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1 Introduction

Many elderly keep large amounts of assets until very late in life. Further-
more, the more income they earned during their working years, the slower
they run down their assets. Why is this the case? The importance of this
question should be clear, especially if one wishes to use models of saving
behavior for quantitative policy evaluation.

Previous studies have considered whether longevity and medical expense
risk can explain large asset holdings even at advanced ages. We extend this
work by developing a model that is consistent with the following key facts
about the U.S. data. First, women outlive men by several years. Second,
there is large variation in life expectancy conditional on permanent income
and health status. Third, even in presence of health insurance, out-of-pocket
medical and nursing home expenses can be large, and thus generate signifi-
cant net income risk for the elderly.1

All of these elements affect both individual savings behavior and the com-
position of the sample. For instance, heterogenous life expectancies can gen-
erate flat (or even increasing) asset profiles after retirement for two reasons.
First, because income-rich people tend to live longer, as a cohort of people
grows older it becomes increasingly composed of the rich (Shorrocks [40]).
Second, these forces generate a lot of savings heterogeneity across individu-
als. For example, because women and the income-rich tend to live longer,
they need to save more in order to smooth consumption. This implies that,
as a cohort ages, it becomes increasingly composed of frugal people. For
these reasons we must consider both the theory and econometrics jointly to
provide a more complete understanding of savings behavior.

In this paper we study these determinants of savings in two steps. Using
the Assets and Health Dynamics of the Oldest Old (AHEAD) dataset, we
first estimate the uncertainty about mortality and out-of pocket medical
expenditures as functions of sex, health, permanent income, and age.

Our first step estimates show that average out-of-pocket medical expendi-
tures rise very rapidly with age. For example, average medical expenditures
for a woman in bad health rise from $1,200 at age 70 to $19,000 at age 100.
Also, and very importantly, medical expenditures after age 85 are very much

1See Attanasio and Emmerson [3], and Deaton and Paxon [13] for evidence on per-
manent income and mortality. See Hurd, McFadden, and Merrill [29] for evidence on
health status and mortality. See French and Jones [20, 21], Palumbo [35], Feenberg and
Skinner [18], and Cohen, Tell and Wallack [8] for evidence on medical expenses.
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a luxury good. While a sick 95-year-old woman at the 20th percentile of
the permanent income distribution expects to spend $2,700 on out-of-pocket
medical costs, an otherwise identical woman at the 80th percentile expects
to spend $16,000.

Our first step analysis also confirms that life expectancy can vary greatly.
For example, while a sick, 70-year-old male at the 20th percentile of the
permanent income distribution expects to live only 6 more years, a healthy
70-year-old woman at the 80th percentile expects to live 17 more years.2

In our second step, we construct a rich structural model of saving behavior
for retired single households, and estimate it using the method of simulated
moments. In particular, the model’s preference parameters are chosen so
that the permanent income-conditional age-asset profiles simulated from the
model match those in the data.

Notably, while our estimated values of the coefficient of relative risk aver-
sion and the discount factor are in line with those provided by the previous
literature, the additional sources of heterogeneity that we consider allow the
model to fit the data extremely well. Specifically, our estimated structural
model is not rejected when we test its over-identifying restrictions, which is
a feat that many structural models fail to achieve.

To gauge the importance of different saving motives, we use our estimated
model to perform a number of decomposition exercises. We find that the
differences in average medical expenditure by permanent income are very
important in explaining heterogeneity in asset decumulation decisions, while
the risk associated to these expenditures, while significant, is not a key force.
Our baseline model predicts that, between ages 74 and 81, median assets
for those in the top permanent income quintile are approximately constant
at $150,000, which is roughly consistent with the data. When we eliminate
medical expense risk, but hold average medical expenses constant, we find
that median assets for this group fall from $150,000 to $140,000 between ages
74 and 81. However, when we eliminate all medical expenses, median assets
for this group fall from $150,000 to $90,000 between ages 74 and 81.

We find that social insurance programs such Supplemental Security In-
come and Medicaid (modeled as a “consumption floor”, following Palumbo [35]
and Hubbard et al. [25]) have large effects on the elderly’s savings behavior,
including the richest ones. In the absence of the consumption floor, me-
dian assets for those in the top permanent income quintile would rise from

2These life expectancies are drawn from estimates summarized in Table 1.
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$150,000 to $220,000 between ages 74 and 81.
We also find that a significant portion of the higher saving of the high-

permanent income elderly is due to the fact that they have a longer longer
life-expectancy. If everyone had the survival probabilities of a healthy male
at the 50th percentile of the permanent income distribution, median assets
for those in the top permanent income quintile would fall from $150,000 to
$140,000 between ages 74 and 81.

In short, compared to the previous literature we obtain a much better fit
of the model to the data, and we find a larger effect of medical expenses and
the consumption floor on the elderly’s saving decisions.

Among the most important and closely related works, Yaari [43] and
Davies [9] formulate and Hurd [27] estimates a structural model of bequest
behavior after retirement in which the time of death is the only source of un-
certainty. We build on their contributions by allowing, consistently with the
data, for heterogeneity in survival probabilities as functions of observables.

Dynan, Skinner and Zeldes [15, 16] document the high saving rates of the
richest. We build upon their empirical work by showing that even the richest
elderly dissave very slowly.

Palumbo [35] focuses on the effect of medical expenses and uncertain
lifetimes. Unlike Palumbo [35], we find that properly modeling medical ex-
penses can go much further towards accounting for the observed lack of asset
decumulation after retirement, at least for the elderly singles. This is per-
haps not surprising, as Palumbo’s model over-predicts consumption for those
with with the highest wealth by over 50% and those with the highest income
by 37%, which suggest that his model over-predicts asset declines in those
groups as well.

Hubbard, Skinner and Zeldes [26] argue that means-tested social insur-
ance programs such as Supplemental Security Income and Medicaid provide
strong incentives for low income individuals not to save. Their simulations,
however, indicate that reducing the consumption floor has almost no effect
on consumption levels for college graduates. This contrasts with our finding
that the consumption floor has a large effect on savings decisions at all levels
of income. Our model of health costs indicate that medical expenses in old
age are so large that even the savings decisions of rich people are affected
by insurance programs such as Medicaid. We believe that having higher es-
timated medical expenses also helps us fit the data better than Hubbard et
al. For example, the simulations by Hubbard et al. imply thats asset de-
cline rapidly after age 70, which is inconsistent with the AHEAD data. Our
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model’s decumulation profiles, instead, do an excellent job of matching the
saving rate in the data.

The most likely cause of these differences is that, relative to our analysis,
Hubbard et al. and Palumbo understate medical expenses, both in terms
of levels and riskiness (see French and Jones [20, 21]), and they probably
understate the extent to which medical expenditures rise with age and per-
manent income. We find different medical expense processes for two main
reasons. First, we use a more realistic and flexible specification. Second, we
have access to newer and better data. These differences are at times quite
significant: the average expense for a 100-year-old with some college gen-
erated by Hubbard et al.’s medical expenditure model is about 15% of the
average medical expense for a 100-year generated by our model. Although it
is not clear how our estimates compare to Palumbo, it seems likely that our
estimates are higher than his as well.

Hurd, McFadden and Gan [22, 28] study the heterogeneity embedded in
individuals’ subjective survival probabilities. They find, similar to previous
work, that the subjective probabilities are on average consistent with those
from the aggregated life tables, but that there is considerable heterogeneity at
the individual level, some of which is helpful in predicting mortality. In this
paper we also disaggregate beyond the life tables. Our approach, however,
is to compute probabilities from the survival outcomes observed in our data.
We leave explorations of self-reported survival probabilities for future work.

The rest of the paper is organized as follows. In section 2, we introduce
our version of the life cycle model, and in section 3, we discuss our estimation
procedure. In sections 4 and 5, we describe the data and the estimated
shock processes that elderly individuals face. We also construct a very simple
measure of mortality bias, and show that the bias is significant. We discuss
our results in section 6, which includes some robustness checks and some
decomposition exercises that gauge the forces affecting saving behavior. We
conclude in section 7.

2 The model

Our analysis focuses on people that have retired already, which allows us
to concentrate on savings and consumption decisions, and abstract from labor
supply and retirement decisions. We restrict our analysis to elderly singles
to avoid the complications of dealing with household dynamics, such as the
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transition from two to one family members. We also sharpen our analysis by
excluding bequest motives, in order to isolate the potential effects of medical
expense and mortality risk.

Consider a single person, either male or female, seeking to maximize his
or her expected lifetime utility at age t, t = tr, tr + 1..., T + 1, where tr is the
retirement age. These individuals maximize their utility by choosing current
and future consumption. Each period, the individual’s utility depends on its
consumption, c, and health status, m, which can be either good (m = 1) or
bad (m = 0).

The within-period utility function is given by

u(c,m) = δ(m)
c1−ν

1 − ν
, (1)

with ν ≥ 0. The function δ(m), which determines how a person’s utility from
consumption depends on his or her health status, is given by

δ(m) = 1 + δm, (2)

so that when δ = 0, health status does not affect utility.
We assume that non-asset income yt, is a deterministic function of sex,

g, permanent income, I, and age t:

yt = y(g, I, t) (3)

The individual faces several sources of risk, which we treat as completely
exogenous. While this is of course a simplification, we believe it is a reason-
able assumption, especially since we focus on older people that have already
already shaped their health and lifestyle.

1) Health status uncertainty. We allow the transition probabilities for
health status to depend on sex, current health, and age. The elements of the
health status transition matrix are

πk,j,g,t = Pr(mt+1 = j|mt = k, g, t), k, j ∈ {1, 0}. (4)

2) Survival uncertainty. Let sg,m,I,t denote the probability that an indi-
vidual of sex g is alive at age t+1, conditional on being alive at age t, having
time-t health status m, and enjoying permanent income I.

3) Medical expense uncertainty. Health costs, hct, are defined as out-of-
pocket costs. We assume that health costs depend upon sex, health status,
age, permanent income and an idiosyncratic component, ψt:

lnhct = hc(g,m, t, I) + σ(g,m, I, t) × ψt. (5)
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Following Feenberg and Skinner [18] and French and Jones [21], we assume
that ψt can be decomposed as

ψt = ζt + ξt, ξt ∼ N(0, σ2
ξ ), (6)

ζt = ρhcζt−1 + ǫt, ǫt ∼ N(0, σ2
ǫ ), (7)

where ξt and ǫt are serially and mutually independent. In practice, we
discretize ξ and ζ, using quadrature methods described in Tauchen and
Hussey [41].

The timing is the following: at the beginning of the period the health
shock and the medical costs are realized. Then the individual consumes and
saves. Finally the survival shock hits.

Next period’s assets are given by

at+1 = at + y(rat + yt, τ) + trt − hct − ct, (8)

where y(rat + yt, τ) denotes post-tax income, the vector τ describes the tax
structure, and trt denotes government transfers.3

Assets have to satisfy a borrowing constraint:

at ≥ 0. (9)

Following Hubbard et al. [24, 26], we also assume that government transfers
provide a consumption floor:

trt = max{0, cmin + hct − [at + y(rtat + yt, τ)]}, (10)

Equation (10) says that government transfers bridge the gap between an
individual’s “total resources” (the quantity in the inner parentheses) and the
consumption floor. Equation (10) also implies that if transfers are positive,
ct = cmin and at+1 = 0.

To save on state variables we follow Deaton [12] and redefine the problem
in terms of cash-on-hand:

xt = at + y(rt at + yt, τ) + trt − hct. (11)

Note that assets and cash-on-hand follow:

at+1 = xt − ct, (12)

xt+1 = xt − ct + y
(
rt+1(xt − ct) + yt+1, τ

)
+ trt+1 − hct+1, (13)

3We do not include received bequests as a source of income, because very few individuals
aged 65 or older receive them.
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To enforce the consumption floor, we impose

xt ≥ cmin, ∀t, (14)

and to ensure that assets are always non-negative, we require

ct ≤ xt, ∀t. (15)

Note that all of the variables in xt are given and known at the beginning
of period t. We can thus write the individual’s problem recursively, using the
definition of cash-on-hand. Letting β denote the discount factor, the value
function for a single individual is given by

Vt(xt, g, I,mt, ζt) = max
ct,xt+1

{
u(ct,mt) + βsg,m,I,tEt

(
Vt+1(xt+1, g, I,mt+1, ζt+1)

)}
,

subject to equations (13) - (15).

3 Estimation procedure

3.1 The Method of Simulated Moments

To estimate the model, we adopt a two-step strategy, similar to the one
used by Gourinchas and Parker [23], Cagetti [7], and French and Jones [20].
In the first step we estimate or calibrate those parameters that can be cleanly
identified without explicitly using our model. For example, we estimate mor-
tality rates from raw demographic data. Let χ denote the collection of these
first-step parameters.

In the second step we estimate the vector of parameters ∆ = (δ, ν, β, cmin)
with the method of simulated moments (MSM), taking as given the elements
of χ that were estimated in the first step. In particular, we find the vector
∆̂ yielding the simulated life-cycle decision profiles that “best match” (as
measured by a GMM criterion function) the profiles from the data. Because
our underlying motivations are to explain why elderly individuals retain so
many assets, and to explain why individuals with high permanent income save
at a higher rate, we match permanent income-conditional age-asset profiles.
Our approach is similar to that of French and Jones [20].

Consider individual i of birth cohort c in calendar year t. Note that
the individual’s age is t − c. Let ãit denote individual i’s assets. Sorting
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the sample by permanent income, we assign every individual to one of Q
quantile-based intervals. In practice, we split the sample into 5 permanent
income quintiles, so that Q = 5. Suppose that individual i of cohort c falls
in the qth permanent income interval of the sample. Let acqt(∆, χ) be the
model-predicted median asset level in calendar year t for an individual of
cohort c that was in the qth permanent income interval. Assuming that
observed assets have a continuous density, at the “true” parameter vector
(∆0, χ0) exactly half of the individuals in group cqt will have asset levels of
acqt(∆0, χ0) or less. This leads to a well-known moment condition:4

E
(
1{ãit ≤ acqt(∆0, χ0)} − 1/2 |c, q, t, individual i alive at t

)
= 0, (16)

for all c, q and t. In other words, for each permanent income-cohort grouping,
the model and the data have the same median asset levels. Our decision to use
conditional medians, rather than means, reflects sample size considerations;
in some cqt cells, changes in one or two individuals can lead to sizeable
changes in mean wealth. Sample size considerations also lead us to combine
men and women in a single moment condition.

The mechanics of our MSM approach are fairly standard. In particu-
lar, we compute life-cycle histories for a large number of artificial individ-
uals. Each of these individuals is endowed with a value of the state vector
(t, xt, g, I,mt, ζt) drawn from the data distribution for 1995,5 and each is as-
signed a series of health, health cost, and mortality shocks consistent with
the stochastic processes described in the previous section 2.6 Solving numer-
ically the model described in section 2 yields a set of decision rules, which, in
combination with the simulated endowments and shocks, allows us to simu-
late each individual’s assets, medical expenditures, health and mortality. We

4See Manski [31], Powell [37] and Buchinsky [6]. Related methodologies are applied in
Cagetti [7] and Epple and Seig [17].

5Since we do not observe ζt directly, we infer it from individuals’ observed medical ex-
penditures, using the model of medical spending described below and standard projection
formulae.

6The simulated medical expenditure shocks are monte carlo draws from a discretized
version of our estimated medical expenditure process. In contrast, when simulating health
and mortality shocks, we give each simulated person the entire health and mortality history
realized by a person in the AHEAD data with the same initial conditions. (Although the
data provide health and mortality only during interview years, we simulate it in off-years
using our estimated models and Bayes’ Rule.) This approach ensures that the simulated
health and mortality processes are fully consistent with the data, even if our parsimonious
models of these processes are just an approximation. We are grateful to Michael Hurd for
suggesting this approach.
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then compute asset profiles (values of acqt) from the artificial histories in the
same way as we compute them from the real data. Finally, we adjust ∆ until
the difference between the data and simulated profiles—a GMM criterion
function based on equation (16)—is minimized.

We discuss the asymptotic distribution of the parameter estimates, the
weighting matrix and the overidentification tests in Appendix B.

3.2 Econometric Considerations

In estimating our model, we face two well-known econometric problems
(see, for example, Shorrocks [40]). First, in a cross-section or short panel,
older individuals will have earned their labor income in earlier calendar years
than younger ones. Because wages have increased over time (with produc-
tivity), this means that older individuals are poorer at every age, and the
measured saving profile will overstate asset decumulation over the life cycle.
Put differently, even if the elderly do not run down their assets, our data will
show that assets decline with age, as older individuals will have lower lifetime
incomes. Not accounting for this effect will lead us to estimate a model that
overstates the degree to which elderly people run down their assets.

Second, wealthier people tend to live longer, so that the average survivor
in each cohort has higher lifetime income than the average deceased member
of that cohort. This “mortality bias” tends to overstate asset growth in an
unbalanced panel. In addition, as time passes and people die, the surviving
people will be, relative to the deceased, healthy and female. These healthy
and female people, knowing that they will live longer, will tend to be more
frugal than their deceased counterparts, and hence have a flatter asset profile
in retirement. Not accounting for mortality bias will lead us to estimate a
model that understates the degree to which elderly people run down their
assets.

A major advantage of using a structural approach is that we can address
these biases directly, by replicating them in our simulations. We address
the first problem by giving our simulated individuals age, wealth, health,
gender and income endowments drawn from the distribution observed in the
data.7 If older people have lower lifetime incomes in our data, they will have

7It bears noting that we are assuming that there are no cohort effects beyond those
captured in the distributions of wealth, health, gender and income by age. This simpli-
fication allows us to use the same set of decision rules for all cohorts, which significantly
reduces our computational burden. Moreover, as shown below, it does not prevent the
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lower lifetime incomes in our simulations. We address the second problem by
allowing mortality to differ with sex, permanent income and health status.
As a result our estimated decision rules and our simulated profiles incorporate
mortality effects in the same way as the data.

4 Data

The AHEAD is a sample of non-institutionalized individuals, aged 70
or older in 1993. A total of 8,222 individuals in 6,047 households were in-
terviewed for the AHEAD survey in 1993 (in other words, 3,872 singles and
2,175 couples). These individuals were interviewed again in 1995, 1998, 2000,
and 2002. The AHEAD data include a nationally representative core sample
as well as additional samples of blacks, Hispanics, and Florida residents.

If it is discovered that a sample member dies, this is recorded and verified
using the National Death Index. Fortunately, attrition for reasons other
than death is relatively rare, and we can use the AHEAD data to estimate
mortality rates; as we show below, the mortality rates we estimate from the
AHEAD are very similar to the aggregate statistics. Because our econometric
approach explicitly models exit through death, we use the full unbalanced
panel, and include the life histories of people who die before our sample ends.

We consider only single retired individuals in the analysis. We drop all
individuals who were either married or co-habiting at any point in the anal-
ysis (so we include individuals who were never married with those who were
divorced or widowed by wave 1), which leaves us with with 3,510 individuals.
After dropping individuals with missing wave 1 labor income data and indi-
viduals with over $3,000 in labor income in any wave, we are left with 3,270
individuals. We drop 315 individuals who are missing in any period, leaving
us with 2,955 individuals, of whom 561 are men and 2,394 are women. Of
these 2,955 individuals, 1,430 are still alive in 2002.

We use the RAND release of the data for all variables except for medical
expenses. We use our own coding of medical expenses because RAND has
not coded medical expenses that people incur in their last year of life—the
AHEAD data include follow-up interviews of the deceased’s survivors. In ad-
dition, RAND’s imputation procedure does not account for high correlation
of medical expenses over time, especially in the earlier waves.

model from fitting asset profiles across a wide range of ages.
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The AHEAD has information on the value of housing and real estate,
autos, liquid assets (which include money market accounts, savings accounts,
T-bills, etc.), IRAs, Keoghs, stocks, the value of a farm or business, mutual
funds, bonds, and “other” assets. Our measure of total assets is the sum
of these items, less mortgages and other debts. We do not include pension
and Social Security wealth for four reasons. First, we wish to to maintain
comparability with other studies (Hurd [27], and Attanasio and Hoynes [4]
for example). Second, since it is illegal to borrow against Social security
wealth and difficult to borrow against most forms of pension wealth, Social
Security and pension wealth are much more illiquid than other assets. Third,
their tax treatment is different from other assets. Finally, differences in
Social Security and pensions are captured in our model by differences in the
permanent income measure we use to predict annual income.

One problem with asset data is that the wealthy tend to underreport their
wealth in all household surveys (Davies and Shorrocks [10]). This leads to
understate asset levels at all ages. However, Juster et al. (1999) show that the
the wealth distribution of the AHEAD matches up well with aggregate values
for all but the richest 1% of households. This notwithstanding, problems of
wealth underreporting seem particularly severe for 1993 AHEAD wave (see
Rohwedder, Haider and Hurd [38]). As a result, we do not use the 1993
wealth data in our estimation procedure. (We use other 1993 data, however,
in constructing some of the profiles shown below.) Given that, and the fact
that we are matching median assets (conditional on permanent income), the
underreporting by the very wealthy should not significantly affect our results.

In addition to constructing moment conditions, we also use the AHEAD
data to construct the initial distribution of permanent income, age, sex,
health, health costs, and cash-on-hand that starts off our simulations. In
particular, each simulated individual is given a state vector drawn from the
joint distribution of state variables observed in 1995.

5 Data profiles

In this section we describe the life cycle profiles of the stochastic processes
(e.g., medical expenditures) that are inputs to our dynamic programming
model, and the asset profiles we want our model to explain.
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5.1 Asset profiles and mortality bias

We construct the permanent-income-conditional age-asset profiles as fol-
lows. We sort individuals into permanent income quintiles, and we track
birth-year cohorts. Sample size considerations lead us to focus on 4 5-year
cohorts. The first cohort consists of individuals that were ages 72-76 in 1995;
the second cohort contains ages 77-81; the third ages 82-86; and the fourth
cohort contains ages 87-91. We use asset data for 4 different years; 1995,
1998, 2000 and 2002. It follows that for each of the 20 cohort-permanent
income cells, we observe assets 4 times over a 7-year span. To construct the
profiles, we calculate cell medians each year assets are observed. Because
some individuals die between 1993 and 1995, or fall outside the 4 cohorts
described above, the asset profiles use a subsample of the data, with 2,482
individuals.

To fix ideas, consider Figure 1, which plots assets by age in each per-
manent income and cohort grouping for those that are still alive at that
particular moment in time. The lines at the far left of the graph are for the
youngest cohort, whose members in 1995 were aged 72-76, with an average
age of 74. We observe these individuals—if still alive—again in 1998, when
they were 77, and in 2000 (age 79) and 2002 (age 81). There are five lines
because we have split the data into permanent income quintiles. Unsurpris-
ingly, assets turn out to be monotonically increasing in permanent income,
so that the bottom left line shows median assets for surviving cohort-1 in-
dividuals in the lowest permanent income quintile, while the top line shows
median assets for surviving individuals in the top quintile.

For all permanent income quintiles in the youngest cohort, assets neither
rise nor decline rapidly with age. If anything, those with high permanent
income tend to have increases in their assets, whereas those with low perma-
nent income tend to have declines in assets as they age.

Next, consider the lines at the far right of the graph, which are for the
cohort whose members in 1995 were aged 87-91, with an average age of
89. The dynamics of assets for members of this cohort are similar to the
dynamics for the youngest cohort; the only exception is that wealth in the
highest permanent income quintile falls rather than rises with age.

It is worth stressing that the data shown in Figure 1 are drawn from an
unbalanced panel: at each point in time we take the people alive at that
moment to compute assets, hence many of the individuals used to calculate
the 1995 medians were deceased by 2002. Because poorer and/or less thrifty
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Figure 1: Median assets by cohort and PI quintile: data

individuals have higher mortality rates, these profiles are affected by mortal-
ity bias as time goes on. To get a sense of this mortality bias, Figure 2 shows
two sets of asset profiles. The first set of profiles shows median assets for
every person still alive when the data are collected in a given wave; this is,
what was shown in Figure 1. The second set of profiles shows median assets
for the balanced panel, that is for the set of individuals that were alive in
all 5 waves. The differences between the two profiles can be interpreted as
mortality bias.

Figure 2 shows that when households are sorted by permanent income,
mortality bias is fairly small. This sorting, however, obscures any mortality
bias caused by differential mortality across the permanent income distribu-
tion. Figure 3 compares asset profiles that are aggregated over permanent
income quintiles and shows that if we do not condition on permanent income,
the asset profiles for those that were alive in the final wave—the balanced
panel—have much more of a downward slope. The difference between the
two sets of profiles confirms that the people who died during our sample
period tended to have lower permanent income than the survivors.

Since our model explicitly takes mortality bias and differences in perma-
nent income into account, it is the unbalanced panels that we use in our
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Figure 2: Median assets by birth cohort and permanent income quintile: every-
one in the data (solid lines) vs. survivors (dashed lines)

MSM estimation procedure.

5.2 Mortality and health status profiles

We estimate the probability of death and bad health as logistic functions
of a cubic in age; sex; sex interacted with age; previous health status; health
status interacted with age; a quadratic in permanent income; and permanent
income interacted with age.

Figure 4 shows mortality rates conditional on age, sex, previous health
status, and permanent income. The top panels are for women, while the
bottom ones are for men. The left panels refer to those that are healthy,
while the right ones refer to the unhealthy. The top left panel shows that
for women in good health last year the probability of death within one year
rises from 2% at age 70 to 25% at age 100.8 The four panels together show
that, conditional upon age, men, those in bad health, and those with low

8 Individuals in the AHEAD dataset are surveyed every two years. Thus we estimate
the two-year survival rate. We construct the one-year survival rate by taking the square
root of the two-year survival rate.
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Figure 3: Median assets by birth cohort: everyone in the data (solid lines) vs.
survivors (dashed lines)

permanent income are more likely to die than women, those in good health,
and those with high permanent income.

We, find that controlling for previous health status greatly reduces the
estimated coefficients associated with permanent income. However, as we
show below, people with high permanent income are much more likely to
be in good health, even when previous health status is taken into account.
Our results thus show that people with high permanent income have lower
mortality in part because they are more likely to be healthy.9

Figure 5 presents health transition probabilities conditional on age, sex,
previous health status, and permanent income. Consider the women first.
The top left panel shows that the probability of being in bad health, condi-
tional on being in good health one year before, is about 10% at age 70 and

9Hurd, McFadden and Merrill [29] and Adams, Hurd, McFadden and Merrill, using
more sophisticated controls for previous health status, conclude that permanent income
is unrelated to both mortality and current health status once one controls for previous
health status. Unfortunately, Bellman’s curse of dimensionality limits us from using more
sophisticated controls for health status. Thus, our estimates should not be taken as causal.
Instead, our model should be taken as a parsimonious approximation that captures much
of the heterogeneity in mortality expectations.
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Figure 4: Mortality probabilities, by sex, permanent income percentile and
health status (women on top panels, men on bottom panels, healthy
on left panels, unhealthy on right panels)

rises to about 25% at age 100.10 Rich people are more likely to stay healthy:
being in the 80th percentile of the permanent income distribution instead of
the 20th percentile lowers the probability of moving into bad health by 5 to
10 percentage points. The graph on the top right shows that bad health is
a very persistent state. If a 70-year-old woman was in bad health one year
ago, there is almost a 90% chance that she will be in bad health this year.
Surprisingly, the probability of being in bad health this year, conditional on

10To find one-year transition rates, we first estimate the two-year Markov transition ma-
trix, Pt+2|t. We then assume that the one-year Markov transition matrix, Pt+1|t, satisfies
Pt+2|t = P 2

t+1|t. Pt+1|t can then be found as the solution to a quadratic form. Details are
available from the authors.
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Figure 5: Health transition probabilities, by sex, permanent income percentile
and health status (women on top panels, men on bottom panels,
healthy on left panels, unhealthy on right panels)

being in bad health last year, falls with age.11 Rich people are more likely to
return to good health: having high permanent income reduces the probabil-
ity of being in bad health in the present, conditional in being in bad health
in the past.

The bottom two panels show that men are more likely to transition from
good health to bad health, and to remain in bad health, than women.

Table 1 presents the life expectancies implied by our mortality and health

11Although this result is surprising, one should recall that we are measuring the prob-
ability of still being in bad health and surviving, conditional on being in bad health last
period. The probability of either being dead or in bad health this year, conditional on
being in bad health last year, remains constant at about 90% at each age.

18



status process. Although permanent income has only a modest effect on mor-
tality rates, after conditioning on previous health status, it has a very strong
effect on the probability of transitioning to bad health, where mortality is
higher. As a result, healthy men at the 20th percentile of the permanent
income distribution live 3 fewer years than healthy men at the 80th per-
centile, and healthy women at the 20th percentile of the permanent income
distribution live 3.2 fewer years than healthy women at the 80th percentile.

Our predicted life expectancy is lower than what the aggregate statistics
imply. In 2002, life expectancy at age 70 was 13.2 years for men and 15.8
years for women, whereas our estimates indicate that life expectancy for
men is 10.2 years for men and 15.0 years for women. These differences are
an artifact of using data on singles only: when we re-estimate the model for
both couples and singles we find that predicted life expectancy is within 1/2
of a year of the aggregate statistics for both men and women.

5.3 Medical expense and income profiles

Medical expenses are the sum of what the individuals spend out of pocket
on insurance premia, drug costs, and costs for hospital, nursing home care,
doctor visits, dental visits, and outpatient care. It does not include expenses
covered by insurance, either public or private. French and Jones [21] show
that the medical expense data in the AHEAD line up very well with the
aggregate statistics. For our sample, mean medical expenses are $3,222 with
a standard deviation of $10,339. Although this figure is large, it is not
surprising, because Medicare does not cover prescription drugs, requires co-
pays for services, and caps the number of nursing home and hospital nights
that it pays for.

The log of medical expenses is modeled as a function of: a cubic in age;
sex; sex interacted with age; current health status; health status interacted
with age; a quadratic in permanent income; and permanent income interacted
with age.12

We estimate these profiles using a fixed-effects estimator. We use fixed
effects, rather than OLS, for two reasons. First, differential mortality causes
the composition of our sample to vary with age. In contrast, we are interested
in how medical expenses vary for the same individuals as they grow older.

12We assume that medical expenses do not affect future health and survivor probabilities.
We also ignore the fact that, to some extent, the quantity of health care consumed is a
choice. (See Davis [11].)
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Income Healthy Unhealthy Healthy Unhealthy
Percentile Male Male Female Female All†

20 8.2 6.2 13.8 11.9 12.0
40 9.1 7.0 14.8 12.9 13.0
60 10.1 7.9 15.9 14.1 14.1
80 11.2 9.1 17.0 15.5 15.2

By gender:‡

Men 10.2
Women 15.0

By health status:⋄

Healthy 15.3
Unhealthy 11.9

Note: life expectancies calculated through simulations using estimated health transition
and survivor functions.
† Calculations use the same (permanent-income-unconditional) gender-health distributions
across all permanent income levels.
‡ Calculations use the health and permanent income distributions observed for each gender.
⋄ Calculations use the gender and permanent income distributions observed for each health
status group.

Table 1: Life expectancy in years, conditional on reaching age 70

Although conditioning on observables such as permanent income partly over-
comes this problem, it may not entirely. The fixed-effects estimator over-
comes the problem completely. Second, cohort effects are likely to be impor-
tant for both of these variables. Failure to account for the fact that younger
cohorts have higher average medical expenditures than older cohorts will lead
the econometrician to understate the extent to which medical expenses grow
with age. Cohort effects are automatically captured in a fixed-effect estima-
tor, as the cohort effect is merely the average fixed effect for all members of
that cohort.

We have also estimated specifications of equation (5) that include cohort
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dummy variables (i.e., we regressed the estimated fixed-effects on cohort
dummies), which are statistically significant. Unfortunately, allowing for dif-
ferences in medical expense and income parameters across cohorts requires
that the model be solved and simulated separately for each cohort, signif-
icantly increasing the computational burden. Nevertheless, our procedure
captures how medical expenses and income change with age.

Figure 6 presents average medical expenses, conditional on age, health
status, and permanent income for women. Average medical expenses for
men look similar to those of women, so we do not present them. We as-
sume that medical expenses are log-normally distributed, so the predicted
level of medical expenses are exp

(
hc(gi,mit, t, Ii) + 1

2
σ2(g,m, I, t)

)
, where

σ2(g,m, I, t) is the variance of the idiosyncratic shock ψit.
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Figure 6: Average medical expenses, by permanent income percentile and health
status, for women (healthy on left panel, unhealthy on right panel)

Measured health status has only a modest effect on average medical ex-
penses, but permanent income has a large effect, especially at older ages.
Average medical expenses for women in good health are $2,000 a year at age
70, and vary little with permanent income. By age 100, they rise to $4,000
for women at the 20th percentile of the permanent income distribution and
to almost $26,000 for women at the 80th percentile of the permanent income
distribution. One might be concerned that we have few 100-year-old’s in
our sample, so that our predicted effects arise from using assumed functional
forms to extrapolate off the support of the data. However, in our sample we
have 36 observations on medical expenses for 100 year old individuals, aver-

21



aging $14,741 per year. Between ages 95 and 100, we have 483 person-year
observations on medical expenses, averaging $8,870 (with a standard devia-
tion of $20,783). Therefore, the data indicate that average medical expenses
for the elderly are high.

Medical expenses for the elderly are volatile as well as high. We find that
the variance of log medical expenses is 2.15.13 This implies that medical ex-
penses for someone with a two standard deviation shock to medical expenses
pays 6.41 times the average, conditional on the observables.14

French and Jones [21] find that a suitably-constructed lognormal distri-
bution can match average medical expenses, as well as the far right tail of
the distribution. They also find that medical expenses are highly correlated
over time. Table 2 shows estimates of the persistent component ζit and the
transitory component ξit found by French and Jones. The table shows that
66.5% of the cross sectional variance of medical expenses are from the tran-
sitory component, and 33.5% from the persistent component. The persistent
component has an autocorrelation coefficient of 0.922, however, so that inno-
vations to the the persistent component of medical expenses have long-lived
effects. French and Jones in fact find that most of a household’s lifetime

medical expense risk comes from the persistent component.

Parameter Variable Estimate

σ2
ǫ innovation variance of persistent component 0.0503
ρhc autocorrelation of persistent component 0.922
σ2

ξ innovation variance of transitory component 0.665

Table 2: Variance and persistence of innovations to medical expenses, as fractions
of total cross-sectional variance

13The measure of medical expenditures contained in the AHEAD is average medical
expenditures over the last two years. In order to infer the standard deviation of annual
medical expenditures, we multiply the two-year variance, 1.51, by 1.424. This adjustment,
based on the “Standard Lognormal” Model shown in Table 7 of French and Jones [21],
gives us the the variance in one-year medical expenditures that would, when averaged over
two years, match the variance seen in the two-year data.

14Let hc denote predicted log medical expenses. The ratio of the level of medi-
cal expenses two standard deviations above the mean to average medical expenses is

exp(hc+2σ)
exp(hc+σ2/2) = exp(2σ − σ2/2) = 6.41 if σ =

√
2.15.
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Our estimates of medical expense risk indicate greater risk than found
in other studies (see Hubbard, Skinner, and Zeldes [25] and Palumbo [35]).
However, our estimates still potentially understate the medical expense risk
faced by older Americans, because our measure of medical expenditures does
not include value of Medicaid contributions. Given that we explicitly model
a consumption floor, our conceptually preferred measure of medical expenses
would includes both expenses paid by Medicaid as well as those paid out of
pocket by households. Note that excluding Medicaid leads us to understate
the the level of medical expenses as well.
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Figure 7: Average income, by permanent income percentile and health status,
for women (healthy on left panel, unhealthy on right panel)

Income includes the value of Social Security benefits, defined benefit pen-
sion benefits, annuities, veterans benefits, welfare, and food stamps. We
measure permanent income as average income over all periods during which
we observe the individual. Because Social Security benefits and (for the most
part) pension benefits are a monotonic function of average lifetime labor in-
come, this provides a reasonable measure of lifetime, or permanent income.

We model income in the same way as medical expenses, using the same
explanatory variables and the same fixed-effects estimator. Figure 7 presents
average income, conditional on age, sex, health status, and permanent income
for women. Given that income is largely from pensions and Social Security,
which depends on previous earnings, it is unsurprising that health has a very
small effect on income. Holding permanent income fixed, income for men
(not shown) is only slightly higher than income for women. (Men, however,
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typically have more permanent income than women.) Income trends up
slightly with age, which seems surprising given that most sources of income,
such as Social Security benefits, should not change with age, after adjusting
for inflation. However, Social Security benefits are tied to the CPI, whereas
we deflate all variables by the PCE index. Between ages 70 and 100, income
rises about 15%, or .5% per year. This is about the gap between the CPI
and PCE.

6 Results

6.1 Preference parameter estimates and model fit

We set the interest rate to 2%. Table 3 presents preference parameter
estimates under several different specifications. The first column of Table 3
refers to our “baseline specification,” in which we jointly estimate all of the
second stage parameters: the coefficient of relative risk aversion, the discount
factor, the preference shifter due to health changes, and the consumption
floor. The other columns fix one parameter at the time, that is, either the
preference shifter due to health shocks, or the consumption floor.

In this section, we discuss the baseline specification. We discuss the
alternative specifications in section 6.2.

Figure 8 shows how well the baseline parameterization of model fits a
subset of the data profiles, using unbalanced panels. (The model fits equally
well for the cells that are not shown.) The model does a very good job at
matching the key features of the data that we are interested in: both in the
model and in the observed data individuals with high permanent income tend
to increase their wealth with age, whereas individuals with low permanent
income tend to run down their wealth with age.

A more formal way to assess the goodness of fit of our model is to com-
pute the p-value of the overidentification statistics. This value turns out to
be 97.8% for our baseline specification. This is an exceptional result for a
structural model, as most estimated structural models are typically rejected
in overidentification tests.

Figure 9 shows how well the model fits the data when the asset profiles
are aggregated over permanent income quintiles. Here too the fit is good.
Among other things, the model replicates much of the large asset decumu-
lation that occurs at very old ages. If anything, the model predicts less
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Baseline δ = 0 cmin = 5, 000

Parameter and Definition (1) (2) (3)

ν: coeff. of relative risk aversion 4.03 4.197 7.50

(0.97) (0.97) (2.34)

β: discount factor 0.965 0.966 0.923

(0.07) (0.07) (0.12)

δ: preference shifter, good health -0.197 0.0 -0.254

(0.20) NA (0.39)

cmin: consumption floor 2791 2660 5000

(318) (233) NA

Overidentification statistic 37.0 38.4 73.8

Degrees of freedom 56 57 57

P-value overidentification test 97.8% 97.2% 6.6%

Table 3: Estimated structural parameters. Standard errors are in parentheses
below estimated parameters. NA refers to parameters fixed for a given
estimation.

asset decumulation at very old ages than what is seen in the data. Previous
models of consumption behavior, such as those of Hubbard [25] et al. and
Palumbo [35], have predicted more asset decumulation than what is seen in
the data at very old ages.

Figure 10 shows the consumption profiles predicted by the model, namely
median consumption by cohort and permanent income quintile. Figure 10
shows that the model generates flat or decreasing consumption profiles for
most cohorts. This general tendency is consistent with most empirical studies
of older-age consumption, which suggest that consumption falls with age
(Banks, Blundell, and Tanner [5] using UK data, and Fernandez-Villaverde
and Krueger [19] using US data.) For example, Fernandez-Villaverde and
Krueger find that non-durable consumption declines about one percent per
year between ages 70 and 90.
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Figure 8: Median assets by cohort and PI quintile: data and model

Figure 10, in combination with the Euler Equation, can give some in-
tuition for the estimates presented in Table 3. Ignoring taxes, the Euler
Equation is:

(1 + δmt)c
−ν
t = β(1 + r)stEt(1 + δmt)c

−ν
t+1. (17)

Log-linearizing this equation shows that expected consumption growth fol-
lows:

Et (∆ ln ct+1) =
1

ν
[ln(β(1 + r)st) + δEt(mt+1 −mt)]

+
ν + 1

2
V art(∆ ln ct+1). (18)

Given that the survival rate, st, is often much less than 1, it follows from
equation (18) that the model will generate downward-sloping, rather than
flat, consumption profiles, unless the discount factor β is fairly large.

Our baseline estimated coefficient of relative risk aversion, ν, is 4.03. This
parameter is identified by differences in saving rates across the permanent
income distribution, in combination with the consumption floor. Low income
households are relatively more protected by the consumption floor, and will
thus have lower values of V art(∆ ln ct+1) and thus weaker precautionary mo-
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Figure 9: Median assets by birth cohort: data and model

tives. The parameter ν helps the model explain why individuals with high
permanent income typically display less asset decumulation.

Our estimated coefficient of relative risk aversion falls within the range
established by earlier studies. Our estimated coefficient is generally higher
than the coefficients found by fitting non-retiree consumption trajectories,
either through Euler equation estimation (e.g., Attanasio, Banks, Meghir,
Weber [2]) or through the method of simulated moments (Gourinchas and
Parker [23]). Our estimated values are very much in line with those found by
Cagetti [7] who matched wealth profiles with the method of simulated mo-
ments over the whole life cycle. Our estimated coefficient is lower than those
produced by Palumbo [35], who matched consumption data using maximum
likelihood estimation.15 Given that our out-of-pocket medical expenditure
data indicate more risk than that found by Palumbo, it is not surprising that
we find less risk aversion.

We estimate that δ = −0.20: holding consumption fixed, being in good
health lowers the marginal utility of consumption by 20%, although we can-

15It bears noting that most of these analyses do not contain a consumption floor. One
notable exception is Palumbo: our estimated consumption floor of about $2,800 in 1998
dollars, is in real terms very close to Palumbo’s floor of $2,000 in 1985 dollars.
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Figure 10: Consumption by cohort and PI quintile: model

not reject that this parameter is significantly different to zero. Equation (18)
shows that an anticipated change from good to bad health leads to con-
sumption increasing by 5%. Note that as people age and health worsens,
Et(mt+1 −mt) becomes negative; multiplied by a negative delta, this implies
that consumption growth increases as people age and become sicker. The
data show that assets do decline more quickly at very old ages (see Fig-
ure 3), when people are most likely to be in bad health. A negative value
of δ, accelerating asset decumulation at older ages, is consistent with this
observation.

There is mixed evidence on whether bad health raises or lowers the
marginal utility of consumption, holding consumption fixed. Lillard and
Weiss [30] and Rust and Phelan [39] find that the marginal utility of con-
sumption rises when in bad health, while Viscusi and Evans [42] find that it
falls.

Given that the model uses income-, health- and sex-adjusted mortality
profiles, its profiles should exhibit mortality biases similar to those found in
the data. Figure 11 shows simulated asset profiles, first for all simulated
individuals alive at each date, and then for the individuals surviving the
entire simulation period. As in the data, restricting the profiles to long-term
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survivors shows greater evidence of asset decumulation. A comparison of
Figures 3 and 11 indicates that the size of the mortality bias generated by
the model is very similar to the one in the observed data.

Figure 11: Median assets by birth cohort: everyone in the simulations (solid
lines) vs. survivors (dashed lines)

6.2 Robustness checks

The remaining two columns of Table 3 present robustness checks on our
benchmark estimates. Given that we do not directly measure the consump-
tion or asset changes associated with bad health, one might question our
estimate of δ. In addition, previous empirical evidence does not convincingly
suggest that δ is greater than or less than 0. As a robustness check, we thus
set δ = 0 and re-estimate the other three parameters. These corresponding
estimates are in the second column of Table 3. Setting δ to zero has very
little effect on the other parameter estimates. This is consistent with our
inability to reject that δ = 0 in our baseline specification.

Next, we test whether our estimates are robust to our assumed consump-
tion floor, which is meant to proxy for Medicaid health insurance (which
largely eliminates medical expenses to the financially destitute) and Supple-
mental Security Income transfers. Given the complexity of these programs,
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and the fact that many potential recipients do not fully participate in them,
it is tricky to establish a priori what the consumption floor should be.

Individuals with income (net of medical expenses) below the SSI limit are
usually eligible for SSI and Medicaid. For many individuals, however, the
consumption floor is well above the SSI limits, because some individuals with
income well above the SSI level can receive Medicaid benefits, depending on
the state they live in. On the other hand, many eligible individuals do not
draw SSI benefits, suggesting that the effective consumption floor is much
lower.

In our benchmark case, we estimate our consumption floor to be about
$2,800, which is similar to the value Palumbo [35] uses. However, this esti-
mate is about half the size of the value that Hubbard et al. [25] find, and is
also about half the average value of SSI benefits. Thus we may be underes-
timating the true consumption floor.

In the third column of Table 3, we present estimates based on a con-
sumption floor of $5,000. Raising the consumption floor to $5,000 exposes
consumers less risk: the model compensates by raising the estimated value
of ν to 7.5. The corresponding estimates for the discount factor and utility
shifter are basically unchanged. It bears noting that when the consumption
floor is set exogenously to $5,000, the model fits the data much more poorly.
The p-value for the overidentification statistic is much lower in this case, only
6.6%, compared to 97.8% for the baseline specification.

6.3 What are the important determinants of savings?

To determine the importance of the key mechanisms in our model we fix
the estimated parameter values at their benchmark values and then change
one feature of the model at a time. For each of these different economic
environments we then compute the optimal saving decisions, simulate the
model, and compare the resulting asset accumulation profiles to the asset
profiles generated by the baseline model.

We first shut down out-of-pocket medical expense risk, while keeping
average medical expenditure (conditional on all of the relevant state vari-
ables) constant. Interestingly, and consistently with Hubbard, Skinner and
Zeldes [25], we find that, conditional on constant average medical costs, the
risk associated with medical expenses has only a small effect on the pro-
files of median wealth. Our results are also consistent with Palumbo’s [35]
finding that eliminating medical expense risk generates a modest increase
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in consumption, as a small increase in consumption translates into a small
decrease in assets.

We then ask whether out-of-pocket medical expenditures of the size that
we estimate from the data (and that are rising with age and permanent
income) have quantitatively important effects on asset accumulation even
for the elderly rich. We thus zero out medical all out-of-pocket medical
expenditure for everyone and look at the corresponding profiles. This could
be seen as an extreme form of insurance provided by the government.

Figure 12 shows that medical costs are a big determinant of the elderly’s
saving behavior, especially for those with high permanent income, for whom
those costs are especially high, and who are relatively less insured by the
government-provided consumption floor. These retirees are reducing their
current consumption in order to pay for the high out-of-pocket medical costs
they expect to bear at the ends of their lives. This decomposition indicates
that modeling out-of-pocket medical costs is important in evaluating policy
proposals that affect the elderly, like Social Security reforms.

Figure 12: Median assets by cohort and PI quintile: baseline and model with no
out-of-pocket medical expenditures

Next, we reduce the consumption floor to $500. One could interpret this
as a reform reducing the government-provided consumption safety net (in a
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partial equilibrium framework, since everything else is held constant). The
effects of this change are large. Individuals respond to the increase in net
income uncertainty by rapidly accumulating assets to self-insure. Figure 13
shows that this change affects the savings profiles of both low- and high-
permanent-income singles. This indicates that the consumption floor matters
for wealthy individuals as well as poor ones. This is perhaps unsurprising
given the size of our estimated medical expenses; even wealthy households
can be financially decimated by medical expenses.

Figure 13: Median assets by cohort and PI quintile: baseline and model with a
$500 consumption floor

Finally, we turn to understanding the effect of differential life expectancy.
As we have shown in Table 1, there are large differences in life expectancy
by sex, permanent income, and health status. To understand the effect of
this source of heterogeneity we generate asset profiles assuming that everyone
faces the survival probability of a healthy male at the 50th percentile of the
permanent income distribution. Figure 14 shows that, even over the short
time period we are looking at, this difference in life expectancy would create
a noticeable effect on asset accumulation, especially at the top end of the
permanent income distribution.

What would happen if we were to assume that everyone has survival
probabilities that depend only on age, but not on sex, health, or permanent
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Figure 14: Median assets by cohort and PI quintile: baseline and model in which
everyone faces the survival probability of a healthy male at the 50th
percentile of the permanent income distribution

income? Interestingly, we find that this would have negligible effects on the
savings profiles, at least for a few years. This might indicate that there are
countervailing forces that affect survival probabilities, and that these wash
out for most people, even the rich. For example, males tend to be richer, so
even if, controlling for permanent income, their expected survival is lower,
the effect is counterbalanced by their higher permanent income. Figure 15
shows that the model fits the data very well even when we assume that age
is the only variable affecting survival.

7 Conclusions

Our paper provides several contributions.
First, it estimates medical expenses and medical risk faced by the elderly

using a better data set and a more flexible functional form. As a result, we
find that medical expenses are much higher and more volatile than previously
estimated, that they rise very fast with age, and that at very advanced ages
(that is starting from about age 80), medical expenses are very much a luxury
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Figure 15: Median assets by cohort and PI quintile: baseline and model in which
everyone faces the average survival probability

good; i.e., they are much higher for elderly with higher permanent income.
Second, our paper carefully estimates mortality probabilities by age as

a function of health, sex, and permanent income and finds large variations
along all three dimensions.

Third, our paper constructs and estimates a rich structural model of sav-
ing by using the method of simulated moments. As a result of our careful first
step-estimation and of the richer sources of heterogeneity that we allow for
in our model, we find that our parameter estimates are very reasonable, and,
importantly, that our model provides a much better fit to the data than that
previously obtained in the literature. In particular, our estimated structural
model fits very well the saving profiles across the permanent income distribu-
tion, reproducing the observation that the dissaving rate of the elderly with
higher permanent income is much smaller than the one of the elderly with
lower permanent income.

Fourth, we find that the sources of heterogeneity that we consider have
a significant role in explaining the elderly’s saving behavior, with a very
high level of medical expenses at very advanced ages being a key factor.
Basically, if the single households live to very advanced ages, they are almost
sure to face very large out-of-pocket medical costs, and they thus need to

34



keep a large amount of assets (an amount increasing in permanent income,
as medical expenses also increase) to self-insure against this risk.

Finally, we find that a publicly-provided consumption floor has a large
effect on the asset profiles for all people, even those with high permanent
income.

Our main conclusion is that to correctly evaluate any policy reform af-
fecting the elderly’s saving decisions, one needs to model accurately the con-
sumption floor and, at a minimum, the average level of medical expenses by
age and by permanent income.
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Appendix A: Solving the model

We compute the value functions by backward induction.
We discretize the persistent component and the transitory components of

the health shock into Markovs Chain following Tauchen and Hussey (1991),
and we assume that all other state variables lie on a finite grid.

We solve the value function (and find the corresponding policy functions)
at all of the points in our state space. We use linear interpolation within
the grid and linear extrapolation outside of the grid to evaluate the value
function at points that we do not directly compute.

The value function that we solve for can be written explicitly as

Vt(xt, g, I,mt, ζt) = max
ct

{
u(ct,mt) + βs(g,m, I, t) ×

dm∑

k=1

dζ∑

l=1

dξ∑

n=1

[
Pr(mt+1 = mk|mt, g, I, t) Pr(ζt+1 = ζl|ζt) Pr(ξt+1 = ξn)

× Vt+1

(
xt+1(k, l, n), g, I,mt+1(k), ζt+1(l)

)]
}
,

subject to:

xt+1(k, l, n) = max
{
xt − ct + y

(
r(xt − ct) + yi

t+1, τ
)
− hct+1(k, l, n), cmin

}
,

yt+1 = y(g, I, t+ 1),

xt ≥ cmin,

ct ≤ xt,

ln
(
hct+1(k, l, n)

)
= hc

(
g,mI,t+1(k), t+ 1, I

)
+ σ

(
g,mI,t+1(k), I, t+ 1

)
ψt+1(l, n),

ψt+1(l, n) = ζt+1(l) + ξt+1(n),

where k ∈ {1, ..., dm} indexes health status, l ∈ {1, ..., dζ} indexes persistent
health cost shocks, and n ∈ {1, ..., dξ} indexes transitory health cost shocks.
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Appendix B: Moment conditions and the asymptotic
distribution of parameter estimates

Our estimate, ∆̂, of the “true” preference vector ∆0 is the value of ∆ that
minimizes the (weighted) distance between the estimated life cycle profiles
for assets found in the data and the simulated profiles generated by the
model. For each calendar year t ∈ {t0, ..., tT} = {1995, 1998, 2000, 2002},
we match median assets for 5 permanent income quintiles in 4 birth year
cohorts. The 1995 (period-t0) distribution of simulated assets, however, is
bootstrapped from the 1995 data distribution, and is thus independent of
the model’s parameters. In the end we have a total of 20T = 60 moment
conditions.

The way in which we construct these moment conditions is similar to
the approach described in French and Jones [20]. Let q ∈ {1, 2, ..., 5} index
permanent income quintiles. In this study, we convert permanent income,
I, into a ordinal ranking lying in the 0 − 1 interval. This transformation
removes any sampling uncertainty over the boundaries of the permanent
income quintiles, as the first quintile contains households with permanent
income between 0 and 0.2, and so on. Suppose that individual i belongs to
birth cohort c, and his permanent income level falls in the qth permanent
income quintile. Let acqt(∆, χ) denote the model-predicted median asset level
for individuals in individual I’s group at time t. Assuming that observed
assets have a continuous conditional density, acqt will satisfy

Pr
(
ãit ≤ acqt(∆0, χ0) |c, q, t, individual i observed at t

)
= 1/2.

As is well-known (see Manski [31], Powell [37] and Buchinsky [6]), the pre-
ceding equation can be used to construct a method-of-moments estimator.
In particular, applying the indicator function produces

E
(
1{ãit ≤ acqt(∆0, χ0)} − 1/2 |c, q, t, individual i observed at t

)
= 0. (19)

Equation (19) is merely equation (16) in the main text, adjusted to allow
for “missing” as well as deceased individuals, as in French and Jones [21].
Continuing, we can convert this conditional moment equation into an uncon-
ditional one:

E
(
[1{ãit ≤ acqt(∆0, χ0)} − 1/2] × 1{ci = c}

× 1
{q − 1

Q
≤ Ii <

q

Q

}
× 1{individual i observed at t}

∣∣ t
)

= 0, (20)
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for c ∈ {1, 2, ..., C}, q ∈ {1, 2, ..., Q}, t ∈ {t1, t2..., tT}.
Suppose we have a data set of I independent individuals that are each

observed at T separate calendar years. Let ϕ(∆;χ0) denote the 20T -element
vector of moment conditions described immediately above, and let ϕ̂I(.) de-

note its sample analog. Letting ŴI denote a 20T × 20T weighting matrix,
the MSM estimator ∆̂ is given by

arg min
∆

I

1 + τ
ϕ̂I(∆;χ0)

′ŴIϕ̂I(∆;χ0),

where τ is the ratio of the number of observations to the number of simulated
observations.

In practice, we estimate χ0 as well, using the approach described in the
main text. Computational concerns, however, compel us to treat χ0 as known
in the analysis that follows. Under regularity conditions stated in Pakes and
Pollard [34] and Duffie and Singleton [14], the MSM estimator θ̂ is both
consistent and asymptotically normally distributed:

√
I

(
∆̂ − ∆0

)
 N(0,V),

with the variance-covariance matrix V given by

V = (1 + τ)(D′WD)−1D′WSWD(D′WD)−1,

where: S is the variance-covariance matrix of the data;

D =
∂ϕ(∆;χ0)

∂∆′

∣∣∣
∆=∆0

(21)

is the 20T × 4 gradient matrix of the population moment vector; and W =
plim→∞{ŴI}. Moreover, Newey [32] shows that if the model is properly
specified,

I

1 + τ
ϕ̂I(∆̂;χ0)

′R−1ϕ̂I(∆̂;χ0) χ2
20T−4,

where R−1 is the generalized inverse of

R = PSP,

P = I − D(D′WD)−1D′W.

The asymptotically efficient weighting matrix arises when ŴI converges
to S−1, the inverse of the variance-covariance matrix of the data. When
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W = S−1, V simplifies to (1+τ)(D′S−1D)−1, and R is replaced with S. But
even though the optimal weighting matrix is asymptotically efficient, it can
be severely biased in small samples. (See, for example, Altonji and Segal [1].)
We thus use a “diagonal” weighting matrix, as suggested by Pischke [36]. The
diagonal weighting scheme uses the inverse of the matrix that is the same as
S along the diagonal and has zeros off the diagonal of the matrix.

We estimate D, S and W with their sample analogs. For example, our
estimate of S is the 20T × 20T estimated variance-covariance matrix of the
sample data. When estimating preferences, we use sample statistics, so that
acqt(∆, χ) is replaced with the sample median for group cqt. When comput-
ing the chi-square statistic and the standard errors, we use model predictions,
so that the sample median for group cqt is replaced with its simulated coun-
terpart, acqt(∆̂, χ̂).

One complication in estimating the gradient matrix D is that the func-
tions inside the moment condition ϕ(∆;χ) are non-differentiable at certain
data points; see equation (20). This means that we cannot consistently esti-
mate D as the numerical derivative of ϕ̂I(.). Our asymptotic results therefore
do not follow from the standard GMM approach, but rather the approach
for non-smooth functions described in Pakes and Pollard [34], Newey and
McFadden [33] (section 7) and Powell [37].

To find D, it is helpful to rewrite equation (20) as

Pr
(
ci = c &

q − 1

Q
≤ Ii ≤

q

Q
& individual i observed at t

)
×

[∫ acqt(∆0,χ0)

−∞

f
(
ãit

∣∣ c, q − 1

Q
≤ Ii ≤

q

Q
, t

)
dãit − 1

2

]
= 0, (22)

It follows that the rows of D are given by

Pr
(
ci = c &

q − 1

Q
≤ Ii ≤

q

Q
& individual i observed at t

)
×

f
(
acqt

∣∣ c, q − 1

Q
≤ Ii ≤

q

Q
, t

)
× ∂acqt(∆0;χ0)

∂∆′
. (23)

In practice, we find f
(
acfqt|c, q, t

)
, the conditional p.d.f. of assets evaluated

at the median acqt, with a kernel density estimator written by Ruud Koenig.
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