

(3) is zero.  We build up the time-series of the Z and Z* through the vector autoregression (5), where the 

initial values are drawn from a normal with mean zero and variances, Var(Z) and Var(Z*).  The other 

parameters that calibrate the simulations, {μ, σu
2, ρ, ρ*, and ∑}, are described below.   

 

Modeling Data Mining 

Our simulations capture the interaction between spurious regression and data mining, where the 

instruments to be mined are independent as in Foster, Smith and Whaley (1997).  There are L measured 

                                                  
3 We calibrate the variance of the betas to actual monthly data by randomly selecting 58 stocks with complete CRSP data 
for January, 1926 through December, 1997.  Following Fama and French (1997) we estimate simple regression betas for 
each stock's excess return against the S&P500 excess return, using a series of rolling 5-year windows.  For each window 
we also compute the standard error of the beta estimate.  This produces a series of 805 beta estimates and standard error 
estimates for beta for each firm.  We calibrate the variance of the true beta for each firm to equal the sample variance of 
the rolling beta estimates minus the average estimated variance of the estimator.  Averaging the result across firms, the 
value of Var(Z*) is 0.0550.  Repeating this exercise with firms that have data from January of 1926 through the end of 
2004 increases the number of months used from 864 to 948 but decreases the number of firms from 58 to 46.  The value 
of Var(Z*) in this case is 0.0549. 
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instruments over which the analyst searches for the “best” predictor of the test asset return, based on their 

Newey-West t-ratios in the univariate regression (3). In Equation (5) Zt becomes a vector of length L, 

where L is the number of instruments through which the analyst sifts. The error terms (εt
*, εt) become an 

L+1 vector with a diagonal covariance matrix; thus, εt
* is independent of εt. Following Ferson, Sarkissian 

and Simin (2003), we compile a randomly-selected sample of 500 potential instruments, through which 

our simulated analyst sifts to mine the data. We select the 500 series randomly from a much larger sample 

of 10,866 potential variables, as described in the appendix. The 500 series are randomly ordered, and then 

permanently assigned numbers between 1 and 500. When a data miner in our simulations searches 

through, say 50 series, we use the sampling properties of the first 50 series to calibrate the simulations. 

 

Modeling Persistence 

We use our sample of potential instruments to calibrate the amount of persistence in the "true" 

expected market returns, ρ*. Fesson, Sarkissian and Simin (2003) argue that if the instruments we see in 

the literature arise spuriously from data mining, they are likely to be more highly autocorrelated than the 

underlying “true” expected returns.  However, if the instruments in the literature are a realistic 

representation of expected stock returns, their autocorrelations may be a good proxy for the persistence of 

the true expected returns. The mean autocorrelation of our 500 variables is 15% and the median is 2%.  

Of the 13 popular instruments from the literature surveyed by Ferson Sarkissian and Simin (2003, Table 

1), the median autocorrelation is 95%. We use ρ*= 95% for the results reported in the tables.  We also 

experiment with smaller values of ρ* as described below.  With larger values of ρ* the biases we document 

become even more severe.  

  The autocorrelations of the observed instruments, denoted by the L-vector, ρ, are set equal to the 

sample autocorrelations of the first L instruments in our 500 potential instruments, rescaled around the 
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value of 0.95.4  The rescaling allows us to center the distribution of autocorrelations at 0.95 while 

preserving the range in the original data.5  The simulations match the unconditional variances of the 

instruments, Var(Z), to the data.  The first element of the covariance matrix Σ is equal to σ*
2.  For a 

typical i-th diagonal element of Σ, denoted by σi, the elements of ρ(Zi) and Var(Zi) are given by the data, 

and we set σi
2 = [1-ρ(Zi)2]Var(Zi).   

 

Coefficients of Determination 

In the asset pricing regressions there are two ways to think about R-squared.  The predictive R-

squared, Rp
2, measures the proportion of the variance of the market return that could be predicted if Z* 

was observed: Rp
2  = Var{E(rt+1|Zt

*)}/Var(rt+1).  We choose the scale parameter, k, to match the values of 

Rp
2 and Var(Z*), which imply k2 = σsp

2 Rp
2 / Var(Z*).  

The R-squares observed when the regressors include a contemporaneous market return, as in (2), 

will be higher than those of pure predictive regressions.  Hence, we define the contemporaneous R-

squared, Rc
2 = Var{βtrm,t+1)}/Var(rt+1).  This is the R2 that could in principle be observed by using the 

contemporaneous market return as the regressor, if the true value of the time-varying beta was known.  

The two versions of R-squared are monotonically related in our experiments and we report only the 

predictive Rp
2 in the tables. 

The final parameters of the simulations are chosen to match the values of ρ and Rp
2 as follows.  

We set σε2 = Var(Z*) (1-ρ2) and we set σu
2 so that the predictive R-squared of the return rt+1 is equal to the 

                                                  
4 We calibrate the true autocorrelations in the simulations to the sample autocorrelations, adjusted for first order finite 
sample bias as:  r + (1+3r)/T, where  r is the OLS estimate of the autocorrelation and T is the sample size. 
5 The transformation is as follows.  In the 500 instruments, the minimum bias-adjusted autocorrelation is -0.571, the 
maximum is 0.999 and the median is 0.02.  We center the transformed distribution about 0.95.  If the original 
autocorrelation ρ is less than 0.95 we transform it to: 

 .95 + (ρ-.02){(.95+.571 )/(.02+.571)}. 

If the value is above 0.95 we transform it to: 

 .95 + (ρ-.02){(.999-.95)/(.999-.02)}. 
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predictive R-squared of the market return, rm,t+1. 

In summary, the analyst in the simulations estimates the regression model (2).  He uses the lagged 

instrument, Zt, which is independent of Zt
*.  He identifies the lagged instrument as the one that maximizes 

the absolute t-ratio in the predictive regression (3).  The true values of the coefficients in the regression 

(2) are α0=0, α1=0, b0=1 and b1=0.  Thus, the true alpha is zero as predicted by the asset pricing model and 

there is no time variation in the beta that is related to the measured instrument.  Because of the interaction 

terms in the data generating process, the returns data will be conditionally heteroskedastic, with an 

unobservable form.  The analyst forms t-ratios for the coefficients using the Newey-West procedure, as 

described above.6   

 

V.  Results 

Cases with Small Amounts of Persistence 

  We first consider a special case of the model where we set ρ* = 0 in the data generating process 

for the market return and true beta, so that Z* is white noise and σ2(ε*) = Var(Z*).  In this case the 

predictable (but unobserved by the analyst) component of the stock market return and the betas follow a 

white noise process.  We allow a range of values for the autocorrelation, ρ, of the measured instrument, Z, 

including values as large as 0.99.  For a given value of ρ, we choose σ2(ε) = Var(Z*)(1-ρ2), so the 

measured instrument and the unobserved beta have the same variance.  We find in this case that the 

critical values for all of the coefficients are well behaved.  Thus, when the true expected returns and betas 

                                                  
6 Substituting the three equations of (4) together we can express the data generating process for the return rt+1 as: 

 rt+1 = (1+Zt
*)(μsp + k Z*

t + wt+1) + ut+1 . 

Because of the interaction between the two Z*
t terms, we transform the data generated from this expression to obtain the 

desired true parameter values in the model, which are α0=α1=b1=0, b0=1.  The transformed return is given by a + brt+1, 
where the constants are b = [1 + 3kμsp Var(Z*)/Var(rm)]-1, a = μsp - b{ μsp + k Var(Z*)}.  This transformation makes the 
means of rt+1 and rmt+1 equal to each other. 
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are not persistent, the use of even a highly persistent regressor does not create a spurious regression bias 

in the asset pricing regressions.    

It seems intuitive that there should be no spurious regression problem when there is no 

persistence in Z*.  Since the true coefficient on the measured instrument, Z, is zero, the error term in the 

regression is unaffected by the persistence in Z under the null hypothesis.  When there is no spurious 

regression problem there can be no interaction between spurious regression and data mining.  Thus, 

standard corrections for data mining (e.g. White, 2000) can be used without concern in these cases. 

In our second experiment the measured instrument and the true beta have the same degree of 

persistence, but their persistence is not extreme. We fix Var(Z) = Var(Z*) and choose, for a given value of 

ρ*=ρ, σ2(ε) = σ2(ε*) = Var(Z*)(1-ρ2).  For values of ρ<0.95 and all values of Rp
2 the regressions seem 

generally well-specified, even at sample sizes as small as T=66.  These findings are similar to the findings 

of Ferson, Sarkissian and Simin (2003) for the case of the pure predictive regression (3).  Thus, the 

regressions appear to be well specified when the autocorrelation of the true predictor is below 0.95. 

 

Cases with Persistence 

Table 2 summarizes simulation results for a case that allows data mining and spurious regression. 

In this experiment the true persistence parameter ρ* is set equal to 0.95. The table summarizes the results 

for time-series samples of T=66, T=350 and T=960.  The number of variables over which the artificial 

agent searches in mining the data, ranges from one to 250. We focus on the two abnormal return 

coefficients, { α 0 , α 1} and on the time-varying beta coefficient, b1.  

Table 2 shows that the means of the coefficient α0, the fixed part of the alpha, are close to zero, 

and they get closer to zero as the number of observations increases, as expected of a consistent estimator. 

 The 5% critical t-ratios for α0 are reasonably well specified at the larger sample sizes, although there is 

some bias at T=66, where the critical values rise with the extent of data mining. Data mining has little 
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effect on the intercepts at the larger sample sizes. Since the lagged instrument has a mean of zero, the 

intercept is the average conditional alpha. Thus, the issue of data mining for predictive variables appears 

to have no serious implications for measures of average abnormal performance in the conditional asset 

pricing regressions, provided T > 66. This justifies the use of such models for studying the cross-section 

of average equity returns.  

The coefficients α1, which represent the time-varying part of the conditional alphas, present a 

different pattern. We would expect a data mining effect, given that the data are mined based on the 

coefficients on the lagged predictor in the simple predictive regression.  The presence of the interaction 

term, however, would be expected to attenuate the bias in the standard errors, compared with the simple 

predictive regression.  The table shows only a small effect of data mining on the α1 coefficient, but a large 

effect on its t-ratio.  The overall effect is the greatest at the smaller sample size (T=66), where the critical 

t-ratios for the intermediate Rp
2 values (10% predictive R2) vary from about 2.4 to 5.2 as the number of 

variables mined increases from one to 250.  The bias diminishes with T, especially when the number of 

mined variables is small, and for L=1 there is no substantial bias at T=360 or T=960 months. 

The results on the α1 coefficient are interesting in three respects.  First, the critical t-ratios vary by 

only small amounts across the rows of the table.  This indicates very little interaction between the 

spurious regression and data mining effects.  Second, the table shows a smaller data mining effect than 

observed on the pure predictive regression (see Ferson, Sarkissian and Simin, 2003, Table III).  Thus, data 

mining corrections for predictive regressions will overcompensate in this setting.  Third, the critical t-

ratios for α1 become smaller in Table 2 as the sample size is increased.  This is just the opposite of what is 

found for the simple predictive regressions, where the inconsistency in the standard errors makes the 

critical t-ratios larger at larger sample sizes.  Thus, the sampling distributions for time-varying alpha 
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coefficients are not likely to be well approximated by simple corrections.7 

Table 2 does not report the t-statistics for b0, the constant part of the beta estimate.  These are 

generally unbiased across all of the samples, except that the critical t-ratios are slightly inflated at the 

smaller sample size (T=66) when data mining is not at issue (L=1). 

Finally, Table 2 shows results for the b1 coefficients and their t-ratios, which capture the time-

varying component of the conditional betas.  Here, the average values and the critical t-ratios are barely 

affected by the number of variables mined.  When T=66 the critical t-ratios stay in a narrow range, from 

about 2.5 to 2.6, and they cluster more closely around a value of 2.0 at the larger sample sizes.  There are 

no discernible effects of data mining on the distribution of the time-varying beta coefficients except when 

the R2 values are very high.  This is an important result in the context of the conditional asset pricing 

literature, which we characterize as having mined predictive variables based on the regression (3).  Our 

results suggest that the empirical evidence in this literature for time-varying betas, based on the regression 

model (2), is relatively robust to the data mining.   

 

Suppressing Time-varying Alphas 

Some studies in the conditional asset pricing literature use regression models with interaction 

terms, but without the time-varying alpha component (e.g. Cochrane (1996), Ferson and Schadt (1996), 

Ferson and Harvey, 1999).  Since the time-varying alpha component is the most troublesome term in the 

presence of spurious regression and data mining effects, it is interesting to ask if regressions that suppress 

this term may be better specified.  Table 3 presents results for models in which the analyst runs 

regressions without the α1 coefficient.  The results suggest that the average alpha coefficient, α0, and its t-

statistic are well specified regardless of data mining and potential spurious regression.  Thus, once again 

                                                  
7 We conducted some experiments in which we applied a simple local-to-unity correction to the t-ratios, dividing by 
the square root of the sample size.  We found that this correction does not result in a t-ratio that is approximately 
invariant to the sample size. 
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we find little cause for concern about the inferences on average abnormal returns using the conditional 

asset pricing regressions, even though they use persistent, data mined lagged regressors.   

The distribution of the average beta estimate, b0, is not shown in Table 3.  The results are similar 

to those obtained in a factor model regression where no lagged instrument is used.  The coefficients and 

standard errors generally appear well specified.  However, we find that the coefficient measuring the 

time-varying beta is somewhat more susceptible to bias than in the regression that includes α1.  The b1 

coefficient is biased, especially when T=66, and its mean varies with the number of instruments mined. 

The critical t-ratios are inflated at the higher values of Rp
2 and when more instruments are mined. 

Including the time-varying alpha in the regression helps “soak up” the bias so that it will not 

adversely effect the time varying beta estimate.  These experiments suggest that if one is interested in 

obtaining good estimates of conditional betas, then in the presence of data mining and persistent lagged 

instruments, the time-varying alpha term should be included in the regression.   

 

Suppressing Time-Varying Betas 

There are examples in the literature where the regression is run with a linear term for a time-

varying conditional alpha but no interaction term for a time varying conditional beta (e.g. Jagannathan 

and Wang, 1996). Table 4 considers this case. First, the coefficient for the average beta in the regression 

with no b1 term (not shown in the table) is reasonably well specified and largely unaffected by data 

mining on the lagged instrument. We find that the coefficients for alpha, α0 and α1, behave similarly to the 

corresponding coefficients in the full model. The estimates of the average alpha are reasonably well 

behaved, and only mildly affected by the extent of data mining at smaller sample sizes. The bias in α 1 is 

severe. The bias leads the analyst to overstate the evidence for a time-varying alpha, and the bias is worse 

as the amount of data mining increases. Thus, the evidence in the literature for time-varying alphas, based 

on these asset-pricing regressions, is likely to be overstated.   
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A Cross-section of Asset Returns 

We extend the simulations to study a cross-section of asset returns.  We use five book-to-market 

(BM) quintile portfolios, equally weighted across the size dimension, as an illustration.  The data are 

courtesy of Kenneth French. In these experiments the cross-section of assets features cross-sectional 

variation in the true conditional betas. Instead of βt = 1 + *
tZ , the betas are βt = β0 + β1

*
tZ , where the 

coefficients β0 and β1 are the estimates obtained from regressions of each quintile portfolio’s excess return 

on the market portfolio excess return and the product of the market portfolio with the lagged value of the 

dividend yield.  The set of β0’s is {1.259, 1.180, 1.124, 1.118, 1.274}, the set of β1’s is {-1.715, 1.000, 

3.766, 7.646, 8.970}.8  The true predictive R-squared in the artificial data generating process is set to 

0.5%.  This value matches the smallest R-squared from the regression of the market portfolio on the 

lagged dividend yield with a window of 60 months.   

Table 5 shows simulation results for the conditional model with time-varying alphas and betas.  

The means of the b0 and b1 coefficients are shown in excess of their true values in the simulations. The 

critical t-statistics for both α1 and b1 are generally similar to the case where Rp
2=0.5% in Table 2. As 

before, there is a large bias in the t-statistic for α1 that increases with data mining but decreases somewhat 

with the sample size. The t-statistics for the time-varying betas are generally well specified.  

We conduct additional experiments using the cross section of asset returns, where the conditional 

asset pricing regression suppresses either the time-varying alphas or the time-varying betas. The results 

are similar to those in Table 5.  When the time-varying betas are suppressed there is severe bias in α1 that 

diminishes somewhat with the sample size. When time-varying alphas are suppressed there is a mild bias 

                                                  
8 The β1 coefficient for the BM2 portfolio is 1.0, replacing the estimated value of 0.047. When the β1 coefficient is 
0.047 the simulated return becomes nearly perfectly correlated with rm and the simulation is uninformative. The 
dividend yield is demeaned and multiplied by 10. The dividend yield has the largest average sample correlation with 
the five BM portfolios among the standard instruments we examine. 
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in b1. 

 

Revisiting Previous Evidence  

In this section we explore the impact of the joint effects of data mining and spurious regression 

bias on the asset pricing evidence.  First, we revisit the studies listed in Table 1.  Consider the models 

with both time-varying alphas and betas.  If the data mining searches over 250 variables predicting the 

test asset return and T=350, the 5% cut-off value to apply to the t-statistic for α1 is larger than 3.8 in 

absolute value.  For smaller sample sizes, the cut-off value is higher.  Note from Table 1 that the largest t-

statistic for α1 in Shanken (1990) with a sample size of 360 is -3.57 on the T-bill volatility, while the 

largest t-statistic for α1 in Christopherson, Ferson and Glassman (1998) with a sample size of 144 is 3.72 

on the dividend yield.  This means that the significance of the time-varying alphas in both the studies is 

questionable.  However, the largest t-statistic for b1 in Shanken (1990) exceeds the empirical 5% cut-off, 

irrespective of spurious regression and data mining adjustments.  This illustrates that the evidence for 

time-varying beta is robust to the joint effects of data mining and spurious regression bias, while the 

evidence for time-varying alphas is fragile. 

Now consider the model with no time-varying alpha.  If the data mining searches over 250 

variables to predict the test asset return, the 5% cut-off value to apply to the t-statistic on b1 is less than 

3.5 in absolute value.  Cochrane (1996) reports a t-statistic of -4.74 on the dividend yield in a time-

varying beta, with a sample of T=186.  Thus, we find no evidence to doubt the inference that there is a 

time-varying beta.  (However, the significance at a 10% level of the term premium in the time-varying 

beta,, with a t-statistic of -1.76, is in doubt.) 

Finally, consider the model with no time-varying beta.  If the data mining searches over 25 

variables to predict the test asset return, then the 5% cut-off value to apply to the t-statistic on α1 is larger 

than 3.1 in absolute value.  The largest t-statistic in Jagannathan and Wang (1996) with a sample size of 
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330 is 3.1.  Therefore, their evidence for a time-varying alpha does not survive even with a modest 

amount of data mining. 

An empirical example further illustrates the effects of using the correct cutoffs to evaluate the 

evidence for time-varying alphas. We use the value-growth spread portfolio excess return as the test asset 

and a conditional CAPM as the asset pricing model. The lagged conditioning variable is the term spread, 

measured as the lagged difference between ten-year and one-year, constant-maturity yields from the 

Federal Reserve Data Base.9 The regressions include both time-varying betas and alphas, and the monthly 

returns cover the period from April of 1953 through the end of 2005.  We summarize results for samples 

of length T=66 and T=350. We roll the regressions through the overall sample and use the average of the 

rolling regression coefficients and the average absolute t-ratios as proxies for the expected results, given a 

randomly chosen sample of each size.  The average absolute t-ratios for the two sample sizes are shown 

below the regression equation: 

 

                                    rt+1 =           α0 +   α1Zt +   b0 rm,t+1 + b1 rm,t+1Zt +  ut+1                                         (6)  

                       T=66     1.559   2.199     21.32      2.897   

                      T=350     0.815   1.978     21.34      0.952 

 

 Figure 2 presents time-series plots of the absolute t-ratios for the coefficients, α1, from the rolling 

regressions.  We evaluate the significance of the t-ratios using the simulations previously described, 

assuming ρ* = 0.95 and the true predictive R-squared is 10%.  The cutoff levels for the absolute t-statistics 

with different amounts of data mining are depicted as horizontal lines in the figure. 

 Figure 2 shows that the expected t-ratio for a time-varying alpha is just above the 5% critical 

                                                  
9 We also examined the dividend yield and a short-term Treasury yield and the overall impressions are 
similar. 
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cutoff level for T=66, and very close to the cutoff for T=350 when there is no adjustment for data mining. 

 However, the results vary with the sample period.  When we sort the sample t-statistics from high to low, 

we find that about 1/3 are above the cutoff with no data mining when T=66 and 53% are above the cutoff 

when T=350.  Thus, we are likely to find evidence of time-varying alphas when there is no adjustment for 

data mining. 

 Figure 2 also shows as horizontal bars the 5% critical cutoff levels when the lagged instrument is 

mined to predict the test asset, searching over L=25 and L=250 instruments.  When L=25 and T=66, only 

15% of the t-statistics lie above the cutoff, and less than 10% exceed the cutoff when L=250.  None of the 

t-statistics appear significant when T=350 and L=25 or L=250.  Thus, even modest amounts of data 

mining are likely to change the inferences about time-varying alphas. In particular, given a typical sample 

with T=350, there is no evidence for a time-varying alpha related to the term premium. 

 

VI. Robustness  

This section summarizes the results of a number of additional experiments. We extend the simulations to 

consider examples with more than a single lagged instrument. We also consider asset pricing models with 

multiple factors, motivated by Merton’s (1973) multiple-beta model. We also examine models where the 

data mining to select the lagged instruments focuses on predicting the market portfolio return instead of 

the test asset returns. Tables with the results of these additional experiments are available by request. 

 

Multiple Instruments 

The experiments summarized above focus on a single lagged instrument, while many studies in 

the literature use multiple instruments. We modify the simulations, assuming that the researcher mines 

two independent instruments with the largest absolute t-statistics and then uses both of them in the 

conditional asset pricing model with time-varying betas and alphas. (Thus there are two a1 coefficients 
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and two b1 coefficients.) These simulations reveal that the statistical behavior of both coefficients are 

similar to each other and similar to our results as reported in Table 2. 

 

Multiple-beta Models 

We extend the simulations to study models with three state variables or factors. In building the 

three-factor model, we make the following assumptions. All three risk premiums are linear functions of 

one instrument, Z*.  The factors differ in their unconditional means and their disturbance terms, which are 

correlated with each other.  The variance-covariance matrix of the disturbance terms matches that of the 

residuals from regressions of the three Fama-French (1993, 1996) factors on the lagged dividend yield.  

The true coefficients for the asset return on all three factors and their interaction terms with the correct 

lagged instrument, Z*, are set to unity. Thus, the true conditional betas on each factor are equal to 1 + Z*. 

 We find that the bias in the t-statistic for α1 remains and is similar to the simulation in Table 2.  There are 

no biases in the t-statistics associated with the b1's for the larger sample sizes.   

 

Predicting the Market Return 

Much of the previous literature looked at more than one asset to select predictor variables. For the 

examples reported in the previous tables, the data mining is conducted by attempting to predict the excess 

returns of the tests assets.  But a researcher might also choose instruments to predict the market portfolio 

return. We examine the sensitivity of the results to this change in the simulation design.  The results for 

the conditional asset pricing model with both time-varying alphas and betas are re-examined.  Recall that 

when the instrument is mined to predict the test asset return, there is an upward bias in the t-statistic for 

α1.  The bias increases with data mining and decreases somewhat with T.  When the instruments are 

mined to predict the market, the bias in α1 is small and is confined to the smaller sample size, T=66.  

Mining to predict the market return has little impact on the sampling distribution of b1.  
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VII. Conclusions  

We study regression models for conditional asset pricing models in which lagged variables are used to 

model conditional betas and alphas. We focus on the finite sample properties of the models in view of two 

important issues. The first issue is data mining and the second is spurious regression, caused by predictor 

variables that are persistent time series. These two issues have been studied separately in many previous 

papers, and their combined effects for simple predictive regressions are studied by Ferson, Sarkissian and 

Simin (2003). This study addresses the joint effects of data mining and spurious regression on models 

with time-varying alphas and betas.    

The conditional asset pricing literature has, for the most part used the same variables that were 

discovered based on simple predictive regressions, and our analysis characterizes the problem by 

assuming the data mining occurs in this way. Our results relate to several stylized facts that the literature 

on conditional asset pricing has produced.   

Previous studies find evidence that the intercept, or average alpha, is smaller in a conditional 

model than in an unconditional model, suggesting for example that the conditional CAPM does a better 

job of explaining average abnormal returns. Our simulation evidence finds that the estimates of the 

average alphas in the conditional models are reasonably well specified in the presence of spurious 

regression and data mining, at least for samples larger than T=66.  Some caution should be applied in 

interpreting the common 60-month rolling regression estimator, but otherwise we take no issue with the 

stylized fact that conditional models deliver smaller average alphas.   

Studies typically find evidence of time varying betas based on significant interaction terms. Here 

again we find little cause for concern.  The coefficient estimator for the interaction term is well specified 

in larger samples, and largely unaffected by data mining in the presence of persistent lagged regressors.  

There is an exception when the model is estimated without a linear term in the lagged instrument.  In this 
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case the coefficient measuring the time-varying beta is slightly biased. Thus, when the focus of the study 

is to estimate accurate conditional betas, we recommend that a linear term be included in the regression 

model.  

Studies typically find that even conditional models fail to completely explain the dynamic 

properties of stock returns. That is, the estimates indicate time-varying conditional alphas. We find that 

this result is the most problematic. The estimates of time variation in alpha inherit biases similar to, if 

somewhat smaller than, the biases in predictive regressions. We use our simulations to revisit the 

evidence of several prominent studies. Our analysis suggest that the evidence for time-varying alphas in 

the current literature should be viewed with some suspicion.  Perhaps, the current generation of 

conditional asset pricing models do a better job of capturing the dynamic behavior of asset returns than 

existing studies suggest. 
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Appendix: The Sample of 500 Instruments  

All the data come from the web site Economagic.com: Economic Time Series Page, maintained 

by Ted Bos.  The sample consists of all monthly series listed on the main homepage of the site, except 

under the headings of LIBOR, Australia, Bank of Japan, and Central Bank of Europe.  From the Census 

Bureau we exclude Building Permits by Region, State, and Metro Areas (more than 4,000 series).  From 

the Bureau of Labor Statistics we exclude all non-civilian Labor force data and State, City, and 

International Employment (more than 51,000 series).  We use the CPI measures from the city average 

listings, but include no finer subcategories.  The PPI measures include the aggregates and the 2-digit 

subcategories.  From the Department of Energy we exclude data in Section 10, the International Energy 

series. 

We first randomly select (using a uniform distribution) 600 out of the 10,866 series that were left 

after the above exclusions.  From these 600 we eliminated series that mixed quarterly and monthly data 

and extremely sparse series, and took the first 500 from what remained.   

Because many of the data are reported in levels, we tested for unit roots using an augmented 

Dickey-Fuller test (with a zero order time polynomial).  We could not reject the hypothesis of a unit root 

for 361 of the 500 series and we replaced these series with their first differences.  

We estimate a sample correlation matrix of the 500 instruments as follows.  We take each pair of 

instruments and compute the sample correlation between the two series, using all of the observations for 

which our data for the two series overlap.  For some pairs, there is no overlapping data.  For these cases 

we substitute the average of all the sample correlations that we can compute. 
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TABLE 1 

Representative Studies 
This table summarizes representative conditional asset pricing and performance evaluation studies.  The first column indicates the published study.  The second 
column specifies the lagged instruments used.  The next two columns give the sample (Period) and the number of observations (Obs) on the stock returns.  
Columns five and six indicate whether the conditional model includes time-varying alpha (αt) and the time-varying beta (βt), respectively.  The last five columns 
summarize the regression results.  Column seven shows the ratio of an intercept (a pricing error) in the conditional model to that of the unconditional.  Columns 
8 and 9 report the point estimates of the time-varying alpha, α1, and their corresponding t-statistics, t(α).  Columns 10 and 11 report the point estimates of the 
time-varying beta coefficient, b1, and their corresponding t-statistics, t(b1).  For each predictor, the table reports regression estimates corresponding to the largest 
in absolute value t-statistics.  The abbreviations in the table are as follows.  TB1y and TB1vol are the yield and volatility on the one-month Treasury bill, 
respectively. Three-one is the difference between the lagged returns of a three-month and a one-month T-bill.  The variable “Cay” is the linear function of 
consumption, asset wealth, and labor income.  DY is the dividend yield of the CRSP index. Term is a spread between long-term and short-term bonds.  Default is 
a spread between low-grade and high-grade corporate bonds. 
 

(1) 
Reference 

(2) 
Predictor 

(3) 
Period 

(4) 
Obs 

(5) 
αt 

(6) 
βt 

(7) 
|α0/α| 

(8) 
α1 

(9) 
t(α1) 

(10) 
b1 

(11) 
t(b1) 

Shanken (90, T3&4) 
 

TB1y 
TB1vol 

5301-8212 360 Yes Yes NA -0.48 
-5.70 

-1.17 
-3.56 

1.42 
-8.40 

5.92 
-4.42 

Cochrane (96, T8) 
 

DY 
Term 

47Q1-93Q4 188 No Yes NA None None -0.53 
-0.31 

-4.74 
-1.76 

Ferson & Schadt (96, T2) 
 

TB1y 
DY 

Term 
Default 

6801-9012 276 No Yes 0.72 None None NA NA 

Jagannathan & Wang (96, T2) 
 

Default 6307-9012 330 Yes No 1.53 -65.7 -3.10 None None 

Christopherson et al. (98, 
T1&2) 
 

TB1y 
DY 

Term 

7901-9012 144 Yes Yes 0.77 -0.21 
1.22 
-0.21 

-2.01 
3.72 
-1.85 

NA NA 

Lettau & Ludvigson (01a, T3) 
 

“Cay” 63Q3-98Q3 144 Yes Yes 0.84 NA NA NA NA 

Petkova & Zhang (05, T3) TB1y 
DY 

Term 
Default 

2701-0112 900 No Yes 0.97 None None NA NA 

“None” stands parameter values not used in the study, “NA” stands for results not reported. 



 

TABLE 2 
 

Simulating a Conditional Asset Pricing Model 
The table shows the results of 10,000 simulations of the estimates from the conditional asset pricing model, allowing for 
possible data mining of the lagged instruments.  The regression model is: 

rt+1 = α0 + α1Zt + b0 rm,t+1 + b1 rm,t+1Zt +  ut+1. 
T is the number of time series observations, L is the number of lagged instruments mined, Rp

2 is the true predictive R-
squared in the artificial data generating process.   
 

 T=66 T=350 T=960 
Rp

2 L=1 L=25 L=250 L=1 L=25 L=250 L=1 L=25 L=250 
Means: α0 

0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.01 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.05 -0.001 -0.001 -0.001 0.000 -0.001 0.000 0.000 0.000 0.000 
0.1 -0.002 -0.002 -0.002 0.000 -0.001 -0.001 0.000 0.000 0.000 
0.15 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001 0.000 0.000 0.000 

Critical 5% t-statistics for α0 
0.001 2.280 2.603 2.855  1.999 2.061 2.146  1.996 2.005 2.115 
0.005 2.266 2.540 2.792  1.994 2.058 2.135  2.013 2.002 2.104 
0.01 2.253 2.508 2.759  2.000 2.045 2.125  2.016 2.002 2.098 
0.05 2.153 2.408 2.728  1.974 1.998 2.094  2.021 1.991 2.100 
0.1 2.088 2.388 2.652  1.977 2.000 2.030  2.058 2.008 2.073 
0.15 2.065 2.382 2.597  1.968 1.960 1.987  2.069 2.031 2.041 

Means: α1 
0.001 0.001 0.007 -0.003 -0.001 -0.002 0.003 -0.001 -0.002 -0.001 
0.005 0.001 0.005 -0.001 -0.001 -0.001 0.002 -0.001 -0.002 -0.001 
0.01 0.001 0.005 0.000 -0.001 -0.001 0.002 -0.001 -0.002 -0.001 
0.05 0.001 0.005 -0.002 -0.001 -0.001 0.002 -0.001 -0.001 -0.002 
0.1 0.001 0.005 0.000 -0.001 -0.001 0.002 -0.001 -0.001 0.000 
0.15 0.001 0.004 0.000 -0.001 0.000 0.002 -0.001 -0.001 0.001 

Critical 5% t-statistics for α1 
0.001 2.392 3.992 5.305  2.023 3.240 3.891  1.910 3.097 3.748 
0.005 2.390 3.961 5.252  2.024 3.206 3.874  1.905 3.092 3.719 
0.01 2.387 3.912 5.198  2.025 3.198 3.872  1.902 3.091 3.712 
0.05 2.412 3.924 5.237  2.039 3.172 3.855  1.902 3.062 3.706 
0.1 2.426 3.912 5.163  2.036 3.159 3.837  1.912 3.040 3.690 
0.15 2.423 3.913 5.086  2.024 3.155 3.785  1.909 3.024 3.629 

Means: b1 
0.001 -0.041 -0.017 0.026 -0.003 -0.002 0.011 0.010 0.008 -0.009 
0.005 -0.038 -0.019 0.061 -0.003 0.001 0.002 0.009 0.007 -0.005 
0.01 -0.038 -0.012 0.055 -0.003 0.000 0.004 0.008 0.004 -0.006 
0.05 -0.039 -0.014 0.077 -0.003 0.006 -0.003 0.006 0.001 0.001 
0.1 -0.040 -0.018 0.058 -0.003 0.010 0.003 0.005 0.000 0.004 
0.15 -0.041 -0.015 0.062 -0.003 0.014 0.007 0.004 0.001 0.000 

Critical 5% t-statistics for b1 
0.001 2.576 2.534 2.634  2.122 2.098 2.175  1.996 2.013 2.075 
0.005 2.574 2.579 2.611  2.116 2.138 2.210  2.022 2.036 2.075 
0.01 2.583 2.574 2.597  2.114 2.133 2.219  2.027 2.071 2.126 
0.05 2.603 2.588 2.597  2.149 2.212 2.336  2.027 2.121 2.219 
0.1 2.612 2.614 2.596  2.157 2.297 2.451  2.024 2.188 2.475 
0.15 2.610 2.601 2.657  2.156 2.361 2.614  2.018 2.322 2.722 
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TABLE 3 
 

Simulating a Conditional Asset Pricing Model with no Time-Varying Alpha 
The table shows the results of 10,000 simulations of the estimates from the conditional asset pricing model with no time-
varying alpha, allowing for the possibility of data mining for the lagged instruments. The regression model is: 

rt+1 = α0 + b0 rm,t+1 + b1 rm,t+1Zt +  ut+1. 
T is the number of time series observations, L is the number of lagged instruments mined, Rp

2 is the true predictive R-
squared in the artificial data generating process.   

 
 T=66 T=350 T=960 
Rp

2 L=1 L=25 L=250 L=1 L=25 L=250 L=1 L=25 L=250 
Means: α0 

0.001 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.005 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.01 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.05 -0.002 -0.002 -0.002 0.000 0.000 -0.001 0.000 0.000 0.000 
0.1 -0.002 -0.002 -0.003 0.000 -0.001 -0.001 0.000 0.000 0.000 
0.15 -0.003 -0.003 -0.003 -0.001 -0.001 -0.001 0.000 0.000 -0.001 

Critical 5% t-statistics for α0 
0.001 2.165 2.146 2.123  1.951 1.988 1.947  1.990 1.965 1.934 
0.005 2.138 2.114 2.089  1.949 1.981 1.929  1.983 1.961 1.922 
0.01 2.132 2.102 2.054  1.944 1.966 1.918  1.992 1.956 1.931 
0.05 2.042 2.020 1.986  1.907 1.921 1.917  1.983 1.970 1.921 
0.1 1.984 1.956 1.929  1.896 1.910 1.885  1.988 1.962 1.904 
0.15 1.949 1.922 1.893  1.900 1.884 1.829  1.993 1.965 1.869 

Means: b1 
0.001 0.007 -0.006 -0.043 -0.008 0.004 -0.001 -0.003 0.013 -0.012 
0.005 0.008 -0.017 -0.060 -0.006 -0.003 0.000 -0.003 0.013 -0.008 
0.01 0.008 -0.015 -0.064 -0.006 -0.003 -0.004 -0.003 0.010 -0.007 
0.05 0.010 -0.031 -0.047 -0.003 -0.003 -0.003 -0.002 0.007 -0.001 
0.1 0.010 -0.020 -0.035 -0.002 -0.005 -0.001 -0.002 0.000 0.001 
0.15 0.010 -0.029 -0.042 0.000 -0.003 -0.003 -0.002 0.002 -0.002 

Critical 5% t-statistics for b1 
0.001 2.630 2.605 2.639  2.157 2.128 2.218  1.987 2.136 2.147 
0.005 2.636 2.646 2.631  2.156 2.145 2.246  1.991 2.162 2.170 
0.01 2.661 2.665 2.643  2.163 2.150 2.256  1.987 2.154 2.216 
0.05 2.656 2.748 2.739  2.146 2.257 2.441  1.988 2.267 2.476 
0.1 2.629 2.811 2.861  2.175 2.378 2.618  1.994 2.395 2.639 
0.15 2.607 2.857 3.001  2.201 2.466 2.755  2.008 2.479 2.828 
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TABLE 4 
 

Simulating a Conditional Asset Pricing Model with no Time-Varying Beta 
The table shows the results of 10,000 simulations of the estimates from the conditional asset pricing model with no time-
varying beta, allowing for the possibility of data mining for the lagged instruments.  The regression model is: 

rt+1 = α0 + α1Zt + b0 rm,t+1 +  ut+1. 
T is the number of time series observations, L is the number of lagged instruments mined, Rp

2 is the true predictive R-
squared in the artificial data generating process.   

 
 T=66 T=350 T=960 
Rp

2 L=1 L=25 L=250 L=1 L=25 L=250 L=1 L=25 L=250 
Means: α0 

0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.01 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.05 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.1 -0.002 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.15 -0.002 -0.002 -0.002 -0.001 -0.001 0.000 0.000 0.000 0.000 

Critical 5% t-statistics for α0 
0.001 2.239 2.592 2.794  1.991 2.080 2.182  2.004 2.047 2.092 
0.005 2.219 2.533 2.764  1.982 2.070 2.147  2.014 2.036 2.084 
0.01 2.206 2.511 2.731  1.988 2.069 2.150  2.013 2.018 2.089 
0.05 2.124 2.429 2.656  1.970 2.056 2.148  2.019 2.012 2.130 
0.1 2.065 2.389 2.607  1.968 2.034 2.158  2.035 2.010 2.160 
0.15 2.015 2.356 2.546  1.978 2.033 2.177  2.072 2.010 2.167 

Means: α1 
0.001 0.001 0.000 0.002 -0.001 0.001 0.000 0.000 -0.001 0.000 
0.005 0.001 0.000 0.001 -0.001 0.001 0.001 0.000 -0.001 0.001 
0.01 0.001 0.000 0.001 -0.001 0.001 0.001 0.000 -0.001 0.001 
0.05 0.000 0.001 0.003 -0.001 0.001 0.001 0.000 -0.001 0.002 
0.1 0.000 0.001 0.005 -0.001 0.000 0.000 0.000 0.000 0.001 
0.15 0.000 0.000 0.003 -0.001 0.000 -0.001 0.000 -0.001 0.000 

Critical 5% t-statistics for α1 
0.001 2.307 4.015 5.298  2.068 3.172 3.912  2.020 3.073 3.794 
0.005 2.311 4.005 5.169  2.066 3.149 3.890  2.017 3.061 3.761 
0.01 2.312 3.998 5.142  2.061 3.148 3.891  2.017 3.058 3.754 
0.05 2.322 3.968 5.040  2.054 3.156 3.885  2.003 3.029 3.739 
0.1 2.323 3.908 5.041  2.056 3.138 3.849  2.012 3.001 3.713 
0.15 2.323 3.901 5.075  2.056 3.124 3.783  2.005 3.003 3.659 
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TABLE 5 
 

Conditional Asset Pricing Models with a Cross-section of Returns 
The table shows the results of 10,000 simulations from a conditional asset pricing model, allowing for the possibility of 
data mining for the lagged instruments.  The dependent variables are book-to-market quintile portfolios.  The regression 
model is: 

rt+1 = α0 + α1Zt + b0 rm,t+1 + b1 rm,t+1Zt +  ut+1. 
T is the number of time series observations and L is the number of lagged instruments mined. The true predictive R-
squared in the artificial data generating process is 0.005.   
 

 
 T=66 T=350 T=960 
BM quintile L=1 L=25 L=250 L=1 L=25 L=250 L=1 L=25 L=250 

Means: α0 
BM1 (low) -0.002 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 
BM2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
BM3 0.000 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.003 
BM4 0.001 0.003 -0.001 0.004 0.005 0.006 0.005 0.006 0.007 
BM5 (high) 0.004 0.002 0.006 0.006 0.006 0.005 0.008 0.007 0.006 

Critical 5% t-statistics for α0 
BM1 (low) 2.157 2.593 2.705  1.691 1.847 1.914  1.526 1.618 1.651 
BM2 2.297 2.523 2.742  1.916 2.067 2.156  1.960 2.034 2.056 
BM3 2.296 2.681 2.916  2.093 2.218 2.380  2.143 2.206 2.301 
BM4 2.343 2.686 3.060  2.059 2.253 2.399  2.132 2.233 2.368 
BM5 (high) 2.369 2.659 3.099  2.135 2.233 2.326  2.269 2.284 2.359 

Means: α1 
BM1 (low) 0.002 0.000 0.001 -0.001 -0.004 0.002 0.000 0.000 0.000 
BM2 0.000 0.000 0.002 0.001 0.000 0.001 0.000 0.000 0.001 
BM3 0.009 0.006 -0.008 -0.001 -0.005 -0.008 0.001 0.007 0.001 
BM4 0.019 -0.027 -0.004 0.007 -0.003 0.012 -0.003 -0.003 0.005 
BM5 (high) 0.021 0.028 -0.068 0.005 0.028 0.027 0.002 -0.006 -0.009 

Critical 5% t-statistics for α1 
BM1 (low) 2.381 4.088 5.382  2.037 3.243 3.917  1.962 3.115 3.813 
BM2 2.390 3.884 4.956  2.025 3.145 3.793  1.971 3.044 3.637 
BM3 2.418 4.146 5.720  1.972 3.264 3.999  1.952 3.148 3.804 
BM4 2.403 4.263 5.705  2.078 3.240 3.934  1.999 3.179 3.807 
BM5 (high) 2.417 4.227 5.594  2.005 3.271 4.076  2.021 3.134 3.817 

Means: b1 
BM1 (low) 0.018 0.007 -0.054 -0.007 0.002 0.051 0.021 -0.001 0.004 
BM2 -0.003 0.032 -0.015 0.000 -0.004 -0.009 -0.010 0.000 -0.002 
BM3 0.108 0.050 0.128 0.066 -0.033 -0.042 -0.041 -0.004 0.034 
BM4 -0.230 -0.050 -0.062 -0.016 -0.054 0.087 0.028 -0.068 0.032 
BM5 (high) -0.479 0.075 -0.389 0.041 0.113 -0.006 -0.136 0.032 0.058 

Critical 5% t-statistics for b1 
BM1 (low) 2.612 2.522 2.548  2.065 2.168 2.181  2.045 2.115 2.061 
BM2 2.521 2.591 2.559  2.146 2.126 2.149  2.056 2.056 2.067 
BM3 2.573 2.501 2.585  2.083 2.159 2.089  2.103 2.023 2.061 
BM4 2.624 2.556 2.552  2.048 2.114 2.091  2.130 2.004 2.035 
BM5 (high) 2.628 2.640 2.536  2.177 2.149 2.068  2.084 2.050 1.982 
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Figure 2 

 

Rolling Window Absolute Values of Conditional Alpha t-statistic
Z = Term Spread, T = 66
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