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1 Introduction

The organizational design of firms is likely to affect performance in crucial ways. In the

automotive industry there is a lot of scope for such organizational decisions to matter. By

the very nature of the product, coordination problems are crucial. Each vehicle is made

up of a myriad of components which cannot all be produced by the same firm. The end

product is differentiated in many dimensions. The minimum efficient scale of production

is large, possibly changing over time, and differs for many activities that make up the

assembly process. Moreover, the industry is highly capital intensive and unionized which

is likely to make adjusting to a new environment more difficult.

A growing literature has focused on the presence of complementarities, defined as a

positive dependency between pairs of activities. One of the most influential studies of

complementarities, Milgrom and Roberts (1990), referred extensively to the automotive

industry.1 Data limitations and the importance of unobservables make it a nontrivial task

to distinguish between interdependent returns and the impact of an omitted variable on

several adoption decisions, see Athey and Stern (2003). The distinction matters crucially

to isolate the impact of an activity holding all else constant. In particular, by studying

the adoption decisions of other firms, we would like to learn what return a firm can expect

from adopting a new activity itself.

We specifically look at the impact of an expanded model lineup on plant-level pro-

ductivity. The variety of models for sale (and produced) in North America has increased

tremendously in the last decades. While the increase could to some extent be the response

to innovations in production technology, it is generally viewed as a response to changing

consumer demand and the cause of severe production difficulties. While some firms may

have a comparative advantage in producing a greater variety of vehicles at minimal extra

cost, other (less capable) firms follow their lead to preserve market share. In an industry

with high fixed costs this is not necessarily irrational, but these firms will potentially incur

much greater cost increases or productivity declines. The following quote illustrates the

industry’s sentiment:

“All that model proliferation, of course, increased costs. [...] Today, through

1Macduffie (1995) and Helper (1997) are empirical studies investigating complementarities between
human resource activities in the automotive industry. Novak and Stern (2003) study complementarities
between the outsourcing decisions of major components. Jovanovic and Stolyarov (1997) illustrate a
theory of asynchronous use of complementarity technologies under learning by doing, drawing on evidence
from the automotive industry.
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bitter lessons drenched in red ink, automakers are learning to consolidate

product development and even production, while producing vehicles that are

different enough in style to suit finicky consumers. [...] Today we have insuf-

ficient volume on products, so we’re not taking advantage of the economies of

scale that we could.” Automotive News (1996)

Increasing the number of models produced in a single plant is the first ‘activity’ we

consider. Flexible technology and insourcing (the reverse of outsourcing) are two ‘activi-

ties’ that have the potential to reduce the cost of assembling the increased variety. Both

are widely debated trends in the automotive and many other manufacturing industries.2

Note that the potential complementarities are of an unusual form. Rather than joint

adoption boosting the positive return of adoption in isolation, in our application each ac-

tivity would lower productivity on its own, but adopting them jointly potentially reduces

the productivity penalty. We do not model the implicit benefits of producing greater

variety, but refer to Petrin (2002) for an illustration of the (demand-side) benefits of the

introduction of the minivan.

We will investigate the potential complementarities between these three activities on

the universe of all car and light truck assembly plants in North America over the 1994–

2004 period. The empirical literature has used two approaches to study the potential

interdependence of activities. Some studies look directly at the clustering of adoption

decisions, while others look at the joint impact of activities on a performance variable,

like costs or productivity.3 As pointed out by Athey and Stern (2003), many empirical

studies finding evidence for complementarities do not allow for unobservables that might

be correlated with the adoption decision of each activity.

In some cases, one can convincingly claim that observable characteristics absorb the

majority of firm-specific effects that determine adoption. This is arguably the case in the

setting of Ichniowski et al. (1997). The performance measure is narrow (output of a single

production line); production technology is similar across observations (homogenous steel

finishing); fixed-effects are included; and differences in adoption are likely to be driven

by variations in the fixed costs of adoption (for example knowledge about best practice

or trust between labor and management varies by firm). While automobile assembly

shares some similarities with the previous situation, the production process is a lot more

2For flexibility see Gal-or (2002) or Norman (2002) and for outsourcing see Girma and Gorg (2004).
3Examples of the first approach are Arora and Gambardella (1990), Novak and Stern (2003), Miravete

and Perńıas (2005), and Åstebro, Colombo, and Seri (2005). Ichniowski, Shaw, and Prennushi (1997),
Macduffie (1995), and Helper (1997) are examples of the second approach.
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complicated. Even though the general technology is similar across observations, firms

(plants) are likely to be heterogeneous in terms of their ability to implement and adjust

to innovative activities. Given that firms vary widely in their observed productivity levels,

we cannot rule out that unobserved differences in capabilities are important.4

An alternative approach is to draw inferences from the restrictions that complemen-

tarities place on the distribution of the error terms. Miravete and Perńıas (2005) develop

a maximum likelihood estimator that explicitly incorporates correlation in the unobserv-

ables that enter the adoption decision of each activity. Functional form assumptions on

the return function and the distribution of unobservables allow them to derive different

areas of support consistent with joint adoption under the existence or absence of comple-

mentarities.5

Finally, Athey and Stern (2003) demonstrate that one can construct a true test for

complementarities using activity-specific instruments, “i.e. observable factors impacting

the adoption of individual practices but independent of other practices and measured

performance. (p. 3)” Novak and Stern (2003) follow this approach and derive instruments

for the outsourcing decision of major components in a sample of luxury cars. They argue

that information on pre-existing in-house sunk investments or a limited in-house capacity

for system A are valid instruments for the outsourcing decision on system A in an equation

that explains outsourcing of some other system B.

We follow this last approach to deal with potentially correlated unobservables deter-

mining the different adoption decisions. For model variety, we adopt the logic used in

differentiated product demand estimation and use the number of varieties produced by

competing firms as activity-specific instrument. Once we control for the market segment

of the plant’s output, this variable has no role anymore explaining productivity. The dis-

tance from the geographical center of the industry is a negative predictor for the degree

of outsourcing and it should not belong in the productivity regression after controlling

for country-fixed effects. For flexible technology, we use the method of shift relief as

instrument as it reflects labor-management relations that influence the expected success

of flexible production methods, but is otherwise not found to explain productivity once

4The more general nature of the activities in Arora and Gambardella (1990)—R&D agreements and
stock acquisitions—similarly warrants more caution in drawing conclusions from the documented ten-
dency for joint adoption. The activities could be complementary in use, i.e. their returns are interdepen-
dent, but other explanations cannot be ruled out.

5Åstebro et al. (2005) use a similar approach to distinguish between complementarities and what they
call strong one-step-ahead non-causality or strong simultaneous independence.
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nationality of the owner is controlled for.

We are not aware of any previous study that uses activity-specific instruments to es-

timate the return function directly. Existing studies that control for simultaneity have

studied the adoption decisions directly. In contrast, we infer complementarities from the

effect of interactions of activities on productivity. In our application, this approach has

empirical and theoretical advantages. Most importantly, firms can acquire the capability

for an activity, e.g. flexible technology, but only put it in practice when necessary. Adop-

tion is then distinct from the actual use of the activity. While this is problematic for an

equation explaining (the timing of) adoption, the return function is unaffected by such

distinction. The benefit of flexible technology or outsourcing will be more relevant when

a large variety is produced, which varies year by year. The approach extends straightfor-

wardly to continuous activity choices. For example, outsourcing decisions are observed for

almost 30 tasks. A continuous outsourcing index is more intuitive than an all or nothing

choice.

Moreover, recent theoretical models have shown that complementary inputs might be

upgraded at different dates if upgrades involve learning (Jovanovic and Stolyarov 1997)

or fixed costs (Jovanovic and Stolyarov 2000). The latter paper concludes more generally

that “complementarity does not necessarily imply comovement, not even for a single

decision maker (p. 1)”. While adoption decisions of complementary activities might not

be clustered under these circumstances, the joint impact on productivity will still exist.

The remainder of the paper is organized as follows. After introducing the data set

in Section 2, we discuss the three activities—model proliferation, flexible technology,

and in/outsourcing—and the instruments in detail in Section 3. The empirical model

underlying the investigation of complementarities is introduced in Section 4. Results of

the analysis with robustness checks are presented in Section 5. Section 6 concludes.

2 Data

The plant-level information comes from The Harbour Report North America, published

in 1980, 1981, 1989, and annually from 1994 onwards. Statistics are calculated using a

uniform methodology from information supplied by the firms, supplemented with plant

visits by representatives of Harbour Consulting. Firms voluntarily agreed to provide

information to benefit from the productivity benchmarking exercise Harbour performs.

The principle output of the benchmarking, the calculation of the number of hours it
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takes each plant to assemble a vehicle, will be the dependent variable in our analysis.

While quoted regularly in the trade press and daily newspapers, to our knowledge this

information has not previously been used in the economics literature.

To guarantee coverage of the universe of plants in North America and a uniform

definition of variables over time, the sample period is limited to 1994–2004.6 All car

and light truck assembly plants in the U.S., Canada, and Mexico are sampled, but some

observations are dropped because of missing values. We estimate that the final sample

covers 95% of the plants in the industry, accounting for an even higher share of output.

Coverage is less complete for engine, transmission and stamping plants, especially in

earlier years, and these plants are not included in the analysis.

A disadvantage relative to using data collected by the U.S. Bureau of the Census, as in

Van Biesebroeck (2003), is the absence of capital stock information. The main advantage

is the ability to include Canadian and Mexican plants and rich information on the types

of products assembled in each plant. Relative to the data set constructed from plant

surveys by the International Motor Vehicle Program, see Macduffie (1995), the benefit of

The Harbour Report information is the complete coverage of the North American industry

and the time dimension in the panel.

The performance measure used as dependent variable is the standard measure of (the

inverse of) labor productivity in the industry: hours-per-vehicle (hpv).7 For this to be an

informative productivity measure, one is implicitly assuming that other inputs are fixed

over time and across plants or vary proportionally to output. While obviously a strong

assumption, it is not entirely implausible for the industry. Similar to the situation in

Ichniowski et al. (1997), firms share the same technology (a moving assembly line), the

production process follows the same steps (welding together stamped panels, painting the

body, and assembling all components to the vehicle) and final products are made up of

the same set of components. The scope for substituting between different inputs is clearly

limited. It is unlikely to be controversial to assume that materials and intermediate inputs

vary proportionally to output. Van Biesebroeck (2003) finds for U.S. assembly plants that

6Foreign producers were gradually added to the sample as they agreed to participate and the range
of information collected has also expanded over time.

7Prior to 1998 a slightly different productivity measure was calculated: workers-per-vehicle (wpv).
This measure ignored daily fluctuations in production and converted employment to full-time equivalent
workers. Because both measures are available in 1998 and 1999, all wpv statistics can be converted to
hpv using a conversion factor that varies by owner (firm) and country of location (of the plant). In all
regressions we include a pre-1998 dummy. In the robustness checks we perform the analysis excluding all
pre-1998 observations and find virtually identical results.
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the sales-material ratio varies very little over time or between plants.

We want to argue that investments in fixed capital are also relatively similar across

plants. Infrastructure investments are usually provided by local or state jurisdictions

in order to ‘level the playing field’ in the bidding war to attract FDI, see Appel Molot

(2005). Using plant-level Census data (which contains capital stock information), Van

Biesebroeck (2003) estimates different capital coefficients for ‘lean’ or ‘mass’ technology

plants. The estimated capital elasticities are very similar, 0.136 and 0.106, and not

significantly different even at the 10% level, even though differences in the operation of

the plants or productivity growth were large. In each regression, we include country

dummies. Only if the capital-labor substitution varies by plant within the same country

will the labor productivity measure be misleading. Wages are especially low in Mexico

and substitution of labor for capital is most likely to occur there. In a robustness check we

omit the Mexican observations and find very similar coefficient estimates of all variables

of interest. Another robustness check includes plant-fixed effects to absorb capital stock

differences between plants and results are again extremely similar. Finally, to capture

technological innovations embodied in the capital stock we also experimented with the

inclusion of information on the year the assembly plant was last retooled, but that variable

was always insignificant.8

For comparability reasons, the Harbour Report presents the hpv comparisons by seg-

ment. We will include segment dummies in each regression to account for the complexity

of the vehicle produced, e.g. a plant assembling luxury cars has on average a higher hpv

than a plant assembling compact cars.

While the physical productivity comparison embodied in the hpv statistics is of obvious

interest to identify complementarities in production, it would be useful to have an idea

of the wider importance of this performance measure. Unfortunately, no other plant-level

information is publicly available. One possibility would be to adjust hpv for the value of

the vehicle produced. Unfortunately, a crucial aspect of the analysis is that models are sold

in different configurations or styles, discussed below. We do not observe the breakdown

of production by variety, while prices vary a lot (up to 100%). At the firm-level, the

Harbour Report calculates each year a comparison of North American pre-tax profit per

vehicle. In most years the ranking of firms is identical to the hpv ranking, as proof of

its importance.9 At the same time, the relationship between hpv and financial success

8Retooling is defined as a capacity change of more than 10% or the introduction of a vehicle from a
different segment. The short duration of the panel makes this variable censored for almost 50% of plants.

9For example, in 2003 the only discrepancy is that Toyota is estimated to require 2% less hpv than
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makes it also more likely that unobservables influence both productivity and successful

adjustments to new activities.

The most crucial explanatory variables in the analysis are the number of varieties

produced, flexibility in production, and the extent of outsourcing. Our preferred measure

of model proliferation is the sum of the number of body styles and chassis configurations

produced in the plant; for flexibility it is the number of platforms produced per production

line;10 and for outsourcing it is the average of all task-specific outsourcing dummies.

An instrument for the number of varieties produced in each plant is the average number

of varieties produced in plants that produce vehicles for the same market segment and are

owned by competing firms. Instruments for the adoption of flexible technology are the size

of the plant in square footage (area) and whether shift relief is ‘mass’ or ‘tag’.11 Finally,

the extent of outsourcing is instrumented by the distance from each plant to the midpoint

of the automotive industry in North America and to the industry’s midpoint within the

plant’s country. Distances are calculated from the plants’ longitudes and latitudes and

change slightly over time as the centers shift.12 In the next Section, we discuss each of

the three activities in detail, illustrate the changes over time, and provide details on the

variable construction and the intuition for the instruments.

Control variables included in all regressions include location dummies (U.S., Canada,

or Mexico); ownership dummies (U.S. or foreign-owned)13; a year trend and a dummy for

the pre-1998 period to control for the change in measurement of the dependent variable;

segment dummies ((sub-)compact cars, mid/full-size cars, sport/speciality cars, luxury

cars, SUVs, pickup trucks, minivans, and full-size vans)14; and scale, measured by the

logarithm of production capacity, calculated using a constant line rate and the regular

shift pattern followed during the year. Summary statistics for all variables are in Table 1.

⇒ [Table 1 approximately here] ⇐

Honda, on average, while it makes lower profits per vehicle (compare tables on pages 30 and 150).
10A production line is defined as the average number of body and assembly lines per plant.
11Under mass relief, all workers in the plant change shifts at the same time, while the assembly line is

stopped for 10–15 minutes. Under tag relief, individual workers relieve the worker on the previous shift
they are replacing.

12For U.S. plants the exact location is taken from the U.S. Environment Protection Agency’s web site
http://www.epa.gov/air/opar/auto/. For Canadian and Mexican plants, we use the center of the town
where plants are located.

13Joint venture plants are treated as foreign-owned.
14In the rare cases where vehicles from more than one segment are produced, the dummies are weighted

by production shares.
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3 Three Trends in Automobile Production

3.1 Model Proliferation

The total number of car and light truck models for sale in North America increased from

185 in 1974 to 320 in 2004 (statistics in Table 2). In the U.S. the increase was even more

pronounced, from 133 to 282 models, a more than doubling of the number of products.

The median consumer, who replaces his vehicle every five years, had 25 models added to

his choice set with every purchase. Such an evolution is typical for a mature industry; to

retain market power firms differentiate their products.

⇒ [Table 2 approximately here] ⇐

Three more facts stand out from Table 2. First, the number of car models leveled

off around 1994, while light truck models are being added at an accelerated pace. This

is consistent with the relative maturity of the two segments; the use of light trucks as

passenger vehicles is relatively recent. The latest wave of ‘crossover’ vehicles, bridging the

gap between the two segments, keeps adding to the proliferation of models. Second, the

number of models is not the entire story. The average number of variations per model—

combinations of different engines, transmissions, drivetrains, and body styles—also in-

creased over time, especially for light trucks. It adds to the manufacturing complexity.

In the analysis we will use chassis configurations and body styles as measures of variety.

Simply counting ‘names’ (models) risks double-counting vehicles that are merely rebadged

clones and/or omitting different vehicles that are marketed under the same model-name.

Third, the number of models produced in North America has kept pace with the

number of models offered for sale, while the number of assembly plants did not increase.

As a result, the average number of models produced in each plant necessarily increased.15

Total sales increased over time, but not to the same extent as the increase in models.

The average production run for models produced in North America decreased noticeably,

illustrated by the black line in Figure 1. This trend is most pronounced for cars (grey

solid line), for which the average production run almost halved from an average of 138,000

units in 1974–76 to 75,000 by the end of the period (2002–04). The dashed line illustrates

the declining sales per model (for the U.S.), which includes imported vehicles.

15The fraction of models produced domestically even increased slightly from 49% to 52%. Note that
the definition of an assembly plant differs somewhat in the aggregate statistics, from Ward’s Automotive
Yearbook. In the plant-level sample used in the analysis, from The Harbour Report, some plants report
their car and light truck operations separately, even though they share the same production site.
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⇒ [Figure 1 approximately here] ⇐

Furthermore, looking at averages might be deceiving. Even though 174 cars and 90

light trucks were sold in the United States in 2002, the combined market shares of the

ten most popular vehicles were 32% and 42%, respectively. Total sales of 8.1 million

cars over 174 different models averages 46,600 units per model, but the ten largest sellers

average 259,000 units, while the remaining 164 models sell on average only 33,600 apiece.

Manufacturers need to produce several of these models side-by-side in the same plant to

reach efficient scale, which is traditionally put at approximately 200,000 vehicles per year.

The extent of model proliferation observed in the sample roughly matches the aggre-

gate evolution. Simply summing the models produced in all plants in the sample, the

first two columns of Table 3, shows only a modest increase from 172 models in 1994 to

175 in 2004. However, a large number of models (43) were initially produced in more

than one plant, a practice that declined over time. Omitting double-counted models, last

two columns of Table 3, the sample statistics approach the aggregates in Table 2. The

remaining differences reflect that a few plants are missing from our sample.

Three other measures of product variety are also listed in Table 3: platforms, body

styles, and chassis configurations. While firms define a platform in slightly different ways,

it can be understood as “a set of common product and manufacturing standards related

to a vehicle type. Ward’s AutoWorld (2001)”16 The definition of body styles should be

self-explanatory and chassis configurations indicate variations in drivetrain, i.e. engine,

transmission, and which wheels are driven. These measures are arguably more reliable

indicators of variety than models as they correspond directly to physical similarities or

differences between vehicles.

⇒ [Table 3 approximately here] ⇐

The number of platforms that vehicles are based on increased much less than any

of the other measures of variety. This reflects a deliberate strategy of manufacturers to

base several models on a single platform. Platform sharing makes it easier to produce

different models on the same assembly line, discussed in detail in the next Section. In

1994, the simple sum of body styles equaled the number of models. On average, each

16Firms often use different terminology. After its failed platform strategy in the 1980s General Motors
now prefers the term architecture, while Volkswagen stresses the sharing of modules and systems, as
opposed to common dimensions of the chassis or the frame.
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model was produced in a single body style in each assembly plant; omitting duplication,

each model was available in 1.10 styles. Variety in body styles was achieved by producing

models in more than one plant, the case for 31% of models. By 2004, the ratio of body

styles to models had increased to 1.29 (by plant) and 1.27 overall. The pattern for chassis

configurations is similar, but less pronounced; total configurations increased by 20% from

1994 to 2004 versus a 44% growth rate for body styles.

Finally, Figure 2 illustrates the evolution of the average number of body styles and

chassis configurations produced in each plant, normalized by the 1994 value. We do not

discard duplicates because we want to capture variety at the plant-level (as opposed to

the industry-level). Both averages clearly increased, again more for styles (38%) than

for configurations (22%). The increase is broad-based, not driven by outliers. Only 10%

(24%) of plants produce less body styles (chassis configurations) in 2004 than in 1994.

This understates the increase as surviving plants already produced more variety in 1994.

The black line plots the sum of configurations and styles, which is our preferred measure

of variety. The average for the sample increased by 30% over the sample period; the

average increase for survivors (plants observed all eleven years) is 35%.

⇒ [Figure 2 approximately here] ⇐

A complication for our analysis is that firms could decide to increase variety primarily

in their best-performing plants, where they might expect a lower productivity penalty.

As new models are introduced to achieve product differentiation, decisions will depend on

choices of competing firms. We construct an instrument for plant-level variety exploiting

these competitive interactions and the fact that different models produced in the same

plant tend to be very similar.17 If product introductions are endogenous, the average

variety of competing firms in each market segment will enter a firm’s decision of how

much variety to produce itself. At the same time, other firms’ variety will be independent

of the unobservable we are concerned about, a plant-specific productivity term. For each

plant-year we construct the average number of varieties produced by plants of other firms,

limited to models that compete in the same segment, as instrument for its own variety.18

The instrumenting strategy is similar to the use of characteristics of competitors’ vehicles

as an instrument for price in differentiated goods demand estimation, see for example

Berry et al. (1995).

17We discuss the practice of basing different models on the same platform in the next Section.
18For plants that produce models in different segments, we average the competitors’ variety over the

segments.
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3.2 Flexible Technology

The model proliferation discussed so far has lead all firms to produce several models in

the same assembly plant. The oldest trick in the book, introduced by Alfred P. Sloan at

General Motors in the 1920s, is to sell mechanically similar cars under different name-

plates. Models differed mainly in appearance, standard features, and trim level and it

was straightforward to develop and assemble them together. All firms have mastered such

a ‘platform stretching’ strategy, even though they do not all use it to the same extent.

It allowed firms, as recent as the 1970s, to combine production of high volume vehicles

that share a platform in branch assembly plants across the country, see Rubenstein (1992)

for a history. These trends are consistent with the patterns in Table 3: the number of

platforms increased less than the number of models.

The more recent evolution of this practice is depicted in Figure 3A. We plot the cu-

bic time trend on the average number of models per platform across all North American

assembly plants for each the Big Three U.S. firms (including DaimlerChrysler), the com-

bined Japanese firms (Toyota, Nissan, and Honda), and the group of joint venture plants.19

Only the Japanese firms have noticeably stretched their platforms further over the sample

period. To some extent it is merely driven by the addition of models that always shared

the same global platform to their North American plants as they expanded capacity. The

joint venture plants, on the other hand, have sharply reduced platform stretching as ex-

perience taught them that rebadging Japanese vehicles under a U.S. brand was not very

profitable.20 For the U.S. firms there is no real trend although the variation across firms

and plants is large, which we will be able to exploit in the analysis.

The pressure to differentiate vehicles further, reflected by the increasing numbers of

body styles and chassis configurations in Table 3, reduced the similarity between models

derived from the same platform and increased manufacturing complexity. General Motors

in North America and Volkswagen in Europe also ran into financial problems as consumers

switched towards their cheaper brands (Chevrolet or Seat), given that those vehicles were

often mechanically similar to models offered under premium brands (Buick or Audi). In

order to successfully market vehicles derived from the same platform, the models had to

19NUMMI is a joint venture between GM and Toyota; CAMI between GM and Suzuki; AutoAlliance
between Ford and Mazda; Diamond Star between Chrysler and Mitsubishi (sold to Mitsubishi when
Chrysler faced financial difficulties); and Subaru-Isuzu is an all-Japanese joint venture.

20The Geo Metro, Geo Prizm, Ford Probe, nor Eagle Talon could come close to the sales success of
their Japanese siblings, the Suzuki Swift, Toyota Corolla, Mazda MX6, and Mitsubishi Eclipse, to name
only a few examples.
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be sufficiently differentiated. Moreover, the emergence of new segments and the growing

importance of light trucks reduced the possibility to base models on the same platform.

⇒ [Figure 3 approximately here] ⇐

When a plant is forced to produce radically different models, it can do so by adding

assembly lines to a plant. Approximately one out of six observations in the sample has

more than one assembly line, more than one in five in 1997 and 1998. Alternatively,

manufacturers started to assemble models derived from different platforms on the same

production line. This is how we will define flexible technology.21 Figure 3B plots the trend

in the number of platforms per line for the same five (groups of) firms. In three cases there

is a strong upward trend in flexibility. GM and especially the Japanese firms and joint

ventures produced more platforms per line in 2004 than in 1994. In sharp contrast with

the tendency for platform stretching in Figure 3A, line sharing shows divergent trends for

different firms. Both Ford and DaimlerChrysler had hardly adopted the practice in 2004.

The fraction of plants producing more than one platform per line ranges from a low of

4% in 1996 to a high of 24% in 2004.

It should be stressed that the end goal is to produce a greater variety of vehicles per

assembly line in an efficient way and flexible technology is merely a means to that end.

Being able to produce models from different platform on the same line is certainly an

advantage, but the ability to stretch the platform, e.g. deriving radically different vehicles

from it, would preempt the need for flexibility, defined this way. The opposite evolution

of the joint ventures in Figures 3A and 3B is consistent with this. The two measures

of flexibility tend to be negatively correlated for all plants. Only the Japanese firms

are exploiting both dimensions of flexibility (in different plants). In the analysis we use

platforms per line as measure of flexibility, but we control for models per platform.

Flexibility also changes over time. For example, Honda assembled the Civic (compact

car) and Acura CL (luxury car) on the same line in its East Liberty, OH plant (1996–

1999), but only until a new line was installed at its Alliston, ON plant. Currently, each

of its four North American plants is able to produce nearly every model in its lineup

with only minor tooling changes, even though the company rarely uses this flexibility,

Automotive News (2002). This underscores a crucial aspect of our application. Even if

a plant has the capability for flexible production, it will not necessarily exploit it every

21Widely advertised examples of models derived from different platforms that are assembled on the
same line are the Honda Civic and Accord in East Liberty, OH, the Chrysler Caravan minivan and
Pacifica SUV in Windsor, Canada and the BMW Z4 roadster and X5 SUV in Spartanburg, SC.
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year and it might not show up in our data set. If complementarities are inferred from the

clustering of adoption decisions, one has to somehow distinguish between acquiring and

exploiting the capability. If we identify complementarities directly from the joint effects

on productivity, this distinction is not a problem.

Instruments for flexibility are the inside area of the plant and the way shift relief is

organized. Both are assumed to be pre-determined. Most plants are several decades old

and their size was determined long before the capital equipment was installed or work

practices determined. Size is important as only larger plants have the option to duplicate

assembly lines, an alternative approach to producing more variety. The method of shift

relief, tag or mass, is determined at the plant-level through negotiations with the labor

union. Controlling for ownership, shift relief is unlikely to be correlated with unobserved

plant-level productivity, but as it reflects how labor and management have chosen to

interact they are likely to influence the adoption of flexibility. The production complexity

under flexible technology requires more autonomy and problem solving skills of employees.

The presence of tag relief, whereby individual workers relieve each other, signals the level

of trust between workers and supervisors.

3.3 In/Outsourcing

Another aspect of firm organization that has received a lot of attention recently is the

make-or-buy decision. Outsourcing, especially to low-cost overseas destinations, is the

most recent buzz word in the business press. A major difficulty to study this phenomenon

is a lack of data, as outsourcing decisions are considered highly confidential. One exception

is Novak and Stern (2003) who use detailed information on nineteen automobile model-

years, but cannot reveal the identities of the firms involved.

Official statistics, aggregated up from plant-level information, can be used to track one

measure of outsourcing: the share of materials (the sum of raw materials, intermediate

inputs, and purchased business services) in final sales. The most detailed industry clas-

sification with comparable information for the three North American countries is “Motor

Vehicles” (SIC 371). The ratio trended up until the late 1980s and declined subsequently,

see Figure 4. At the very end of the period the materials-sales ratio increased again, but

in 2001 the ratio in Canada and the U.S. was the same as in 1972. For the sub-sector

“Motor Vehicles and Passenger Car Bodies” (SIC 3711), data from the U.S. Bureau of

the Census reveals the same pattern of increase and decline, but changes are magnified

(dotted black line).

13



⇒ [Figure 4 approximately here] ⇐

The absence of a clear time trend is not entirely surprising. The range of materials and

components each assembly plant receives from other plants is relatively similar. Much of

the changes in sourcing are likely to happen at the firm instead of the plant-level. The

measure in Figure 4 does not distinguish between outsourcing to other plants owned by

the same firm or to independent suppliers. Aggregate industry statistics for the U.S.

do indicate a growing importance of the “Motor Vehicle Parts & Accessories”(SIC 3714)

sub-sector, with sales growth of 9% per year over the last 15 years, compared to only 3%

growth for SIC 3711. Unfortunately, no information is available at the firm-level.

The plant-level data from Harbour contains information on another aspect of the out-

sourcing decision: plants report which of 29 tasks they perform on-site. While distinct

from the more commonly studied make-or-buy decision of components, this provides infor-

mation on a dimension where assembly plants are likely to vary more.22 At one extreme,

the Oshawa GM plant performed none of the tasks on the list in-house in 1994, while the

Georgetown Toyota plant performed all but two tasks on-site prior to 1996. The average

fraction of tasks outsourced is 64% and the standard deviation is 17%. The index in

Table 1 refers to insourcing, defined as one minus the fraction of outsourced activities, to

facilitate the interpretation of coefficient estimates later on.

Over time, outsourcing is relatively constant, see the first column in Table 4. In

1994, 36% of all activities were performed in-house and in 2004 the fraction was 35.6%,

after a temporary increase to a maximum of 38.5% in 1998. The pattern is virtually

identical for the entire sample or the balanced sample of plants that survived from 1994

to 2004, which excludes several foreign transplants that enter after 1994. Compositional

effects—transplants tend to perform more activities in-house initially before they establish

relationships with local suppliers—seem to be minor. Similarly as for flexibility, the

average hides important cross-sectional variation. For example, Van Biesebroeck (2006)

shows that there are large differences by ownership.

The set of tasks can be split into a first group of administrative and manufacturing

tasks which are usually outsourced and a group of assembly tasks that are more likely to

be performed in-house. Harbour adjusts the hpv statistics for tasks in the first (but not

the second) group that are insourced. Statistics in the second and third column indicate

that even though the average level differs markedly for the two groups, there is no real

22As with the aggregate statistics, we cannot distinguish between outsourcing to independent suppliers
or to other divisions of the same firm.
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time trend for either.

Using the detailed responses for individual tasks, we can look at changes in outsourcing

more directly. In columns 5 to 7 we indicate how many plants brought one or more tasks

in-house, newly outsourced a task, or did not change any of their outsourcing choices.

While no change is the dominant choice in all years, in seven of the ten years plants that

increased insourcing outnumber plants that increased outsourcing.23 In columns 8 to 10

we sum all the changes, in or out, over plants. For example, in 1995 sixteen plants newly

insourced a total of twenty three tasks, while thirteen plants newly outsourced a total of

fifteen tasks. The net effect of tasks performed in-house was an increase by eight. In most

years the net change is positive and the cumulative change over the entire period and all

plants is for an average of 3.5 tasks per year to be moved in-house. Outsourcing decisions

were changed more often in the earlier period. In 1997, eighty changes are made and

insourcing is twice as common as outsourcing. In 1998, one hundred changes are made

and insourcing is 50% more likely.

⇒ [Table 4 approximately here] ⇐

Of the three activities considered, simultaneity between unobserved productivity and

outsourcing is most likely. Firms are expected to perform less activities in-house if they

know a plant is particularly unproductive. Instruments for outsourcing are the distances

from each plant to the center of the industry, calculated by year both for the entire North

American industry and by country.24 Plants located farther from the center will find it

harder or simply more costly to find suppliers. After controlling for the country (which

will also soak up fixed border effects) and ownership, there is no reason to believe distance

is correlated with unobserved productivity. The location of older plants in the sample is

predetermined relative to the current outsourcing decision—several sites predate World

War II—while the location of newer plants is generally considered to be mostly determined

by shipping costs for the final vehicle and labor market conditions.25 While both distances

are negatively related to outsourcing, the distance to the country-specific center proved

to be the strongest predictor.

23The first two categories are not exclusive.
24The center for North America is (on average) 62 miles south-west of the Lousville, KY Ford plant.

The U.S. center is approximately 43 miles south-east of the Subaru-Isuzu plant in Lafayette, IN. From
1994 to 2000, it moved almost 30 miles south. The Canadian center is closest to the Cambridge Toyota
plant, but distances never go beyond 340 miles; the Mexican center is closest to Silao, Guanojuato. An
attempt was made to control for travel-time, but given that most distances are large and plants are always
adjacent to highways, differences were minor and coefficient estimates were identical.

25Shipping finished vehicles is considerably more expensive than components, see Rubenstein (1992).
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4 Model

Complementarities

Complementarities are defined as the joint impact of activities on some return function,

productivity in our case. To fix ideas consider the following simple model. Total labor

hours required to assemble a vehicle can be divided into the direct labor input on each

vehicle and externalities on other types of vehicles produced in the same plant, which can

be positive or negative:

Hours =
N∑

i=1

[
a Qi +

N∑
j 6=i

b Qj

]
, (1)

i and j index the N varieties assembled in the same plant. The marginal labor requirement

for each extra vehicle is a hours and additionally it increases (or decreases) the labor

requirements on all vehicles of a different type by b.

Both the direct effect and the spillovers depend on other characteristics of the plant:

a = a(Flexibility, Insourcing, Scale, Other controls)

b = b(Flexibility, Insourcing, Other?).

Assuming that each of these variables is measured continuously,26 we expect:

∂a

∂Flexibility
,

∂a

∂Insourcing
≥ 0 ,

∂a

∂Scale
≤ 0 , and (2)

∂b

∂Flexibility
,

∂b

∂Insourcing
≤ 0. (3)

Flexibility makes the entire production process more complicated and will, ceteris paribus,

lead to higher direct labor requirements. The benefit will be to lower labor requirements

of other varieties produced in the same plant—captured by the negative derivative of

the b function. Doing more tasks in-house will straightforwardly increase labor require-

ments, but it can generate useful expertise which reduces the spillovers on other types of

vehicles, possibly even reducing their labor requirements.27 Through the a function, we

26It would be straightforward to extend the model to allow for discrete adoption of activities. This
would require the necessary assumptions for the productivity function to be supermodular in the different
activities, as in Athey and Stern (2003) and Miravete and Perńıas (2005). Given that the model only
serves an illustrative purpose, it is limited to the continuous case and we can define complementarity
simply in terms of cross-partial derivatives, as in Arora and Gambardella (1990).

27One mechanism would be fixed costs to outsourcing relationships that are task and vehicle-type
specific (e.g. managing deliveries), while the fixed costs to perform an in-house task could be not or to a
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control explicitly for scale economies (assumed to be positive) and other effects. Other

factors, maybe scale, could affect spillovers, but we do not have a strong prior on the

direction of those effects. Finally, producing different varieties in the same plant gener-

ates on average positive spillovers, i.e. it increases labor requirements for other vehicles:

b(Flexibility, Insourcing) ≥ 0.28

Rewriting equation (1) as

Hours

Q
= (a − b) + b N,

using ‘Variety’ for N , and substituting linear specifications for the a and b functions,29

we obtain

hpv = αV Variety + αF Flexibility + αI Insourcing (4)

+
[
βV F Flexibility + βV I Insourcing

]
× Variety

+ αFI Flexibility× Insourcing + αS Scale + Other controls.

The dependent variable, hours per vehicle, is the inverse of labor productivity. The α

coefficients capture direct effects. Flexible production, insourcing of tasks, and producing

a large variety are all expected to be associated with productivity penalties, i.e. have a

positive impact on hpv (αV , αF , αI ≥ 0). Scale economies in automobile production are

expected to be positive (αS ≤ 0). The β coefficients capture the reduction in produc-

tivity penalty associated with variety if flexibility or insourcing is increased. The main

prediction we want to test is that both activities generate negative effects (βV F , βV I ≤ 0).

Finally, both activities could be complementary themselves, if the cross-partial derivative

is negative (αFI ≤ 0).

Estimation

We now describe how complementarities can be identified in the presence of unobservables.

Consider the following generalization of the return function in equation (4)30

1

Productivity
=

∑
j

[
αj +

∑
k 6=j

1
2
βjk Yk + ξj

]
× Yj + Controls + ε . (5)

lesser extent type specific (e.g. training workers).
28If adoption of activities is discrete, we assume that b(0, 0) ≥ 0.
29We assume that the direct effects dominate spillovers, such that sign(∂a/∂X) = sign(∂(a− b)/∂X).
30Eq.(5) is similar to the firm’s payoff function on p. 368 in Arora and Gambardella (1990); the objective

function on p. 16 in Novak and Stern (2003); or the profit function (7) in Miravete and Perńıas (2005).
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Each activity j ∈ {V, F, I} has a direct effect on productivity (αj), but the total effect

will differ if other activities k are adopted jointly (βjk). For example, producing a larger

variety is expected to reduce productivity (αV > 0), but this reduction might be mitigated

by adopting complementary activities like flexible technology (βV F < 0) or insourcing of

tasks (βV I < 0). Part of the return to each activity is assumed to be unobservable (ξj) and

these returns could be correlated across activities. A set of exogenous control variables

and an i.i.d. error term complete the estimation equation.

We are primarily interested in identifying the complementary effect of different activ-

ities, the β coefficients. It is by now widely understood that estimating equation (5) by

least squares will produce biased estimates if firms make endogenous adoption decisions,

see Arora (1996) or Athey and Stern (2003). If the unobservable return to each activity

is correlated, for example because they all depend on an omitted variable like managerial

ability, the activities will look like complements even if they do not influence each other’s

return. This will happen when one studies the adoption decisions directly or looks at the

joint impact on productivity.

Assuming all activities are continuous, a firm will choose the level of Yj by equating the

marginal cost associated with Yj—part of which is the impact on productivity (multiplied

by λ to make units comparable)—to the marginal benefit:

λ
∂Productivity−1

∂Yj

+ MC(Yj) = MB(Yj).

For simplicity, we assume marginal costs and benefits are linear in Yj and Xj, an exogenous

shifter to the cost or benefit of activity j. This generates the following first order condition

for activity j

αj +
∑
k 6=j

βjk Yk + ξj = γ0
j + γy

j Y
∗
j + γx

j Xj + ηj. (6)

In matrix form, the system of first order conditions for all activities is

B Y ∗ = Γ0 + ΓX + ξ + η,

where Y = [YV , YF , YI ]
′, and similarly for all other vectors. The Γ0 vector groups the

constant terms and Γ is a diagonal matrix. Solving for the endogenous activities gives

Y ∗ = Γ0′
+ B−1ΓX + B−1ξ + η′. (7)
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The B matrix has −γy
j on its diagonals and βij (i 6= j) off-diagonal elements. Unless

complementarities are entirely absent, the optimal level of each of the activities will depend

on each of the three unobservable returns in the ξ vector.

Two straightforward estimation procedures are possible. We can estimate equation

(6) for activity j using the excluded benefit or cost shifters for the other activities k as

instruments for Yk. Novak and Stern (2003) follow this approach to estimate comple-

mentary effects of outsourcing decisions on different components of a car. Note that it is

crucial to use activity-specific instruments, as all exogenous variables that influence the

choice of activity j are included in the equation.

Alternatively, we can estimate the return function (5) directly, instrumenting the

endogenous Y variables with the exogenous cost and benefit shifters. Given that the co-

efficients enter linearly, a two-step approach works: first estimate the system of reduced

form equations (7) and replace the endogenous variables in (5) with their predicted val-

ues (Ŷ ). Alternatively, we can estimate the productivity equation using instrumental

variables, using interactions of the exogenous variables as additional instruments. The

advantage of this latter approach is that we can use a GMM estimator to gain efficiency

and test for overidentifying restrictions.

The empirical strategy of estimating the return function instead of the first order

conditions has a number of advantages. First, it is robust to spurious correlation in

adoption costs. Second and particularly important for our application, the level of some

activities is harder to change than for other. For example, tasks brought in-house when

variety was high, can take some time to outsource when variety falls. While the first

order conditions for some activities might sometimes be slack, this should not change the

productivity effects. Third, the only way to identify the direct effects, the α coefficients,

is from the return function. While these are often of lesser interest, in our application

complementarities are expected to be of an unusual form: direct effects of activities on

productivity are negative, but interaction effects positive. To find evidence for this, we

have to estimate the productivity equation directly.

Athey and Stern (2003) investigate explicitly under what assumptions activity-specific

instruments will be able to identify complementarities. For example, one has to rule out

unobservables that affect the joint return of adoption of different activities—this would

be βjk = β′
jk + ξjk in equation (5). To some extent this is merely definitional, all joint

effects of activities could be called complementarities. The rigorous framework in Athey

and Stern (2003) distinguishes between joint returns that result from unobservables and

true complementarities that accrue even in the case of an exogenous shift in adoption.
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5 Results

Productivity regressions

The dependent variable in all regressions is hours per vehicle (hpv), the inverse of labor

productivity. The crucial stylized fact—a productivity penalty for producing variety—is

documented in Table 5 using a number of different measures for variety: platforms, models,

body styles, chassis configurations and the sum and product of styles and configurations.

All coefficient estimates are positive and significantly different from zero, indicating lower

productivity if higher variety is produced. As expected, producing more platforms is

especially costly. The relative magnitudes seem reasonable and are similar to the extent

to which varieties share the same production line. The preferred measure, ‘styles +

configurations’, leads to only a moderate productivity penalty: 21 minutes per vehicle for

each extra unit of variety.

In each of the subsequent regressions we use the same controls as in Table 5. Pro-

ductivity growth is positive. The negative sign on the pre-1998 dummy indicates that

productivity growth is slowing down. The dummy is included primarily to capture the

change in the dependent variable, but it is rarely significant. The negative coefficient on

capacity indicates increasing returns to scale. Productivity is slightly higher in Canada

than in the U.S. (the excluded category), requiring on average 1.5 fewer hours per vehicle,

while the lower productivity in Mexico is more pronounced. Foreign-owned plants, which

includes joint ventures, are more productive. Once we instrument for activities, see be-

low, the point estimate on the foreign dummy is estimated very imprecisely.31 Models in

different market segment differ substantially in their labor input requirement, with luxury

cars and (mini)vans being most labor intensive (the excluded category is compact cars).

⇒ [Table 5 approximately here] ⇐

The negative coefficient estimates on the time trend indicates substantial productivity

growth, the time to assemble a vehicle falls by 15 to 45 minutes per year. In addition to

the linear effects of variety and time, each regression also contains the interaction of the

two variables. The productivity penalty associated with variety is falling for each of the

measures. Possibly this trend is explained by the adoption of activities that make it more

economical to produce variety, such as flexible technology and insourcing of tasks so they

can be shared between models. This is the focus in the remainder of the analysis.

31Once Mexican plants are dropped or activities are measured discretely, the coefficient becomes sig-
nificant again and is indistinguishable from the OLS estimate.
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The first column in Table 6 contains the least squares estimate of equation (4). For

this and all following regressions, the coefficient estimates on the control variables are re-

ported in Table A.1 in the Appendix. All coefficients have the expected sign. The linear

coefficients on variety, flexibility, and insourcing are estimated positively and coefficients

on all interactions are negative. Increasing the use of flexible technology reduces produc-

tivity directly, the linear “Flexibility” term is positive, but makes it less costly to add

variety.32 Similarly, bringing activities in-house requires more hours to produce a vehicle,

ceteris paribus, but the increase in hours for added variety is reduced (although the point

estimate is not significant). The two activities reinforce each other. Increasing flexibility

lowers the productivity cost of insourcing, and vice versa. The increased complexity when

different platforms are assembled on the same line seems to reduce the number of hours

that can be saved by outsourcing.

As discussed before, one cannot take these results as evidence for complementarities in

production as they can merely reflect correlated unobservables in the adoption decisions.

In the other columns of Table 6 we explore how sensitive the results are to alternative

exogeneity assumptions. The implicit assumption in column (1) is that all activities are

exogenous. In columns (2) to (4), we instrument for flexibility, for outsourcing, and for

both. In column (5) all activities, including variety, are treated as endogenous. Instru-

ments were discussed in detail in the respective Sections (3.1–3.3): for flexibility we use

plant size and type of shift relief, for insourcing distance to the industry center in North

America and within the country, and for variety we use variety in competing plants.

Tests for validity of the instruments are reported below the coefficients. The marginal

explanatory power of the instruments in the different first stage regressions varies some-

what across variables and specifications, but the p-value is never above 5%.33 For each

endogenous variable (or product of endogenous variables) we can reject that the instru-

ments have no explanatory power. Overidentification restrictions can never be rejected

either, which to some extent merely reflects the imprecision of some coefficient estimates.

When instrumenting, the absolute values of the point estimates and the standard

errors tend to increase, but all signs are unchanged. The interactions make it impossible

to predict the bias one would expect using least squares if adoption is endogenous. We

take heart that in every single equation the signs of all coefficients correspond to our

32A dummy to control for the practice of basing several models (more than two) on a platform is
included (reported in Table A.1.), as platform stretching is an alternative to flexibility as we defined it.

33To improve precision the coefficients are estimated by GMM and not by the two-step approach that
underlies the test.
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expectations and that the interactions between variety and both activities are significantly

negative in columns (4) and (5) where we instrument for both flexibility and insourcing.

At the bottom of Table 6 we report the results of Hausman specification tests for

each model versus the models in columns (4) and (5). The test statistic in column (4)

suggests that one cannot reject that variety is exogenous, as the p-value is greater than

0.99. Comparing the two columns in Table 6 with those in Table A.1 suggests that changes

tend to be much smaller for the control variables. Limiting the test to the six variables

of interest, the three activities and their interactions, the test statistic is only slightly

reduced and the p-value is still 0.92. Hence, we will treat variety as exogenous in the

subsequent regressions, consistent with the general view within the industry, as discussed

in the introduction. Similar specification tests, against columns (4) or (5), for endogeneity

of flexibility or insourcing or both, find stronger but no overwhelming evidence that these

activities are endogenous. Erring on the conservative side, we will continue to instrument

for these activities.

Comparing the preferred results in column (4) with the OLS estimates, we find that

the direct negative effect of both activities on productivity has increased. To the ex-

tent that activities are chosen endogenously, firms are successfully implementing them in

plants that do not suffer as large a (direct) productivity penalty from the activities. The

same mechanism is consistent with a reduction in the absolute value of the coefficient on

the variety*flexibility interaction when we instrument for insourcing (or additionally for

variety in column (5)). Only exploiting the exogenous variation in the insourcing decision,

as captured by distance, lowers the estimated complementarity between insourcing and

variety.

The interactions with flexibility, on the other hand, become larger and highly signif-

icant when we instrument. Results now suggest that as flexibility is introduced because

of space constraints and not because the plant is expected to master it well, the direct

productivity penalty is greater (as expected), but the complementary effect to reduce

the productivity penalty for variety is enhanced (contrary to expectation). If variety is

exogenous but positively correlated with flexibility, the underestimate of the direct effect

of flexibility in (1) could lead to an upward bias for the interaction between flexibility

and variety. If variety is chosen endogenously, the apparent complementarity between

variety and flexibility in (4) merely picks up the decision to add variety to a plant that

is expected to handle it well. The reduction in the interaction coefficient from (4) to (5)

would be consistent with this.

22



⇒ [Table 6 approximately here] ⇐

So far we have treated all observations as independent, without exploiting the panel

structure of the data set. Given that unobserved heterogeneity is a concern when trying

to identify complementarities, we would ideally estimate the model in first differences.

The problem is that the instruments hardly vary over time. Taking first differences leads

to extremely imprecise coefficient estimates for most variables. Moreover, the theoretical

model in Jovanovic and Stolyarov (2000) illustrates that joint adoption is not a require-

ment for complementarities. Estimating the model in first differences would identify

complementarities solely from the joint effects at the time of adoption. If one wanted to

adopt such an identification strategy, it would be more straightforward to estimate the

first order conditions for optimal activity choice directly, see below.

As an alternative, we include plant-fixed effects in the model and estimate as before.

This way we remove the time-invariant component of productivity from the analysis. We

also estimate the model with firm-fixed effects, as capabilities that enter the adoption

decisions are likely to be shared between plants owned by the same firm. While there are

92 plants in the sample, they are owned by only 11 firms, conserving degrees of freedom.

Finally, we also estimate the model using random effects, allowing the error terms to be

correlated across plants.

Surprisingly, not a single coefficient estimate changes sign. While estimation precision

is reduced, the variety*insourcing interaction remains significant at the 5% or 10% level

in each specification and the variety*flexibility interaction is only insignificantly different

from zero when random effects are included. The direct coefficient estimates are also

similar, which is especially surprisingly in column (8), where they are entirely identified

from the variation over time. The estimated productivity penalty for variety is 5.5 with

plant-fixed effects, only slightly above the penalty of 4.9 estimated earlier. This modest

increase is consistent with the assumption that plant-level variety is mostly exogenous.

Otherwise, the change in the coefficient estimate would likely be larger using cross-time

instead of cross-plant variation. In contrast, identifying insourcing mostly from variation

over time increases the point estimate considerably.

We include the tests for validity of the instruments at the bottom. While we had

expected the instruments not to have much explanatory power in the first stage, especially

when plant-fixed effects are included, this does not turn out to be the case. Every single

endogenous variable (or interaction of endogenous variables) is well predicted by the

instruments.
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The results in Table 7 suggest that it is highly unlikely that the complementarities

identified earlier are just picking up unobserved heterogeneity. At the same time, the

relative size of the effects change. In column (4), the primary effect of insourcing is to

lower the direct cost of flexibility. In the other columns, the effect of insourcing on the

productivity penalty for variety is enhanced, at the expense of the variety*flexibility term,

and most of the insourcing*flexibility interaction effect disappears. While the results

still indicate that both activities lower the productivity penalty for variety, potential

complementarities between the two activities makes it hard to determine their relative

importance.

Measuring the activities continuously facilitates the theory, but makes it harder to

interpret the coefficient estimates. For example, the productivity impact of the flexible

technology depends on the number of varieties produced and on the extent of outsourcing.

To illustrate the impact of flexibility and insourcing on the cost of producing variety, the

predicted hpv as a function of variety is plotted in Figures A.1a and A.1b in the Appendix

using coefficient estimates from columns (1) and (4). While the coefficient estimates are

too imprecise to use them to make predictions, we include these figures to illustrate the

economic significance of the estimates. In addition, the figures also indicate that large

changes in point estimates do not necessarily translate in large hpv differences as opposing

changes on direct and interaction effects will partially offset one another.

Evaluating all variables at their sample mean (solid black line), hpv is predicted to

rise more quickly with variety using the GMM estimates (bottom panel) than using the

OLS estimates (top panel). If a plant produces with average flexibility but insources 67%

of activities instead of the average of 36%, adding variety tends to lower the predicted

hours (grey short-dashed line). This level of insourcing corresponds to the 90th percentile.

Evaluating hpv at the 90th percentile of flexibility (1.5 platforms per line) and the mean

level of outsourcing (grey long-dashed lines) has similar effects. The higher direct ef-

fects for the GMM estimates shift the curves upward farther, while the more negative

variety*flexibility interaction is also noticeable. Finally, the joint effect of adopting both

activities eliminates most of the productivity penalty for variety, the white lines become

almost flat, but especially under the GMM results this would be profitable only for very

high levels of variety (the 90th percentile is 10 styles + configurations).

Robustness checks

In Table 8, we present a number of robustness checks using the same estimation method

as in column (4) of Table 6, which is repeated for convenience. Given that the dependent
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variable is always positive, we can estimate the productivity regression in logarithms.34

Results in column (9) indicate that direct effects are still positive and interaction effects

negative, with little change in the precision of the estimates. Evaluated at the sample

mean, adding one extra variety to the plant increases labor requirements by 5%. In-

creasing both flexibility and insourcing by one standard deviation, would eliminate the

productivity penalty almost entirely. In this case, the coefficient on scale, 1.269, has a

direct interpretation. This level of scale economies is consistent with Friedlaender et al.

(1983) who find 1.23 for the most recent year in their sample (1979) using multifactor

productivity. Hence, the assumption that capital stock differences between plants are

relatively unimportant seems not unreasonable.

As mentioned earlier, the calculation of the dependent variable differed pre-1998 and

we used two overlapping years to construct a conversion factor. A dummy variable was

included to soak up remaining differences, but it is rarely significant. To control for the

change in a more flexible way, we re-estimate the model dropping all observations prior

to 1998, results are in column (10). The only noticeable change is that the direct effect

of outsourcing becomes much smaller and insignificant. The coefficients of interest, the

interaction coefficients of variety with insourcing and flexibility, are virtually unchanged

and still significantly negative.

In spite of our motivation for the use of the hpv variable, one might be concerned

that it incorporates differences between plants in capital intensity or differences in the

degree of component outsourcing (as opposed to ‘tasks’, for which we control explicitly).

Differences are likely to be largest between Mexican and other plants because of wage

differences. Omitting the Mexican plants from the sample, results in column (11), changes

several point estimates, but all the qualitative findings go through. The largest change

is for the three coefficients related to insourcing. Dropping the Mexican plants removes

much of the time variation from the instruments for variety (distances to the industry

center) and makes both instruments much more alike. The estimates related to flexible

technology, which could be a more capital intensive way of operating, change much less.

Instead of measuring flexibility and insourcing as continuous variables, one can also

measure them discretely: adopt or don’t adopt. For flexibility, we define an adoption

dummy that switches from zero to one if more than one platform is produced per line.

For insourcing, we define a dummy indicating whether a plant performs more activities

in-house than the median plant in that year. Variety is still measured continuously as

34Eq.(1) could be specified with multiplicative spillover effects on the labor requirements of other models.
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the sum of body styles and chassis configurations. While the coefficient estimates in

columns (12) are not comparable to other columns, the absolute magnitudes indicate

very large reductions in the productivity penalty when the activities are adopted. Under

the restrictive functional form we use, hpv even goes down with increased variety, for

flexible plants or those that insource most. Still, the very high direct effects of both

activities makes adopting only profitable for plants that produce most varieties.35

Finally, results in column (13) add scale interacted with variety to the model. In each

regression we included a direct effect of scale (estimated negatively and highly significant),

we now allow scale to influence spillovers as well. I.e. scale could be one of the ‘other’

factors in the b function in equation (1). We find that indirect effects of scale hardly

matter at all. The other coefficient estimates are virtually unchanged, standard errors

are very similar, and the coefficient on the variety*scale interaction term is small and

insignificant.

⇒ [Table 8 approximately here] ⇐

Optimal activity choices

Finally, we estimate the first order conditions for the three activities, equation (6), directly.

We follow the approach in Novak and Stern (2003) using the cost or benefit shifters for

activities k as instruments for Yk in the equation for Y ∗
j . The main disadvantage of this

identification approach, relative to estimating the return function directly, is that all first

order conditions have to hold with equality all the time for the relationship to be stable.

If one activity is more easily changed than another, e.g. because of differences in sunk

or fixed costs, the equation will be misspecified. As mentioned earlier, we also cannot

identify the direct effects this way, but we can test for complementarities.

Results in Table 9 show that the main prediction of the analysis is confirmed. Va-

riety enters with a positive sign in the equations describing the flexible technology and

insourcing choice. Variety at competing plants is used as instrument for own variety in

both equations. Results in column (1), show that variety at competing plants is a very

strong predictor of own variety. The effects of flexibility and insourcing on each other

and for insourcing on variety choice are insignificant. In contrast with most of our earlier

findings, they enter each other’s equation with a negative coefficient.

35With discrete activities, the model is now in the same form as that discussed in Athey and Stern
(2003). In our estimating equation, their test statistic for complementarities between insourcing and
flexibility would be measured directly by the βFI coefficient. The large and significantly negative estimate
suggests the presence of complementarities.
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⇒ [Table 9 approximately here] ⇐

6 Concluding remarks

On November 21, 2005 GM announced that it would eliminate a total of 30,000 jobs

across North America by 2008 and the next February it announced a 2005 loss of $8.6b,

the second-highest in its history. In between, GM introduced a slate of new vehicles at the

Detroit Autoshow, raising the number of models it will sell in 2006 in the U.S. alone to

72. Ford’s restructuring plan called for 25,000 layoffs, but stressed the large investments

in flexibility that are underway. Its Oakville assembly plant will receive a $1b investment

to make it fully flexible, following similar investments in its Kansas City plant and a

new truck plant in its home town, Dearborn. Meanwhile, Toyota continues to prosper in

North America. On average, it adds one model per year to its North American production

lineup, it performs more tasks within its assembly plants than any other firm, and it has

mastered flexibility, which shows up most clearly in its capacity utilization, averaging 99%

over the last five years (the industry average was 85%).

While these are merely some examples of the interplay between model proliferation,

flexible technology and outsourcing, the analysis has documented more systematically

that the three activities are complementary in the production of automobiles. In particu-

lar, flexibility and insourcing can lower the productivity penalty associated with increased

variety. Plants that are able to assemble vehicles derived from different platforms on the

same production line face a lower productivity penalty when they increase variety. Simi-

larly, plants that outsource less activities face a diminished productivity cost to increasing

variety. Some results suggest that flexible technology and insourcing are themselves com-

plements and that their cost of adoption, in terms of lost productivity, is reduced when

they are adopted together. The crucial interaction coefficients are not always estimated

very precisely and the point estimates cover a wide range, but the effects are extremely

consistent across different specifications.

The nature of these complementarities differs from previous results. These activities

do not increase productivity in their own right with an extra boost for joint adoption.

Rather, increasing one activity tends to decrease productivity, but this reduction is dimin-

ished if other activities are increased as well. In particular, while flexibility and performing

more tasks in-house increases direct labor requirements, they reduce the marginal labor

requirement associated with increases in variety. Even absent heterogeneity in unobserv-
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able returns or costs, implementing these activities will be worthwhile for some plants,

but not for all.

On the methodological side, we are the first study to find complementarities in a frame-

work that studies the joint impact on a performance variable using the activity-specific

instrumenting approach advocated in Athey and Stern (2003). The main advantages over

studies that look at clustering in adoption decisions is that we also recover the direct

effects on productivity and that the model is robust to learning and sunk or fixed costs

of adoption. A major disadvantage is that instrumenting for interactions of endogenous

variables results in less stable point estimates.
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Figure 1: Decreasing sales and production per model
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Source: Own calculations based on plant-level data from The Harbour Report  (various years)

Note: Average variety across all plants, where variety is defined as body styles, chassis configurations, 
or the sum of both
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Figure 2: Model variety produced per plant has increased over time (1994=1)



Source: Own calculations based on plant-level data from The Harbour Report  (various years)

Note: Cubic time trend on the models per platform (top panel) or platforms per production line (bottom 
panel), estimated separately for all North American plants of the respective firms or groups of firms.
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Figure 4: Outsourcing trends in North America 
(average material-sales ratio at the plant-level)
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Note: Materials-sales ratio for the "Motor vehicles" industry (SIC 371) based on 
statistics from the OECD STAN database (solid lines) and for the subsector "Motor 
vehicles and passenger car bodies" (SIC 3711) using data from the U.S. Bureau of 
the Census (dashed line).
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Figure A.1a: Predicted hours per vehicle using OLS estimates
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Figure A.1b: Predicted hours per vehicle using GMM estimates
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Mean Std. Dev. Min Max

Dependent variable:
Hours per vehicle (hpv) 30.13 11.41 15.69 108.51

Activities:
Number of chassis configurations 2.67 2.46 0.75 23.10
Number of body styles 2.84 2.21 1.00 16.00
Number of (configurations + styles) 5.51 4.08 1.75 39.10
Number of models 2.11 1.04 1.00 6.00
Number of platforms 1.23 0.54 1.00 5.00
Flexibility index 1.09 0.34 0.50 3.33
In-sourcing index (inverse of outsourcing) 0.36 0.17 0.00 0.92

Instruments:
Confs + Styles in competing plants 5.41 2.62 2.18 13.73
Distance (from NA center, miles) 517.57 406.20 61.99 1915.07
Distance (from country center, miles) 309.75 314.71 17.45 1918.01
Area 2449690 974434 216345 5501700
Mass relief 0.41 0.49 0.00 1.00

Controls:
Log capacity 12.15 0.44 9.30 13.07
Pre-1998 dummy 0.28 0.45 0.00 1.00
Canadian plant 0.20 0.39 0.00 1.00
Mexican plant 0.09 0.29 0.00 1.00
Foreign-owned plant 0.17 0.37 0.00 1.00

Number of observations 860
Number of unique plants 92
Source: The Harbour Reports  (various years)

Table 1: Summary statistics (1994-2004)



sample period
1974 1984 1994 2004

Models for sale in North America 185 228 273 320
Models for sale in United States 133 195 238 282
    Car models 96 140 164 167
    Car variations 468 503
    Light truck models 37 55 74 115
    Light truck variations 558 1805
Models produced in North America 90 125 139 165
Assembly plants in North America 68 76 68 64
* Note: 1996
Source: Ward's Automotive Yearbook  (various years) and Ward's Infobank  (2004)

Table 3: Production variety in the sample

simple sum by plant take out duplicates
1994 2004 1994 2004

Platforms 101 98 70 75
Models 172 175 129 162
Body styles 175 235 143 206
Chassis configurations 182 206 147 176
Source: Own calculations based on statistics from The Harbour Reports  (various years)

Table 2: Number of models sold and/or produced in North America has increased 
substantially 

*

*
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all activities usually 
outsourced

often 
in-house

all 
plants

added 
tasks

deleted 
tasked 

did not 
change

net 
changes

all 
additions

all 
deletions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1994 36.0% 10.1% 56.2% 82
1995 36.7% 9.8% 58.2% 84 16 13 61 8 23 -15
1996 34.7% 10.3% 53.3% 79 15 6 59 9 15 -6
1997 36.5% 11.3% 55.7% 78 29 16 37 27 53 -26
1998 38.5% 12.5% 58.9% 77 29 25 34 19 60 -41
1999 37.1% 12.3% 56.0% 77 20 19 42 -9 23 -32
2000 36.3% 12.0% 54.7% 77 11 19 53 -16 15 -31
2001 36.3% 11.7% 54.9% 78 19 16 46 3 24 -21
2002 35.7% 11.0% 54.6% 77 12 14 53 2 19 -17
2003 35.5% 11.0% 54.1% 76 6 9 64 -5 14 -19
2004 35.6% 11.8% 53.3% 75 14 12 54 -3 23 -26
Source: Own calculations based on statistics from The Harbour Reports  (various years)

Table 4: Outsourcing indicators in the (plant level) sample

Fraction of tasks performed in-house Sum of changes across all tasks/plants
year

Number of plants that



Dependent variable: hours per vehicle
(1) (2) (3) (4) (5) (6)

Platforms 2.522***
(0.564)

Models 1.612***
(0.299)

Chassis Configurations 0.564***
(0.135)

Body Styles 0.437***
(0.158)

Configurations + Styles 0.353***
(0.082)

Configurations * Styles 0.038**
(0.015)

Year * Variety -0.239 -0.334*** -0.067 -0.091* -0.055** -0.003
(0.147) (0.077) (0.043) (0.048) (0.024) (0.005)

Controls
Year -0.667*** -0.241 -0.754*** -0.707*** -0.649*** -0.749***

(0.234) (0.217) (0.177) (0.192) (0.191) (0.145)
Pre-1998 dummy -0.393 -0.461 -0.268 -0.053 -0.076 -0.318

(0.948) (0.935) (0.945) (0.959) (0.948) (0.954)
Scale -12.192*** -12.077*** 11.853*** -12.028*** -11.998*** -11.915***
  (log Capacity) (0.731) (0.723) (0.728) (0.741) (0.733) (0.736)
Canada -1.343* -1.681** -1.555** -1.738** -1.564** -1.724**

(0.749) (0.729) (0.741) (0.747) (0.742) (0.747)
Mexico 9.260*** 8.802*** 9.654*** 10.184*** 9.683*** 10.164***

(1.113) (1.103) (1.095) (1.095) (1.095) (1.099)
Foreign-owned -6.357*** -5.899*** -5.821*** -5.941*** -5.831*** -5.948***

(0.778) (0.759) (0.771) (0.778) (0.771) (0.778)
mid-size cars 1.586 0.921 1.385 1.702 1.575 1.511

(1.025) (1.012) (1.022) (1.034) (1.023) (1.031)
sport cars 4.319*** 4.446*** 4.441*** 4.518*** 4.419*** 4.513***

(1.510) (1.482) (1.504) (1.521) (1.507) (1.519)
luxury cars 7.361*** 7.041*** 9.277*** 9.833*** 9.453*** 9.751***

(1.628) (1.577) (1.520) (1.530) (1.519) (1.530)
pickup trucks -0.874 -0.033 -2.429** -1.768 -2.625** -1.600

(1.000) (0.994) (1.073) (1.088) (1.104) (1.062)
SUVs 2.833*** 2.029* 1.849* 2.992*** 2.273** 2.814***

(1.074) (1.076) (1.121) (1.082) (1.086) (1.085)
minivans 5.861*** 4.955*** 5.703*** 5.688*** 5.604*** 5.833***

(1.397) (1.391) (1.393) (1.408) (1.396) (1.407)
vans 5.552*** 5.517*** 4.464*** 4.792*** 4.063*** 5.086***

(1.388) (1.366) (1.431) (1.466) (1.460) (1.436)
Constant 1508.3*** 653.6 1679.1*** 1587.4*** 1471.0*** 2016.7***

467.5 433.8 353.9 384.1 383.3 289.6
Observations 860 860 860 860 860 860
R2 0.539 0.552 0.541 0.532 0.540 0.532
Note: Estimation by least squares on the entire sample; standard errors in parenthesis; * significant at the 10%
level, ** 5%, *** 1%

Measures of Variety:

Table 5: Productivity penalty associated with production of greater variety
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Dependent variable: hours per vehicle
Estimation method:          
(instrumented)

OLS GMM        
(Flex)

GMM        
(Insource)

GMM        
(Ins, Flex)

GMM        
(Ins,Flex,Var)

(1) (2) (3) (4) (5)
Variety 1.618*** 2.729** 2.424** 4.915*** 2.261
  (Configurations + Styles) (0.436) (1.345) (0.959) (1.625) (3.056)
Insourcing 9.455*** 7.453* 11.584 13.203*** 13.072***
  (1-Outsourcing) (2.860) (4.467) (8.345) (3.955) (3.498)
Flexibility 2.600 15.233 14.529** 22.413*** 14.627**
  (Platforms per line) (2.012) (10.557) (5.633) (6.755) (7.389)
Variety * Insourcing -1.622*** -1.272 -1.540 -0.638** -0.828**

(0.488) (0.866) (1.580) (0.280) (0.344)
Variety * Flexibility -0.292 -1.654 -1.639** -3.845*** -1.358

(0.273) (1.143) (0.749) (1.544) (1.079)
Flexibility * Insourcing -1.139*** -1.243*** -24.424** -21.321*** -17.518***

(0.334) (0.348) (11.710) (7.329) (5.887)
R2 0.554 0.531 0.453 0.141 0.100

F-test for instrument validity: F(k,860-k) test statistic (p-value in brackets) 
Variety 13.74 (0.00)
Insourcing  3.68 (0.00) 2.70 (0.00) 4.44 (0.00)
Flexibility  1.91 (0.05) 3.19 (0.00) 2.10 (0.02)
Variety * Insourcing 2.07 (0.03) 3.00 (0.00) 1.83 (0.04)
Variety * Flexibility  2.42 (0.01) 5.00 (0.00) 5.95 (0.00)
Flexibility * Insourcing 16.21 (0.00) 2.31 (0.03) 2.03 (0.02) 3.31 (0.00)

Hansen J statistic for overidentification test of all instruments: χ2(k) test statistic (p-value in brackets)
(k differs by column) 5.56 (0.14) 4.10 (0.25) 9.01 (0.25) 8.09 (0.32)

Hausman specification tests: χ2(20) test statistic (p-value in brackets)
against (5) 41.87 (0.03) 21.98 (0.34) 11.95 (0.92) 3.31 (>0.999)
against (4) 15.62 (0.74) 12.84 (0.88) 6.74   (0.99)
Omitting control variables from the Hausman specification test  - χ2(6) test statistic
against (5) 22.50 (0.00) 12.58 (0.05) 7.34 (0.29) 1.98 (0.92)
against (4) 9.54 (0.14) 8.20 (0.22) 5.99 (0.42)
Note: Variety, flexibility and insourcing are measured as continuous variables. Instruments are the variety of
competing firms (for variety), distance to industry center for North America and within the plant's country (for
insourcing), and plant area and a dummy for tag shift relief (for flexibility). Interactions of instruments are
included as well. The same set of controls as in Table 5 are included (reported in Table A.1 in the Appendix). *
significant at the 10%, ** 5%, *** 1%

Table 6: Productivity regressions under different exogeneity assumptions
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Dependent variable: hours per vehicle

i.i.d. errors Firm FE Plant RE Plant FE
(4) (6) (7) (8)

Variety 4.915*** 6.081** 4.268** 7.476***
(1.625) (2.433) (1.835) (1.742)

Insourcing 13.203*** 28.505*** 23.195** 20.477**
(3.955) (8.830) (9.709) (8.757)

Flexibility 22.413*** 10.307** 8.535** 10.711**
(6.755) (5.622) (4.353) (4.714)

Variety x Insourcing -0.638** -4.401* -4.794* -7.044**
(0.280) (2.545) (2.717) (2.523)

Variety x Flexibility -3.845*** -3.321* -1.393 -2.984***
(1.544) (1.888) (1.386) (1.111)

Flexibility x Insourcing -21.321*** -14.772* -12.124 -9.300
(7.329) (8.474) (11.254) (8.272)

R2 0.141 0.279 0.312 0.619

F-test for instrument validity: F(k,860-k) test statistic (p-value in brackets) 
Insourcing 2.70 (0.00) 2.23 (0.01) 2.37 (0.00) 2.57 (0.00)
Flexibility 3.19 (0.00) 3.11 (0.00) 2.28 (0.01) 2.40 (0.00)
Variety * Insourcing 3.00 (0.00) 4.41 (0.00) 3.33 (0.00) 3.88 (0.00)
Variety * Flexibility 5.00 (0.00) 3.81 (0.00) 3.40 (0.00) 2.50 (0.00)
Flexibility * Insourcing 2.03 (0.02) 3.27 (0.00) 2.88 (0.00) 2.46 (0.00)

Table 7: Productivity regressions controling for unobserved heterogeneity

Note: Estimation is with GMM, using instruments for insourcing and flexibility. The same set of controls as in
Table 5 are included (reported in Table A.1). Results in column (4) treat all errors as i.i.d., in column (6) firm-
fixed effects are included, in column (7) errors are allowed to be correlated across plants (random effects
estimator), and in column (8) plant-fixed effects are included. * significant at 10%, ** 5%, *** 1%

IV (Insourcing & Flexibility)
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Dependent variable: hours per vehicle
full sample log hpv no pre-1998 no Mexico discrete 

activities
add scale 

control
(4) (9) (10) (11) (12) (13)

Variety 4.915*** 0.199*** 5.333*** 11.198*** 3.838*** 5.382
(1.625) (0.050) (1.715) (3.418) (1.201) (3.989)

Insourcing 13.203*** 0.991*** 10.417 29.887** 8.996** 13.237***
(3.955) (0.347) (11.643) (12.837) (4.353) (5.181)

Flexibility 22.413*** 0.563*** 19.523*** 13.018* 32.347** 17.026***
(6.755) (0.157) (6.009) (7.391) (15.575) (5.891)

Variety x Insourcing -0.638** -0.025*** -0.426* -1.132*** -4.215*** -0.736**
(0.280) (0.008) (0.196) (0.321) (1.463) (0.310)

Variety x Flexibility -3.845*** -0.136*** -5.060*** -3.782* -6.220** -4.102**
(1.544) (0.051) (1.747) (1.947) (2.837) (1.760)

Flexibility x Insourcing -21.321*** -0.513** -13.446* -10.008 -6.989** -22.806***
(7.329) (0.207) (7.887) (14.928) (3.469) (8.149)

Variety x Scale -0.064
(0.253)

Number of observations 860 860 615 780 860 860
R2 0.141 0.072 0.104 0.091 0.127 0.141

Table 8: Robustness check on complementarities

Note: Estimation is with GMM, using instruments for insourcing and flexibility. The same controls as in Table 5
are included (reported in Table A.1). * significant at 10%, ** 5%, *** 1%
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Dependent variable: Model variety Flexible technology Insourcing

(i) (ii) (iii)
Endogenous variables
Variety (in own plant) 0.019*** 0.021***

(0.006) (0.007)
Insourcing 2.003 -0.424

(8.208) (0.407)
Flexible technology 13.512*** -0.187

(5.022) (0.154)
Instruments
Variety (of competitors) 0.769***

(0.162)
Area -0.014

(0.022)
Shift relief 0.090*

(0.045)
Distance to NA center -0.035

(0.063)
Distance to country-center 0.117**

(0.063)
Controls
Scale 0.884* -0.020 -0.007
Year -0.197* 0.016* -0.002
Pre-1998 dummy -0.804 0.045 -0.007
Canada -0.163 -0.032 0.030
Mexico 1.029 0.052 0.001
Foreign-owned -1.969 0.155* 0.159***
Stretched platform 3.559*** -0.228*** -0.057
mid-size cars -0.571 0.036 0.052**
sport cars 0.662 -0.032 -0.005
luxury cars -4.500** 0.283*** -0.070
minivans -1.663 0.111 0.091**
SUVs -0.574 0.006 -0.038
pickup trucks 1.982** -0.110** -0.010
vans 1.638 -0.047 0.019
Constant (U.S. location and owne 368.778 -31.110* 5.102
R2 0.086 0.105 0.111

Table 9: Direct estimation of the first order conditions for the three activities

Note: Estimation is with GMM using the excluded instruments in each equation as instruments for the included
endogenous variables: variety, insourcing and/or flexibility. * significant at 10%, ** 5%, *** 1%
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Dependent variable: hours per vehicle
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Year -0.922*** -0.957*** -1.528*** -1.159*** -1.436*** -0.625*** -0.820*** -0.898*** -0.038*** -1.232*** -0.889*** -0.587* -1.155***
(0.134) (0.165) (0.546) (0.223) (0.275) (0.232) (0.176) (0.179) (0.006) (0.218) (0.205) (0.322) (0.238)

Pre-1998 dummy -0.024 -0.143 -5.568 -3.366** -4.137** -0.273 -0.739 -0.280 -0.112** -3.020** -1.317 -3.518**
(0.945) (1.065) (3.669) (1.625) (1.615) (1.462) (1.096) (1.032) (0.044) (1.302) (1.522) (1.780)

Scale -11.880*** -11.230*** -10.731*** -10.488*** -11.047*** -12.376*** -4.414** -0.748 -0.269*** -9.741*** -9.452*** -9.580*** -10.395***
(0.723) (1.078) (1.395) (1.326) (1.354) (1.278) (1.806) (2.251) (0.034) (1.327) (1.369) (1.627) (1.916)

Canada -1.400* -1.341** -3.692*** -4.028*** -2.337** -3.603*** -1.323 -0.095*** -3.359*** -0.679 -0.179 -4.347***
(0.736) (0.669) (1.292) (1.104) (1.186) (1.297) (2.470) (0.030) (1.176) (0.709) (0.995) (1.201)

Mexico 9.464*** 8.722*** 11.963*** 11.606*** 8.780*** 11.838*** 19.721*** 0.297*** 5.247*** 10.150*** 11.980***
(1.087) (1.673) (2.591) (2.265) (2.276) (2.368) (4.200) (0.053) (1.775) (2.302) (2.362)

Foreign-owned -6.721*** -6.948*** 15.937 10.672 6.763 0.000 -1.368 0.178 6.391 -8.231*** -8.413* -12.615
(0.812) (0.932) (10.331) (7.352) (5.138) (0.000) (10.522) (0.192) (7.422) (2.259) (4.308) (8.348)

Stretched platform 2.039*** 2.971** 2.208** 2.518* 4.148** -1.805 0.913 2.294 0.112** 3.350** 3.320*** 1.680 1.782
(0.750) (1.495) (1.025) (1.520) (1.635) (2.133) (2.328) (2.467) (0.045) (1.696) (0.866) (1.572) (1.559)

mid-size cars 1.663 1.370 2.659 1.587 1.462 2.361 7.229** 8.862 -0.033 -1.452 0.560 4.178** 1.908
(1.014) (1.061) (1.843) (1.640) (1.570) (1.581) (3.623) (7.192) (0.044) (1.721) (1.325) (1.724) (1.905)

sport cars 4.504*** 4.982*** 4.680** 5.143** 4.617** 4.770** 4.450 -2.644 0.103* 3.050 5.032** 8.740*** 5.259**
(1.488) (1.743) (2.318) (2.266) (2.208) (2.318) (4.120) (7.585) (0.058) (2.556) (1.972) (2.769) (2.383)

luxury cars 9.138*** 7.479*** -2.433 -0.957 -2.286 12.718*** 10.224* 7.400 -0.047 -4.851 6.059* 3.516 -0.396
(1.575) (2.850) (5.369) (4.097) (3.964) (4.605) (6.208) (9.198) (0.114) (5.020) (3.180) (4.858) (4.285)

pickup trucks -2.404** -1.733 -3.468* -4.434** -6.479*** -5.052** 1.859 4.985 -0.134*** -0.463 -3.290** -5.284*** -4.544**
(1.100) (1.373) (1.986) (1.783) (2.008) (2.193) (3.042) (8.776) (0.051) (2.096) (1.456) (1.576) (1.980)

SUVs 2.012* 2.161** -0.742 -0.107 -1.552 4.200** 9.942*** 13.693* -0.014 -0.281 2.486* 4.449** -0.060
(1.095) (0.992) (1.866) (1.597) (1.799) (1.799) (3.320) (8.053) (0.045) (1.778) (1.447) (1.881) (1.852)

minivans 4.691*** 4.519*** 6.179*** 4.786** 3.138* 5.857*** 10.291* 14.459 0.112** 4.002* 2.897 3.165* 5.501**
(1.424) (1.264) (2.358) (2.023) (1.799) (2.182) (5.470) (11.789) (0.053) (2.234) (1.991) (1.838) (2.416)

vans 4.442*** 5.423*** 4.611* 3.429* -0.212 0.701 12.623*** 13.648 0.107* 6.434*** 5.434*** 3.955** 3.212
(1.450) (1.577) (2.770) (1.967) (2.586) (2.499) (4.431) (12.589) (0.055) (2.410) (1.893) (1.917) (2.159)

Constant 2005.8*** 2057.5*** 3175.0*** 2415.0*** 2984.6***1366.5`*** 1663.9*** 1766.2*** 80.4*** 2558.7*** 1845.5*** 1300.6*** 2410.4***
(269.2) (327.8) (1081.7) (443.1) (557.4) (465.5) (362.3) (375.0) (12.7) (430.0) (409.2) (655.9) (476.5)

Table A.1: Coefficient estimates on the control variables for all regressions in Table 6 to Table 8

Note: Column numbers refer to Tables 6 to 8; sample and estimation methods are indicated in the respective tables; * significant at 10%, ** 5%, *** 1%




