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and insurance of newborns. Our main result is that estate taxation should be progressive:

fortunate parents should face a higher marginal tax rate on their bequests.

We begin with a two-period Mirrleesian economy with two generations linked by parental

altruism; we then extend our analysis to an infinite horizon economy similar to Atkeson and

Lucas (1995) and Albanesi and Sleet (2004). In our simplest economy, a continuum of parents

live during the first period. In the second period each is replaced by a single descendent

and parents are altruistic towards this child. Parents work, consume and bequeath; children

simply consume.1 Following Mirrlees (1971), parents first observe a random productivity draw

and then exert work effort. Both productivity and work effort are private information; only

output, the product of the two, is publicly observable. We study the entire set of constrained

Pareto efficient allocations and derive their implications for marginal tax rates.

For this economy, if one assumes that the social welfare criterion coincides with the par-

ent’s expected utility, then Atkinson and Stiglitz’s (1976) celebrated uniform-taxation result

applies: the optimal estate tax is zero. That is, when no direct weight is placed on the welfare

of children, income should be taxed nonlinearly (as in Mirrlees, 1971), but bequests should

go untaxed. This arrangement ensures that the intertemporal consumption choice made by

parents—trading off their own consumption against their child’s consumption—is undistorted.

As a result, the inheritability of welfare across generations is perfect: a child’s consumption

rises one-for-one with that of its parent. In effect, efficiency dictates that altruism be exploited

to provide higher incentives for parents, by manipulating their children’s consumption. In-

equality for the children’s generation is created as a byproduct, since their expected welfare

is of no direct concern. Indeed, in this economy, if parent were not altruistic, the children’s

expected utility would be higher at any efficient allocation.

While this describes one efficient allocation, the picture is incomplete. In this economy

the parent and child are distinct individuals, albeit linked through parental altruism, a form

of externality. Thus, a complete welfare analysis requires examining the ex-ante utility of

both parents and children. Figure 1 depicts our economy’s Pareto frontier graphically, which

is peaked because altruistic parent’s welfare decreases if the child is made relatively too mis-

erable. The allocation discussed in the previous paragraph is a particular point lying on the

Pareto frontier: the peak which maximizes the welfare of parents; marked as point A in the

figure. In this paper we explore other efficient arrangements representing points lying on on

the downward sloping section of the the Pareto frontier, to the right of its peak.

Away from point A, a role for estate taxation emerges: efficient allocations which lie to

the right of the peak can be implemented with a simple tax system that confronts parents

with separate nonlinear schedules for income and estate taxes. Our main result is that the

1 Although some readers have remarked that they find this assumption realistic, it will be relaxed when
we extend the time horizon.
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Figure 1: Pareto frontier between ex-ante utility for parent, vp, and child, vc.

optimal estate tax schedule is convex: fortunate high-skilled parents face a higher marginal

tax rate on their bequests.

The intuition for this result is that progressive estate taxation arises to insure children

against their parent’s luck. The progressive estate tax lowers consumption inequality within

the children’s generation—which is desirable as long as some weight, however small, is placed

on them in the social welfare criterion—while still providing incentives to parents. A child’s

consumption still varies with their parent’s, providing some incentives, but now does so less

than one-for-one, providing some insurance. In other words, consumption mean reverts across

generations, making the inheritability of welfare is imperfect. The optimal progressivity in

estate taxes reflects this mean reversion: fortunate dynasties must face a lower net return on

bequests so that they choose a consumption path declining towards the mean.

Our stark conclusion on the progressivity of estate taxation strongly contrasts with the

theoretical ambiguity in the shape of the optimal income tax schedule. Mirrlees’s (1971)

seminal paper showed that for bounded distributions of skills the optimal marginal income

tax rates are regressive at the top (see also Seade, 1982; Tuomala, 1990; Ebert, 1992). More

recently, Diamond (1998) has shown that the opposite—progressivity at the top—is true with

certain unbounded skill distributions (see also Saez, 2001). In contrast, our results on the

progressivity of the estate tax do not depend on any assumptions regarding the distribution

of skills.

We then extend our analysis for the two-period setup to an infinite-horizon economy with

non-overlapping generations. This extension is important for at least two reasons.

First, it provides a motivation for studying efficient allocations which do not simply maxi-

mize the expected utility of the very first generation—the analogues of point A from Figure 1
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for the infinite-horizon economy. Indeed, these allocations have everyone in distant gener-

ations converging to misery, with zero consumption. This is a version of the immiseration

result shown by Atkeson and Lucas (1992) for a taste shock economy, which we extend here to

the Mirrleesian economy. Loosely speaking, if we continue to plot the expected utility of the

last generation on the horizontal axis, then as we extend the horizon point A moves further

and further to the left, towards misery. This provides a rationale for focusing on efficient

allocations that place positive weight on future generations, the analogues of the downward

sloping section of the Pareto frontier, to the right of point A on the figure. However, as we

show here by extending the analysis in Farhi and Werning (2005), this result is special, by

placing weight on future generations, so that the social discount factor is greater than the

private one, a steady state exists, misery is avoided and there is social mobility.

Second, the infinite horizon version of our model allows us to make contact with a grow-

ing literature on dynamic Mirrleesian models, such as Golosov, Kocherlakota and Tsyvinski

(2003), Albanesi and Sleet (2004) and others (see further references in Golosov, Tsyvinski and

Werning, 2006). In our model each individual lives for a single period, observes a productivity

draw and works, and is then replaced by a single descendant in the next period. As usual,

perfect altruism implies that each dynasty behaves as a single infinitely-lived individual, so

our model environment is identical to Albanesi and Sleet (2004). However, our intergener-

ational interpretation of the infinite horizon leads us to study a different planning problem,

one that puts direct weight on the expected utility of future generations, or equivalently, one

that has a social discount factor that is higher than the private one. Indeed, to avoid the

immiseration result mentioned above, Albanesi and Sleet impose an ad hoc lower bound on

continuation utility along the equilibrium path; in contrast, our steady-state analysis requires

no such lower imposition.

The progressivity of estate taxes extends to this infinite horizon setup: fortunate parents

face a higher average marginal tax rate on their bequests. Indeed, the average marginal estate

tax rate formula is the same as in the two-period economy. The main difference between

the two-period and infinite horizon economies is that tax implementations are more involved

in the latter. We adapt Kocherlakota’s (2004) implementation, which yields a marginal tax

estate rate that is zero, on average, for all parents when only the first generation is weighed

in the welfare criterion, the analogue of point A.

Throughout this paper, we study an economy without capital, where aggregate consump-

tion equals aggregate produced output plus an endowment. This no-aggregate-savings as-

sumption allows us to focus on redistribution within generations and abstract from transfers

across generations. Unfortunately, it does not allow us to pin down the level of estate taxa-

tion, only its shape. Farhi, Kocherlakota and Werning (2005) extend this model among several
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dimensions—including capital accumulation, life-cycle elements and general skill processes—

and show that our main result on progressive estate taxation is insensitive to this assumption.

Our work relates to a number of recent papers that have explored the implications of

including future generations in the social welfare criterion. Phelan (2005) considered a social

planning problem that weighted all generations equally, which is equivalent to not discounting

the future at all. Farhi and Werning (2005) considered intermediate cases, where future

generations receive a geometrically declining weight. This is equivalent to a social discount

factor that is less than one and higher than the private one. Sleet and Yeltekin (2005) have

studied how such a higher social discount factor may arise from a utilitarian planner without

commitment. None of these papers consider implications for estate taxation.

We organized the rest of the paper in the following way. Section 1 describes the two period

model environment and Section 2 introduces the associated planning problem. Our main

results for this two-period economy are in Section 3. In Section 4 we describe the extension

to an infinite horizon. The main results for that economy are contained in Section 5. We use

Section 6 for concluding remarks.

1 Parent and Child: A Two Period Economy

There are two periods labelled t = 0, 1. The parent lives during t = 0 and is replaced by a

single child at t = 1. The parent works and consumes, while the child only consumes. Thus,

an allocation is a triplet of functions (c0(w0), c1(w0), y0(w0)), where c0 and y0 represents the

parent’s consumption and output, and c1 represents the child’s consumption.

The parent is altruistic towards the child

v0 = E

[

u(c0) − h

(

y0

w0

)

+ βv1

]

, (1)

where the expectations is over w0 and β < 1. The child’s utility is simply

v1 = u(c1) (2)

The utility function u(c) is increasing, concave and differentiable; the disutility function h(n)

is assumed increasing, convex and differentiable.

Substituting equation (2) into equation (1) yields the alternative expression for the parent’s

utility:

v0 = E

[

u(c0) + βu(c1) − h

(

y0

w0

)]

(3)

As usual, the parent’s expected utility can be reinterpreted as that of a fictitious dynasty that
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lives for two periods and discounts at rate β.

Following (Atkeson and Lucas, 1992) and others, we abstract from capital accumulation

to concentrate on the distributional assignment of goods across agents within a period, and

not over time. An allocation is resource feasible if aggregate consumption in both periods is

not greater than the sum of endowments and production:

∫ ∞

0

c0(w0)dF (w0) ≤ e0 +

∫ ∞

0

y0(w0)dF (w0) (4)

∫ ∞

0

c1(w0)dF (w0) ≤ e1 (5)

Productivity is private information so incentives need to be provided for truthful revelation.

We say that an allocation is incentive compatible if the parent finds it optimal to reveal her

shock truthfully:

u(c0(w0)) + βu(c1(w0)) − h

(

y0(w0)

w0

)

≥ u(c0(w)) + βu(c1(w)) − h

(

y0(w)

w0

)

(6)

for all productivity realizations w0.

2 Social Welfare and Efficient Allocations

To study all constrained efficient allocations for the two-period economy it is useful to work

with the general welfare criterion

W ≡ v0 + αEv1, (7)

which places some weight α ≥ 0 on the expected utility of children. As we vary α we can

trace out the entire Pareto frontier, since the latter is convex, as illustrated in Figure 1.

Substituting equations (2) and (3) into equation (7) implies the alternative expression

W = E[u(c0) + (β + α)u(c1) − h(y0/w0)].

Thus, the social welfare function is equivalent to the parent’s preferences but with a social

discount factor β̂ = β + α that is higher than the private one as long as α > 0.

The planning problem maximizes the welfare criterion W over allocations that are resource

feasible and incentive compatible. Formally, the problem is

max
c0,c1,y0

∫ ∞

0

[u(c0(w0)) + β̂u(c1(w1)) − h(y0(w0)/w0)]dF (w0)

subject to the resource constraints in equations (4)-(5) and the incentive compatibility con-
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straints in equation (6).

It is useful to divide the planning problem into two stages. In the first stage the planner

chooses the profile of output y0(w0) and a schedule of incentives ∆(w0), which is equal to

utility from consumption u(c0(w0)) + βu(c1(w0)) up to a constant. In the second stage, the

planner solves the subproblem of how best to provide the incentives ∆(w0), using c0(w0) and

c1(w0). The key feature is that the second stage involves no incentive constraints, these are

imposed in the first stage. Formally, by introducing ∆ and U the full problem can be written

as

max
c0,c1,y0,∆,U

∫ ∞

0

[u(c0(w0)) + β̂u(c1(w1)) − h(y0(w0)/w0)]dF (w0)

subject to ∆(w) + U = u(c0(w0)) + βu(c1(w0)), the resource constraints in equations (4)-(5)

and the incentive compatibility constraints ∆(w0) − h(y(w0)/w0) ≥ ∆(w) − h(y(w)/w0) for

all w0. Note that the incentive constraint does not involve c0, c1 or U ; only ∆ and y0.

For our purposes, it suffices to focus on the second stage that takes ∆ and y0 as given,

which allows us to drop the incentive constraint:

max
c0,c1,U

∫ ∞

0

[u(c0(w0)) + β̂u(c1(w1))]dF (w0)

subject to ∆(w0) +U = u(c0(w0)) + βu(c1(w1)) and the resource constraints in equations (4)-

(5).

It is convenient to rewrite this problem by changing variables, from consumption to utility

assignments U0(w) = u(c0(w)) and U1(w) = u(c1(w)), since then the objective is then linear

and the constraints strictly convex. After substituting U0(w0) = ∆(w0) + U − βU1(w1) out

the problem becomes

max
U1,U

∫ ∞

0

[U + (β̂ − β)U1(w1)]dF (w0)

subject to

∫ ∞

0

C(∆(w0) + U − βU1(w1))dF (w0) ≤ e0 +

∫ ∞

0

y0(w0)dF (w0)

∫ ∞

0

C(U1(w0))dF (w0) ≤ e1

It is easy to see that both resource constraints must bind at an optimum.

7



3 The Main Result: Progressive Estate Taxation

In this section we derive two main results for the two-period economy laid out in the previous

section. We first show that implicit marginal tax rates on bequests must be progressive.

We then provide a simple tax implementation that relies on two separate schedules for labor

income and estates.

3.1 Implicit Marginal Taxes

For any allocation and constant R > 0 we can define the associated marginal tax rates τ(w0)

solving the Euler equation

1 = βR(1 − τ(w0))
u′(c1(w0))

u′(c0(w0))
. (8)

Below, the constant R plays the role of the pre-tax gross interest rate. Since our economy has

no savings technology, this value is not uniquely pinned down in equilibrium—it is completely

unimportant for anything that follows. Different values of R are associated with different

levels for the tax, but they do not affect its shape.

The first-order condition for U1(w0), which is necessary and sufficient for optimality, is

β̂ − β + βλ0C
′(U0(w0)) = λ1C

′(U1(w0)).

where λt is strictly positive lagrange multiplier on the resource constraint for period t. From

this equation it follows that U0(w0) and U1(w0) move in the same direction with w0. Since

U0(w0) + βU1(w0) must be increasing, in order to provide incentives, it follows that both

U0(w0) and U1(w0) are increasing; hence, both consumptions c0(w0) and c1(w0) are increasing

in w0.

Using the fact that C(u) is the inverse of u(c), so that C ′(Ut(w0)) = 1/u′(ct(w0)), and

rearranging we obtain

1 = β
λ0

λ1

(

1 +

(

β̂

β
− 1

)

u′(c0(w0))

λ0

)

u′(c1(w0))

u′(c0(w0))
. (9)

From the first order condition for U it follows that 1/λ0 =
∫∞

0
(1/u′(c0(w)))dF (w). For what

follows we normalize so that R = λ0/λ1.

Our first result, derived from equation (9) when β̂ = β, can be viewed as simply restating

the celebrated Atkinson-Stiglitz uniform taxation result for our economy.

Proposition 1. When β̂ = β the optimal allocation implies a zero marginal estate tax rate:

τ(w0) = 0 in equation (8) and the marginal rate of substitution u′(c1(w0))/u
′(c0(w0)) is equated
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across all dynasties, i.e. for all w0.

Atkinson and Stiglitz (1976) showed that, provided preferences over a group of goods is

separable from work effort, then consumption within this group should not be distorted. In

other words, the implied marginal taxes for these goods should be equalized to avoid distorting

their relative consumption—uniform taxation is optimal. In our context, this result applies

to consumption at both dates, c0 and c1, and implies that the ratio of marginal utilities is

equalized across agents—the estate tax can be normalized to zero.2

In contrast, whenever β̂ > β equation (9) implies that the ratio of marginal utilities

is not equalized across agents: there must be some distortion, so the marginal estate tax

cannot be zero. Indeed, since consumption increases with productivity estate taxation must

be progressive.

Proposition 2. When β̂ > β the optimal allocation implies a nonzero and progressive marginal

estate tax: τ(w0) 6= 0 for all w0 and τ(w0) is increasing in w0. For R = β̂ the marginal tax

rate is

τ(w0) = −(β̂/β − 1)u′(c0(w0))

(
∫ ∞

0

u′(c0(w))−1dF (w)

)

(10)

and c0(w0), c1(w0) and y0(w0) are increasing in w0.

We emphasize that the interesting implication for the tax rate here is that it increases

with productivity: taxation is progressive. Without an aggregate savings technology the

overall level of estate tax cannot be uniquely pinned down, it is completely irrelevant. Farhi,

Kocherlakota and Werning (2005) extends the analysis to an economy with capital, which

pins down the level of estate taxation.

3.2 A Simple Tax Implementation

We next show that we can implement efficient allocations, and the progressive implicit marginal

tax rates that go with them, with a simple tax system. In our implementation, the government

confronts parents with two separate schedules: an income tax and an estate tax. We say that

an allocation is implementable by non-linear income and estate taxation T y
1 (y0), T

y
2 and T b(b)

if, for all w0, the allocation (c0(w0), c1(w0), y0(w0)) solves

max
c0,c1,y0

{u(c0) + βu(c1) − h(y0/w0)}

2 One difference is that Atkinson and Stiglitz (1976) assume a linear technological transformation be-
tween goods, whereas we assume no possible transformation. Their result on uniform taxation implies that
marginal rates of substitution are equalized across agents and that they are all equal to the marginal rate of
transformation. Our result only emphasizes the former.
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subject to

c0 + b1 = y0 − T b(b1) − T y
1 (y0),

c1 = Rb1 + y2 − T y
2 .

It is trivial to change things so that it is the child that pays the estate tax at t = 1.

Furthermore, without loss of generality we can assume that y2 − T y
2 = 0. To see this, define

b̂1 ≡ b1 + (y2 − T2)/R then

c0 + b̂1 = y0 − T b(b̂1 − (y2 − T2)/R) − T y
1 (y0) − T y

2 (y0)

= y0 − T̂ b(b̂1) − T̂ y(y0)

where T̂ y(y0) ≡ T y
1 (y0) + T y

2 (y0) and T̂ b(b̂1) = T b(b̂1 − (y2 − T2)/R).

Our next result establishes formally that efficient allocations can be implemented with

separate nonlinear income and estate taxation. The idea is to define T b(b) so that

1

1 + T b′(c1(w))
= 1 − τ(w)

The proof then exploits the fact that marginal tax rates are progressive to ensure that the

bequest problem faced by the parent is convex.

Proposition 3. Suppose c0(w0), c1(w0), y0(w0) and τ(w0) are increasing functions. Then

there exists tax functions T y(y) and T b(b) that implements this allocation, with T b(b) convex.

Proof. Use the generalized inverse of c1(w), where possible flat portions of c1(w) define dis-

continuous jumps, to define

T b′(c) =
1

1 − τ((c1)−1(c))
− 1 (11)

and normalize so that T b(0) = 0. Note that by the monotonicity of τ(w) and c0(w), the

function T b(b) is convex. Next define net income

I(w0) ≡ c0(w0) +R−1c1(w0) + T b(c1(w0))

We can express this in terms of output y by using the inverse of y0(w0): I
y(y) ≡ I(y−1

0 (y)).

Then we let T y(y0) ≡ y0 − Iy(y0). Finally, let the consumption allocation as a function of net

income I be: (ĉ0(I), ĉ1(I)) ≡ (c0(I
−1(I)), c1(I

−1(I))).

We now show that the constructed tax functions, T y(y) and T b(b), implement the alloca-
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tion. For any given net income I the consumer solves the subproblem:

V (I) ≡ max{u(c0) + βu(c1)}

subject to c0 +R−1c1 + T b(c1) ≤ I. This problem is convex, the objective is concave and the

constraint set is convex, since T b is convex. It follows that the first-order condition

1 =
βR

1 + T b′(b)

u′(c1)

u′(c0)

sufficient for optimality. Combining equation (8) and equation (11) it follows that these

conditions for optimality are satisfied by ĉ0(I), ĉ0(I) for all I. Hence V (I) = u(ĉ0(I)) +

βu(ĉ0(I)).

Next, consider the worker’s maximization over y0 given by

max
y

{V (I(y)) − h(y/w0)}.

We need to show that y0(w0) solves this problem, which implies that the allocation is im-

plemented since consumption would be given by ĉ0(I(y0(w0))) = c0(w0) and ĉ1(I(y0(w0))) =

c1(w0). Now, from the previous paragraph and our definitions it follows that

y0(w0) ∈ arg max
y

{V (I(y)) − h(y;w0)}

⇔ y0(w0) ∈ arg max
y

{u(ĉ0(I(y))) + βu(ĉ1(I(y))) − h(y/w0)}

⇔ w0 ∈ arg max
w

{u(c0(w)) + βu(c1(w)) − h(y0(w)/w0)}

Thus, the first line follows from the last, which is guaranteed by the assumed incentive

compatibility of the allocation, equation (6). Hence, y0(w0) is optimal and it follows that

(c0(w0), c1(w0), y0(w0)) is implemented by the constructed tax functions.

3.3 Discussion

Without estate taxation there is perfect inheritability of welfare. In particular, consumption

of parents and child move in tandem, one-for-one. This situation is only optimal when the

children are not considered independently in the welfare criterion, so that insuring them

against the risk of their parent’s fortune is not valued.

In contrast, when insurance is provided to the children’s generation their consumption

still varies with their parent’s, but less than one-for-one. The intergenerational transmission

of welfare is imperfect: consumption mean reverts across generations. The progressivity of
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the estate tax schedule reflects this mean reversion. Fortunate parents must face a lower net

returns on bequests in order to give them incentives to tilt their consumption towards the

present, that is, towards themselves. Likewise poorer parents need to face higher net returns

so that their consumption slopes upward. This explains the progressivity of estate taxes.

Another intuition is based on the interpretation of altruism as a form of externality. In

the presence of externalities, some form of corrective Pigouvian taxes are generally desirable.

Think of a parental bequest as a consumption good with a positive externality to the child;

then the Pigouvian logic implies that we should subsidize bequests. Since expected utility is

our concern, and utility is concave, this externality is greatest for children with low consump-

tion. Thus, the subsidy rate should be highest—or equivalently, the negative tax should be

lowest—for poor parents. Optimal estate taxation is thus progressive. Since our economy has

no capital, the Pigouvian level of taxation turns out to be irrelevant—we may tax or subsidize

estates. However, the relative tax conclusion in this argument remains robust.

None of these arguments require the private-information structure. However, if productiv-

ity or effort were observable, then the first-best allocation would be achievable. Consumption

and wealth would then be equated across parents. Although one can still think of a progres-

sive estate tax in this situation for out-of-equilibrium levels of parental wealth, it becomes

irrelevant given the lack of parental inequality. In this sense, our results rely on an interaction

between redistributive and corrective motives for taxation (see also Amador, Angeletos and

Werning, 2005).

4 A Mirrleesian Economy with Infinite Horizon

We now turn to a repeated version of this economy with an infinite horizon, as in Albanesi and

Sleet (2004). All generations work and receive a random productivity draw. An individual

born into generation t has ex-ante welfare vt solving

vt = Et−1[u(ct) − h(nt) + βvt+1],

where β < 1 is the coefficient of altruism. We assume that the utility function over consump-

tion satisfies the Inada conditions u′(0) = ∞ and u′(∞) = 0. We adopt a power disutility

function h(n) = nγ/γ with γ > 1 to ensure that the planning problem is convex.

An individual with productivity w, exerting work effort n, produces output y = w · n.

Utility can then be written as

Vt =
∞
∑

s=0

βs
Et−1

[

u(ct+s) − θt+sh(yt+s)
]

(12)
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where θt ≡ w−γ
t can be interpreted as a taste shock to producing output. Productivity wt,

and hence θt, is independently and identically distributed across dynasties and generations

t = 0, 1 . . .With innate talents assumed nonheritable, intergenerational transmission of welfare

is not mechanical linked through the environment but may arise to provide incentives for

altruistic parents.

Since productivity shocks are assumed to be privately observed by individuals and their

descendants each dynasty faces a sequence of consumption functions {ct}, where ct(θ
t) repre-

sents an individual’s consumption after reporting the history θt ≡ (θ0, θ1, . . . , θt). A dynasty’s

reporting strategy σ ≡ {σt} is a sequence of functions σt : Θt+1 → Θ that maps histories of

shocks θt into a current report θ̂t. Any strategy σ induces a history of reports σt : Θt+1 → Θt+1.

We use σ∗ to denote the truth-telling strategy with σ∗
t (θ

t) = θt for all θt ∈ Θt+1.

Given an allocation {ct}, the utility obtained from any reporting strategy σ is

U
(

{ct}, σ; β
)

≡
∞
∑

t=0

∑

θt∈Θt+1

βt[u
(

ct
(

σt(θt)
))

− θth(y(σ
t(θt)))] Pr(θt).

An allocation {ct} is incentive compatible if truth-telling is optimal, so that

U
(

{ct}, σ
∗; β
)

≥ U
(

{ct}, σ; β
)

(13)

for all strategies σ.

We identify dynasties by their initial utility entitlement v0 with distribution ψ in the

population. An allocation is a sequence of functions {cvt , y
v
t } for each v, where cvt (θ

t) and

yv
t (θ

t) represents the consumption and income that a dynasty with initial entitlement v gets

at date t after reporting the sequence of shocks θt. For any given initial distribution of

entitlements ψ and resources e, we say that an allocation {cvt } is feasible if: (i) it is incentive

compatible for all dynasties; (ii) it delivers expected utility of v to all initial dynasties entitled

to v; and (iii) average consumption in the population does not exceed the fixed endowment e

plus income generated in all periods:

∫

∑

θt

cvt (θ
t) Pr(θt) dψ(v) ≤ e+

∫

∑

θt

yv
t (θ

t) Pr(θt) dψ(v) t = 0, 1, . . . (14)

Consider the sum of expected utilities weighted by geometric Pareto weights αt = β̂t

∞
∑

t=0

αt E−1vt =

(

1 −
1

β̂ − β

)

v0 +
1

β̂ − β

∞
∑

t=0

β̂t
E−1

[

u(ct) − θth(yt)
]

. (15)

with β̂ > β. The first term is exogenously given, since we take as given a distribution for the

13



initial utility entitlements v0. Thus, the welfare criterion is given by

∞
∑

t=0

β̂t
E−1

[

u(ct) − θth(yt)
]

(16)

Future generations are already indirectly valued through the altruism of the current genera-

tion. If, in addition, they are also directly included in the welfare function the social discount

factor must be higher than the private one (see Farhi and Werning, 2005, for more details).

When β̂ = β, the planning problem seeks the lowest constant resource level e to ensure that

there exists a feasible allocation that delivers the distribution of utility entitlements ψ. This is

precisely the efficiency problem studied in Albanesi and Sleet (2004). When β̂ > β we define

the social optimum as maximizing the average social welfare function (16), weighed by ψ, over

all feasible allocations. That is, the social planning problem given an initial distribution of

entitlements ψ and an endowment level e is to maximize

∫

U
(

{cvt }, σ
∗, β̂
)

dψ(v) (17)

subject to the the resource constraints (14), as well as the promise keeping and incentive

constraints: v = U({cvt }, σ
∗; β) and U({cvt }, σ

∗; β) ≥ U({cvt }, σ; β) for all initial entitlements v

and strategies σ.

We are interested in distributions of utility entitlements ψ such that the solution to the

planning problem features, in each period, a cross-sectional distribution of continuation utili-

ties vt that is also distributed according to ψ. We also require the cross-sectional distribution

of consumption and income to replicate itself over time. We term any initial distribution of

entitlements with these properties a steady state and denote them by ψ∗. Following Farhi and

Werning (2005), we approach the planning problem by studying a relaxed version of it. The

solutions to both problems coincide for steady state distributions ψ∗, which is all we seek to

characterize. The relaxed problem has continuation utility as a state variable that follows a

Markov process. Steady states are then invariant distributions of this Markov process.

Define the relaxed planning problem to be equivalent to the social planning problem except

that the sequence of resource constraints (14) is replaced by the single intertemporal condition

∫ ∞
∑

t=0

β̂t
∑

θt

(

cvt (θ
t) − yv

t (θ
t) Pr(θt)

)

dψ(v) ≤
1

1 − β̂
e. (18)

Letting λ̂ be the multiplier for this intertemporal resource constraint we form the Lagrangian

14



L ≡
∫

Lv dψ(v) where

Lv ≡
∞
∑

t=0

∑

θt

β̂t
(

u(cvt (θ
t)) − λ̂cvt (θ

t) − θth
(

yv
t (θ

t)
)

+ λ̂yv
t (θ

t)
)

Pr(θt) (19)

and study the maximization of L subject to v = U({cvt }, σ
∗; β) ≥ U({cvt }, σ; β) for all v and

σ. For any endowment level e, there exists a unique positive multiplier λ̂(e) so that the

maximizing this Lagrangian is equivalent to solving the relaxed problem. Maximizing L is

equivalent to the pointwise optimization, for each v, of the subproblem:

k(v) ≡ supLv (20)

subject to v = U({c(uv
t )}, σ

∗; β) ≥ U({c(uv
t )}, σ; β) for all σ.

The value function of the component planning problem k(v) defined by equation (20) is

continuous, concave, and satisfies the Bellman equation

k(v) = max
u,h,w

E
[

u(θ) − λ̂c(u(θ)) − θh(θ) + λ̂y
(

h(θ)
)

+ β̂k
(

w(θ)
)]

(21)

subject to

v = E
[

u(θ) − θh(θ) + βw(θ)
]

(22)

u(θ)−θh(θ)+βw(θ) ≥ u(θ′)−θh(θ′)+βw(θ′) for all θ, θ′ ∈ Θ. (23)

Denote by gw(v, θ) and gu(v, θ) the optimal policy function for w and u. The next lemma

characterizes some key properties of the value function k(v).

Lemma 1. The value function k(v) is strictly concave and continuously differentiable on (v, v)

where v = −∞; it is unbounded below on both sides limv→v k(v) = limv→v̄ k(v) = −∞; and

the derivative has limv→v k
′(v) = 1 and limv→v̄ k

′(v) = −∞.

5 Steady States and Progressive Taxation

We are interested in steady state distributions ψ∗ that have no mass at misery v. Our first

result is that this is not possible when future generations are not weighed directly, so that

β̂ = β. We then show that, in contrast, whenever β̂ > β a steady state distribution exists

with no mass at misery. The efficient allocation displays a form of mean reversion across

generations that keeps inequality bounded. The mean reversion is characterized by a modified

inverse Euler equation which implies that estate taxation is progressive.
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5.1 An Immiseration Result

For β = β̂, we have to modify our definition for the Social Planning problem. For any

distribution ψ of initial welfare entitlements, the planning problem is to minimize the net

resources required to deliver the utility entitlements in an incentive compatible way:

inf e (24)

subject to,
∫

∑

θt

(cvt (θ
t) − yv

t (θ
t))dψ(v) ≤ e (25)

U({cvt }, σ; β) = v for all v (26)

U({cvt }, σ
∗; β) ≥ U({cvt }, σ; β) for all v and σ (27)

From this program, we can define an invariant distribution exactly as in Section 4 of the

paper. We are interested in steady state distributions ψ∗ without full mass at misery. Our

first result is that this is basically not possible when β = β̂.

Proposition 4. Suppose that limu→∞ sup c′′(u)/c′(u) < ∞. Then if β = β̂, there exists no

invariant distribution ψ∗ without full mass at misery.

This result extends the immiseration result in Atkeson and Lucas (1992), who study an

endowment economy with privately observed taste shocks, instead of the Mirrleesian pro-

duction economy with privately observed productivity shocks studied here. They show that

the cross-sectional distribution of consumption disperses steadily over time, with inequality

growing without bound. As a result, almost everyone converges to the misery, consuming

nothing, while a vanishing fraction tend towards bliss, consuming the entire aggregate en-

dowment. Thus, no steady state distribution with positive consumption exists. To the best

of our knowledge Proposition 4 is the first formal statement of an analogous result in the

context of a Mirrleesian economy, where private information is regarding productivity shocks.

Researchers that assume β̂ = β have been typically forced to impose an ad hoc lower bound

on continuation utility to avoid misery and ensure that an steady-state distribution exists

(Atkeson and Lucas, 1995; Albanesi and Sleet, 2004).

5.2 Steady States and a Modified Inverse Euler Equation

We now return to efficient allocations where future generations are given positive weight.

We first derive an important intertemporal condition that must be satisfied by the optimal
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allocation. This condition has interesting implications for the optimal estate tax, computed

later.

Let λ be the multiplier on the promise-keeping constraint and let µ(θ, θ′) represent the

multipliers on the incentive constraints. Then the first-order conditions for interior solutions

for u(θ) and w(θ) are

p(θ) − λ̂c′(u(θ))p(θ) − λp(θ) −
∑

θ′

µ(θ, θ′) +
∑

θ′

µ(θ′, θ) = 0 (28)

β̂k′
(

w(θ)
)

p(θ) − βλp(θ) − β
∑

θ′

µ(θ, θ′) + β
∑

θ′

µ(θ′, θ) = 0 (29)

The envelope condition is k′ (v) = λ. From the first-order condition for w(θ) we obtain the

CLAR equation
β

β̂
k′(v) =

∑

θ

k′
(

gw(v, θ)
)

p(θ). (30)

This equation encapsulates the mean-reversion force in the model. In sequential notation

β

β̂
k′(vt) = Et[k

′(vt+1)], (31)

so that β/β̂ < 1 acts as an autoregressive coefficient ensuring that over time the derivative

k′(vt) mean reverts back to zero, where the function k(v) finds its interior maximum. The

mean-reverting force provided by β̂ > β is crucial for the existence of steady state distributions

with bounded inequality, which we prove below. In contrast, when β̂ = β no such central

tendency exists, increasing inequality and immiseration ensues and no steady state exists

(Proposition 4).

The optimal resolution of the tradeoff between incentives for altruistic parents and in-

surance for newborns gives rise to a less than one-for-one intergenerational transmission of

welfare—in contrast to the case where β̂ = β. The descendants of a rich parent are more

fortunate than those of a poor parent, but less and less so the more distant is the descendant:

the impact of the initial fortune of dynasties dies out over generations.

The more weight is put on future generations, the higher is β̂ compared to β, and the

less intense is the link between the welfare of parents and child. But as we will now show,

even the smallest amount of mean-reversion in the form of β̂ > β puts enough limits on

the transmission of shocks across generations to prevent the distribution of consumption and

welfare from exploding.
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The first-order conditions (28)–(29) imply that

β̂

β
k′(w(θ)) = 1 − λ̂c′(u(θ)) and

β̂

β
k′(v) = 1 − λ̂c′(u−), (32)

where u− should be interpreted as the previous period’s assignment of utility from consump-

tion. Substituting relations in equation (32) into the CLAR equation (30) we arrive at a

Modified Inverse Euler equation

1

u′(c−)
=

β̂

β

∑

θ

1

u′
(

c(θ)
) p(θ) − λ̂−1

(

β̂

β
− 1

)

. (33)

The left-hand side together with the first term on the right-hand side is the standard inverse

Euler equation. The second term on the right-hand side is novel, since it is zero when β = β̂

and is strictly negative when β̂ > β.3

We now show that a steady state exists whenever the welfare criterion places direct weight

on children so that β̂ > β. The proof follows Farhi and Werning (2005) quite closely, which

proves such a result for an economy with taste shocks.

Proposition 5. (a) There exists an invariant distribution ψ∗ for the Markov process {vt}

implied by gw. Moreover any invariant distribution ψ∗ has a support bounded away from

misery v. (b) Suppose that limu→∞ sup c′′(u)/c′(u) < ∞, then any invariant distribution

necessarily has a support bounded away from v.

An invariant distribution always exists, but when absolute risk aversion is bounded, so

that limu→∞ sup c′′(u)/c′(u) < ∞,4 the invariant distribution has a compact support, that is

bounded away from misery. It follows directly that the allocation implied by the invariant

distribution has consumption and work effort that are bounded above. This ensures that the

invariant ψ∗ is also a steady state of the original planning problem, for some endowment level

e.5

The result relies heavily on the force for mean reversion that is behind equation (31) and

equation (33). To see this mean-reversion force most clearly consider, as an example, the

logarithmic utility case, u(c) = log(c). Then 1/u′(c) = c and equation (33) can be written

3Farhi, Kocherlakota and Werning (2005) show that this equation, and its implications for estate taxation,
generalize to an economy with capital and an arbitrary process for skills.

4 This is the case for most common preference specifications, such as CARA or CRRA utility functions.
5 Indeed, the proof of this result actually shows that promised continuation utility vt is bounded for all

realizations of the shocks, starting from any v0 in the bounded support. It follows that promised utility vt is
bounded for all reporting strategies. This in turn implies that the proposed allocation is incentive compatible,
that is, that the temporary incentive constraints in equation (23) imply equation (13) (see Theorem 2 in Farhi
and Werning, 2005).
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with sequential time notation as

Et[ct+1] =
β

β̂
ct +

(

1 −
β

β̂

)

c̄,

or simply

ct+1 =
β

β̂
ct +

(

1 −
β

β̂

)

c̄+ εt+1 with Et[εt+1] = 0

where c̄ ≡ λ̂−1 is average consumption at the steady-state cross-sectional distribution. As the

last expression indicates, with logarithmic utility, consumption itself is autoregressive with an

autoregressive coefficient equal to β/β̂ < 1.

5.3 Tax Implementation

Any allocation that is incentive compatible and feasible, and has strictly positive consumption,

can be implemented by a combination of taxes on labor income and estates. Here we first

describe this implementation, and explore some features of the optimal estate tax in the next

subsection.

For any incentive-compatible and feasible allocation {cvt (θ
t), yv

t (θ
t)} we propose an imple-

mentation along the lines of Kocherlakota (2004). In each period, conditional on the history

of their dynasty’s reports θ̂t−1 and any inherited wealth, individuals report their current shock

θ̂t, produce, consume, pay taxes and bequeath wealth subject to the following set of budget

constraints

ct + bt ≤ yt

(

θ̂t
)

− Tt

(

θ̂t
)

+
(

1 − τt
(

θ̂t
))

Rt−1, tbt−1 t = 0, 1, . . . (34)

where Rt−1,t is the before-tax interest rate across generations, and initially b−1 = 0. Individuals

are subject to two forms of taxation: a labor income tax Tt(θ̂
t), and a proportional tax on

inherited wealth Rt−1, tbt−1 at rate τt(θ̂
t).6

Given a tax policy {T v
t (θt), τ v

t (θt), yv
t (θ

t)}, an equilibrium consists of a sequence of interest

rates {Rt, t+1}; an allocation for consumption, labor income and bequests {cvt (θ
t), bvt (θ

t)}; and

a reporting strategy {σv
t (θ

t)} such that: (i) {ct, bt, σt} maximize dynastic utility subject

to (34), taking the sequence of interest rates {Rt, t+1} and the tax policy {Tt, τt, yt} as given;

and (ii) the asset market clears so that
∫

E−1[b
v
t (θ

t)] dφ(v) = 0 for all t = 0, 1, . . . We say that

6In this formulation, taxes are a function of the entire history of reports, and labor income yt is mandated
given this history. However, if the labor income histories yt : Θt → R

t being implemented are invertible, then
by the taxation principle we can rewrite T and τ as functions of this history of labor income and avoid having
to mandate labor income. Under this arrangement, individuals do not make reports on their shocks, but
instead simply choose a budget-feasible allocation of consumption and labor income, taking as given prices
and the tax system.
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a competitive equilibrium is incentive compatible if, in addition, it induces truth telling.

For any feasible, incentive-compatible allocation {cvt , y
v
t }, with strictly positive consump-

tion we construct an incentive-compatible competitive equilibrium with no bequests by setting

T v
t (θt) = yt(θ

t) − ct(θ
t) and

τ v
t (θt) = 1 −

1

βRt−1, t

u′(cvt−1(θ
t−1))

u′(cvt (θ
t))

(35)

for any sequence of interest rates {Rt−1, t}. These choices work because the estate tax ensures

that for any reporting strategy σ, the resulting consumption allocation {cvt (σ
t(θt))} with no

bequests bvt (θ
t) = 0 satisfies the consumption Euler equation

u′
(

cvt
(

σt(θt)
))

= βRt, t+1

∑

θt+1

u′
(

cvt+1

(

σt+1(θt, θt+1)
))(

1 − τ v
t+1

(

σt+1(θt, θt+1)
))

Pr(θt+1).

The labor income tax is such that the budget constraints are satisfied with this consumption

allocation and no bequests. Thus, this no-bequest choice is optimal for the individual regard-

less of the reporting strategy followed. Since the resulting allocation is incentive compatible,

by hypothesis, it follows that truth telling is optimal. The resource constraints together with

the budget constraints then ensure that the asset market clears.7

As noted above, in our economy without capital only the after-tax interest rate matters

so the implementation allows any equilibrium before-tax interest rate {Rt−1, t}. In the next

subsection, we set the interest rate to the reciprocal of the social discount factor, Rt−1, t = β̂−1.

This choice is natural because it represents the interest rate that would prevail at the steady

state in a version of our economy with capital.

5.4 Optimal Progressive Estate Taxation

In our environment, the relevant past history is encoded in the continuation utility so the

estate tax τ(θt−1, θt) can actually be reexpressed as a function of vt(θ
t−1) and θt. Abusing

notation we then denote the estate tax by τt(v, θt). Since we focus on the steady-state,

invariant distribution, we also drop the time subscripts and write τ(v, θ).

The average estate tax rate τ̄(v) is then defined by

1 − τ̄(v) ≡
∑

θ

(

1 − τ(v, θ)
)

p(θ) (36)

7Since the consumption Euler equation holds with equality, the same estate tax can be used to implement
allocations with any other bequest plan with income taxes that are consistent with the budget constraints.
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Using the modified inverse Euler equation (33) we obtain

τ̄ (v) = −λ̂−1 u′
(

c−(v)
)

(

β̂

β
− 1

)

In particular, this implies that the average estate tax rate is negative, τ̄(v) < 0, so that

bequests are subsidized. However, recall that before-tax interest rates are not uniquely de-

termined in our implementation. As a consequence, neither are the estate taxes computed

by (35). With our particular choice for the before-tax interest rate, however, the tax rates

are pinned down and acquires a corrective, Pigouvian role. Differences in discounting can

be interpreted as a form of externalities from future consumption, and the negative average

tax can then be seen as a way of countering these externalities as prescribed by Pigou. In

our setup without capital, this result depends on the choice of the before-tax interest rate.

However, the negative tax on estates would be a robust steady-state outcome in a version of

our economy with capital.

In our model it is more interesting to understand how the average tax varies with the

history of past shocks encoded in the promised continuation utility v. The average tax is an

increasing function of consumption, which, in turn, is an increasing function of v. Thus, estate

taxation is progressive: the average tax on transfers for more fortunate parents is higher.

Proposition 6. In the repeated Mirrlees economy, an optimal allocation with strictly positive

consumption can be implemented by a combination of income and estate taxes. At a steady-

state, invariant distribution ψ∗, the optimal average estate tax τ̄(v) defined by (35) and (36)

is increasing in promised continuation utility v.

The progressivity of the estate tax reflects the mean-reversion in consumption. The for-

tunate must face lower net rates of return so that their consumption path decreases towards

the mean.8

6 Concluding Remarks

When only the first generation’s welfare is of concern, we obtain familiar results that echo

those obtained in intragenerational settings. In particular, in our simple two-period economy

we recover Atkinson-Stiglitz’s uniform-taxation result. As a consequence, bequests should be

undistorted and the transmission of welfare perfect: consumption of parent and child should

move one-for-one. In our infinite-horizon model, we prove an immiseration result that parallels

8Farhi, Kocherlakota and Werning (2005) explore more general versions of this result and discuss other
intuitions.
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Atkeson-Lucas’: a dynasty’s consumption inherits a random walk property, inequality grows

without bound and everyone converges to misery.

In contrast, when the expected welfare of future generations is taken into account, the

planner values insuring children against the family they are born into. We characterize efficient

allocations and study the role that estate taxation can play in implementing these allocations.

We find that the estate tax should be progressive to ensure that consumption and welfare

exhibit mean-reversion across generations. Inequality is then bounded: a steady-state cross-

section for consumption and welfare exists.

Farhi, Kocherlakota and Werning (2005) explore some extensions—by including physical

capital accumulation, modeling life-cycle elements and allowing skills to be correlated across

generations—and show that the main result on progressive estate taxation holds. However,

a number of issues are still unexplored. For example, the effects of parental investments in

the child’s human capital, of endogenous and variable fertility, and of intervivo transfers all

remain open questions for future research.
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Appendix

A Proof of Lemma 1

Strict concavity and differentiability follow from standard arguments. In order to derive the

limits of k and k′ at the bounds of the domain, we derive a lower bound kmin and an upper

bound kmax, for which we can easily compute the corresponding limits.

Consider the solution {uv0(θt), yv0(θt)} to the relaxed planning problem for a given v0. For

all v ≤ v0, define {uv0

v (θt), yv0

v (θt)} by

uv0

v (θt) = uv0(θt) for all t ≥ 0

h(yv0

v (θ0)) = h(yv0(θ0)) + v0 − v

yv0

v (θt) = yv0(θt) for all t ≥ 1

Let

kmin(v) =
∞
∑

t=0

β̂tE−1[u
v0

v (θt) − λ̂c(uv0

v (θt)) + λ̂yv0

v (θt) − θth(y
v0

v (θt))]

Since {uv0

v (θt), yv0

v (θt)} is incentive compatible and delivers welfare level v, we have k(v) ≥

kmin(v), for all v ≤ v0. We have

kmin ′(v) = 1 − λ̂E

[

1

h′(h(yv0(θ0) + v0 − v)

]

Hence

lim
v→−∞

kmin ′(v) = 1

Since k(v) ≥ kmin(v), for all v ≤ v0 and both k and kmin are concave, this implies that

lim
v→−∞

k′(v) ≤ 1

Next define

k̄(v) = sup
∞
∑

t=0

β̂tE−1[u(θ
t) − λ̂c(u(θt)) + λ̂y(θt) − θth(y(θ

t))]

s.t.

v =
∞
∑

t=0

βtE−1[u(θ
t) − θth(y(θt))]

This corresponds to the relaxed planning problem, but without the incentive constraints.
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Hence we have k(v) ≤ k̄(v).

Let

m = max
u,y,θ

u− λ̂c(u) + λ̂y − θh(y)

Then

k̄(v) ≤ sup
∞
∑

t=0

βtE−1[u(θ
t) − λ̂c(u(θt)) + λ̂y(θt) − θth(y(θ

t))] +m

[

1

1 − β̂
−

1

1 − β

]

≤ v + sup

{

∞
∑

t=0

βtE−1[−λ̂c(u(θ
t)) + λ̂y(θt)]

}

+m

[

1

1 − β̂
−

1

1 − β

]

Hence if we define

C(v) = inf
∞
∑

t=0

βtE−1[c(u(θ
t)) − y(θt)]

s.t

v =
∞
∑

t=0

βtE−1[u(θ
t) − θth(y(θ

t))]

and

kmax(v) = v − C(v) +m

[

1

1 − β̂
−

1

1 − β

]

we have

k̄(v) ≤ kmax(v)

Denote by {uC(θt, v), yC(θt, v)} the solution of the program defining C. Combining the first

order conditions for u(θt) and the envelope theorem, we get

c′(uC(θt, v)) = C ′(v) for all t ≥ 0

1

θth′(yC(θt, v))
= C ′(v) for all t ≥ 0

This implies that

lim
v→−∞

C ′(v) = 0

lim
v→−∞

uC(θt, v) = u

lim
v→−∞

yC(θt, v) = ∞

Hence

lim
v→−∞

kmax ′(v) = 1
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Since k ≤ kmax and both k and kmax are concave, this implies that

lim
v→−∞

k′(v) ≥ 1

Since we already have

k′(v) ≤ 1

this implies that

lim
v→−∞

k′(v) = 1

Note that we always have

lim
v→v̄

C ′(v) = +∞

lim
v→v̄

kmax ′(v) = −∞

Since k(v) ≤ kmax(v),and both k and kmax are concave, this implies that

lim
v→v̄

k′(v) = −∞

Finally, note that

lim
v→v̄

kmax(v) = lim
v→v

kmax(v) = −∞

Hence

lim
v→v̄

k(v) = lim
v→v

k(v) = −∞

B Proof of Proposition 4

In order to characterize the optimal allocation it is convenient to study a relaxed problem.

The Lagrangian theorem guarantees that there exists a unique sequence of multipliers {qt}

with q0 = 1 on (25) such that solving (24) is equivalent to solving the following program:

inf
∑

t≥0

qt

∫

∑

θt

(cvt (θ
t) − yv

t (θ
t))dψ(v)

subject to (26) and (27). Note that this problem is equivalent to the minimization v by v of

C(v; {qt}) =
∑

t≥0

qt

∫

∑

θt

(cvt (θ
t) − yv

t (θ
t))

25



subject to

U({cvt }, σ; β) = v

U({cvt }, σ
∗; β) ≥ U({cvt }, σ; β) for all σ

Hence C(v; {qt}) is the least possible cost of an incentive compatible allocation delivering

welfare v to the first generation. It is trivial to see that C(v; {qt}) is the solution of the

following Bellman equation

C(v; {qt+s}s≥1) = inf E[c(uθ) − y(hθ) + qt+1C(wθ, {
qt+s

qt+1

}s≥2)] (37)

subject to

v = E[uθ + βwθ − θhθ]

uθ + βwθ − θhθ ≥ uθ′ + βwθ′ − θhθ′

For future use, let us denote by gw(v, θt) the continuation utility after a history of shock

θt when the initial welfare entitlement is v.

Suppose there exists an invariant distribution ψ∗, and let {qt} be the associated sequence

of multipliers. Since ψ is a state variable for (24), this shows that qt+1/qt is independent of

t. Hence there exists 0 < q < 1 such that qt+1/qt = q for all t. We can therefore drop the

time dependence on the sequence {qt} in Ct(v; {qt}), and simply write C(v) as a shortcut for

C(v, {qt}t≥0).

Lemma 2. Suppose there exists an invariant distribution ψ∗ without full mass at misery.

Then q ≥ β.

Proof. We will make use of two possible state variables. The first state variable is the natural

one: v, promised future utility. The other one is utility attained by the previous generation

u−. Indeed, from the first order conditions, it is easy to see that these two state variables are

related by

c′(u−) =
q

β
C ′(v)

The existence of an invariant distribution ψ∗(v) with not mass at misery is equivalent to the

existence of an invariant distribution ψ̂∗(u−) with no mass at misery.

Let xθ = uθ + βwθ. Then we can rewrite the Bellman equation (37) as

C(v) = inf E[c(uθ) − y(hθ) + qC(wθ)]

subject to

v = E[xθ − θhθ]
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xθ − θhθ ≥ xθ′ − θhθ′

uθ + βwθ = xθ

Hence, given a value x for xθ, uθ and wθ are given by the sub-program

min c(u) + qC(w)

subject to

u+ βw = x

The solution is given by the first order condition

c′(x− βw) +
q

β
C ′(w) = 0

Using the implicit function theorem, we can then compute

du

dx
=

q

β
C ′′(w)

q

β
C ′′(w) + βc′′(x− βw)

Hence

0 ≤
du

dx
≤ 1

This in turn implies that there exists M > 0 such that

max
θ,θ′

|uθ′ − uθ| < M max
θ
hθ

The first order conditions for uθ in in (37) imply that

β

q
c′(u−) = E[c′(uθ)]

Hence
β

q
c′(u−) = E[c′(uθ)] ≤ c′(uθ)

Therefore,

log(
β

q
) + log(c′(u−)) ≤ log(c′(uθ))

and hence

log(
β

q
) + log(c′(u−)) ≤ log(c′(u−)) +

(

max
u∈[u−,uθ]

c′′(u)

c′(u)

)

(uθ − u−)
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which we can rewrite as
log(β

q
)

(

maxu∈[u−,uθ]
c′′(u)
c′(u)

) ≤ uθ − u−

Hence for all θ ∈ Θ,

log(β

q
)

(

maxu∈[u−,uθ]
c′′(u)
c′(u)

) −M max
θ′∈Θ

hθ′ ≤ uθ − u−

In order to allow for bunching in (37), it is convenient to consider the following program

inf
u,w

∑

n

p̄n{c(un) − y(hn) + qC(wn)}

v =
∑

n

p̄n(un + βwn − θ̄nhn)

−θnhn + un + βwn ≥ −θnhn+1 + un+1 + βwn+1 for n = 1, 2, . . . , K − 1,

This problem and its notation require some discussion. We do not incorporate the monotonic-

ity constraint on h. But this notation allows us to consider bunching in the following way. If

any set of neighboring agents is bunched, then we group these agents under a single index and

let p̄n be the total probability of this group. Likewise let θ̄n represent the conditional average

of θ within this group, which is what is relevant for the promise-keeping constraint and the

objective function. Let θn be the shock of the highest agent in the group. The incentive

constraint must rule the highest agent in each group from deviating and taking the allocation

of the group above him.

Of course, every combination of bunched agents leads to a different program. The op-

timal allocation of our problem must solve one of these programs with a strictly monotone

allocation—since bunching can be characterized by regrouping agents. Thus, below we char-

acterize solutions to these programs with strict monotonicity of the solution.

The first order conditions for hn is

y′(hn) = C ′(v)θ̄n + θnµn,n+1 − θn−1µn−1,n.

This implies in particular that at the optimum, for any of these programs (and hence for the

program solved by the true optimal allocation),

y′(hθ) ≥ C ′(v)θ.

It is easy to verify that C ≥ Ĉ, where Ĉ is the solution to (37) without the incentive
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compatibility constraints. Let v̄ be the upper bound of the domain for v. Since both C and

Ĉ are increasing and convex, and since

lim
v→v

Ĉ(v) = ∞ and lim
v→∞

Ĉ ′(v) = ∞

we have

lim
v→v

C(v) = ∞ and lim
v→v

C ′(v) = ∞

Therefore,

lim
v→v

y′(hθ(v)) = ∞ ⇒ lim
v→v

hθ(v) = 0

and since hθ has is decreasing in θ,

lim
v→v

hθ(v) = 0 for all θ ∈ Θ

But this in turn implies that

log(β

q
)

(

maxu∈[u−,uθ]
c′′(u)
c′(u)

) ≤ lim
v→v

inf(uθ − u−)

Suppose that q < β. This implies that for v or equivalently u− high enough, the policy

functions uθ are all such that uθ > u−. This in turn implies that ψ̂∗ necessarily has a support

bounded away from u. This in turn implies that

∫

C ′(v)dψ∗(v) =

∫

c′(u−)dψ̂∗(u−) <∞

Integrating
β

q
C ′(v) = E[C ′(wθ)]

over v,we get
∫

C ′(v)dψ∗(v) =
β

q

∫

C ′(v)dψ∗(v)

Since ψ∗ doesn’t have full mass at misery, we have
∫

C ′(v)dψ∗(v) > 0. This in turn implies

that β = q, a contradiction.
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We have therefore proved that q ≥ β at ψ∗. But then from the equation

β

q
C ′(v) = E[C ′(wθ)]

we see that C ′(vt) is a positive supermartingale. By the martingale convergence theorem, for

any initial value v0 for v, the sequence of random variables {vt} converges almost surely to a

random variable C ′∞
v with

E[C ′∞
v ] ≤ C ′(v).

Suppose that there must exists a v∗ such that Pr(C ′∞
v∗ > 0). We will show that this is not

possible.

For any realization θ∞ define the set of periods where θt takes on some particular value

θ ∈ Θ as

Oθ(θ
∞) ≡ {t, θt(θ

∞) = θ}.

Then since Θ is finite, we have that with probability one all values of θ occur infinitely often

Pr(#Oθ(θ
∞) = ∞ for all θ ∈ Θ) = 1.

Hence there exists an event θ∞ such that C ′(gw(v∗, θt(θ∞))) converges to a positive and finite

value, and #Oθ(θ
∞) = ∞ for all θ ∈ Θ. Hence gw(v∗, θt(θ∞)) converges to a finite value w∗.

Since gw(v, θ) is continuous in v, and #Oθ(θ
∞) = ∞ this implies that gw(w∗, θ) = w∗ for all

θ ∈ Θ. This implies that the incentive constraints are not binding at w∗, a contradiction.

Hence Pr(C ′∞
v > 0) = 0 for all v. Therefore for all v, C ′(gw(v, θt)) converges almost surely

to 0. This in turn implies that the stochastic process C ′(vt) converges almost surely to 0. This

implies that C ′(vt) converges in distribution to 0. Since ψ∗ is an invariant distribution, C ′(vt)

is distributed as C ′(v0). This implies that the distribution of C ′(v0) has full mass at zero, i.e.

that ψ∗ has full mass at misery.

C Proof of Proposition 5

We start with two lemmas, and then proceed to prove the proposition.

Lemma 3. The following inequalities hold

γ(1 − k′(v)) +

(

1 −
β

β̂

)

≤ 1 − k′(gw(θ, v)) ≤ γ̄(1 − k′(v)) +

(

1 −
β

β̂

)

for all θ ∈ Θ, where the constants are given by γ̄ ≡ (β/β̂) max
1≤n≤N

{(1 + θn − E[θ | θ ≤ θn])/θn}

and γ ≡ (β/β̂) min
2≤n≤N

{1 + θn−1 − E[θ | θ ≥ θn]/θn−1}.
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Proof. Consider the program

max
u,w

∑

n

p̄n{un − λ̂c(un) + λ̂y(hn) − θ̄nhn + β̂k(wn)}

v =
∑

n

p̄n(un + βwn − θ̄nhn)

−θnhn + un + βwn ≥ −θnhn+1 + un+1 + βwn+1 for n = 1, 2, . . . , K − 1,

This problem and its notation require some discussion. We do not incorporate the monotonic-

ity constraint on h. But this notation allows us to consider bunching in the following way. If

any set of neighboring agents is bunched, then we group these agents under a single index and

let p̄n be the total probability of this group. Likewise let θ̄n represent the conditional average

of θ within this group, which is what is relevant for the promise-keeping constraint and the

objective function. Let θn be the shock of the highest agent in the group. The incentive

constraint must rule the highest agent in each group from deviating and taking the allocation

of the group above him.

Of course, every combination of bunched agents leads to a different program. The op-

timal allocation of our problem must solve one of these programs with a strictly monotone

allocation—since bunching can be characterized by regrouping agents. Thus, below we char-

acterize solutions to these programs with strict monotonicity of the solution.

The first-order conditions are

p̄n{λ̂y
′(hn) − θ̄n + λθ̄n} − θnµn + θn−1µn−1 ≤ 0

p̄n{β̂k
′(wn) − βλ} + β(µn − µn−1) = 0

where, by the envelope condition λ = k′(v).

Summing the first-order conditions for hn, we get

λ̂E[y′(h(θ))] = 1 − k′(v)

Summing up the first-order conditions for wn, we get

E[k′(gw(v, θ))] =
β

β̂
k′(v)

The first-order conditions for n = 1 imply

(1 − λ) +
θ1

θ̄1

µ1

p̄1

=
λ̂y′(h1)

θ̄1

≤
λ̂E[y′(hθ)]

θ̄1

=
1 − λ

θ̄1

.
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This implies
µ1

p̄1

≤
1 − λ

θ1

− (1 − λ)
θ̄1

θ1

.

Using

k′(w1) =
β

β̂
λ−

β

β̂

µ1

p̄1

,

we get

k′(w1) ≥
β

β̂

[

λ−
1 − λ

θ1

+ (1 − λ)
θ̄1

θ1

]

=
β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

k′(v) +
β

β̂

[

θ̄1

θ1

−
1

θ1

]

.

Similarly, writing the first-order conditions for n = K, we get

(1 − λ) −
θK−1

θ̄K

µK−1

p̄K

=
λ̂y′ (hK)

θ̄K

≥
λ̂E[c′(hθ)]

θ̄K

=
1 − λ

θ̄K

.

This implies

−
µK−1

p̄K

≥
1 − λ

θK−1

− (1 − λ)
θ̄K

θK−1

.

Using

k′ (wK) =
β

β̂
λ+

β

β̂

µK−1

p̄K

,

we get

k′ (wK) ≤
β

β̂

[

λ−
1 − λ

θK−1

+ (1 − λ)
θ̄K

θK−1

]

=
β

β̂

[

1 +
1

θK−1

−
θ̄K

θK−1

]

k′(v) +
β

β̂

[

θ̄K

θK−1

−
1

θK−1

]

.

For any n, wK ≤ wn ≤ w1,

β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

k′(v) +
β

β̂

[

θ̄1

θ1

−
1

θ1

]

≤ k′ (wn)

≤
β

β̂

[

1 +
1

θK−1

−
θ̄K

θK−1

]

k′(v) +
β

β̂

[

θ̄K

θK−1

−
1

θK−1

]

.

After rearranging, we obtain

β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

(1 − k′(v)) + 1 −
β

β̂
≥ 1 − k′ (gw (θ, v))

≥
β

β̂

[

1 +
1

θK−1

−
θ̄K

θK−1

]

(1 − k′(v)) + 1 −
β

β̂
.
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By Lemma 1 we have that limv→v k
′(v) = 1, then using the bounds we obtain that

lim
v→v

k′(gw(v, θ)) =
β

β̂
< 1 = lim

v→v
k′(v),

for all θ ∈ Θ.

The following lemma describes the behavior of the optimal allocation when v goes to v.

Lemma 4. We have gu(v, θ) > u and lim
v→v

gu(v, θ) = u, lim
v→v

gh(v, θ) = ∞

Proof. Consider the program

max
u,w

∑

n

p̄n{un − λ̂c(un) + λ̂y(hn) − θ̄nhn + β̂k(wn)}

v =
∑

n

p̄n(un + βwn − θ̄nhn)

−θnhn + un + βwn ≥ −θnhn+1 + un+1 + βwn+1 for n = 1, 2, . . . , K − 1,

The first order condition for un is 1−λ̂c′(un) = β̂

β
k′(wn). Hence 1−λ̂c′(gu(v, θ)) = β̂

β
k′(gw(v, θ)).

Since k′(gw(v, θ)) < β

β̂
, we have un > u. Moreover, since lim

v→v
k′(v, θ) = β

β̂
, we have

lim
v→v

c′(gu(v, θ)) = 0 or equivalently lim
v→v

gu(v, θ) = u

That lim
v→v

gh(v, θ) = ∞ follows from

λ̂E[y′(gh(v, θ))] = 1 − k′(v)

and lim
v→v

k′(v) = 1.

Since the derivative k′(v) is continuous and strictly decreasing, we can define the transition

function

Q(x, θ) = k′(gw((k′)−1(x), θ))

for all x < l if utility is unbounded below. For any probability distribution µ, let TQ(µ) be

the probability distribution defined by

TQ(µ)(A) =

∫

1{Q(x,θ)∈A} dµ(x) dp (θ)

for any Borel set A. Define

TQ,n ≡
TQ + T 2

Q + · · · + T n
Q

n
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For example, TQ,n(δx) is the empirical average of {k′(vt)}
n
t=1 over all histories of length n

starting with k′(v0) = x. The following lemma establishes the existence of an invariant

distribution by considering the limits of {TQ,n}.

We are now able to prove a proposition that implies the first part Proposition 5, and

describes an algorithm to construct an invariant distribution.

Proposition 7. For each x < l there exists a subsequence {TQ,φ(n)(δx)} that converges weakly,

i.e. in distribution, to an invariant distribution on (−∞, 1) under Q.

Proof. For all θ ∈ Θ

lim
x↑1

Q (x, θ) = lim
v→−∞

k′(gw(θ, v)) =
β

β̂
< 1.

Note that we have a continuous transition function Q(x, θ) : (−∞, 1) × Θ → (−∞, 1).

We next show that the sequence {T n
Q(δx)} is tight, in that for any ε > 0 there exists a

compact set Kε such that T n
Q(δx)(Kε) ≥ 1 − ε, for all n. The expected value of the distribu-

tion T n
Q(δx) is simply E−1[k

′(vt(θ
t−1))] with x = k′(v0) < 1. Recall that E−1[k

′(vt(θ
t−1))] =

(β/β̂)tk′(v0) → 0. This implies that

min{0, k′(v0)} ≤ E−1[k
′(vt(θ

t−1))]

≤ T n
Q(δx)(−∞,−A)(−A) + (1 − T n

Q(δx)(−∞,−A))1

for all A > 0. Rearranging,

T n
Q(δx)(−∞,−A) ≤

1 − min{0, x}

A+ 1

Hence we can find Aε > 0 such that

T n
Q(δx)(−∞,−Aε) ≤

ε

2

Define aε by

1 − aε = sup
x∈[Aε,1)

θ∈Θ

Q(x, θ)

Since for all θ ∈ Θ, lim
v→−∞

k′(v, θ) < β

β̂
< 1, we have aε > 0. In addition, for all n ≥ 1,

T n
Q(δx) = TQ(T n−1

Q (δx)), so that

T n
Q(δx)(1 − aε, 1) ≤ T n−1

Q (δx)(−∞, Aε) ≤
ε

2

Since we also have

T n
Q(δx)(−∞,−Aε) ≤

ε

2
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this implies

T n
Q(δx)[Aε, 1 − aε] ≥ ε

Taking Kε = [Aε, 1−aε], this implies that {T n
Q(δx)}n≥1 is tight, and therefore {T n

Q(δx)}n≥0,

is tight.

Tightness implies that there exists a subsequence T
φ(n)
Q (δx) that converges weakly, i.e. in

distribution, to some probability distribution π on (−∞, 1). Since Q(x, θ) is continuous in x,

then TQ(T
φ(n)
Q (δx)) converges weakly to TQ(π). But the linearity of TQ implies that

TQ(T
φ(n)
Q (δx)) =

T
φ(n)+1
Q (δx) − TQ(δx)

φ(n)
+ T

φ(n)
Q (δx)

and since φ(n) → ∞ we must have TQ(π) = π.

Note that for any invariant distribution π, TQ(π) = π implies that the support of π is

contained in (−∞, β

β̂
]. This proves the second part of Proposition 5. We finally prove a

lemma that implies the last part Proposition 5.

Lemma 5. Suppose that limu→∞ sup c′′(u)/c′(u) < ∞. Then any invariant distribution ψ̂

necessarily has a support bounded away from v.

Proof. We will make use of two possible state variables. The first state variable is the natural

one: v, promised future utility. The other one is utility attained by the previous generation

u−. Indeed, from the first order conditions, it is easy to see that these two state variables are

related by

1 − λ̂c′(u−) =
β̂

β
k′(v)

The existence of an invariant distribution ψ∗(v) with not mass at misery is equivalent to the

existence of an invariant distribution ψ̂∗(u−) with no mass at misery.

Let xθ = uθ + βwθ. Then we can rewrite the Bellman equation (21) as

k(v) = supE[uθ − λ̂c(uθ) − θhθ + λ̂y(hθ) + β̂k(wθ)]

subject to

v = E[xθ − θhθ]

xθ − θhθ ≥ xθ′ − θhθ′

uθ + βwθ = xθ
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Hence, given a value x for xθ, uθ and wθ are given by the sub-program

maxu− λ̂c(u) + β̂k(w)

subject to

u+ βw = x

The solution is given by the first order condition

1 − λ̂c′(u) =
β̂

β
k′(
x− u

β
) = 0

Using the implicit function theorem, we can then compute

du

dx
=

− β̂

β
k′′(x−u

β
)

− β̂

β
k′′(x−u

β
) + λ̂c′′(u)

Hence

0 ≤
du

dx
≤ 1

This in turn implies that there exists M > 0 such that

max
θ,θ′

|uθ′ − uθ| < M max
θ
hθ

Consider the program (C). The first order condition for hn is

p̄n{λ̂y
′(hn) − θ̄n + λθ̄n} − θnµn + θn−1µn−1 ≤ 0

where λ = k′(v). This implies that

y′(hθ) ≥
θ

λ̂
(1 − k′()v)

This shows that

lim
v→v

y′(hθ(v)) = ∞ ⇒ lim
v→v

hθ(v) = 0

and since hθ has is decreasing in θ,

lim
v→v

hθ(v) = 0 for all θ ∈ Θ
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The first order condition(33) implies that

c′(u−) ≥
β̂

β
c′(uθ) − λ̂−1(

β̂

β
− 1)

which can be rewritten as
β

β̂
c′(u−) + λ̂−1(1 −

β

β̂
) ≥ c′(uθ)

This in turn implies that for all θ ∈ Θ

exp

(

M max
θ
hθ max

u∈[u
θ
,uθ]

c′′(u)

c′(u)

)(

β

β̂
c′(u−) + λ̂−1(1 −

β

β̂
)

)

≥ c′(uθ)

Since

lim
v→v

hθ(v) = 0 for all θ ∈ Θ

we have

lim
u−→u

exp

(

M max
θ
hθ max

u∈[u
θ
,uθ]

c′′(u)

c′(u)

)

= 1 for all θ ∈ Θ

This in turn proves that for u− high enough, all the policy functions uθ are such that uθ < u−.

Hence any invariant distribution ψ̂∗ necessarily has a support bounded away from u. This is

equivalent to saying that any invariant distribution ψ̂ necessarily has a support bounded away

from v.
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