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1. Introduction 
 

 The goal of this paper is to estimate the size and importance of network externalities for the 

automated clearinghouse (ACH) banking industry using an equilibrium model of ACH usage and 

adoption. ACH is an electronic payment mechanism developed by the Federal Reserve and used by banks 

and customers. It is essentially an electronic alternative to paper checks, typically used for recurring 

transactions such as direct deposit paychecks and automated utility bill payments. Since banks on both 

sides of a transaction must adopt ACH for an ACH transaction to occur, ACH is a two-sided market. 

 As a two–sided market, ACH is characterized by network effects. A bank will be more likely to 

adopt ACH as other banks adopt because it will be able to originate more transactions with ACH, thus 

justifying the fixed costs of adoption. The importance of the network effect depends on the incremental 

profits to the bank from each ACH transaction relative to the fixed cost of adoption. As banks likely 

cannot compensate each other for ACH adoption, these network effects are network externalities and 

typically cause underutilization of the network good. The underutilization is particularly relevant for ACH 

– in an age when computers and technology have become prevalent, many more payments are performed 

with checks than with ACH. 

 Network effects may also exist at the level of the banks’ ACH customers, which include 

employers, utility companies, and small businesses. These customers must also bear a fixed cost of 

adoption (e.g., updating their disbursement systems), and similarly may be more likely to adopt ACH if 

more of the customers with whom they transact also adopt. In contrast to banks, while it is clear that 

customers must adopt ACH to originate transactions, the extent to which a customer receiving an ACH 

transaction must actively adopt ACH is unknown. Starting direct deposit payroll, for example, takes very 

little effort on the part of the employee, the recipient in this case. This extent to which receiving 

customers must adopt, along with the magnitudes of customer and bank fixed costs of adoption and the 

customer and bank incremental benefits from ACH transactions, will all impact equilibrium adoption and 

may play a role in the low observed rates of adoption. 

 To understand the causes and extent of the network externalities, we specify a simple static two-

sided market model of ACH technology adoption in local markets. Each market contains a set of banks, 

each with a given set of customers. Each customer must make a fixed number of transactions to other 

customers using either checks or ACH. While all banks and customers accept checks, some may not have 
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adopted ACH. Some banks are locally based while others are branches of big banks based outside the 

network. Local banks decide whether to adopt ACH based on whether the variable profits from ACH 

transactions conditional on adoption are greater than the fixed costs of adoption; the decisions of nonlocal 

banks are made exogenously and are known to the local banks. Following bank adoption, customers at 

banks that have adopted ACH choose whether or not to adopt ACH. We model two types of transactions: 

one-way transactions, which are passively accepted by the receiving customers, and two-way 

transactions, which require the receiving customers to adopt ACH actively.  

 The implications of the model depend on parameters that specify bank and customer costs and 

benefits, the proportion of two-way transactions, and other details including scales and time trends. We 

structurally estimate these parameters by applying an indirect inference estimator (a variant of the method 

of simulated moments) to bank–level panel data on ACH adoption and the number of ACH transactions. 

The idea of the estimator is to simulate data from the model (which requires solving for the equilibrium of 

the model conditional on structural parameters and unobservables) to find the parameters for which the 

simulated data most closely match the observed data.  

This work builds on a recent literature on empirically estimating the extent of network effects for 

different industries (see Goolsbee and Klenow, 2002; Gowrisankaran and Stavins, 2004; Ohashi, 2003; 

Park, 2002; and Rysman, 2004a, 2004b, among others). Network externalities imply an interdependence 

of preferences, leading to simultaneity in equilibrium adoption decisions. This makes identification of the 

network externalities potentially difficult. These papers have all tried to find evidence of network effects 

by estimating correlations among usage decisions or by estimating reaction functions with techniques 

such as instrumental variables. Our work differs from this literature in that we fully specify an 

equilibrium model of interactions among banks and their customers, and estimate the structural 

parameters of our model by computing and matching equilibrium predictions of the model to data.1 

Our use of a fully specified structural model has a number of advantages. Relative to examining 

correlation among usage decisions (e.g., Gowrisankaran and Stavins, 2004), our structural model also 

allows us to estimate the magnitudes of the network effects, rather than just being able to test for their 

presence. In addition, we are able to allow for time-varying local shocks that otherwise might be 

incorrectly interpreted as network effects. Also, the methods that we develop here are novel and 

contribute to the literature on structural estimation of network games with potential multiple equilibria. 
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In comparison to papers that structurally estimate reaction functions using linear or log-linear 

specifications (e.g., Rysman, 2004a), our fully specified equilibrium model has a number of advantages. 

First, it allows us to specify a strategic model of interactions with simultaneous decisions that is realistic 

given the discrete nature of adoption decisions in our industry. Second, our model allows us to understand 

the sources of the network effects. This is crucial for ACH policy analysis—for example, subsidies will 

have very different impacts on ACH usage depending on whether fixed costs are primarily at the bank 

level or at the customer level. Last, our structural model also allows us to perform a wider set of policy 

experiments, since our model predicts the outcomes that will result from any policy intervention. This is 

particularly important to the extent that there are multiple equilibria: in this case reaction functions are 

consistent with more than one outcome, implying that estimated reaction functions are not sufficient to 

simulate counterfactual equilibria.  

Since it uses the same data as the present study, the work of Gowrisankaran and Stavins (2004) 

deserves particular attention. As mentioned above, their study takes a reduced-form approach to 

examining network externalities, modeling ACH adoption as a simple function of the percent of other 

banks that had adopted ACH in a local area. In contrast to this paper, the central point of the earlier work 

was to confirm the presence of network externalities statistically, not to measure the magnitude and 

sources (i.e., banks or customers) of the externalities.2 Most relevant for this paper is that Gowrisankaran 

and Stavins (2004) proposed a number of different tests that would identify network effects separately 

from confounding factors. While our methods and questions are different, this study builds on theirs in 

that our identification of the network effects is from some of the same sources. In addition, the earlier 

paper guides us in our choice of indirect inference moments—our indirect inference estimator matches the 

coefficients from regressions that are similar to theirs evaluated on simulated equilibrium data. As an 

example, Gowrisankaran and Stavins (2004) propose a regression to exploit the quasi-experimental 

variation from the adoption decisions of small, remote branches of banks. Our analysis models this 

variation with more structure, allowing for exogenous nonlocal bank decisions and endogenous adoption 

decisions for their customers. We then choose structural parameters that match (among other things) the 

coefficients from regressions on real data that are similar to regressions from Gowrisankaran and Stavins 

(2004) to coefficients from the same regressions on simulated equilibrium data.  
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The remainder of this paper is divided as follows. Section 2 describes the model. Section 3 

describes the data. Section 4 details the estimation procedure, including the identification of the 

parameters. Section 5 provides results including policy experiments, and Section 6 concludes. 

 

2. Model 

 

We propose a simple, static, two-sided market model of ACH adoption at a geographically local 

level. Market m consists of J banks at time t, each with a given measure of customers. Some of the J 

banks are local to the market, and others are branches of large banks based elsewhere in the country. 

Adoption decisions of these nonlocal bank branches are assumed to be made exogenously before the start 

of the game and known to all players.3 

In the first stage of the game, local banks simultaneously decide whether or not to adopt ACH 

technology. Let 
 
A
mt
= A

1mt
,…,A

Jmt( )  be a vector of indicator functions representing bank adoption 

decisions. In the second stage, customers, typically small businesses, decide whether to adopt ACH for 

their individual transactions. Importantly, a customer can adopt ACH only if its bank has adopted ACH. 

Some customers will have accounts at branches of nonlocal banks. Although their banks’ adoption 

decisions are exogenous to our model, these customers decide whether or not to adopt ACH in the same 

way as do customers at local banks. 

Banks in our model each have a captive set of customers. We assume that all of these customers 

are equal in the sense that they each have the same amount of deposits and each originate the same total 

number of transactions (N).4 As a result, the measure of customers at a given bank is proportional to x jmt , 

the total deposits under that bank’s control. In addition, the number of total (both ACH and check) 

transactions originated by customers of bank j will also be proportional to x jmt , i.e.,  

 

 T
jmt

= !x
jmt  (1) 

 

where λ represents the number of transactions per dollar of assets.5 Note that this formulation implicitly 

assumes that customers’ demands for total transactions are perfectly inelastic. We feel that this is 
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reasonable because the demand for transactions is, in fact, likely to be fairly inelastic and ACH is a small 

proportion of total transactions. 

 Each of customer i’s N originating transactions can be made either using ACH or with a paper 

check. Whether or not this transaction can be made using ACH depends on the adoption decisions of four 

economic agents: (1) customer i, (2) customer i’s bank, (3) the customer at the receiving end of i’s 

transaction, and (4) the bank of this receiving customer. For any transaction to be performed with ACH, 

both customers’ banks must have adopted ACH. Otherwise, it will be completed by paper check. In 

contrast, we model two types of transactions that vary based on whether the receiving customer must also 

have adopted ACH actively for it to be performed with ACH. A “two-way” transaction requires both 

originating and receiving customers to have adopted ACH. A “one-way” transaction requires only the 

originating customer of the transaction to have adopted ACH. The latter represents transactions such as 

payroll direct deposit or mortgage payments, where the recipients have likely not formally adopted ACH 

in the sense that they do not originate transactions.6 We represent the proportion of two–way transactions 

by δ, a parameter to be estimated in the model.7 

 Note that we model banks and customers asymmetrically in that the customer recipient does not 

necessarily need to adopt. This is due to the specifics of the industry. In particular, the design of the ACH 

system is such that banks on both sides of the transaction have to have adopted for an ACH transaction to 

occur. Although we lack formal data on the necessity of customer adoption, we discussed the nature of 

ACH transactions with a number of industry professionals. Most believe that recurring payments with 

passive customers, which we might interpret as one-way transactions, form the bulk of ACH transactions.  

 Consider now the adoption decision of customer i at some bank j that has adopted ACH. The 

customer obtains net utility 

 

 
 
VACH !VCHK = !"

1
+ !"

2
pt
ACH ! pt

CHK( )  (2) 
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from making an ACH (versus check) transaction, where pt
ACH  and pt

CHK  represent the prices for each 

type of transaction that customers face.8 If the net utility in (2) is positive, then, conditional on both their 

banks adopting, any pair of customers who have both adopted ACH will use ACH for their two-way 

transactions, and any customer who has adopted ACH will use ACH to originate one-way transactions 

with customers at banks that have adopted ACH. 

 Let Pjmt  denote the proportion of customers adopting ACH at bank j. We make two additional 

assumptions about the nature of customers and transactions: (1) that customers are small enough to be 

considered atomless for aggregation purposes, and (2) that the recipient of any transaction is uniformly 

distributed over all customers in the market. Then the expected equilibrium proportion of a customer’s 

transactions that will be made through ACH if he adopts is 

 

 umt = !

AjmtPjmt x jmt
j

"

x jmt
j

"

#

$

%
%
%

&

'

(
(
(

+ (1)! )

Ajmt x jmt
j

"

x jmt
j

"

#

$

%
%
%

&

'

(
(
(

. (3) 

 

The first term in brackets is the proportion of customers in the market that have adopted, while the second 

term is the proportion of customers that are at banks which have adopted ACH. Since transactions are 

spread evenly over the population, these proportions are also the probability that any particular 

transaction is with another customer who has adopted (the first term), or with another customer whose 

bank has adopted (the second term). 

 Using the above definitions, we can write customer i’s net expected utility from adopting ACH 

(vs. not adopting) as  

 

 EUijmt = N !umt ! VACH "VCHK( ) + Fijmt , (4) 
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where Fijmt  denotes the negative of the fixed costs of adopting. These fixed costs may not only be 

monetary; Fijmt will also capture any fixed utility or disutility that a customer has from using ACH. For 

instance, a customer with a strong disutility from using electronic payment technologies would have a 

very negative value of Fijmt . Note also that we model customers as obtaining utility solely from the N 

transactions that they originate. An alternate specification would allow utility to be generated on both 

sides of the transaction.9 

Econometrically, we specify negative customer fixed costs as 

 

 Fijmt = !
0
+ !

3
t +" jmt + # ijmt , (5) 

 

where t is a time trend, !
0

and !
3
 are parameters to estimate, ! jmt is a normally distributed bank-level 

econometric unobservable that is common knowledge to industry players, and ! ijmt  is an i.i.d. customer-

level logit error. In order to identify the network benefits of ACH (vs. within market correlation in 

behavior) reliably, we allow for a very general correlation structure across markets, firms, and time.10 

Specifically, we let 

 

 ! jmt =! jmt

A
+! jm

B
+!m

C
+!mt

D , (6) 

 

where the four terms in (6) are all i.i.d. and normally distributed with mean zero and have variances!
A

2 , 

!
B

2 , !
C

2 , and!
D

2 , respectively. There are a number of other places where one might include a similarly 

flexible unobservable structure, including customers’ marginal benefits, banks’ marginal profits, and 

banks’ fixed costs. However, we felt that it would be difficult to identify more than one set of flexible 

unobservables credibly. We put the unobservables in customer fixed costs because this is the specification 

that appears to fit the data best. 

 Substituting (5) and (2) into (4), we obtain 
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EUijmt = !
0
+ N "umt "

!!
1
+ !!

2
pt
ACH # pt

CHK( )( ) + !3t +$ jmt + % ijmt

= !
0
+ !

1
umt + !2 pt

ACH
umt + !3t +$ jmt + % ijmt ,

 (7) 

 

where !
1
 and !

2
 are defined by 

 
!
1
= N " !!

1
# !!

2
pt
CHK( )  and

 
!
2
= N " !!

2
.11 Integrating out over ! ijmt  gives 

us the proportion of customers at bank j that adopt ACH: 

 

 Pjmt = Ajmt

exp !0 + !1 + !2 pt
ACH( )umt P1mt ,...,PJmt ,A1mt ,...,AJmt( ) + !3t +" jmt( )

1+ exp !0 + !1 + !2 pt
ACH( )umt P1mt ,...,PJmt ,A1mt ,...,AJmt( ) + !3t +" jmt( )

. (8) 

 

Note that we have explicitly written u
mt

 as depending on customer adoption proportions and bank 

adoption decisions. In equilibrium, customer adoption proportions 
 
P
1mt
,…,P

Jmt( )  must satisfy the set of J 

equations defined by (8) conditional on bank adoption decisions 
 
A
1mt
,…,A

Jmt( ) .  

 Turning to the adoption decisions for local banks, let the marginal cost to the bank of ACH and 

check transactions be denoted as mc
t

ACH  and mc
t

CHK  respectively. Assume that bank fixed costs FCjmt  

from adopting ACH have both a common component and an idiosyncratic component, i.e. 

FCjmt = FC +! jmt

E , where the realizations of ! jmt

E  are common knowledge in the industry. As with the 

customer fixed cost ! ijmt , we assume ! jmt

E  has a standard logistic distribution. Importantly, FCjmt  is a per-

period fixed cost, not a one-time sunk cost of adoption. As such, there are no dynamic optimization 

issues, and firms maximize per-period profits.12 

 Given that bank j adopts ACH, the number of ACH transactions originated through bank j is 

equal to the total number of transactions originated at that bank, times the proportion of customer 

adopters, times the proportion of their transactions that are made through ACH; i.e., 

 

 Tjmt

ACH
= TjmtPjmtumt . (9) 

 

The increment in profits from adopting ACH (conditional on other players’ strategies) is Tjmt

ACH  times the 

difference in bank margins between ACH transactions and paper checks, minus the fixed cost of adoption: 
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! jmt Tjmt

ACH( ) = Tjmt

ACH
pjmt
ACH " mcjmt

ACH( )" pjmt
CHK " mcjmt

CHK( )#
$

%
& " FCjmt

= Tjmt

ACH ' markup " FC +( jmt

E( ).
 (10) 

 
 

Given our lack of data on prices, we treat “markup” as a parameter to be estimated.  

 Bank j will adopt ACH at time t if and only if ! jmt Tjmt

ACH( ) > 0 . Equations (8) - (10) illustrate that 

bank j’s adoption will depend on other banks’ decisions through Tjmt

ACH . An equilibrium 

 
P
1mt
,…,P

Jmt
,A

1mt
,…,A

Jmt( )  requires that all banks’ adoption decisions are optimal conditional on all other 

banks’ adoption decisions, i.e.,  

 

 Ajmt = ! jmt Tjmt

ACH
A
1mt , ...Aj"1m,t ,1,Aj+1,mt , ....,AJmt( )( ) > 0{ }, #j , (11) 

 

where Tjmt

ACH
!( )  satisfies (3), (8), and (9). 

 There can be multiple equilibria in this game if the magnitude of the network externalities are 

sufficiently large. To see this, note that on one hand, if every customer is using the network good, then 

any one customer is likely to want to use it. On the other hand, if no customer is using it, then any one 

customer is likely not to want to use it. This same logic is also true at the bank level. Because the value 

from another bank or customer adopting ACH is higher if the bank itself is adopting ACH, the adoption 

game is supermodular. Several properties follow from supermodularity (see Milgrom and Shannon, 1994, 

and Athey, Milgrom, and Roberts, 1996). These properties can easily be proved directly (see 

Gowrisankaran and Stavins, 2004), and do not depend on continuity but only on this monotonicity 

property. First, there exists at least one pure strategy subgame perfect equilibrium. Second, there exists 

one subgame perfect equilibrium that Pareto-dominates all others and one (not necessarily distinct) 

subgame perfect equilibrium that is Pareto-inferior to all others. Third, the proof of the second property is 

constructive, and it provides a very quick way to compute the Pareto-best and Pareto-worst subgame 

perfect equilibria. This last property is particularly important for estimation purposes. 

 To estimate our model and also to examine counterfactuals, we need to specify a process that 

determines which equilibrium occurs. The process that we assume allows for the possibility that some 
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networks are in a good equilibrium while others are in a bad equilibrium. Specifically, we assume that 

there is some frequency that any given network is in the Pareto-best equilibrium, with a corresponding 

frequency of being in the Pareto-worst equilibrium. We estimate this frequency as a parameter. Formally, 

let !
m
~ iid U 0,1( ) . We assume that a market will be in the Pareto-best equilibrium if and only if 

!
m
<" , where Ω, the probability of being in the Pareto-best equilibrium, is a parameter that we 

estimate.13 Note that we do not allow for the equilibrium to vary within a network across time. Clearly, 

the restriction to only the two extreme equilibria is a simplification, but our hope is that a mix of our two 

equilibria will reasonably approximate any alternative equilibria that are being played.  

 

3. Data 

 

 Our principal data set is the Federal Reserve’s ACH billing data. This provides information on 

individual financial institutions that processed their ACH payments through Federal Reserve Banks.14 We 

use quarterly data on the number of transaction originations by each bank for the period of 1995:Q2 

through 1997:Q4. ACH transactions can be one of two types: credit or debit. A credit transaction is 

initiated by the payer; for instance, direct deposit of payroll is originated by the employer’s bank, which 

transfers the money to the employee’s bank account. A debit transaction is originated by the payee; for 

example, utility bill payments are originated by the utility’s bank, which initiates the payment from the 

customer’s bank account. 

 We link these data with three other publicly available data sources. First, we use the Call Reports 

database, which provides quarterly information on deposits and zip code information for federally 

registered banks at the headquarters level. Second, we use the Summary of Deposits database, which 

provides annual information on zip code and deposits for banks at the branch level. This allows us to find 

small branches of nonlocal banks. Last, we use information from the census that provides the latitude and 

longitude of zip code centroids. Gowrisankaran and Stavins (2004) provide more details of the data 

sources and linking. The resulting data set contains approximately 11,000 banks over 11 quarters. 

 Our estimation procedure is based on the assumption that a bank’s network is geographically 

local. Our basic definition of a network is the set of banks whose headquarters are within 30 kilometers of 

the headquarters of a given bank. Because we are solving for equilibria of the adoption game, we also 
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need to include all the banks that are within 30 kilometers of the banks that are within 30 kilometers, and 

all the banks that are near those banks, etc. We perform this process in order to separate our data set of 

11,000 banks into mutually exclusive networks. Each network is self-contained, in the sense that every 

bank headquarters that is within 30 kilometers of any bank headquarters in the network is also in the 

network, and no bank headquarters in the network is within 30 kilometers of any bank headquarters 

outside the network. 

 One significant data problem is that many banks have become national in scope. As the relevant 

network for these banks is likely to be national, our model would not be particularly meaningful for these 

banks. Thus, we limit our sample to banks that are in small markets. Specifically, we keep all networks 

with 10 or fewer bank headquarters total during every time period of our sample. From this set, we also 

excluded networks where any one bank had more than 20 percent of its deposits in branches outside the 

network or where, in aggregate, 10 percent of deposits for local banks were in branches outside the 

network. This leaves us with a sample of 456 mutually exclusive networks comprising 878 local banks, 

observed over 11 time periods. Note that even though we only study this rather small subsample of the 

banking industry, we are estimating structural utility and profit functions. As such, at least in theory we 

can use our estimates to study larger markets by simply solving for equilibria in larger markets given 

these primitives. However, one might worry that customers and banks in larger markets are fundamentally 

different, e.g., they might face different costs of adoption or different relative markups for ACH 

transactions. 

 Figure 1 displays a map of New England with the networks from this region marked with 

asterisks and the major population centers marked with circles. This gives some idea about typical 

networks in our final data set, which draws from the U.S. as a whole. There are eight networks in New 

England in our sample, all of which are small, isolated towns, such as Colebrook, NH, and Nantucket, 

MA. These small, isolated towns are exactly the types of markets our model is intended to represent. The 

major population centers, such as Boston, MA, and Hartford, CT, are all far away from these networks.  

 As described in Section 2, we model banks with branches in the network but headquarters outside 

the network. Recall, however, that these nonlocal banks’ adoption decisions are assumed to be exogenous 

to the local market. Our sample includes 661 of these branches of banks outside the network. 

 Table 1 gives some specifics on local banks, broken down by the number of local banks in the 

network. Approximately half of the network time-periods in our sample—2,730 in all—have only one 
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local bank. Another quarter of the network time-periods have two local banks. However, there are a large 

number of network time-periods with up to 10 local banks. Banks in our sample tend to be small banks, 

with assets of around $100 million. The percentage of local banks using ACH appears to be quite 

consistent across network size, although local banks in smaller networks have fewer ACH transactions. 

 Table 2 examines the nonlocal banks in these networks. Of note is the large number of outside 

banks, and the variance in this number across markets. For instance, in markets with one local bank, the 

average number of outside banks is 2.02 and the standard deviation across markets is 2.69. Although the 

sizes of nonlocal banks and local banks are similar in terms of local deposits, nonlocal banks adopt ACH 

much more frequently. This is because nonlocal banks are on average much larger than the local banks in 

terms of total deposits. Relatedly, note that the proportion of deposits of nonlocal banks that are in local 

markets is small, about 1 percent, as can be seen by dividing column 4 by column 5. This motivates 

treating the adoption decisions of these nonlocal banks as exogenous to the local markets.  

 Table 3 gives some specifics on the changes in local bank ACH usage over our sample period. 

The fraction of banks using ACH increased during our sample period. There also appears to be a large 

fraction of networks where every bank uses ACH relative to the marginal probability of banks adopting 

(from Table 1). While this suggests that there are correlations in usage decisions within networks, it does 

not necessarily imply network externalities, as the correlations could simply be driven by correlated 

unobservables within markets. 

 One factor that can affect adoption and usage of ACH is its price. Prices that the Federal Reserve 

charges banks for ACH processing were set at a fixed rate and adjusted periodically. The interregional 

per-item prices (for items exchanged between banks in different Federal Reserve Districts) fell from 

$.014 in 1995 to $.012 in 1996 to $.01 in 1997, with the intraregional price fixed at $.01 during this time 

period. In May 1997, both prices were lowered to $.009, with a discounted price of $.007 for banks that 

processed over 2,500 transactions at once. We use the prices of $.014 (for 1995), $.012 (for 1996), $.01 

(for 1997:Q1 and 1997:Q2) and $.009 (for 1997:Q3 and 1997:Q4) for all transactions. Because these 

prices are set by fiat and do not respond to changes in local demand, they may be viewed as exogenous. 

We do not have systematic data on the prices that banks charge to their customers. 

 In addition to per-transaction costs, banks must pay a variety of fixed costs to adopt ACH, e.g., a 

small participation fee and the costs of maintaining a Fedline connection. As detailed in Gowrisankaran 
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and Stavins (2004), accounting data suggest that these are moderate in magnitude, likely significantly 

lower than $500 per quarter. 

 

4. Estimation  

 

 Our model is based on a vector of unknown parameters ! " #,$,%,FC,markup,&( )  and 

econometric unobservables ! = ",#( ) .15 Our estimation algorithm seeks to recover the true parameters 

!
0

 from the data. In this section, we describe this algorithm and explain how the parameters of the model 

are identified.  

 

Estimation algorithm 

 An observation in our model is a market observed over time. Our data set contains M distinct 

markets. We start by defining the data for market m over time. For ease of notation, suppose that market 

m has J banks at every time period, that banks 
 
1,…, ĵ  are local, and that banks 

 
ĵ +1,…, J  are branches of 

nonlocal banks. For each bank, our data contain observed predetermined variables, namely its local 

deposits x jmt , the Fed ACH price p
t
, time t, and its local/nonlocal status. Recall that the adoption 

decisions of the branches of nonlocal banks are also considered exogenous data. Thus, the exogenous data 

for the market are 
 
zm ! x

1t ,…, xJt , t, pt ,Aĵ+1,t
,…,AJ ,t{ }

t=1

T

. The endogenous variables, which we denote y
m

, 

are the local bank transactions 
 
T
1mt

ACH
,…,T

ĵmt

ACH{ }
t=1

T

; note that  Tjmt

ACH
> 0  implies that Ajmt = 1 . 

We estimate our model using an indirect inference (II) estimator, as suggested by Gouriéroux, 

Monfort, and Renault (1993). II is a variant of the method of simulated moments (MSM) estimator 

proposed by McFadden (1989) and Pakes and Pollard (1989). 

 To construct the estimator, we first perform an easily computable and informative estimation 

procedure on the true data (that we detail in the subsection on choice of indirect inference moments 

below), resulting in a parameter vector µ y, z( ) . The estimator is indirect in the sense that the estimated 

parameters in the inference do not correspond to any structural parameters; an example similar to one we 

use is a regression of bank adoption decisions on their competitors’ adoption decisions. Although the 
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regression coefficients in this example will capture causation (i.e., network effects), they also will likely 

capture within–market correlation in unobservables. As such, they are clearly not unbiased estimates of 

the network effect parameters. 

We next simulate data according to our model at various parameter vectors. This involves taking 

S simulation draws 
 
!
sm
, s = 1,…,S  from the distribution of unobservables for each market m. We compute 

the appropriate Nash equilibrium (either Pareto–best or –worst, depending on ω) for each market given 

!
sm

 and θ. Call this Nash equilibrium vector ŷ
sm

!
sm
,", z

m( ) , and group the equilibria across markets for 

one simulation draw together as 
 
ŷ
s
!
s
,", z( ) # ŷ

s1
,…, ŷ

sM( ) . We then perform the same indirect inference 

on these computed Nash equilibrium data. The II estimator is constructed from the difference between µ  

evaluated at the true data and the simulated data: 

 

 !̂ II " argmin
!

G
II (! ) " argmin

!

µ y, z( )#
1

S
µ ŷs $s ,!, z( ), z( )

s=1

S

% . (12) 

 

Thus, !̂
II

 is the structural parameter vector for which the coefficients of µ estimated from the simulated 

data most closely match the coefficients estimated from the actual data, where closeness is defined by the 

norm ! . We find !̂
II

 with a nonlinear search.16 

 A special case of GII
(! ) , which can be called GMSM

(! ) , occurs when the functional form of 

µ y, z( )  is a sum across observations. The resulting estimator, defined by  

 

 !̂MSM " argmin
!

GMSM !( ) " argmin
!

1

M
f ym( )#

1

S
f ŷsm $sm ,!, zsm( )( )

s=1

S

%&
'(

)
*+
, g zm( )

-

.
/

0

1
2

m=1

M

% , (13) 

 

for some arbitrary functions f and g, is a standard MSM estimator. This estimator is well-known to be 

consistent as the number of observations goes to infinity, even with a fixed number of simulation draws 

(see McFadden, 1989, and Pakes and Pollard, 1989). Similarly, Gouriéroux, Monfort and Renault (1993) 

show that the more general II estimator is also consistent for a fixed number of simulation draws. This is 

because, at the true parameter vector, the simulated criterion function for each simulation draw 
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µ ŷ
s
!
s
,"

0
, z( ), z( )  converges in probability to µ y, z( )  as the number of observations becomes large. We 

use II instead of MSM because the functional form is convenient for summarizing important aspects of 

the data with relatively few moments, a point that we detail below.17  

In order to compute the II estimator, we need to specify the norm ! . A norm is defined by a 

weight matrix—any positive-definite matrix with dimension equal to the number of moment conditions. 

Gouriéroux, Monfort and Renault (1993) show that the efficient weight matrix is the inverse of the 

variance of the �. ,moment conditions in (12), evaluated at!
0

. An approximation to this efficient weight 

matrix is particularly easy to compute in our case. According to the model, each µ ŷ
s
!
s
,"

0
, z( ), z( )  has 

the exact same distribution as µ y, z( )  and the two terms are i.i.d. given the construction of the simulation 

draws. Combining the above, we get 

 

 Var G
II !

0( )( ) =Var µ y, z( )"
1

S
µ ŷs #s ,!0 , z( ), z( )

s=1

S

$%
&'

(
)*
= 1+

1

S

%
&'

(
)*
Var µ y, z( )( ) , (14) 

 

and thus we use an estimate of A = 1+
1

S

!
"#

$
%&
Var µ y, z( )( )

'

(
)

*

+
,

-1

 as our weight matrix. Since µ y, z( )  is a 

function of the observed data but not the structural parameters, we can estimate A using a bootstrap. 

Specifically, we resample the data with replacement at the market level (i.e., we draw entire networks 

across time), and calculate µ y, z( )  for 3,000 resampled data sets in order to approximate its variance 

numerically.18 

Equation (14) also plays a role in computing asymptotic standard errors of our estimated 

structural parameters. Following Gouriéroux, Monfort and Renault (1993), the asymptotic variance matrix 

is given by 

 

 Var(! ) = " 'A"( )
#1 , (15) 

 

where ! =
dG

II
"
0( )

d #"
. We calculate these derivatives numerically. 
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 One important detail is the computation of ŷ
sm

!
sm
,", z

m( ) . This involves solving for either the 

Pareto-best or Pareto-worst subgame perfect equilibrium of the model conditional on values for z
m

 and 

!
sm

 (recall that the !  component of !  determines which equilibrium a market is in). We solve for the 

equilibria by sequentially iterating on reaction functions of individual customers and banks. Specifically, 

given a vector of bank adoption and customer usage decisions 
 
A
1mt
,…,A

Jmt
,P
1mt
,…,P

Jmt( ) , we solve for 

the new optimal customer usage decisions and then the new optimal bank adoption decisions. To compute 

the usage decision for a customer at bank j, we assume that bank j has adopted, consistent with our 

assumption that customers of a bank observe this decision. 

 The difference between the computation of the two equilibria is only in the starting values. To 

solve for the Pareto-best subgame perfect equilibrium, we start the iterative procedure at a point where all 

customers and local banks adopt ACH (with nonlocal banks following their observed choices from the 

data). In contrast, to find the Pareto-worst subgame perfect equilibrium we start at a point where no 

customers and local banks use ACH. As noted in Section 2, the game is supermodular, which ensures that 

these iterative processes will converge to the Pareto-best and Pareto-worst subgame perfect equilibrium, 

respectively.19 In our policy experiments, we use variants of this algorithm to solve for equilibrium 

outcomes when either local banks internalize the network externality or when customers internalize the 

externality.  

 

Choice of indirect inference moments 

 Our goal is to choose moments (i.e., a set of estimation procedures µ y, z( ) ) that are informative 

on the existence and magnitude of network externalities. In particular, we want these moments to be able 

to separate network externalities from confounding factors such as correlated unobservables. One option 

would be to use moments of the dependent variables. These would include adoption and usage decisions, 

second- and higher-order cross moments in these variables (e.g., defining Q to be the number of 

transactions at bank 7 times the adoption of bank 10, then a moment would be Q minus its expected 

value), similar second- and higher-order moments across time (e.g., adoption of bank 1 in time period 1 

times adoption of bank 1 in time 5) and interactions of these variables with exogenous variables. This 

approach is problematic because the sheer number of these moments is larger than the number of markets. 
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Moreover, the literature suggests the possibility of non-negligible finite–sample biases even if we only 

used a small fraction of them (see e.g., Staiger and Stock, 1997). 

 To try to summarize the nature of network externalities in the data with an informative but 

concise set of moments, we make use of Gowrisankaran and Stavins (2004), whose reduced-form 

analyses attempted to accomplish exactly this purpose. In particular, that paper provides three sets of 

reduced-form analyses that are useful for characterizing network externalities in this market and for 

separating them from potentially confounding effects such as local correlations in usage. We therefore 

choose our II estimator moments µ y, z( )  to be essentially the same regressions as in the earlier paper, 

although there are a couple of differences. First, we use linearized versions of their non-linear (e.g., logit 

and probit) specifications. The reason for this is that for our II procedure, we need to perform the µ y, z( )  

estimation procedure a very large number times—once for each simulated data set at every structural 

parameter vector ever evaluated in the non-linear search for θ. This would be computationally impractical 

given a non-analytical µ y, z( )  procedure. Note that even though these linearized versions may not be 

correct specifications, our II estimator is still consistent, as we are performing the same incorrect 

procedure on both the simulated data and the actual data. Second, we also cannot use every coefficient 

from their regressions as moments, since they include thousands of coefficients (mainly because of bank 

fixed effects). Hence, we use as moments the coefficients that the earlier paper found to be indicative of 

network externalities, and other coefficients/functions of coefficients that we think would be particularly 

informative about our structural parameters.  

 We now go through the exact specifics of the components of µ. Our first set of regressions is 

intended to capture clustering of bank adoption decisions within a network, controlling for regional 

variation in usage decisions with bank fixed effects. We regress the adoption decisions of banks on the 

deposit-weighted adoption decisions of competitors’ banks, deposits, squared deposits, and bank and time 

fixed effects. We include the 3 main regression coefficients and 11 time dummies (including the constant 

term) as components of µ. We also include the estimated standard error of the coefficient on competitor 

adoption. This should measure the variance of the unobservable in the regression and thus should help 

identify the variance of the bank-time random effects (! jmt

A ) in our structural model. We also want to try 

to match the extent to which adoption is explained by unobserved factors that are correlated across banks 

within a market, either within time periods or across them. These will serve to identify the variances of 
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the other random effects in the model (! jm

B
,!m

C
,!mt

D
) . We do this by decomposing the estimated bank fixed 

effects into market fixed effects and residuals and including the standard deviation of both in µ, and by 

also decomposing the estimated residuals into market-time fixed effects and residuals, and including the 

standard deviation of both in µ. Note that we do not include the R2 for this regression in µ —this would 

likely be redundant given that we include all of these standard deviations. 

 To capture correlation in customers’ adoption decisions (in contrast to banks’ adoption 

decisions), we then run similar regressions using ACH volume as the adoption variable; i.e., we regress 

ACH volume per deposits on competitors’ volume per deposits and deposit-weighted adoption decisions, 

using the same deposit and fixed effect controls. We take three coefficients from this regression as 

moment—one of the time dummies (representing the constant term) and the coefficients on competitors’ 

volume and adoption decisions. Note that for this regression and the ones that follow we do not 

decompose the error variance as in the first regression—presumably the variances of the random effects 

should be pinned down by the first regression. 

 Our second set of regressions examines the relationship between market concentration and 

adoption by regressing bank adoption decisions on the market level Hirschmann-Herfindahl Index (HHI), 

time dummies, and controls for deposits. This regression should help identify network externalities 

because exogenous differences in market concentration will affect adoption decisions. For example, 

network externalities will be more internalized in more concentrated markets, implying higher ACH 

adoption and usage, all else equal. We use two coefficients—one time dummy (i.e., the constant term) 

and the HHI coefficient—as moments. We also include the R2 as a moment, in order to match the overall 

variance of the residuals. 

 Our third set of regressions examines the relationship between local bank and nonlocal bank 

adoption decisions. The intuition here is that local bank response to exogenous, nonlocal bank adoption 

decisions should be directly proportional to the level of network effects. Specifically, we regress local 

bank adoption decisions on the adoption decisions of nonlocal banks using a variable that indicates the 

deposit-weighted fraction of nonlocal banks that adopt. Again, we control for deposits and include time 

dummies. For II moments we use the coefficient on the nonlocal adoption measure, one of the time 

dummies (i.e., a constant term), and the R2 from the regression. Markets with no nonlocal banks were 

dropped from the base version of this regression, since the nonlocal adoption measure is undefined in this 
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case. However, in an effort to be robust to including these markets, we also utilize an alternative 

regression where all markets are included but where we define the nonlocal adoption measure to be equal 

to one in the case when there are no nonlocal banks. We take the same three moments for this new 

regression.20 These three groups of regression coefficients give us a grand total of 31 II moments, all 

listed in Table 5, as described in Section 5 below. 

 As with any method of moments estimator, one can never be certain that another choice of 

moments would not yield substantially different parameter estimates. While our moments are designed to 

match some of the facets of the data that relate to the magnitude of the network benefits and other 

parameters, it is possible that there are other unmatched facets of the data that would yield substantially 

different estimated parameters. To investigate this concern, we examine the robustness of our parameter 

estimates to an alternate choice of moments. The idea here is to add additional moments that are 

substantially different from those already in the procedure, but that are hopefully also informative on the 

extent of network effects. One can then investigate whether these new moments suggest economically 

different parameter values from our original moments. 

 Thus, we estimate a second specification with the same 31 base moments plus an additional 11 

moments, all simple moments of the data. These are substantially different from our base moments, 

should be informative in pinning down parameters of the model, and also, because of their simplicity, 

provide an intuitive sense of the fit of the model. We include the mean adoption probability at local banks 

(the mean implies the standard deviation with a dichotomous adoption decision), the mean and standard 

deviation of the number of transactions at local banks, the mean number of transactions in the first and 

last periods of the sample, the correlation between deposits and adoption probability at local banks, the 

correlation between deposits and number of transactions at local banks, the correlation between local 

banks’ adoption decisions in the first and last periods of the sample, the correlation between local banks’ 

number of transactions in the first and last periods, and the average local bank within-bank (across-time) 

standard deviations of ACH adoption and number of transactions. 

 

Identification 

In our structural model network effects are captured by five parameters: customer and bank fixed 

costs of adoption, customer and bank per-transaction (marginal) benefits from adoption, and the 

proportion of two-way transactions. Understanding the separate identification of each of these parameters 
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is somewhat difficult because our model is more structural than a typical model of network externalities. 

For example, unlike prior models, we have to identify network effects both at the bank and at the 

customer level. To start, note that if we knew the relative markup received by a bank from ACH 

transactions, then the observed proportion of banks adopting ACH would identify the bank fixed cost of 

adoption. Similarly, if we knew the utility customers obtain from an individual ACH transaction and the 

proportion of two-way transactions, then the overall level of customer adoption as implied by the number 

of ACH transactions would identify the customer fixed cost of adoption.21  

Our data should identify the remaining three parameters using variation in local bank adoption 

and usage levels across different exogenous industry configurations. We have such exogenous variation in 

the market structure of local banks (e.g., the sizes of local competitors and the local HHI) and in the 

adoption decisions and market structure of nonlocal banks. One nice aspect of our structural model is that 

it allows us to combine these multiple sources of variation into one estimation procedure. 

 To illustrate the separate identification of these three parameters more formally, we now focus on 

one of these sources of identification, although our discussion would apply to other sources as well. 

Specifically, consider exogenous variation in the number of nonlocal banks adopting. The extent to which 

changes in exogenous nonlocal bank adoption affect local bank adoption should identify the bank relative 

markup. As the relative markup increases, local banks will be more sensitive to nonlocal bank adoption 

decisions. 

Turning to identification of the customer marginal benefit parameter ( !
1
) and the two-way 

transactions parameter (δ), we simplify matters for this discussion by assuming that the market has one 

small, adopting, local bank (small enough that we can ignore transactions between two customers who 

both use the local bank) and a number of identical nonlocal banks. Let !
a

 be the proportion of outside 

banks that adopt and P(!
a
)  be the proportion of customers that adopt at each of the adopting nonlocal 

banks. We can then use (3) to write the gross benefit that a local bank customer obtains from adopting as 

a function of the exogenous shifter!
a

: 

 

 f ! a( ) " #
1
umt ! a( ) = #

1
$! a P ! a( )%1( ) + #1! a . (16) 
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While we do not directly observe the gross benefit f ! a( ) , we do observe the number of ACH transactions 

at the local bank, which depends directly on it. From (16), an increase in !
a

 has different implications for 

f ! a( )  depending on !
1
. This is easy to see for the simple case of all one-way transactions,! = 0 . In this 

case, f ! a( ) = "
1
! a implying a higher slope (with respect to!

a
) when !

1
 is higher. The shape of f ! a( )  

will depend on δ. For example, with all one-way transactions, f ! a( ) is linear in!
a

. When! > 0 , f ! a( )  

increases nonlinearly in !
a

 because it now additionally depends on nonlocal customer adoption P !
a( ) , 

which increases with !
a

. This suggests that !
1
 and δ  will be separately identified by the shape (both first 

and second derivative) of local bank ACH transactions in response to exogenous nonlocal bank adoption.  

 Although this identification is based on nonlinearities, we believe that these nonlinearities are 

economically meaningful. Nonlocal banks switching from non-adoption to adoption generate additional 

potential transaction partners in two ways: (1) through customers at the newly adopted bank (at a linear 

rate), and (2) through stimulating more adoption by customers at already adopted nonlocal banks (at a 

higher-than-linear rate). This second effect is only relevant with two-way transactions because with one-

way transactions it does not matter to the local bank customers whether customers at other already 

adopted banks adopt more, since they can be transacted with regardless. This is the underlying intuition 

for why a more convex f ! a( )  implies more two-way transactions. 

A couple of other notes about identification are in order. First, an important aspect of our model 

is the flexible unobservable structure, which allows for unobserved shocks that are time–varying and 

correlated between banks in a market. This implies that, unlike many prior studies, our model will not 

identify network effects from within–market correlations in adoption decisions across time. We believe 

that this is an advantage: that source of identification is often thought to be problematic because it is hard 

to rule out the presence of contemporaneous unobserved local shocks.  

Another interesting identification issue concerns the equilibrium selection parameter Ω.  As the 

number of firms increases, the increasing externality should result in many more cases with a Pareto-

worst equilibrium that is distinct from the Pareto-best equilibrium. Thus, the nature of the increased 

unexplained variance in usage levels for networks with more banks should identify Ω. Note that high 

variance in the usage levels in all markets would not necessarily be evidence of multiple equilibria but 
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could instead simply be attributed to a large variance of α. Also, this logic suggests that the polar cases of 

“always in a good equilibrium” and “always in a bad equilibrium” will be hard to identify separately. 

Last, note that all the terms in our model are identified only in terms of utility units (for 

customers) or profits units (for banks). Equivalently, the bank or customer benefit from an ACH 

transaction is identified only relative to its fixed cost. There is no obvious way in our model to scale 

either of these values in real terms: neither are expressed in dollar terms, nor are the two values in 

comparable units. The underlying reason for this is that we do not observe any meaningful price variation 

in the data. 

Even though we cannot get a dollar measure of the size of the externalities, we can measure the 

sizes of the externalities in terms of utility units and profit units. This limits, but does not eliminate, the 

policy experiments that we can perform. For instance, we cannot examine the implication of a dollar 

subsidy to customers for adoption. However, we can find the implications of a policy where customers are 

subsidized, e.g. 20 percent of average fixed costs. To enact such a policy, one would need the 

policymaker to come up with a reasonable guess as to the dollar amount of customer fixed costs.  

 

5. Results and implications 

 

We estimate structural parameters of our model using the indirect inference procedure developed 

in Section 4. We first discuss the results, then turn to analyzing the implications of various counterfactual 

policies. 

 

Results 

 Table 4 provides two sets of estimates for the structural parameters. As detailed in Section 4, both 

estimates pertain to the same model; they differ in the number and type of indirect inference moments that 

we use to estimate them. The first column contains our base estimates, the second contains the estimates 

with our additional II moments. The estimated parameters are similar across the two specifications, with a 

few exceptions. For instance, the time trend is estimated to be .0848 in the base estimates but .0961 in the 

specification with additional moments. The customer marginal benefit from an ACH transaction is 

estimated to be .8149 in the base specification and 1.239 in the alternate specification. One parameter that 
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is quite different is !
C

, which varies between .1279 and 1.908. However, given that this is just a 

variance, this difference does not significantly affect the general conclusions of our model. 

 Two other parameters that are fairly different across the specifications are λ, the scale parameter 

that relates assets to the number of total transactions (both ACH and non-ACH), which is 3.444 in the 

base model and 9.161 in the alternate estimates, and !
0

, the customer fixed benefit coefficient, which 

moves from –3.048 to -4.998 between the two specifications. These differences can be explained by the 

fact that our data only directly tell us the number of ACH transactions, not the total number of 

transactions or the proportion of ACH transactions.  The number of ACH transactions is determined by 

both λ, which affects the total (ACH and check) number of transactions, and !
0

, which affects customer 

adoption and hence the proportion of transactions completed using ACH. Given we only observe this total 

number of ACH transactions, λ and !
0

 are likely not separately identified by any intuitive variation in 

the data and are more likely separately identified by particular distributional and functional form 

assumptions that cannot be easily verified.22 In contrast, we do believe that the combined implications of 

the two parameters are well identified by our data on the total number of ACH transactions. Moreover, we 

have found that the economic implications of the model (e.g., the policy experiments reported later in 

Table 7) are similar across the two parameter estimates, likely because they depend largely on the 

combined implications of these two parameters on the total number of ACH transactions.  

 Table 5 provides the values of the moment conditions for both specifications. A comparison of 

the differences in the simulated moments and the data moments (normalized by their bootstrapped 

standard errors) suggests that our model fits reasonably well. For the base model, only 5 of the 31 

differences are significantly different from zero at the 5 percent level; the figure is 10 out of the 42 for the 

specification with additional moments. Nonetheless, it is worth noting that the point estimates for some of 

the important moments are substantially different between the real and simulated data. For instance, the 

coefficient relating adoption to competitors’ adoption is estimated at .1893 or .1607, depending on the 

specification, while it is .0894 in the data. While this particular comparison suggests that our estimated 

model may overstate the level of network externalities, this pattern is not prevalent. For instance, in both 

specifications the coefficients relating local adoption to nonlocal adoption are smaller in our estimated 

model than in the data.  
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 The value of our objective function at the estimated parameters is 51.70 for the base model and 

84.79 for the specification with additional moments. As our choice of weighting matrix standardizes the 

moments, this represents the sum of 31 or 42 squared i.i.d. N 0,1( )  random variables. While a chi-squared 

test for either model would fairly easily reject the joint hypothesis that all of the differences are zero, it is 

not unusual for a structural model to be rejected by the data. 

 Table 5 also shows that the two models give similar values for the 31 moments that are matched 

across both specifications. Although the other 11 moments are more closely matched by the specification 

that attempts to match these moments, even the base model does reasonably well here. Given the 

similarity of the parameter estimates across the two specifications, we focus on the base specification in 

the discussion that follows. 

 Turning to the actual estimates in Table 4, the parameters seem reasonable. For instance, the 

coefficient on time trend ( !
3
) is positive, suggesting that there is increased acceptance of technological 

goods over time. While the ACH price coefficient ( !
2

) is the anticipated sign, it is hard to know how to 

interpret its magnitude since it only represents the impact of the wholesale price charged by the Federal 

Reserve. 

 On the customer side, both mean customer fixed costs and marginal benefits are positive (recall 

that !"
0
 is the mean customer fixed cost). The ratio between them indicates that an average customer 

would make up its fixed costs of operation over a quarter with about 3,700 transactions. While large 

employers, for example, could clearly cover these fixed costs, the level is high enough to explain a 

general lack of customer adoption. For banks, the estimated ratio between the relative markup of an ACH 

transaction and the bank fixed costs of adoption is much different: the average bank would recoup its 

fixed costs with only about 30 transactions. This high markup relative to bank fixed costs is consistent 

with the anecdotal evidence of rather low bank fixed costs detailed in Gowrisankaran and Stavins (2004). 

Evidence from websites of big banks is also supportive of our estimated high markups relative to fixed 

costs. In 2004, at a time when the Fed per-item fee was $.003, we found most large banks’ posted per-

item ACH fees to be between $.10 and $.15, numbers that are 30 to 50 times the wholesale price. If we 

assume that the in-house costs to banks from processing an ACH transaction are roughly equal to the Fed 

per-item fee, this still suggests a markup of 15 to 25 times. This contrasts with checks, for which banks 

often set a zero price, suggesting a negative margin.  
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 At the bottom of the table is our estimated value of δ, the proportion of two-way transactions. We 

estimate ! = 0 , suggesting that all transactions are one-way transactions. While the standard error of this 

parameter is relatively small (e.g., we can easily reject that all transactions are two-way, i.e., ! = 1 ), the 

estimated parameter is on the boundary of parameter space, making its estimated standard error not 

completely reliable.23 Nonetheless, this is an interesting result, suggesting that ACH is mainly being used 

by big companies (employers, mortgage companies) that have the ability to make ACH transactions with 

smaller customers who have not formally adopted originating technology.  

 It is worth examining further what aspects of the data may be generating our estimate of ! = 0 . 

Similar to the discussion on identification in Section 4, information on δ should come from the shape of 

the relation between bank adoption and transactions. If ! = 1 , all transactions have to have both sides of 

the market adopting. This implies a quadratic relation between customer adoption and transactions: if 1/2 

of customers have adopted, 1/4 of transactions would be made with ACH, if 1/3 of customers have 

adopted, 1/9 of transactions would be made with ACH, etc. In contrast, with ! = 0 , the relation can be 

more linear, depending on the level of bank adoption. While we do not have direct data on customer 

adoption, we do have data on bank adoption. With ! = 1 , the relation between bank adoption and 

transactions will likely be even more convex than quadratic, as more bank adoption causes more customer 

adoption. We examine this relation by performing a simple regression of ACH transactions per dollar of 

deposits on the deposit-weighted fraction of banks adopting. Instead of a quadratic relation, we found a 

roughly linear relation between the two variables, which does not seem consistent with two-way 

transactions.24 Note that we should be cautious in interpreting this regression too broadly because its 

variation is not exogenous. 

The estimates of the four random effects’ standard deviations are interesting in that the estimated 

standard deviations of ! jmt

A  and ! jm

B  are considerably higher than those of !
m

C  and !
mt

D . This suggests 

that firm–specific effects are quantitatively more important than the market–specific effects (although in 

the alternate specification, the standard deviation on !
m

C  is much higher). Overall, these standard 

deviations are reasonably large, with the standard deviation of the sum ! jmt  roughly equal in magnitude 

to the mean customer fixed cost of adoption, suggesting a large variation in customer fixed costs of 

adoption.  
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Our equilibrium selection parameter Ω is estimated to be .7106, suggesting that approximately 70 

percent of these markets are in the good equilibrium. However, the parameter is not estimated very 

precisely: we could not reject always being in a good equilibrium or always being in a bad equilibrium. 

Moreover, as we will see in Table 6 below, our estimates of the other parameters suggest that network 

effects are simply not strong enough to generate economically significant multiple equilibria. As such, we 

should not interpret our results as being particularly indicative of which equilibria these markets are in. 

Note also that the lack of economic significance across values of Ω implies that we need not worry much 

about the lack of statistical significance in the sense that policy conclusions will not vary much based on 

the value of Ω.25 

 Table 6 further explores the economic magnitudes of the base parameters from Table 4 by 

examining their impact on the estimated equilibrium. The table examines three statistics of the estimated 

equilibrium – the percentage of local banks adopting ACH, the percentage of customers adopting, and the 

percentage of overall transactions done through ACH. At the estimated parameters, reported in row 1, 

68.7 percent of local banks are adopting, 17.7 percent of customers are adopting, and 16.1 percent of all 

transactions are made through ACH. The latter two figures imply that the potential market for ACH 

transactions (e.g., the set of recurring payments) is about five to six times its actual size during our data 

set, and that only about one-fifth of customers who might benefit from originating ACH transactions were 

actually originating them.  

Row 2 of Table 6 examines what would happen if we eliminated mean bank fixed costs of 

adoption for local banks. The difference between this and row 1 is indicative of the level of the network 

externalities at the bank level. Although many more banks adopt ACH, the differences in customer 

adoption rates and in transactions processed with ACH are small. This is due to our small estimated bank 

fixed cost of adoption, which implies that it is not bank non-adoption that is preventing customers from 

using ACH. On the other hand, when we eliminate the customer mean fixed cost of adoption in row 3, 

there are big changes in the equilibrium proportion of customers that adopt ACH: customer adoption 

increases to 55.3 percent. In response to this expected adoption by customers, local banks also increase 

adoption to 96.8 percent, and in this equilibrium, 52.6 percent of all transactions are made using ACH. 

These estimates suggest that local customer fixed costs are the primary impediments to ACH usage. 

Anecdotal evidence is consistent with these findings. For instance, by the year 2000, almost all 

banks had adopted ACH, further suggesting that bank non-adopters were reasonably close to the margin 
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of adopting during our sample. Yet, ACH market share was still low, increasing only by 50 percent over 

1997 according to National ACH Association (NACHA) estimates.26 The fact that this increased bank 

adoption did not lead to massive increases in the number of transactions is consistent with the hold-up for 

adoption being customers, not banks, and with the presence of large customer fixed costs.  

Rows 4 and 5 of Table 6 examine the existence of multiple equilibria at our estimated parameter 

values by forcing either the Pareto-worst or the Pareto-best equilibria. While not identical, the results 

across the two equilibria are very similar. This suggests that, at our estimated parameters, multiple 

equilibria are simply not a significant issue. Again, this implies that our estimate of Ω  is not particularly 

meaningful. 

 Last, we investigate what would happen if some of these externalities could be internalized. There 

is no natural way to compare customer utility to firm profits in our model. As such, we cannot solve a 

social planner’s problem. However, we can investigate what happens if all the local banks coordinated 

decisions to maximize joint profits, or if all customers coordinated to maximize joint utility. We find 

(from row 6) that joint profit maximization of all the local banks raises adoption, but not by much. Row 7 

reports that when all customers coordinate to maximize joint utility, nothing changes. This result follows 

directly from the fact that all transactions are one-way and that one-way ACH transactions can be 

performed without both customers adopting. Because of this, customers simply do not exert externalities 

on each other.27 However, customers are exerting externalities on banks. In particular, by not adopting, 

customers are lowering the benefit to their bank and other banks from adopting. Our policy experiments 

below reveal this to be the primary source of externalities in this market, in the sense that customer 

subsidies for adoption primarily help banks.  

  

Policy experiments 

 The above results suggest that it is customer fixed costs that are preventing widespread adoption 

of ACH technology. In contrast, bank fixed costs are small and do not significantly limit ACH use. This 

suggests that government policy, particularly at the customer level, might increase welfare. We analyze 

two types of fixed cost subsidies: one where the government pays a fixed amount to customers who adopt 

ACH, and another where the government pays a fixed amount to local banks that adopt ACH. It is 

important to note that customer utility is measured in “utils” and profits are measured in “profit units” and 

the two measures are not comparable. Thus, we cannot compare a government subsidy received by 
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customers in utils to a government subsidy received by banks in profit units without further normalization 

assumptions. 

 Table 7 provides the results of these policy experiments using the base parameters from Table 4.28 

Column 1 of Table 7 reports properties of the estimated equilibrium as a baseline measure. In addition to 

statistics on customer and bank adoption, we compute six welfare measures: bank profits,29 customer 

utility, the costs to the government of the potential subsidies (in both profit and utility units), and the 

resulting net profits and net utility.  

As a first cut at useful subsidies, columns 2 and 3 report the welfare consequences of two 

subsidies similar to the experiments from the prior section. We use government subsidies to eliminate 

either customer mean fixed costs (column 2) or local bank mean fixed costs (column 3). The bank subsidy 

unambiguously increases welfare, as total profits and utility increase. However, its total effect on usage 

and welfare is small, because bank fixed costs are not the central cause of non-adoption. The customer 

subsidy is far more effective at increasing ACH usage; it roughly triples both local bank profits and 

customer utility. However, the subsidy is inefficient in terms of utils, as the gain in customer utility due to 

the policy is more than offset by the cost of the subsidy to the government in utils. This suggests that the 

subsidy might be generating inefficiently high levels of adoption. 

Another limitation of these two subsidies is that they are not large enough to force everyone to 

adopt. Thus, we tried alternate subsidies that are large enough to force virtually everyone to adopt. A 

large bank subsidy generates only marginally different results than column 3 (with slightly higher total 

utility and total profit numbers), so we do not report the results. The fact that the large bank subsidy 

results in outcomes that are virtually the same as the mean fixed cost bank subsidy is not surprising given 

that 94.8 percent of banks were already adopting in this earlier subsidy. In contrast, introducing a large 

customer subsidy (column 4) does change things significantly, generating even more ACH transactions 

and firm profits than the customer mean fixed cost subsidy, but at an even larger utility cost.  

 Given that we have no way of relating the increase in profits to the decrease in utility, we cannot 

determine whether policies that raise one and lower the other (such as column 2 and column 4) are 

welfare-improving. However, we can attempt to construct customer subsidies that unambiguously raise 

welfare. In particular, the overadoption in column 2 suggests that a smaller, more efficient customer 

subsidy might leave customer utility unchanged or higher while increasing profits. Column 5 exhibits 

results from the largest customer subsidy (approximately) that does this, 1.7 percent of customer mean 
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fixed cost. With this subsidy, total utils are unchanged, but total profits increase by approximately 3 

percent. Column 6 adds a local bank subsidy to the policy, since column 3 shows that local bank 

subsidies, while not increasing adoption by much, do unambiguously increase welfare. We add a very 

large subsidy to local banks, enough to ensure that they all adopt. With this concurrent bank subsidy, we 

can increase the customer subsidy to 7.4 percent of customer mean fixed costs and still keep customer 

utility at its baseline level. This ends up increasing local bank profits by about 18 percent. This suggests 

that the government can substantially increase welfare in this market with a simple fixed cost 

subsidization policy. Note that these profit increases are in some sense a lower bound, as we are forcing 

ourselves to keep total utility constant in both of these subsidy schemes.  If we had a way to relate utils to 

profit units, we could likely use subsidies to increase profits or overall welfare by more than 18 percent.30 

The above results also suggest that banks might be able to increase their profits by subsidizing 

their own customers. However, there are potential problems with doing this. First, banks would need to 

devise mechanisms to expropriate the excess customer surplus generated by the subsidies. Second, there 

would be an issue regarding externalities between banks. Specifically, possible subsidies to a bank’s own 

customers make it more likely that the bank will find it profitable to adopt. This in turn creates profits for 

other banks, i.e. an externality, and as a result, these subsidies might be underprovided.31 The ability to 

switch banks implies that customers might be able to take adoption subsidies (e.g., software for ACH 

processing and accompanying employee training) from one bank and then switch to the bank with the 

lowest per-transaction fees. If this is in fact the case, there would be considerable returns to banks from 

developing methods for reducing the expropriation problem, perhaps through contracts or proprietary 

software. 

 

6. Conclusions 

 

 In this paper, we have estimated a static structural equilibrium model of network externalities in 

the ACH banking industry in order to estimate the causes and magnitudes of network externalities for this 

industry. Our parameter estimates are reasonable and generally precisely estimated, and they fit the data 

reasonably well. However, our model is fairly simple and static. A key area for future research would be 

to extend the model to allow for sunk costs and dynamic optimization. 
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 We find that bank fixed costs from ACH adoption are low and do not explain why ACH is not 

more widely used. In contrast, customer fixed costs of ACH adoption are substantial and are a major 

explanation for the lack of ACH usage. Most ACH transactions appear to be one-way in the sense that 

recipient customers do not need to adopt formally for them to be realized. Although we estimate that the 

Pareto-worst equilibrium is not identical to the Pareto-best equilibrium, we find that the two equilibria are 

very similar to each other in their implied ACH adoption decisions. Changes that lower the customer 

fixed cost of ACH adoption will encourage adoption and usage of ACH. Because of this, policies that 

subsidize a small portion of customer fixed costs can unambiguously increase total surplus. Adding large 

bank subsidies for ACH adoption in combination with the customer subsidies can increase welfare even 

more.  
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Table 1 of 7 
Table 1: Characteristics of Local Banks  

Number of  
local banks 

Number of 
networks/time 

periods 
Mean deposits 

(millions) 
Mean percent of 

banks using ACH 

Mean ACH 
transactions by 

bank 

1 2730 $45.8 64.3 457.7 

2 1310 $49.5 64.5 452.0 

3 367 $59.4 67.8 1,217 

4 172 $73.0 74.4 1,348 

5 83 $50.1 74.2 912.5 

6 51 $125 70.3 3,485 

7 31 $139 73.7 2,155 

8 41 $57.5 66.2 991.5 

9 39 $79.9 69.5 897.9 

10 25 $81.6 57.6 732.2 
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Table 2 of 7 
Table 2: Characteristics of Nonlocal Banks 

Number of  
local banks 

Mean 
number of 
nonlocal 

banks  

Std. dev. of 
number of 
nonlocal 

banks 

Mean 
deposits 
within 

network by 
nonlocal 

banks 
(millions)  

Mean total 
deposits by 

nonlocal 
banks 

(millions) 

Percent of 
nonlocal 

banks using 
ACH 

1 2.02 2.69 $59.8 $10,400 88.5 

2 1.73 2.29 $60.2 $6,800 85.8 

3 3.25 3.30 $96.0 $9,200 89.0 

4 4.06 3.38 $92.0 $8,600 88.5 

5 5.27 5.24 $187 $4,800 83.3 

6 5.67 5.20 $96.9 $8,500 84.1 

7 9.13 4.26 $78.6 $5,000 91.9 

8 6.80 4.65 $95.2 $7,900 86.0 

9 8.72 5.80 $104 $6,900 87.4 

10 6.56 3.80 $120 $4,900 81.1 

 
Note: Table based on observations kept in sample. 
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Table 3 of 7 
Table 3: Usage Over Time by Local Banks in Network 

Time period 
Percent of networks 

with no local bank using 
ACH 

Percent of networks 
with some, but not all, 
local banks using ACH 

Percent of networks 
with all local banks 

using ACH  

1995: Q2 14.3 57.1 28.6 

1995: Q3 16.8 57.4 25.7 

1995: Q4 17.3 55.8 26.9 

1996: Q1 14.3 55.6 30.1 

1996: Q2 10.9 51.6 37.5 

1996: Q3 12.5 51.0 36.5 

1996: Q4 8.4 50.3 41.4 

1997: Q1 7.3 46.1 46.6 

1997: Q2 5.8 41.3 52.9 

1997: Q3 7.1 42.9 50.0 

1997: Q4 6.1 42.2 51.7 

 
Note: Table includes networks with two or more local banks kept in sample. 
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Table 4 of 7 
Table 4: Parameter Estimates 

Parameter Base estimation Estimation with 
additional moments 

λ (transactions coefficient) 
(unit: trans. per $100,000) 

3.444 
(1.832) 

9.161 
(2.218) 

β0 (customer fixed benefit) 
(unit: utils) 

–3.048 
(.2407) 

–4.998 
(.1938) 

β1 (customer marginal benefit) 
(unit: 1,000 transactions) 

.8149 
(.2714) 

1.239 
(.3309) 

β2 (price coefficient) 
(unit: $.01) 

–.5444 
(.1325) 

–.8720 
(.2544) 

β3 (time coefficient) 
(unit: quarter) 

.0848 
(.013) 

.0961 
(.0200) 

Markup 
(unit: profit units per 1,000 transactions) 

190.4 
(92.78) 

313.7 
(80.08) 

FC  (bank fixed costs) 
(unit: profit units) 

6.256 
(1.083) 

3.395 
(.3233) 

Ω (Probability of good equilibrium) .7106 
(.4458) 

.7546 
(1.523) 

!
A

 (std. dev. of random effect ! jmt

A ) 
(unit: utils) 

.8276 
(.0576) 

.8675 
(.1272) 

!
B

 (std. dev. of random effect ! jm

B ) 
(unit: utils) 

1.953 
(.1556) 

2.028 
(.1580) 

!
C

 (std. dev. of random effect !
m

C ) 
(unit: utils) 

.1279 
(.0661) 

1.908 
(.2900) 

!
D

 (std. dev. of random effect !
mt

D ) 
(unit: utils) 

.0383 
(.0181) 

.0044 
(.1597) 

δ (proportion of two way transactions) 0 
(.1847) 

0 
(.1002) 

Moment condition at estimated parameters 51.70 84.79 

Number of moments 31 42 

 
Note: Standard errors in parentheses. 
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Table 5 of 7 
Table 5: Indirect Inference Moments at Estimated Parameters 

  Description Moment 
in data 

Moment 
in model 

T-stat. for 
diff. 

Moment 
in model 

T-stat. for 
diff. 

   Base specification Specification with 
additional moments 

Constant .6516 .5695 –2.536 .5967 –1.767 

Competitor adoption .0894 .1893 2.9707 .1607 2.145 

Time dummy .0040 .0088 .8923 .0085 .8349 

Time dummy .0173 .0284 1.4209 .0298 1.663 

Time dummy .0358 .0457 1.193 .0469 1.368 

Time dummy .0468 .0517 .5477 .0500 .3623 

Time dummy .0642 .0683 .3847 .0675 .3157 

Time dummy .0832 .0774 –.5497 .0718 –1.085 

Time dummy .0900 .0842 –.5023 .0786 –.9956 

Time dummy .1113 .0963 –1.237 .0889 –1.846 

Time dummy .1125 .1057 –.5834 .1003 –1.032 

Time dummy .1142 .1098 –.3679 .1045 –.8147 

Deposits .1480 .3104 .8904 .2768 .7094 

Squared deposits –.0879 –.1517 –.2635 –.1245 –.1431 

SE competitor adoption .0122 .0120 –.6687 .0122 –.1720 

Std. dev. of residual .1978 .1702 –2.644 .1878 –.8939 

Std. dev. of residual .2826 .2889 .9644 .2802 –.3671 

Std. dev. of residual .1232 .1129 –1.994 .1132 –1.856 

A
do

pt
io

n 
on

 c
om

pe
tit

or
 a

do
pt

io
n 

Std. dev. of residual .2168 .2169 .0286 .2133 –.6749 
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Constant .0009 .0002 –.7860 .0005 –.4207 

Competitor volume per 
transaction .0021 .0587 1.542 .0998 2.482 

A
C

H
 v

ol
um

e 
pe

r d
ep

os
its

 o
n 

co
m

p.
 a

do
pt

io
n 

Competitor adoption .000017 .00025 2.178 .00014 1.203 

Constant .1784 –.0947 –1.150 .1507 –.1208 

HHI .0949 .0653 –.5728 .0255 –1.437 

A
do

pt
io

n 
on

 
H

H
I 

R2 .1360 .1120 –1.570 .0694 –4.341 

Constant .2570 .3877 1.445 .4251 1.754 

Nonlocal adoption .2142 .0732 –1.589 .0893 –1.319 

A
do

pt
io

n 
on

  
no

nl
oc

al
 

ad
op

tio
n 

(M
od

el
 1

) 

R2 .0850 .0795 –.4260 .0484 –2.817 

Constant .2591 .4062 1.646 .4348 1.830 

Nonlocal adoption .2220 .0830 –1.557 .1025 –1.253 

A
do

pt
io

n 
on

  
no

nl
oc

al
 

ad
op

tio
n 

(M
od

el
 2

) 

R2 .0922 .0804 –.7179 .0500 –2.539 

Mean adoption .6651 .6867  .6864 1.529 

Mean transactions .8259 .3392  .5333 –2.329 

Std. dev. of local 
transactions 3.955 .8074  1.750 –2.321 

Mean transactions 
1995:Q2 .5168 .2186  .3348 –2.323 

Mean transactions 
1997:Q4 1.253 .4836  .7978 –2.108 

Correlation of deposits 
and adoption .1819 .1962  .1398 –1.817 

Correlation of deposits 
and transactions .4241 .5258  .3576 –2.037 

Within-bank correlation 
in adoption .3426 .4065  .4292 1.683 

Within-bank correlation 
in trans. .6191 .7412  .7660 1.275 

Within-bank std. dev. of 
adoption .1950 .1979  .1872 –1.285 

Si
m

pl
e 

da
ta

 m
om

en
ts

 fo
r r

ob
us

tn
es

s c
he

ck
 

Within-bank std. dev. of 
transactions .3469 .1784  .2807 –1.484 
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Table 6 of 7 
Table 6: Economic Significance of Parameters 

Change % of local banks that 
adopt 

% of customers 
that adopt 

% of transactions 
completed with ACH 

Estimates 
(1) 68.7 17.7 16.1 

No mean bank fixed costs 
(2) 94.8 17.8 16.9 

No mean customer 
fixed costs 

(3) 
96.8 55.3 52.6 

Always in bad equilibrium 
(4) 68.3 17.7 16.0 

Always in good equilibrium 
(5) 68.9 17.7 16.1 

Local banks internalize 
externality 

(6) 
83.3 17.8 16.8 

All customers internalize 
externality 

(7) 
68.7 17.7 16.1 
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Table 7 of 7 
Table 7: Policy Experiments 

Policy: No subsidy 

Subsidy to 
cust.: 

customer 
mean fixed 

cost 

Subsidy to 
local 

banks: 
bank mean 
fixed cost 

Large 
customer 
subsidy 

Subsidy to 
cust.: .017 
customer 

mean fixed 
cost 

Large bank 
subsidy 

.074 cust. 
mean fixed 

cost 

Statistic: (1) (2) (3) (4) (5) (6) 

% local banks that 
adopt 

(1) 
68.7 96.8 94.8 100 69.5  100 

 % cust. that adopt 
(2) 17.7 55.3 17.8 93.4 18.2 20.0 

% trans. made 
with ACH  

(3) 
16.1 52.6 16.9 89.2 16.5 19.1 

Bank profits 
(profit units) 

(4) 
1.42 

million 
4.73 

million 
1.54 

million 
8.04 

million 
1.46 

million 
2.13 

million 

Customer utility 
(utils) 

(5) 
13,264 64,957 13,370 339,181 13,713 15,416 

Cost to govt. 
(profit units) 

(6) 
0 0 53,425 0 0 450,300 

Cost to govt. 
(utils) 

(7) 
0 80,431 0 445,646 449 2,150 

Net profits 
(profit units) 
(8) = (4) – (6) 

1.42 
million 

4.73 
million 

1.48 
million 

8.04 
million 

1.46 
million 

1.68 
million 

Net utility 
(utils) 

(9) = (5) – (7) 
13,264 -15474 13,370 -106,465 13,264 13,266 
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Fig. 1 of 1 
 

Figure 1: Map of New England indicating large cities (with circles) and networks in sample (with 
stars) in New England 

 
 
 
 
(See next page.)
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1 A related literature considers the empirical implications of social interaction models (see Brock and 
Durlauf, 2001). One paper in this literature (Topa, 2001) also identifies structural parameters from the 
steady state of the system, although not in the context of an underlying profit-maximizing model of 
decision–making. 
2 While Gowrisankaran and Stavins (2004) did recover magnitudes for some of the specifications, these 
specifications were limited and somewhat problematic. For instance, they estimated the discrete ACH 
adoption decision using a linear instrumental variables specification, which is problematic in this context 
(see Heckman and Robb, 1985, and Angrist and Imbens, 1994). 
3 The idea behind this assumption is that the ACH adoption decision appears to be made at the bank level, 
not the branch level. Since these nonlocal banks are very large relative to the small markets we examine, 
we believe that the exogeneity assumption is reasonable.  
4 We assume a constant N because it would be difficult to identify any sort of distribution on N credibly 
without customer–level data on the number of transaction originations. 
5 As well as originating their own N transactions, customers are also the recipients of transactions 
originated by other customers in the market, a point we explore below. 
6 A direct deposit for payroll is a credit transaction originated by the employer, while a mortgage payment 
is typically a debit transaction initiated by the lender. 
7 Note that we are assuming that this proportion is the same for all customers, i.e., δ  percent of each 
customer’s N transactions are two-way. An alternative model might specify two different types of 
customers, one who only makes two-way transactions, and one who can make one-way transactions. 
Again, given our lack of customer–level data, it would likely not be very fruitful to try to distinguish 
these alternative models. 
8 We specify prices as varying only across time, because of a lack of better data. 
9 We assume that utility only accrues to the originator of the transaction because we do not have the 
customer–level data that would likely be necessary to estimate two different utilities. 
10 If one incorrectly disallowed these sorts of correlations, the result would likely be biased estimates of 
network effects, as within-market correlations in adoption would be incorrectly picked up by the network 
effects parameters.  
11 We fold pt

CHK  into !
1
 in (7) because we do not have data on the price of checks. 

12 There is some evidence of this nature of fixed costs in our data, as we see a number of banks switching 
from adoption to non-adoption between periods. See Gowrisankaran and Stavins (2004) for details. 
13 Our method of estimating models with multiple equilibria is a generalization of the method used by 
Moro (2003), who estimates the equilibrium as a parameter in a model of labor discrimination. The 
difference is that we estimate the frequency of being in either equilibrium as a parameter, since we 
observe several regional markets, while Moro (2003) has only one market per year. It is also similar to 
methodologies used by Bjorn and Vuong (1985), Kooreman (1994), and Tamer (2003). 
14 We thank the Federal Reserve’s Retail Payments Product Office for making this data set available to us. 
15 Note that since there is a continuum of customers, the customer level unobservables ε are aggregated 
out of the model at the level of the data. 
16 We use a combination of simulated annealing (see Goffe, Ferrier, and Rogers, 1994) and a simplex 
procedure with randomness. 
17 Another alternative would be to estimate our model with simulated maximum likelihood (SML), e.g., 
Keane and Wolpin (2000). One problem with SML in our context is that we have continuous dependent 
variables. This makes the model prone to generating probability zero events. Keane and Wolpin (2000) 
deal with this by adding analytically integrable measurement error to the model, which generates a 
positive likelihood of any event. 
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18 One advantage is that this is a one–step procedure. This alleviates the ambiguity that occurs with 
standard two-step MSM estimators where the choice of the initial weight matrix affects the initial 
estimates, which in turn affect the second–stage weight matrix and estimates. 
19 The proof is essentially the same as in Gowrisankaran and Stavins (2004). 
20 The logic behind this is that banks without any nonlocal competitors are more similar to banks where 
all nonlocal competitors have adopted than to ones where none have adopted. 
21 Note that there is a selection issue here, since we do not observe the proportion of customers adopting 
for banks that do not adopt. Our structural model implicitly accounts for this selection. 
22 From the standard errors, one can see that the confidence intervals for these two parameters are also 
very different across the two specifications. Note that standard errors only measure variance due to the 
data–generating process, not variance due to uncertainty about model specification. It is likely that by 
highlighting different aspects of the functional form and distributional assumptions generating 
identification, the two specifications are generating different statistical predictions. 
23 To compute the variance/covariance matrix in (15), we use a one-sided derivative for the column of the 
derivative matrix Γ that pertains to δ. An alternative would be to fix ! = 0  and calculate the 
variance/covariance matrix for the other parameters with this assumption. We tried this and found similar, 
though generally smaller, standard errors than the ones that we reported, suggesting that our reported 
precisions may be conservative.  
24 Using the fraction of banks adopting and its square as explanatory variables, we obtain a t-statistic of 
3.04 on the linear term and 0.18 on the squared term, with the constant term also being insignificant.  
25 A caveat is that this statement depends on the nature of the policy experiment. Our policy experiments 
use subsidies to decrease the externality. This likely decreases the possibility of multiple equilibria, so the 
estimate of Ω  is even less important. In contrast, policies that seek to increase the level of the externality 
might generate economically significant multiple equilibria, making the estimate of Ω important. 
Fortunately, policies that increase the externality are generally not that interesting or useful. 
26 See http://www.nacha.org/news/Stats/ACH_Statistics_Fact_Sheet_2001.pdf. 
27 If we instead estimated a specification where recipients of transactions obtain utility (as in footnote 9), 
there would be externalities between customers, even though the proportion of two-way transactions 
would be zero. 
28 It would be conceptually straightforward to obtain confidence intervals around these numbers by 
bootstrapping from the estimated variance/covariance matrix for the parameters. 
29 Note that our bank profit measure includes the increment in profits to nonlocal banks. 
30 For example, one way to relate profit units to utility units is to make an assumption about how surplus 
is split in the equilibrium observed in the data. If we assume that banks and customers split the original 
equilibrium surplus 50/50, then (from Table 7 column 1) we get the equality that 1.42 million profit units 
= 13,264 utility units, or that 1 utility unit = 107 profit units. Using this welfare conversion mechanism, a 
customer subsidy that is 55 percent of mean fixed costs plus a large bank subsidy can increase firm profits 
by almost 60 percent.  
31 Note that our model is consistent with banks already subsidizing their customers, in which case our 
estimated fixed costs and benefits can simply be interpreted as their post-subsidy values. However, the 
point still remains that further subsidies would be profitable. 
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