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ABSTRACT

Evidence of stock return predictability by financial ratios is still controversial, as documented by

inconsistent results for in-sample and out-of-sample regressions and by substantial parameter

instability. This paper shows that these seemingly incompatible results can be reconciled if the

assumption of a fixed steady-state mean of the economy is relaxed. We find strong empirical

evidence in support of shifts in the steady-state and propose simple methods to adjust financial ratios

for such shifts. The forecasting relationship of adjusted price ratios and future returns is statistically

significant and stable over time. We also show that shifts in the steady-state are responsible for the

parameter instability and poor out-of-sample performance of unadjusted price ratios that are found

in the data. Our conclusions hold for a variety of financial ratios and are robust to changes in the

econometric technique used to estimate shifts in the steady-state.
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1 Introduction

The question of whether stock returns are predictable has received an enormous amount of

attention. This is not surprising because the existence of return predictability is not only

of interest to practitioners but also has important implications for financial models of risk

and return. One branch of the literature asserts that expected returns contain a time-varying

component that implies predictability of future returns. Due to its persistence, the predictive

component is stronger over longer horizons than over short horizons. Classic predictive variables

are financial ratios, such as the dividend-price ratio, the earnings-price ratio, and the book-to-

market ratio (Rozeff (1984), Fama and French (1988), Campbell and Shiller (1988), Cochrane

(1991), Goetzman and Jorion (1993), Hodrick (1992), Lewellen (2004), and others), but other

variables have also been found to be powerful predictors of long-horizon returns (e.g., Lettau

and Ludvigson (2001), Lustig and Van Nieuwerburgh (2005a), Menzly, Santos, and Veronesi

(2004), Piazzesi, Schneider, and Tuzel (2004)). Moreover, these studies conclude that growth

rates of fundamentals, such as dividends or earnings, are much less forecastable than returns,

suggesting that most of the variation of financial ratios is due to variations in expected returns.

These conclusions are controversial because the forecasting relationship of financial ratios

and future stock returns exhibits a number of disconcerting features. First, correct inference is

problematic because financial ratios are extremely persistent; in fact, standard tests leave the

possibility of unit roots open. Nelson and Kim (1993), Stambaugh (1999), Ang and Bekaert

(2001), Ferson, Sarkissian, and Simin (2003), and Valkanov (2003) conclude that the statistical

evidence of forecastability is weaker once tests are adjusted for high persistence. Second, finan-

cial ratios have poor out-of-sample forecasting power, as shown in Bossaerts and Hillion (1999)

and Goyal and Welch (2003, 2004), but see Campbell and Thompson (2005) for a different

interpretations of the out-of-sample evidence. Third, and related to the poor out-of-sample evi-

dence, the forecasting relationship of returns and financial ratios exhibits significant instability

over time. For example, in rolling 30-year regressions of annual log CRSP value-weighted returns

on lagged log dividend-price ratios, the ordinary least squares (OLS) regression coefficient varies

between zero and 0.5 and the associated R2 ranges from close to zero to 30% depending on

the subsample. Not surprisingly, the hypothesis of a constant regression coefficient is routinely

rejected (Viceira (1996), Paye and Timmermann (2003)).

In addition to concerns that return forecastability might be spurious, the benchmark model

of time-varying expected returns faces additional challenges. The extreme persistence of price

ratios implies that expected returns have to be extremely persistent as well. But if shocks to

expected returns have a half-life of many years or even decades, as implied by the high persistence

of financial ratios, they are unlikely to be linked to many plausible economic risk factors, such

as those linked to business cycles. Instead, researchers have to identify slow-moving factors that
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are primary determinants of equity risk. In addition, the extraordinary valuation ratios in the

late 1990s represent a significant challenge for the benchmark model. Given the historical record

of returns, fundamentals, and prices, it is exceedingly unlikely that persistent stationary shocks

to expected returns are capable of explaining price multiples like those seen in 1999 or 2000.

How can models with time-varying expected returns be reconciled with these serious chal-

lenges? In this paper, we propose an explanation for the puzzling empirical patterns; namely,

the possibility that changes in the steady-state mean of financial ratios are caused, for example,

by changes of the steady-state growth rate of economic fundamentals and/or expected return of

equity. Why might we expect the steady-state to change over time? Some possibilities include

permanent technological innovations that change the long-term growth rate of the economy or

improved risk sharing, changes in stock market participation, changes in the tax code, or lower

macroeconomic volatility that decrease the long-term expected return of equity.

Changes in the steady-state have dramatic effects on the relationship of returns and price

ratios because they cause the mean of the price ratios to change permanently. In particular,

predictability regressions are affected because price ratio regressors would be non-stationary.

However, as we show below, deviations of the price ratios from their steady-state values are

stationary. Thus, the appropriate return forecasting specifications do not include non-stationary

price ratios themselves but only stationary deviations from steady-states. Our empirical results

conclude that such “adjusted� price ratios have favorable properties compared to unadjusted

price ratios. For example, in the full sample forecasting relationships of returns with lagged

adjusted price ratios are much more stable over time than with unadjusted price ratios. In real

time, however, the changes in the steady-state are not only difficult to detect but also estimated

with significant uncertainty, making the return forecastability hard to exploit. Out-of-sample

tests performed in real time reflect this difficulty. While adjusted price ratios have superior out-

of-sample forecasting power relative to their unadjusted counterparts, they do not outperform

the simple random walk model.

These results show that seemingly incompatible views of the forecasting relationship of stock

returns and price ratios can be reconciled if the assumption of a fixed steady-state of price

ratios is relaxed. In this sense, the branch of the literature that finds supportive evidence for

return predictability and the branch that emphasizes the instability and poor out-of-sample

forecastability are both correct. We find that returns are indeed forecastable, but low-frequency

shifts in the mean of the price ratios cause the forecasting relationship to be unstable and

reduce the out-of-sample forecasting power if financial ratios are not adjusted for the presence

of permanent shifts in its mean.

Several papers have explored the impact of structural breaks on return predictability. For

example, Viceira (1996) and Paye and Timmermann (2003) reported evidence in favor of breaks
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in the OLS coefficient in the forecasting regression of returns on the lagged dividend-price ratio.

Our focus is instead on shifts in the mean of financial ratios, which in turn render the forecasting

relationship unstable if such shifts are not taken into account. In other words, in contrast to

Viceira (1996) and Paye and Timmermann (2003), we focus on the behavior of the mean of

price ratios instead of the behavior of the slope coefficient. Pastor and Stambaugh (2001) use

a Bayesian framework to estimate breaks in the equity premium. They found several shifts in

the equity premium since 1834 and identified the sharpest drop in the 1990s, which is consistent

with the timing of the shift in price ratios identified in this paper.

Our paper is also related to the recent literature on inference in forecasting regressions with

persistent regressors (see e.g., Amihud and Hurwich (2004), Ang and Bekaert (2001), Campbell

and Yogo (2002), Lewellen (2004), Torous, Volkanov, and Yan (2004), and Eliasz (2005)). In

these papers, asymptotic distributions for OLS regressions are derived under the assumption

that the forecasting variable is a close-to unit, yet stationary, root process. In contrast, we

allow for the presence of a small but econometrically important non-stationary component in

forecasting variables.

The rest of the paper is organized as follows. In Section 2 we establish that the standard

dividend-price ratio does not significantly forecast stock returns or dividend growth. In contrast,

we find much stronger evidence for return predictability in various subsamples. The slope

coefficient in the return equation is much smaller in the full sample than in any of the constituent

subsamples, which confirms the instability of the forecasting relationship over time. In sections

3 and 4, we show how changes in the steady-state affect the dividend-price ratio and other

price ratios. For the log dividend-price ratio, we find evidence for either one break in the early

1990s or two breaks around 1954 and 1994. Other valuation ratios such as the earnings-price

ratio and the book-to-market value ratio exhibit similar breaks. We show that filtering out this

non-stationary component yields adjusted price ratios that have strong and stable in-sample

return predictability. In Section 5 we study out-of-sample predictability. We use a recursive

Perron procedure that estimates both the break dates and the means of the regimes in real-

time. We show that using the break-adjusted dividend-price series produces superior one-step

ahead return forecasts compared to using the unadjusted dividend-price series, but does slightly

worse than the naive random walk model. Using a Hamilton (1989) regime-switching model,

we show that if the investor did not have to estimate regime means in real time, but only the

regime switching dates, her out-of-sample forecast would improve substantially, and beat the

random walk. The Hamilton procedure leads to slightly later break dates but predictability

results that are virtually as good as those when the (ex-post) break dates were known and used.

In sum, the hardest part of real-time out-of-sample prediction in the presence of regimes is the

estimation uncertainty about the mean of the new regime. In Section 6 we consider a vector
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error correction model that includes the return and dividend growth predictability equations and

imposes a joint present value restriction on the slope parameters from both equations. We find

that this restriction is satisfied when we use the adjusted dividend-price ratio as an independent

variable, but not when we use the unadjusted series. Finally, in Section 7, we find that our

simple model serves as a plausible data generating process. It is able to replicate both the

findings of no predictability when the unadjusted dividend-price ratio is used and the findings

of in-sample and out-of-sample predictability when the adjusted series is used.

2 Instability of Forecasting Relationships

In this section we document the instability of the forecasting relationship between returns, div-

idend growth, and the lagged dividend-price ratio. The forecasting relationship of returns and

other financial ratios (such as the earnings-price ratio and the book-to-market ratio) and alter-

native measures of dividends (such as accounting for repurchases or considering only dividend-

paying firms) are similar and will be presented later. The data are based on annual CRSP

value-weighted returns from 1927 to 2004 and are described in Appendix A. The top panel of

Figure 1 shows the estimation results for the forecasting regression of demeaned returns on the

demeaned lagged dividend-price ratio using 30-year rolling windows:

rt+1 − r = κr(dpt − dp) + τ rt+1, (1)

where rt denotes the log return, dpt denotes the log dividend-price ratio dt − pt, and r̄ and dp

denote the sample means of returns and the log dividend-price ratio in each of the subsamples,

respectively. The top panel plots the slope coefficient κr along with two standard error bands.

The instability of the forecasting relationship is strikingly illustrated by the variation of the

return predictability coefficient over time. The estimates of κr are around 0.5 in the subsamples

ending in the late 1950s and in the samples ending in the early 1980s to the mid 1990s. In

contrast, κr is much smaller for the samples ending in the mid 1960s and is close to zero and

statistically insignificant in samples ending in the late 1990s and early 2000s. Similarly, the R2

of the forecasting regression displays instability with values ranging from 34% in 1982 to 0% at

the end of the 1990s (not shown). This evidence has led some researchers to conclude that the

dividend-price ratio does not forecast stock returns, or at least not robustly so. Not surprisingly,

the hypothesis of a constant regression coefficient is routinely rejected.

We also estimate a predictability regression for demeaned dividend growth rates:

∆dt+1 − d = κd(dpt − dp) + τ dt+1, (2)
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where dt denotes log dividends and d denotes the sample mean of dividend growth. Dividend

growth rates are even less forecastable than returns. For most of the sample, the point estimate

is not statistically significantly different from zero, and the regression R2 never exceeds 16%

(not shown). Interestingly, the dividend-price ratio at the end of the 1990s seems to forecast

neither stock returns nor dividend growth. This is a conundrum from the perspective of any

present value model (see Section 3.1), as also pointed out by Cochrane (2006).

[Figure 1 about here.]

The left two columns of Table 1, denoted “No Break,� report the coefficients κr and κd from

equations (1) and (2) and their asymptotic standard errors for the entire 1927-2004 sample, as

well as for various subsamples. The first row shows that the dividend-price ratio marginally

predicts stock returns (first column); the coefficient is significant at the 5% level if asymptotic

standard errors are used for inference. However, small sample standard errors computed from

a bootstrap simulation suggest that the coefficient κr is not statistically different from zero for

the entire sample.1 The dividend-price ratio does not forecast dividend growth at conventional

significance levels (third column). Thus, we cannot reject the hypothesis that the dividend-price

ratio forecasts neither dividend growth nor returns.

Rows 2 and 3 report the results for two non-overlapping samples that span the entire period:

1927-1991 and 1992-2004. We will justify this particular choice of subsamples in Section 3. The

estimates of κr display a remarkable pattern across subsamples: In both subsamples κr is much

larger than its estimate in the whole sample. In fact, the estimates are almost identical in the

two subsamples: .2353 in the 1927-1991 subsample compared to .2351 in the later 1992-2004

subsample. Yet, when we join the two subsamples, the point estimate drops to .094. In addition,

κr is strongly statistically significant in both subsamples but only marginally significant in the

whole sample. Confirming the instability of κr estimates, row 4 reports the results of a Chow

test, which rejects the null hypothesis of no structural break in 1991 at the 4% level. Finally,

the dividend growth forecasting relationship displays less instability, and the coefficient remains

insignificant in both subsamples.

1Asymptotic standard errors may be a poor indicator of the estimation uncertainty in small samples, and the
p-values for the null of no predictability may be inaccurate. The asymptotic corrections advocated by Hansen and
Hodrick (1980) have poor small sample properties. Ang and Bekaert (2001) find that use of those standard errors
leads to over-rejection of the no-predictability null. The bootstrap exercise imposes the null of no predictability
and asks how likely it is to observe the estimated κr coefficients reported in the first column of Table 1. We
find that the small sample p-value for κr is 6.8% compared to an asymptotic p-value of 4.1%. We also conduct
a second bootstrap exercise to find the small-sample bias in the return coefficient. Consistent with Stambaugh
(1999), we find an upward bias. If the true value is .094, the bootstrap exercise estimates a coefficient of .115.
Detailed results are available upon request. The empirical size of tests based asymptotic and bootstrapped
standard errors tend to be larger than their nominal size if the regressor is highly persistent (e.g. Amihud,
Hurvich, and Wang (2005). Alternative tests with better size properties weaken the evidence for forecastability
with the dividend price ratio further.
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The pattern of κr is not unique to the specific subsamples chosen. We obtain very similar

results when we use three non-overlapping subsamples: 1927-1954, 1955-1994, and 1995-2004

(bottom half of Table 1). Again, we find that the return predictability coefficient κr is estimated

to be much higher in each of the three subsamples than in the entire subsample. In row 5, the

predictability coefficient is .09, whereas it is .51, .38, and .53 in rows 6, 7, and 8 respectively.

Moreover, it is statistically significant in each subsample. Row 9 shows that we strongly reject

the joint null hypothesis of parameter stability in 1954 and 1994. For dividend growth, the

evidence is more mixed. We fail to reject the same null hypothesis of no breaks in 1954 and

1994, but the κd coefficient is marginally statistically different from zero in rows 7 and 8.

Finally, the last two columns repeat the analysis using returns in excess of a 90-day Treasury

bill rate instead of gross returns. The exact same findings hold for excess returns. In the rest of

the analysis, we proceed with gross returns only.

[Table 1 about here.]

We conclude that the forecasting relationship between returns and the dividend-price ratio

is unstable over time. Coefficient estimates of κr are almost identical in non-overlapping sub-

samples, but the point estimate for the whole sample is much lower than it is in each of the

subsamples. Next, we investigate what might explain this intriguing pattern of the regression

coefficients that links returns to past dividend-price ratios.

3 Steady-State Shifts and Forecasting

The macroeconomics literature has recently turned to models with persistent changes in funda-

mentals to explain the dramatic change in valuation ratios in the bull market of the 1990s. Most

such models imply a persistent decline in expected returns or an increase in the steady-state

growth rate of the economy. Lettau, Ludvigson, and Wachter (2004) argued that a persistent

decline in the volatility of aggregate consumption growth leads to a decline in the equity pre-

mium. Another class of models argues for persistent improvements in the degree of risk-sharing

among households or regions, either due to developments in the market for unsecured debt or the

market for housing-collateralized debt (Krueger and Perri (2005) and Lustig and Van Nieuwer-

burgh (2005b)). In the model of Lustig and Van Nieuwerburgh (2005c), the improvement in

risk sharing implies a persistent decline in the equity premium. McGrattan and Prescott (2005)

argued that persistent changes in the tax code can explain the persistent decline in the equity

premium. Lastly, models of limited stock market participation argue that the gradual entry

of new participants has persistently depressed equity premia (Vissing-Jorgensen (2002), Calvet,

Gonzalez-Eiras, and Sadini (2003), and Guvenen (2003)). Other models argue that there was
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a persistent increase in the long-run growth rate of the economy in the 1990s (Quadrini and

Jermann (2003) and Jovanovic and Rousseau (2003)). The first set of models lower the long-

run required return of equity (r), the last set of models raise the long-term growth rate of the

economy (d). A intuition based on the Gordon growth model implies that either effect lowers

the steady-state level of the dividend-price ratio dp. In this section, we augment the Campbell-

Shiller framework for such changes in dp, we estimate these shifts in the data, and explore their

implications for return predictability.

3.1 Changes in the Mean of Price Ratios

The standard specification of stock returns and forecasting variables assumes that all processes

are stationary around a constant mean. For example, Stambaugh (1986, 1999), Mankiw and

Shapiro (1986), Nelson and Kim (1993), and Lewellen (1999) considered the following model:

rt+1 = r̄ + κryt + τ rt+1 (3)

yt = ȳ + vt. (4)

The mean of the forecasting variable yt, ȳ, is constant and the stochastic component vt is

assumed to be stationary, often specified as an AR(1) process. Means of financial ratios are

determined by properties of the steady-state of the economy. For example, the mean of the

log dividend-price ratio dp is a function of the growth rate d of log dividends and expected log

return r in steady-state:

dp = log(exp(r)− exp(d))− d, (5)

whereas the stochastic component depends on expected future deviations of returns and dividend

growth from their steady-state values (Campbell and Shiller (1988)):

dpt = dp+ Et

∞
∑

j=1

ρj−1
[

(rt+j − r)− (∆dt+j − d)
]

, (6)

where ρ = (1 + exp(dp))−1 is a constant. Similar equations can be derived for other financial

ratios (e.g., Vuolteenaho (2000)). Berk, Green, and Naik (1999) show how stock returns and

book-to-market ratios are related in a general equilibrium model.

A crucial assumption is that the steady-state of the economy is constant over time: The

average long-run growth rate of the economy as well as the average long-run return of equity

are fixed and not allowed to change. However, if either the steady-state growth rate or expected

return were to change, the effects on financial ratios and their stochastic relationships with

returns would be profound. Even relatively small changes in long-run growth and/or expected
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return have large effects on the mean of the dividend-price ratio, as can be seen from (5). The

effects of steady-state shifts on other valuation ratios, such as the earnings-price ratio and the

book-to-market ratio, are similar. In this paper, we entertain the possibility that the steady

change of the U.S. economy has indeed changed since 1926, and we study the effect of these

changes on the forecasting relationship of returns and price ratios.

A steady-state is characterized by long-run growth and expected return. Any short-term

deviation from steady-state is expected to be only temporary and the economy is expected to

return to its steady-state eventually. Thus, steady-state growth and expected return must be

constant in expectations, but the steady-state might shift unexpectedly. Correspondingly, we

assume that Etrt+j = rt, Etdt+j = dt, Etdpt+j = dpt.
2

The log linear framework introduced above illustrates the effect of time-varying steady-states,

though none of our results depend on the accuracy of the approximation. Just as in the case with

constant steady-state, the log dividend-price ratio is the sum of the steady-state dividend-price

ratio and the discounted sum of expected returns minus expected dividend growth in excess of

steady-state growth and returns 3:

dpt = dpt + Et

∞
∑

j=1

ρj−1t

[

(rt+j − rt)− (∆dt+j − dt)
]

, (7)

where ρt = (1 + exp(dpt))
−1. The important difference of (7) compared to (6) is that the

mean of the log dividend-price ratio is no longer constant. In fact, it not only varies over time

but it is non-stationary. If, for example, the steady-state growth rate increases permanently,

the steady-state dividend-price ratio decreases and the current log dividend-price ratio declines

permanently. While the log dividend-price ratio contains a non-stationary component it is

important to note that deviations of dpt from steady-states are stationary as long as deviations

of dividend growth and returns from their respective steady-states are stationary, an assumption

we maintain throughout the paper.4 In other words, the dividend-price ratio dpt itself contains

2Although the log dividend-price ratio is a nonlinear function of steady-state returns and growth, we assume
that the steady-state log dividend-price ratio is also (approximately) a martingale: Etdpt+j = dpt. This as-
sumption is justified for the specific processes for steady-state returns and growth that we will consider below.
Appendix C spells out a simple asset pricing model where the price-dividend ratio in levels follows a (bounded)
martingale. It shows that dp and d are approximate (bounded) martingales.

3Appendix B presents a detailed derivation. Under our assumption, the log approximation in a model with
time-varying steady-states is as accurate as the approximation for the corresponding model with constant steady-
state. In fact, the ex-ante expressions of the approximate log dividend-price ratio (6) and (7) are exactly the
same. Only their ex-post values are different in periods when the steady-state shifts.

4Of course, in a finite sample it is impossible to conclusively distinguish a truly permanent change from
an extremely persistent one. Thus, our insistence of non-stationarity might seem misguided. However, the
important insight is that the dividend-price ratio is not only a function of (less) persistent changes in expected
growth rates and expected returns that could potentially have cyclical sources but is also affected by either
extremely persistent or permanent structural changes in the economy. This distinction turns out be very useful,
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a non-stationary component dpt but the appropriately demeaned dividend-price ratio dpt − dpt
is stationary. The implications for forecasting regressions with the dividend-price ratio are

immediate. First, in the presence of steady-state shifts, a non-stationary dividend-price ratio

is not a well-defined predictor and this non-stationarity could be the cause for the empirical

patterns described in the previous section. Second, the dividend-price ratio must be adjusted

to remove the non-stationary component dpt to render a stationary process.

While we emphasized the effect of steady-state shifts on the dividend-price ratio, the intuition

carries through to other financial ratios. Changes in the steady-state have similar effects on the

earnings-price ratio and the book-to-market ratio. However, other permanent changes in the

economy, such as changes in payout policies, could affect different ratios differently. In the

following section, we provide evidence that steady-state shifts have occurred in our sample and

propose simple methods to adjust financial ratios for such shifts.

3.2 steady-state Shifts in the Dividend-Price Ratio

Has the steady-state relationship of growth rates and expected returns shifted since the beginning

of our sample in 1926? If so, have these shifts affected the stochastic relationship between returns

and price ratios? In this section we use econometric techniques that exploit the entire sample to

detect changes in the steady-state. In section 5, we study how investors in real-time might have

assessed the possibility of shifts in the steady-states without the benefit of knowing the whole

sample. In both cases, there is strong empirical evidence in favor of changes in the steady-state

and we find that such changes have dramatic effects on the forecasting relationship of returns

and price ratios. We suggest a simple adjustment to the dividend-price ratio and revisit the

forecasting equations from Section 2. We first study shifts in the dividend-price ratios in detail

and consider alternative ratios in section 4.

Our econometric specification is directly motivated by the framework that allows for changes

in the steady-state laid out in the previous section. Equation (7) implies that the log dividend-

price ratio is the sum of a non-stationary component and a stationary component. In this

section, we model the non-stationary component as a constant that is subject to rare structural

breaks as in Perron (1989).

The full line in each of the panels of Figure 2 shows the log dividend-price ratio from 1927

to 2004. Visually, the series displays evidence of non-stationarity. Especially the bull market of

the 1990s seems hard to reconcile with a stationary model. The dividend-price ratio has risen

as we will show in the remainder of the paper. In this sense our assumption of true non-stationarity can be
regarded to include “extremely persistent but stationary.” In a finite sample, the conclusions will be the same in
either setting. The distinction of “permanent” versus “extremely persistent” is important, however, for structural
asset pricing models because permanent shocks might have much larger impact on prices than very persistent
ones.
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since, but at the end of our sample in 2004, prices would have to fall an additional 46% for the

dividend-price ratio to return to its historical mean. A first explanation we entertain is that

the bull market of the 1990s represents a sequence of extreme realizations from a stationary

distribution.

[Figure 2 about here.]

The solid line in Figure 3 shows the smoothed empirical distribution of the log dividend-

price ratio dpt. This distribution has a fat left tail, mainly due to the observations in the last 15

years. To investigate whether this is a typical plot from a stationary distribution, we conduct

two exercises. Following Campbell, Lo, and MacKinlay (1997), Stambaugh (1999), Campbell

and Yogo (2002), Ang and Bekaert (2001), and many others we estimate an AR(1) process

for the log dividend-price ratio. First, in a bootstrap exercise, we draw from the empirical

distribution with replacement. The smoothed bootstrap distribution is the dash-dotted line

in the figure. Second, we compute the density of dpt using Monte Carlo simulations from an

estimated AR(1) model with normal innovation. This density is plotted as the dashed line. The

graph shows that neither the bootstrap nor the Monte Carlo can replicate the fat left tail that

we observe in the data. Interestingly, the stationary model also cannot generate the right tail

of the empirical distribution. In summary, it is unlikely that the dpt data sample from 1927 to

2004 was generated by a stationary distribution.

[Figure 3 about here.]

An alternative explanation is that the long-run mean of the log dividend-price ratio is subject

to structural breaks. To investigate this possibility, we test the null hypothesis of no break

against the alternative hypotheses of one or two breaks with unknown break dates. Table 2

reports sup-F test statistics suggested by Perron (1989). The null hypothesis of no break is

strongly rejected (the p-value is less than 1%) in favor of a break in 1991 or two breaks in

1954 and 1994. While the evidence against no breaks is very strong, the question whether the

dividend-price ratio is subject to one or two breaks does not have a clear answer. The sup-F

test of the null of a single break against the alternative of two breaks is rejected at the 10% level

but not at the 5% level. The null of two breaks against the alternative of three breaks is not

rejected (not shown). Alternatively, one can use an information criterion to select the number

of breaks. Both the Bayesian Information Criterion (BIC) and the modified Schwartz criterion

proposed by Liu, Wu, and Zidek (1997) (LWZ) favor two breaks. In summary, the data seem to

strongly favor one or two breaks, rather than zero or three, but the relative evidence for one or

two breaks is not as strong and only slightly in favor of two breaks.

[Table 2 about here.]
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The table also reports the estimated change in the log dividend-price ratio before and after

the break. In the one-break case, the change in dp is -.86, whereas in the two-break case, the

first change in 1954 is -.37 and the second change is -.78. The two plots in the left column

of Figure 2 overlay the long-run mean dp on the raw dp series. For now, we are agnostic as

to whether the break(s) is (are) due to a change in the long-run mean of dividend growth or

expected returns, or a combination of the two. We return to this question later. It is worth

emphasizing, however, that the date(s) of the shift in the dividend-price ratio is (are) consistent

with the breaks in the equity premium identified by Pastor and Stambaugh (2001).

This result motivates us to construct two adjusted dividend-price series, one for the one-

break case and one for the two-break case. For each, we simply subtract the mean in the

relative subsample(s). In the one-break case with break date τ , the adjusted ratio is defined as

˜dpt =

{

dpt − dp1 for t = 1, ..., τ

dpt − dp2 for t = τ + 1, ..., T ,
(8)

where dp1 is the sample mean for 1927-1991 and dp2 is the sample mean for 1992-2004. The

adjusted dp ratio in the two-break case is defined analogously. The right column of Figure 2

illustrates this procedure graphically.

The bottom half of Table 2 compares the autocorrelation properties of the unadjusted and

adjusted dp series. As is well known, the raw dp series is very persistent. The first and second

order autocorrelations are .91 and .81. The null hypothesis of a unit root cannot be rejected,

according to an Augmented Dickey Fuller (ADF) test (third column). In contrast, the two

adjusted ˜dp series are much less persistent; the first order autocorrelation drops to .77 and .61,

respectively. The null of a unit root in the adjusted series is rejected at the 4% and 1% levels.

Interestingly, the volatility of the adjusted series is only half as large as for the adjusted series

(last column). This substantially alleviates the burden on standard asset pricing models to

match the volatility of the price-dividend ratio, once the non-stationary nature of the mean dp

ratio has been taken into account.

3.3 Forecasting with the Adjusted Dividend-Price Ratio

We now revisit the return and dividend growth predictability equations (1) and (2), but use

the adjusted dividend-price ratios instead of the raw series as predictor variable. The second

and fourth columns of Table 1 show the estimation results of the return and dividend growth

predictability regressions using ˜dp, respectively. Rows 1-4 are for the one-break case; rows 5-9

are for the two-break case. Starting with the one-break case, because the adjusted dividend-

price ratio is the same as the raw series with each subsample, the results in rows 2 and 3
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are unchanged. But now in row 1, we find that the adjusted dividend-price ratio significantly

predicts stock returns. The coefficient for the entire sample is .235, which is almost identical

to the estimates in the two subsamples. Thus the low point estimate for κr in the first column

was due to averaging across regimes. Not taking the non-stationarity of the dp ratio into

account severely biases the point estimate for κr downwards. Furthermore, row 4 shows that

the evidence for a break in the forecasting relationship between returns and the dividend-price

ratio has disappeared. The null hypothesis of parameter stability can no longer be rejected

when using ˜dp. The full sample regression R2 is 10%, more than twice the value of the first

column. The results for dividend growth predictability remain largely unchanged. This is not

surprising given that we did not detect much instability in the relationship between ∆dt+1 and

dpt to begin with.

The rolling window estimates confirm this result.5 The middle panel of Figure 1 shows that

the coefficient κr is much more stable in the one-break case than in the no-break case (top panel).

In particular, its value in the 1990s hovers around .3, compared to 0 without the adjustment.

Likewise, the regression R2 is also more stable and does not drop off in the 1990s. The same

exercise shows that the dividend growth relationship is stable and that κd never moves far from

zero (not shown). The evidence for dividend growth predictability is weak at best.6

The bottom panel of Table 1 uses˜dp, adjusted for breaks in 1954 and 1994. The full sample

estimate for κr is now .455 (row 5) and highly significant.7 The full sample regression R2 is

22%. In contrast, dividend growth is not predictable. The bottom panel of Figure 1 shows that

the rolling estimates for κr are very stable when we use ˜dp adjusted for two breaks. The point

estimate hovers around .4 and the return regression R2 goes up as high as 40%. Moreover, the

Chow test in row 9 finds no evidence for instability in either forecasting equation.

We conclude that taking changes in the long-run mean of the dividend-price ratio into ac-

count is crucial for forecasts of stock returns. Forecasting with the unadjusted dividend-price

ratio series results in coefficient instability in the forecasting regression and unreliable inference

(insignificance in small samples, and results depending on the subsample). These disconcerting

properties are due to a non-stationary component that shifts the mean of the dividend-price

ratio. In Section 3.1 we extended the model to allow for such non-stationarity in dp. In this

5In the rolling window estimation we assume that the break in dp is caused by a break in mean expected
returns r̄. The alternative assumption that the break is in the long-run growth rate of the economy ḡ gives
identical results.

6The lack of predictive power of the dividend-price ratio for dividend growth does not imply that dividend
growth is not forecastable because any correlated movement in expected returns and expected dividend growth
cancels in d− p, as shown in Lettau and Ludvigson (2005).

7A bootstrap analysis confirms that the small sample p-value (asymptotic p-value) is 1.11% (0.00%) in the
one-break case and 0.00% (0.00%) in the two-break case. A second bootstrap exercise shows that the small
sample bias in the coefficients is small relative to their magnitude. In the one-break case, the bias is .019 (we
estimate .254 when the true coefficient is .235). In the two-break case, the bias is .013 (we estimate .468 when
the true value is .455). Detailed results are available upon request.
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section we examined a simple form of non-stationarity, a structural break. Appropriately ad-

justing the dividend-price ratio for the structural break strengthens the evidence for return

predictability, but not dividend growth predictability. The predictability coefficient is stable

over time and least squares coefficient estimates are highly significant. Finally, the in-sample

return predictability evidence stands up to the usual problem of persistent regressor bias (Nelson

and Kim (1993), Stambaugh (1999), Ang and Bekaert (2001) and Valkanov (2003)) because the

adjusted dividend-price ratio is much less persistent.

4 Other Financial Ratios

While the dividend-price ratio has been the classic prediction variable at least in the academic

literature, it is useful to investigate to what extent our results are robust to a different measure of

payouts. Lamont (1998) finds that the log earnings-price ratio ep forecasts returns. We find very

much the same patterns for the earnings-price ratio as for the dividend-price ratio. The earnings

data start in 1946 and are described in Appendix A. The book-to-market ratio is computed from

the same earnings and dividend data using the clean-surplus method (Vuolteenaho (2000)).

[Table 3 about here.]

Table 3 shows that the null hypothesis of no structural break in the ep ratio is strongly

rejected in favor of one or two breaks (first row). The Perron test estimates a 1990 break date

in the one-break case and 1953 and 1994 break dates in the two-break case. These line up

almost perfectly with the dp break dates in Table 2. One other often used valuation ratio, the

log book-to-market ratio (bm) also displays strong evidence of two breaks with similar break

dates in 1953 and 1990 (row 2). Clearly, there is evidence for a permanent or strongly persistent

component in all valuation ratios.

Some researchers have argued that there were persistent changes in firms’ payout poli-

cies in the 1990s and have argued to adjust dividend-price ratios for repurchases (Fama and

French (2001), Grullon and Michaely (2002), and Boudoukh, Michaely, Richardson, and Roberts

(2004)). First, we find no evidence for a break in the payout ratio de = d− e at the 10% level

(row 3 of Table 2). This is consistent with the view that both dp and ep contain structural

breaks. Second, even if there was a break in the de ratio and we took the point estimate for

de in the subsamples, we would find that more than three-fourths of the change in the mean

dividend-price ratio comes from a change in the mean earnings-price ratio and less than one-

fourth from a change in de (dp = ep+de). In particular, for our S&P 500 sample from 1946-2004

with a 1991 break date, we find a change in dp of -.81, a change in ep of -.63, and a change in

de of -.18.
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To further investigate the role of repurchases and the role of a changing composition in CRSP,

we consider two additional valuation ratios. First, we consider the CRSP universe without

NASDAQ stocks. Arguably, removing NASDAQ stocks goes a long way towards eliminating

new economy and non-dividend paying companies that became more prevalent in the 1990s.8

We compute the dividend-price ratio, dpnas, and the dividend growth for this group. This time

series has properties very similar to those of the series with the NASDAQ. The Perron tests in

row 5 of Table 3 show a break of -75% in 1992, close to the -86% change in the full sample series

in 1991. For the two-break case, the break dates and magnitudes are also very similar: 1954

and 1995 and -35% and -70%.

Second, we use the Boudoukh, Michaely, Richardson, and Roberts (2004) repurchase yield

data, available from 1971 onwards, and construct a corrected dividend-price ratio and dividend

growth rate series. We label this repurchase-adjusted dividend price series dprep.9 The case

favored by the data is a three-break case with break dates in 1957, 1973, and 1990 (see last row

of Table 3). We show below that these two adjustments do not materially affect our predictability

results with the standard dividend-price ratio presented earlier. This leads us to conclude that

structural changes in payout policies and/or the composition of firms in the 1990s can only

explain a small part of the change in the dividend-price ratio.

We first turn to the forecasting regressions with the earnings-price ratio. When we use the

earnings-price ratio as a return predictor, we obtain similar results to what we reported for

the dividend-price ratio in Table 1. The first row of Table 4 shows that when the unadjusted

earnings-price ratio is the independent variable, the slope coefficient is .119. Just as in the

dividend-price ratio regressions, this coefficient displays parameter instability among subsam-

ples: The full sample point estimate is lower than the estimates in all subsamples, and the Chow

test of no break has a p-value of only .15 (not shown). The next two columns show that this bias

is due to averaging over subsamples. Once we use the adjusted ẽp ratio, the instability disap-

pears and the full sample point estimate increases to .215 in both the one-break and two-break

case. These coefficients are twice the size of the ones obtained with the unadjusted ep ratio and

are measured precisely. The regression R2 almost doubles. The slope coefficient is very similar

to the one we found in the first panel of Table 1: κr = .235. One difference from the results

8Fama and French (2001) document that the fraction of non-financial, non-utility firms that paid dividends
declined by almost 45% between 1978 and 1999. However, most of that decline is attributable to new firms and
to small firms. They write: “The characteristics of dividend payers (large profitable firms) do not change much
after 1978.” We take this group to be the value-weighted CRSP index without NASDAQ stocks. This series
starts to deviate from the full sample series in 1973. We verified that the dividend growth rate of this set of firms
did not change in the 1990s. Average dividend growth from 1927-1991 was 5.45%. Average dividend growth
from 1992-2004 was 5.46%.

9We note that this is just one possible adjustment. The correct adjustment depends on the investor under
consideration. Here, an investor’s cash flows are adjusted for aggregate repurchases, but not for seasoned equity
offerings nor initial public offerings.
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in Table 1 is that the adjusted earnings-price ratio also significantly forecasts earnings growth,

with a negative sign (not shown).

[Table 4 about here.]

For the unadjusted lagged log book-to-market ratio bm = b−m, we find that the predictabil-

ity coefficient κr is only marginally significant. The point estimate is .07, lower than the point

estimates in the subsamples 1927-1952 (.26), 1953-1990 (.44), and 1991-2004 (.72), all of which

are strongly significant. Again, this downward bias is due to averaging over the break(s). The

full sample point estimate increases to .255 with the one-break adjusted ˜bm series as regressor

and to .308 with the two-break adjusted ˜bm series. The regression R2 increases from 3% in the

first column to 19% in the third column.

The return predictability findings for dpnas and dprep are also similar to the benchmark dp

results. First, using dpnas without break adjustment, we find a point estimate for κr of .11. This

point estimate is lower than in either subsample (.24 for 1927-1992 and .30 in 1993-2004). Once

we use the break-adjusted series, the point estimate more than doubles to .250. Just as for the

standard dp ratio, the downward bias comes from averaging over the break. The break-adjusted

point estimate is close to the .235 we found for the sample that includes the NASDAQ. We

obtain further increases in the point estimate and the R2 in the two-break case. Second, using

dprep, the full sample return predictability coefficient is .19, higher than the .09 for the standard

dp series, but again lower than in either subsample (.25 in 1927-1990 and .53 in 1991-2004).

Clearly, adjusting for repurchases improves the forecasting power of the dp ratio. However,

adjusting for the breaks is important and further strengthens the case for predictability. In the

preferred case of three breaks, the predictability coefficient is .58, three times its unadjusted

value. The regression R2 is also three times higher.

We conclude that the other financial ratios indicate a predictability pattern similar to that

of the dividend-price ratio. Without an adjustment for the change in their long-run mean

and the relationship between one-year ahead returns and the financial ratios is unstable over

time. However, once we filter out the non-stationary component, we find a stable forecasting

relationship and a large predictability coefficient. The fact that the results are so similar for

earnings and dividend data suggests that an explanation that exclusively rests on changing

payout policies misses the most important structural changes in the economy: changes in long-

run growth rate or long-run expected returns.

5 Out-Of-Sample Predictability

The in-sample predictability results presented so far used a break adjustment constructed from

the entire data sample. In this section we investigate how an investor who forms an adjusted
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dividend-price ratio in real time fares in predicting out-of-sample returns. We compare the out-

of-sample forecasting properties of the adjusted dividend-price ratio to the unadjusted series

and the random walk model. We find that a real time dividend-price ratio adjustment yields

uniformly smaller prediction errors compared to the unadjusted series and slightly larger forecast

errors than the random walk model.

Why does the real time prediction errors fail to beat the random walk model? In real time

an investor faces two challenges. First, she has to estimate the timing of a break. Second, if she

detects a new break, she has to estimate the new mean after the break occurred. If the new break

occurred towards the end of the sample that the investor has access to, the new mean can only

be estimated using a small number of observations and is subject to significant uncertainty. To

investigate which issue is responsible for the deterioration of the out of sample forecasting power,

we consider two additional exercises. In the first exercise, the investor predicts out-of-sample

using the ex-post adjusted dividend-price ratio series from section 3.1. In this case, we endow the

investor with information about the break dates and estimated means from the entire sample,

thus this case is not a pure out-of-sample test. However, it sets an informative benchmark for the

analysis of the pure out-of-sample forecasts. In a second exercise, we consider a regime-switching

model where the investor estimates the break dates (regime switching probabilities) in real time,

but not the regime means. Again, this case is not a pure out-of-sample forecast since we endow

the investor with information about the means that stems from the entire sample. Yet, it allows

us to study the relative difficulty of estimating the break dates versus estimating the means

relative to the pure out-of-sample forecasts and the ex-post adjusted dividend price ratio.

The conclusions from these two exercises are that (i) the estimation of the break dates in

real time is not crucial and the resulting prediction errors are smaller than for the random walk

model, and (ii) that the estimation of the magnitude of the break in the mean dividend-price

ratio entails substantial uncertainty, and is ultimately responsible for the failure of the real

time out-of-sample predictions to beat the random walk. These findings can explain the lack of

out-of-sample predictability documented by Goyal and Welch (2004).

5.1 Real-Time Dividend Price Adjustments

Before showing the estimation results, we confirm our earlier conclusion (based on ex-post data,

see Figure 3) that it is extremely unlikely that the dividend-price ratio sample is drawn from

a stationary distribution, based on real-time data only. Figure 4 shows a recursive (i.e., real-

time) estimation of the empirical distribution of the log dividend-price ratio. In each year, the

investor estimates an AR(1) model for dp, using data up to the current year. She then bootstraps

from the available sample to compute the empirical distribution of the log dividend-price ratio.

Each year she recomputes the 2.5, 5, 95, and 97.5 percentiles of the bootstrapped distribution
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(dashed and dotted lines in the figure). The figure also plots the realized dividend-price ratio, in

deviation from its recursive sample mean (full line). By 1958, the investor is quite confident that

the realized dividend-price ratio is far below the mean; it hits the 2.5 percentile of the empirical

distribution. Likewise, in 1994, the observed dividend-price ratio falls in the 2.5% tail of the

distribution. Between 1995 and 1999, the investor is almost certain that the observed dividend-

price ratio has not been drawn from a stationary distribution. Interestingly, these ‘crossing’

dates are almost identical to the break dates estimated in the previous sections. This shows

that the permanent changes in the dividend-price ratio that were identified by the ex-post break

tests do not rely on having the benefit of the entire sample through 2004. Even an investor in

real-time would have concluded that extreme observations of dividend-price ratios are unlikely

to be generated by a stationary process with constant parameters.

[Figure 4 about here.]

Next we construct a real-time adjustment of the dividend-price ratio that can be used in out-

of-sample forecasting tests. In each year T ′ ≤ T , the investor estimates the Perron structural

break test using data available up to year T ′ using one of the three tests: the sequential sup-F

test with a 10% critical value, the BIC criterion, and the LWZ criterion. Given the break dates

and corresponding means, the real-time adjustment of the dividend-price ratio is analogous to

the adjustment using the entire sample in (8), with the exception that only data up to date T ′

instead of T are used in the estimation. Denote this corrected ratio ̂dp
P

t,T ′ , t = 1, ..., T ′. The

out-of-sample return forecast for period T ′ + 1 is then computed from a regression of returns

rt+1 on̂dp
P

t,T ′ for t = 1, ..., T ′− 1 and the currently observed adjusted dividend-price ratiôdp
P

t,T ′ .

To gauge the relative difficulties of estimating the timing of a break versus the estimation

of the means, we also a “pseudo� real-time adjustment based on a Hamilton (1989) regime-

switching model in real-time. The dividend-price ratio is assumed to follow an AR(1) with a

different mean in either two regimes (one-break case) or three regimes (two-break case). While

the probability of being currently in a given regime is estimated in real time, the means in the

different regimes are estimated using the entire sample.

The top panel of Figure 5 shows the real-time estimate of the probability that the dividend-

price ratio is drawn from the low regime, when two regimes are considered. Starting in 1990, the

investor puts non-zero probability on a shift to the low d− p regime. By 1995, she is more than

50% certain that the shift occurred. The dp estimates for the two regimes coincide with our

ex-post estimates because they use the entire data sample. When she considers three regimes

instead, the investor increases the probability of a switch from the high to the middle dp regime

in 1954. By 1960 she is more than 50% certain that the first shift occurred (see middle panel of

Figure 5). In 1990, she starts to attribute probability mass to the low-p regime, and by 1996, she

is more than 50% confident that the economy left the middle-dp regime for the low-dp regime.
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The Hamilton-adjusted dividend price ratio ̂dp
H

t is constructed by subtracting the average of

the means of each regime weighted by the time-t probability of each regime from dpt.

[Figure 5 about here.]

5.2 Out-Of-Sample Forecast Errors

We follow the approach taken by Goyal and Welch (2003) and predict one-year ahead returns

with the lagged price-dividend ratio. The first forecasting regression uses 20 years of data, so

that the first forecasted return is the one in 1946. For all future years we use expanding windows

and compare three different forecasters. The first is the current sample mean return implied by

the “naive� random walk model. The second is the standard unadjusted dividend-price ratio

dp. The third is the break-adjusted dividend-price ratio. To explain the results, we use several

alternatives for the break-adjusted series.

Panel 1 of Table 5 reports the mean absolute forecast error and the root mean-squared

forecasting error. Comparing the second to the first row, we confirm the result of Goyal and

Welch (2003): The random walk model has superior out-of-sample properties compared to the

standard dividend-price ratio specification. The latter’s prediction errors are almost 1% per

year higher.

[Table 5 about here.]

The third through fifth rows report the real-time adjusted dividend-price ratiôdp
P
obtained

from the Perron procedure. For all three criteria for dating the breaks, sup-F , BIC and LWZ, the

prediction errors of the adjusted series are lower than those obtained from suing the unadjusted

series (row 2) but the out-of-sample prediction errors are larger than for the random walk model.

The sequential sup-F test has the lowest mean absolute error (MAE) while the BIC criterion

delivers the lowest root mean squared error (RMSE).

It is instructive to contrast these results with those from the Hamilton adjusted series and

the ex-post adjusted series. Rows six and seven in Panel 1 of Table 5 show that the use of the

ex-post adjusted dividend-price ratios ˜dp substantially reduces the forecasting error. The MAE

and RMSE of the dividend-price ratio adjusted for a single break in 1991 are lower than those

for the random walk model. The out-of-sample forecasting power of the dividend-price ratio

adjusted for two breaks in 1954 and 1994 is dramatically improved compared to the unadjusted

ratio and to the random walk model. The RMSE and MAE are reduced by 12-15% compared to

the random walk model. The out-of-sample prediction errors with the Hamilton adjusted series
̂dp

H
are only slightly higher than those with the ex-post break adjustment. Row nine (eight)

shows that the RMSE usinĝdp
H
in the three-regime (two-regime) case is 15.09% (15.90%), lower
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than the random walk model (16.05%) and the model with the unadjusted dp ratio (16.85%).

The same is true for the MAE. So, using the Hamilton break-adjusted dividend-price ratio to

predict returns also leads to substantially lower errors than the random walk model.

Where does the discrepancy between the Hamilton and the Perron procedures come from?

In the Hamilton adjustment, the investor estimates the probability of each regime in real time

but has access to the entire time series to estimate the mean dp ratio in the different regimes.10

In the Perron procedure, the investor not only estimates the break dates in real-time, but also

the long-run mean in the current regime. Clearly, estimating that new long-run mean based on

a few data points incurs a lot of measurement error. For example, if the Perron investor in 2001

detects a break in 1995, she only has six data points to estimate the new dp
P
. The difficulty in

estimating this mean is what accounts for the increase in prediction error between the Hamilton

and the Perron procedures.

In sum, we reconcile strong in-sample predictability with the findings of lack of out-of-sample

predictability. We show that difficulties in estimating the size of the break are responsible for

the lack of out-of-sample predictability.

6 Long-Horizon Predictability

An important component of the empirical work on return predictability uses long-horizon re-

gressions. In this section we provide a framework for analyzing long-horizon predictability. We

use the ex-post dividend-price ratio as the predictor and derive theoretical restrictions that link

return and dividend growth to lagged dividend-price ratios at different horizons. Rather than

estimating regressions for various horizons separately, the advantage of this approach is that

fewer parameters have to be estimated. Moreover, the restrictions impose that the estimates

across horizons are consistent with each other.

Recall the return and dividend growth predictability equations (1) and (2)

r̃t+1 = κr˜dpt + τ rt+1 (9)

∆d̃t+1 = κd˜dpt + τ dt+1, (10)

where variables with a tilde are appropriately demeaned and stationary. Subtracting (10) from

(9) and using the log-linear approximation for log returns r̃t+1 =˜dpt−ρ˜dpt+1+∆d̃t+1 yields the

10A satisfactory resolution that avoids any look-ahead bias in the Hamilton model would be to conduct a full
Bayesian analysis in which the investor estimates the number of regimes, the regime switching dates, and their
associated long-run means based on real-time available data and prior information. Pettenuzzo and Timmermann
(2004) have worked out such an estimation in the context of an asset allocation problem.
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implied AR(1) process for the dividend-price ratio in (11):

˜dpt+1 = φ˜dpt + τ dpt+1 , where (11)

1− ρφ = κr − κd (12)

where the innovations are linked by ρτ dpt+1 = τ dt+1− τ rt+1. The model imposes a non-linear present

value restriction (12) on the predictability coefficients κr and κd. Because ρ < 1 and stationarity

implies |φ| < 1, κr − κd must be positive. This is another way of saying that either returns

(κr 6= 0) or dividend growth (κd 6= 0) have to be forecastable (or both). Most researchers work

with equations (9) and (11); we work with (9) and (10) instead because long-horizon restrictions

are more easily derived in this case. Iterating forward on equations (9) and (10), we obtain the

(annualized) H-period dividend growth and return forecasting equations

1

H

H
∑

j=1

r̃t+j = κr(H)˜dpt + τ rt,t+H (13)

1

H

H
∑

j=1

∆d̃t+j = κd(H)˜dpt + τ dt,t+H , (14)

where

κd(H) = κd
1

H

(

1− φH

1− φ

)

(15)

κr(H) = κr
1

H

(

1− φH

1− φ

)

. (16)

Let N be the number of horizons H > 1. Then the joint system of one-year ahead and H-year

ahead predictability regressions for returns and dividend growth contains 2 + 2N equations but

only two free parameters (κd, κr). The parameter φ is implied by the present value constraint

(12). The typical approach in the literature is to estimate univariate long-horizon return pre-

dictability equations without imposing these restrictions. Instead, we estimate the entire system

of long-horizon return and dividend growth regressions jointly. This estimation procedure not

only takes the high correlation of return regression coefficients at different horizons, pointed

out by Boudoukh, Richardson, and Whitelaw (2005), explicitly into account. It also takes the

present value relationship (12) explicitly into account.

The estimation routine we describe below finds parameters to match the entire ‘term struc-

ture’ of univariate predictability coefficients. Figure 6 illustrates this procedure for H =

{1, 3, 5, 7, 10}. The top panel plots the univariate predictability coefficients obtained from

standard OLS regressions of H-year ahead returns and dividend growth on the unadjusted
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dividend-price ratio dp, as well the predictability coefficients (κd(H), κr(H)) implied by the

joint estimation of the system of equations. To match the pattern of the ten OLS predictability

coefficients, the optimization routine chooses a value for κr above the value from the one-year

ahead univariate regression.

[Figure 6 about here.]

We start by estimating the one-period ahead equations for returns and dividend growth (9-

10). These are the same equations we estimated in Section 3.3, but the additional restriction

provides two new insights. First, the estimation delivers a value for the autocorrelation coefficient

of the dividend-price ratio φ because we impose the present value constraint (12). Second, we

use the break adjusted series ˜dp from Section 3 in the estimation.

Because return and dividend growth series were demeaned by their sample averages, the

previous sections implicitly assumed a break in dp without associated break in r or d. The

model tells us that a break in dp must be associated with a break in either r or d, or both. First,

we assume that d is constant and focus on changes in the expected returns, consistent with the

evidence on breaks in the equity premium in Pastor and Stambaugh (2001). The change in r̄

implied by the the change in dp can be inferred from r̄t = (1 + d) exp(dpt) + d. The top panel

of Table 6 shows how large the change in r is (row 2) corresponding to the change in the mean

dividend-price ratio in the data (row 1). The left panel is for the one-break case, the right panel

for the two-break case. The observed change in dpt implies a decline in mean expected returns

of 2.6% in 1991 or a dual decline of 1.7% in 1954 and 2% in 1994, assuming long-run dividend

growth did not change. Alternatively, it can stem from an increase in long-run dividend growth

of 2.5% in 1991 or a dual increase of 1.6% in 1954 and 2% in 1994, when mean expected returns

are held constant. In the results reported below, we choose to correct rt, but this choice turns

out to be unimportant for the point estimates.11 The second panel reports the change in the

mean earnings-price ratio in the various subsamples, as well as the implied change in the long-

run mean return or long-run mean dividend growth rate. Appendix A describes how the latter

two are computed. We find that the change in the mean return of -2.47% that accounts for the

change in the earnings-price ratio ep (bottom panel) is very similar to the -2.60% change that

accounted for the change in the dividend-price ratio dp (top panel). The same is true when the

long-run growth rate does all the adjustment.

[Table 6 about here.]

11The reason is that returns and dividend growth are very volatile, compared to the change in their mean
implied by the change in dp. For the same reason, the results reported below are virtually identical if we assume
that the break takes place in d instead. This validates the results in Section 3.3.

22



Panel A of Table 7 reports the estimation of the one-year ahead system. Row 1 uses the

unadjusted dp series, whereas rows 2 and 3 use the adjusted series ˜dp for the one-break and

two-break case respectively. The GMM estimation uses the OLS normal conditions to estimate

κd and κr. Therefore, the point estimates are identical to the ones reported in Table 1. Three

differences are worth pointing out. First, the adjustment in r̄ delivers slightly lower standard

errors for κr in rows 2 and 3. Second, as foreshadowed by Table 2, the point estimates for φ are

substantially lower when we use the adjusted dividend-price ratio: .81 and .69 in rows 2 and 3

compared to .95 in row 1. Third, the first number in the last column reports the violation of

the present value constraint (12) by the univariate (OLS) coefficient estimates κd,ols and κr,ols,

expressed in the same units as κd and κr. Row 1 shows that using the unadjusted dp ratio leads

to violations of the present value constraint. They are half the size of the estimated κr. Yet,

when we use the adjusted dp ratio, constraint (12) is satisfied.

[Table 7 about here.]

Next, we estimate the one-period ahead equations for returns and dividend growth (9-10)

jointly with the long-horizon regressions (13-14). We select a small number (N = 2) of long-

horizon moments, corresponding to H = {1, 3, 5}. The joint system of one-year, three-year, and

five-year ahead predictability regressions for returns and dividend growth contains 2 + 2N = 6

equations and 2N = 4 restrictions. Panel B of Table 7 reports the results.

The point estimates for (κd, κd) are similar to those obtained from the one-year ahead sys-

tem in panel A. Row 4, which uses the unadjusted dp ratio, fails to find evidence for return

predictability or dividend growth predictability at the 5% level. The point estimate falls from

.094 in panel A to .068 in panel B. Using long-horizon information makes the case for return pre-

dictability weaker when the unadjusted dp series is used. Furthermore, the estimate for φ = .99

and its standard error indicate that we cannot reject the null hypothesis of a unit root in the

dividend-price ratio.12

Results using adjusted series reported in rows 5 and 6 are quite different. Once we use the

adjusted ratio ˜dp, we find strong evidence for return predictability. The point estimates remain

large: .210 in the one-break case and .409 in the two-break case. Moreover, the asymptotic

standard errors on κr are reduced. The reason is that we use restrictions of the term structure

of predictability coefficients that cannot be uncovered by estimating the long-horizon moments

in isolation; imposing these constraints improves the inference on κr and κd. Put differently, the

univariate OLS long-horizon coefficients violate the present value constraint. The first number

in the last column reports the average violation across the three constraints (the RMSE); it is

19% in row 1. This violation is lower in rows 5 and 6. The second number in the last column

12The standard error of φ is implied by the estimates for κd and κr through (12) and computed using the delta
method.

23



reports the average moment violation (RMSE) and measures the degree to which the imposed

restrictions are satisfied. In row 5, the average moment violation is only 8.5%, less than half as

big as in row 4.

The middle and bottom panels of Figure 6 graphically illustrate the long-horizon estimation

results with the adjusted dividend-price ratio for the larger {1, 3, 5, 7, 10}-year system. First,

the one-period coefficients are very similar to the ones we reported for the {1, 3, 5}-year system.

Second, the two panels show that when the adjusted dividend-price ratio is used, the pattern

of GMM long-horizon regression slopes generated by our model lines up almost perfectly with

the univariate OLS regression slopes. Put differently, the normal conditions for the long-horizon

moments are satisfied at the model-implied long-horizon predictability coefficients. This con-

trasts with the first panel, which is for the unadjusted dp ratio. There, the OLS coefficients are

quite different from the GMM estimates. The correction supports both our specification and

our main argument.

The results for the {1, 3, 5}-year and {1, 3, 5, 10}-year systems are representative of the results

we found for different numbers of long-horizon moments and choices of horizons. Imposing long-

horizon information confirms the results of the earlier sections: Returns are predictable by the

dividend-price ratio, once its non-stationary component is removed.

7 Monte Carlo Simulations

In this section, we provide further evidence that the model in (9-11) captures the moments of

the data well. We use a Monte Carlo exercise to show (i) that this model replicates the failures

that are found in the in-sample and out-of-sample predictability literature using the unadjusted

dp ratio, (ii) that it matches the moments once the dividend-price ratio is properly adjusted for

and after taking into account small sample inference issues.

For the Monte Carlo exercise, we specify a structural model for the joint behavior of expected

returns, expected dividend growth, and dividend growth innovations. In Appendix D, we derive

the regression residuals τ = (τ d, τ r, τ dp) as functions of the structural innovations and show

how to identify the structural parameters from the parameters of the vector error correction

model (VECM) in equations (9-11). We back out the structural parameters from the previously

reported estimates of the VECM parameters and simulate the structural model generating 10,000

time series for returns, dividend growth and the dividend-price ratio of length T = 78, the same

length as the data. We then run univariate predictability equations on the model-generated

data and compare the parameter estimates to the true predictability coefficients and to the

data. The Monte Carlo exercise also serves as a way to investigate the small sample properties

of the regression coefficients. Appendix E describes the algorithm in detail.
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We start by studying the properties of univariate return predictability regressions. The first

row of Table 8 reports the ‘true’ predictability coefficients for the one-year, three-year, and

five-year horizon equations, as well as the theoretical regression R2.13 In the top panel, the true

parameters come from an estimation of the VECM that assumes a break in dp in 1991; in the

bottom panel we specify two breaks in 1954 and 1994.

The second and fourth rows report the same coefficients and R2 estimated on simulated data.

Row 2 uses the unadjusted dp ratio, and row 4 the adjusted˜dp to predict returns. The second row

shows that the model with the unadjusted dp ratio fails to detect the return predictability that

is present in the data. The simulation-based estimate of κr and the regression R2 are too small.

The regression R2 does not increase enough with the horizon. The one-year ahead coefficient

is not significant when we use the small-sample standard error (fourth column). Moreover,

this failure of the model matches the failure in the data. Row 3 shows the results of the same

univariate regressions in the data using the unadjusted dp ratio. The slope coefficients, standard

errors, and R2 line up closely with the results from the Monte Carlo simulation without break

adjustment.

In row 4, we adjust each Monte Carlo series for a break in 1991 (top panel) or two breaks in

1954 and 1994 (bottom panel). The predictability coefficients at all horizons now line up closely

with their true values. The model with adjusted dp ratio recovers the true predictability pattern

of row 1. Moreover, the predictability coefficients, their standard errors, and the regression

R2 from the model in row 4 match the ones from regressions of observed returns on observed

adjusted dividend-price ratios (row 5). Results for dividend growth regressions are not reported

but the simulations recover the lack of predictability in the true κd coefficients implied by the

VECM.

[Table 8 about here.]

Comparing row 4 to row 1, we notice that there is some small sample bias. In line with

the findings of Stambaugh (1999), the estimate for κr is upward biased. In the first panel, the

true value of the slope coefficient in the one-year ahead return regression is 222 versus .264 in

simulation, a bias of .042. At the five-year horizon, the upward bias is only .016. Likewise, the

R2 of the regression is slightly upward biased in the simulation: 10.5% versus 8.9% at one-year

horizon and 28% versus 25% at the five-year horizon. In the two-break case reported in the

second panel, the bias is smaller. The one-year ahead coefficient estimate is .483 versus the

true value of .456. The upward bias disappears at the five-year horizon. Overall, the bias is

small relative to the magnitude of the coefficients, and therefore does not affect our conclusions.

Finally, the small sample standard errors, averaged across Monte Carlo simulations of the same

13As Campbell, Lo, and MacKinlay (1997) point out, there is no closed form solution for the long-horizon R2.
We approximate it by simulating the structural model for 100,000 periods.
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length of the data, are very similar to the asymptotic standard errors from the data (middle

columns).

Panels 2 and 3 of Table 5 report the out-of-sample prediction errors from a second Monte

Carlo exercise. We simulate the structural model under the null hypothesis that the data

generating process has one break in 1991 (panel 2) or has two breaks in 1954 and 1994 (panel

3). We compare the same three out-of-sample forecasting exercises as in the data (panel 1).

In addition, we look at the forecast errors when we only correct for the second break and not

the first one. The ‘true’ parameters in panels 2 and 3 are the same and were obtained from

the VECM parameters estimated under the assumption of two breaks in 1954 and 1994 for

the period 1947-2004, the same forecasting period as in panel 1. The details are shown in

Appendix E. The Monte Carlo exercise regenerates the pattern we found in the data. When the

unadjusted dividend-price ratio is used as a forecasting variable, the out-of-sample prediction

errors are large and close to the random walk errors. On the other hand, when we implement

the one-break or two-break adjustment in the model, the simulated data generate substantially

lower prediction errors, mimicking the improvement in the data.

The simple model (9-11) replicates the patterns of univariate one-year ahead and long-horizon

regression results in-sample as well as one-year ahead out-of-sample prediction errors found in

the data. In particular, it regenerates (i) the failures of using the unadjusted dp ratio as a

predictor, and (ii) the successes of using the adjusted ˜dp ratio.

8 Conclusion

The macroeconomics literature has recently turned to models with persistent changes in fun-

damentals to explain the dramatic change in valuation ratios in the bull market of the 1990s.

Most such models imply a persistent decline in expected returns or a persistent increase in the

dividend growth rate. In this paper we argue that either of such changes leads to a persistent

decline in the mean of financial ratios. Such changes in the mean of valuation ratios have impor-

tant effects on estimation and inference of return forecasting regressions. We consider various

econometric techniques to detect shifts in the mean of price ratios and suggest a simple proce-

dure to extract their stationary component. The adjusted price ratios robustly forecast returns

in sample. At the same time, we show that shifts in the steady-state expected returns and

growth rate of fundamentals are responsible for the instability of the return forecasting relation.

Out-of-sample return predictions based on the adjusted price ratios improve relative to those

based on the unadjusted ratios. However, the estimation uncertainty about the magnitude of

the break, and not the break date, is ultimately what prevents a real time investor to profit.
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A Data Description

We use annual end-of-year data from 1926-2004 from CRSP on the value weighted market return (NASDAQ,

NYSE, AMEX), with and without dividend capitalization. Net return including dividends are denoted Rt and

returns excluding dividends areRex. The dividend yieldDt+1/Pt as the difference of capitalized and uncapitalized

series, the dividend level is the product of the dividend yield Dt+1/Pt and the price Pt of a portfolio that does

not reinvest dividends. The dividend-price ratio is defined as Dt+1/Pt+1 and dividend growth as the change

in the dividend level (Dt+1 −Dt)/Dt We then define log returns rt+1 = log(1 + Rt+1), log dividend growth

∆dt+1 = log (Dt+1/Dt), and the log dividend-price ratio dpt ≡ dt − pt = log (Dt/Pt).

Data used in Section 4 is derived from monthly S&P 500 dividend-price and price-earnings ratios and

end-of-month composite price index data from Haver. The data are from January 1946-December 2004. Book-

to-market ratios are from Vuolteenaho (2000) for 1927-1999. The observations for 1999-2004 are constructed

using the clean-surplus ratio method with earnings and dividend data from Haver.

The second panel of Table 6 reports the subsample and full sample means of the log earnings-price ra-

tio (ep), dividend-earnings ratio (payout rate), and the implied mean changes in long-run expected returns

r or expected dividend growth d. The implied change in r, holding d = 0.0709 fixed, is computed as r =

d + (1 + d)(D/E)(E/P ). Likewise, the implied change in d, holding r = .1098 fixed, is computed as: d =
(

r − (D/E)(E/P )
)

/
(

1 + (D/E)(E/P )
)

.

B A Modified Log-Approximation

In this section we extend the Campbell-Shiller log-linear approximation to allow for time-varying steady-state

growth rates and returns. This framework is a useful organizing principle for the empirical analysis in the main

text, but most of our specifications do not impose the approximation. Our results do not depend on the accuracy

of the approximation, but the framework helps to understand the intuition and implications.

The gross return of an asset is defined as

Rt+1 ≡
Pt+1 +Dt+1

Pt
=
Dt+1

Dt

1 + Pt+1/Dt+1

Pt/Dt
(17)

As of period t, the steady-state (gross) growth rate of dividends is Dt and steady-state expected (gross) returns

are Rt, implying a steady-state for the price-dividend ratio in levels (PDt) and logs (pdt):

PDt =
Dt

Rt −Dt

=⇒ pdt = dt − log(exp(rt)− exp(dt)). (18)

Instead of presuming that the steady-state growth rates and expected returns are constant, we allow for the

possibility that the steady-state may change over time. The only requirement that we impose on the steady-

state log returns and log growth rates is that they are martingales; Et[rt+j ] = rt, Et[dt+j ] = dt. In other

words, the steady-state is constant in expectation only. We also assume that the steady-state log P/D ratio is

a martingale; Et[pdt+j ] = pdt. Although in general these assumption can be inconsistent with each other since

the log P/D ratio is a nonlinear function of rt and dt, we show in appendix C that the martingale assumptions

are satisfied to a very good approximation for reasonable break processes. Log-linearizing (17) around the

steady-state in t+ 1 and expressing the variables in deviations from steady-state yields

pdt − pdt = (∆dt+1 − dt)− (rt+1 − rt) + ρt+1(pdt+1 − pdt+1)

+ ∆pdt+1 +∆rt+1 −∆dt+1

(19)



where pdt = pt − dt and ρt+1 =
exp(pdt+1)

1+exp(pdt+1)
. The last two assumptions state that ρt is a martingale, and that

deviations from the mean price-dividend ratio are uncorrelated with ρ; Et[ρt+j ] = ρt and Et
[

ρt+j(pdt+j − pdt)
]

=

0. Given our assumptions, we can take conditional expectations and solve the expectational difference equation

for pdt:

pdt − pdt = Et[∆dt+1 − dt]− Et[rt+1 − rt] + ρtEt[pdt+1 − pdt+1] (20)

=
∞
∑

j=1

ρj−1t Et[∆dt+j − dt]− Et[rt+j − rt] (21)

The log price dividend ratio is the sum of the steady-state price dividend ratio and the discounted sum of

expected dividend growth minus expected returns in excess of steady-state growth and returns:

pdt = pdt +
∞
∑

j=1

ρj−1t Et[∆d̃t+j ]− Et[r̃t+j ], (22)

where ∆d̃t+j = ∆dt+j − dt and r̃t+j = rt+j − rt. The expression in the main text for dpt follows from (22) and

dpt = −pdt.

C An Asset Pricing Model with Steady-State Shifts

This appendix solves a fully specified asset pricing model where the steady-state log dividend-price ratio follows

an approximate, bounded martingale. Breaks in the steady-state dividend-price ratio originate in breaks in the

steady-state mean dividend growth rate. Log dividend growth is ∆dt+1 = g+qt+εt+1. The unconditional average

consumption growth rate is g, qt is the stochastic component of the long-run mean, and εt+1 is a temporary

consumption growth shock, εt+1 ∼ N (0, σ2ε). Let Qt = (1 − A exp(qt))
−1 for a constant A given below. We

assume that Qt is a martingale and show below that this implies that log dividend growth is also a martingale.

Qt+1 = Qt + ηt+1

The innovation to the random walk is independent from εt+1 and has the following distribution:

ηt+1 =

{

0 w.p. π

wt+1 w.p. 1− π and wt+1 ∼ N (0, σ2w,t+1).

With probability π the innovation wt+1 is 0, where π is close to 1 to capture that a break is a rare occurrence.

With the complementary probability 1−π there is a break with normally distributed break size. The innovation

standard deviation of wt+1 is time-varying. It takes on the following form

σw,t+1 = σ̄w(1− exp(κ(1−Qt))). (23)

This implies that for Qt � 1, σw,t+1 ≈ σ̄w and as Qt → 1, σw,t+1 → 0. The parameter κ governs how fast the

standard deviation of w shrinks as Qt approaches 1 from above. This specification guarantees that Qt > 1 (at

least in continuous time). In other words, Qt is a bounded martingale.



If investors are risk neutral with a time discount factor of β, asset returns have to satisfy the Euler equation

1 = Et

[

β
Dt+1

Dt

1 + Pt+1

Dt+1

Pt
Dt

]

.

Conjecture that the price-dividend ratio takes the following form

Pt
Dt

= Qt − 1.

Using this conjecture, the Euler equation becomes becomes

1 = Et

[

βeg+εt+1A−1
Qt+1

Qt

]

.

Because the innovation to Qt+1 is independent from the innovation εt+1, the conjecture is verified for

A = βeg+σ
2
ε/2Et

[

Qt+1

Qt

]

= βeg+σ
2
ε/2,

because Qt is a martingale. The log dividend-price ratio is also an (approximate) martingale. Consider a Taylor

approximation of dt+1 − pt+1 around Qt:

dt+1 − pt+1 = dt − pt +
1

1−Qt
(Qt+1 −Qt) +Ot+1.

Because Qt is a martingale, Et[dt+1 − pt+1] = dt − pt + Et[Ot+1]. As long as the conditional mean of the

higher order terms Ot+1 is small, the log dividend-price ratio is approximately a martingale. For reasonable

break processes the higher order terms turn out to be neglible. For example, if π = .99, σ̄w = 5 and κ =,

the conditional mean of the higher order terms is 0.00006 for a price-dividend ratio level of 40, 0.00017 for a

price-dividend ratio level of 20, and 0.00048 for a price-dividend ratio of 2, which tiny compared to the value of

d − p which is -3.10 on average in a simulation with the same parameters. By the same token, Et[qt+1] ≈ qt.

The difference between the conditional expectation of qt+1 and qt is -0.000005 for a price-dividend ratio level

of 40, -0.0000068 for P/D=20 and -0.0003114 for a price-dividend ratio of 2. Again this is small relative to the

simulation average for q of -0.0094.

The above specification imposes that Qt > 1, or equivalently qt > −∞. It would be easy to impose tighter

restrictions on the steady-state log dividend growth rate process qt, based on a priori ‘reasonable range’ for log

dividend growth by modifying (23). For example, one could impose that the long-run dividend growth rate

should not be smaller than -5% per year. This amounts to price-dividend ratios in excess of 11.5 (Q̃ > 12.5).

The same bounded martingale approach would work with such a restriction.

D A Structural Model

We propose a model for log dividend growth ∆d and log returns r, where expected dividend growth z and

expected returns x follow an AR(1) with autoregressive coefficient φ:

∆dt+1 − d = zt + εt+1 zt+1 = φzt + ζt+1 (24)

rt+1 − r̄ = xt + ηt+1 xt+1 = φxt + ξt+1 (25)



where d is the long-run mean log dividend growth and r̄ is the long-run mean return. The model has three

fundamental shocks: a dividend innovation εt+1, an innovation in expected dividends ζt+1, and an innovation in

expected returns ξt+1. Campbell (1991)’s return decomposition implies that

ηt+1 = − ρ

1− ρφ
ξt+1 +

ρ

1− ρφ
ζt+1 + εt+1. (26)

We assume that all three errors are serially uncorrelated and have zero cross-covariance at all leads and lags:

Cov(εt+1, ζt+j) = 0, ∀j 6= 1, and Cov(εt+1, ξt+j) = 0, ∀j 6= 1, except Cov(ζt, ξt) = χ and Cov(ζt, εt) = λ.

In steady-state, the log dividend-price ratio is dp = log
(

r̄−d
1+d

)

, hence DP ≈ r̄−d
1+d

and ρ ≈ 1+d
1+r̄ . The log

dividend-price ratio can be written as

dpt = dt − pt = dp+
xt − zt
1− ρφ

. (27)

This equation clearly shows that the demeaned dividend-price ratio is an imperfect forecaster of returns. Returns

are predicted by xt (25) which not only contains the demeaned dp ratio, but also expected dividend growth zt:

xt = (1− ρφ)(dpt − dp) + zt.

This structural model implies a reduced form model that recovers the two predictability equations from

Section (2):

(∆dt+1 − d) = κd(dpt − dp) + τdt+1 (28)

(rt+1 − r̄) = κr(dpt − dp) + τ rt+1 (29)

(dpt+1 − dp) = φ(dpt − dp) + τdpt+1. (30)

The third equation of this Vector Error Correction Model is an AR(1) process for the dividend-price ratio.

Because of equation (6), the dividend-price ratio is the difference of two AR(1) processes with the same root φ,

which is again an AR(1) process. We also considered a model where expected dividend growth has a different

autoregressive coefficient ψ 6= φ: zt+1 = ψzt + ζt+1. In that case the dividend-price ratio is an ARMA(1,1) with

roots φ+ ψ and −φψ. Since the dp ratio is well described by an AR(1) model in the data, we set φ = ψ.

The slope coefficients are related to the structural parameters:

κd =
Cov(∆dt+1, dt − pt)

V ar(dt − pt)
=
−(1− ρφ)(σ2ζ − χ)
σ2ξ + σ2ζ − 2χ

(31)

κr =
Cov(rt+1, dt − pt)
V ar(dt − pt)

=
(1− ρφ)(σ2ξ − χ)
σ2ξ + σ2ζ − 2χ

(32)

The innovations to the VECM, τ = (τd, τ r, τdp), are given by:

τdt+1 = εt+1 + xt

(

−κd
1− ρφ

)

+ zt

(

κr
1− ρφ

)

(33)

τ rt+1 = εt+1 + xt

(

−κd
1− ρφ

)

+ zt

(

κr
1− ρφ

)

− ρξt+1 − ζt+1

1− ρφ
(34)

τdpt+1 =
ξt+1 − ζt+1

1− ρφ
. (35)

The structural model imposes a restriction on the innovation vector: ρτdpt+1 =
(

τdt+1 − τ rt+1

)

. Another way to



write this restriction is as a restriction on a weighted sum of κr and κd:

κr − κd = 1− ρφ.

We call this restriction the present value constraint.

Leaving aside the mean parameters (d, r̄, dp) which play no role in the demeaned system, the structural

parameter vector is Θ = (φ, σζ , σξ, σε, χ, λ). The variance σ2η is implied by (26). The vector of parameters from

the reduced form model (VECM) is b = (κd, κr, φ,Στ ), where Στ is the variance-covariance matrix of τ . There

are six unique elements in this covariance matrix and the present value constraint imposes three restrictions

on these six elements. In addition, the present value constraint imposes a restriction on one of the elements

in (κr, κd, φ). Hence, there are five unique elements in b = (κr, κd, στr , στd , στr,τd), where στr and στd are the

standard deviations of τ r and τd, and στr,τd is the covariance between the two. When we estimate the non-

singular system of equations (28) and (29), we can use these five coefficients to identify five out of six structural

parameters in Θ. Therefore, whenever we back out structural parameters from the reduced form estimates, we

find it convenient to tabulate results for a range of values for Vz, which measures the contribution of expected

dividend growth to the variance of the dividend-price ratio:

Vz =
σ2z

(1− ρφ)2σ2dp
=

σ2ζ
(σ2ξ + σ2ζ − 2χ)

. (36)

E Monte Carlo Simulations

The Monte Carlo exercise simulates the model under the null hypothesis of 1 break or 2 breaks in the dividend-

price ratio. It then asks what the univariate long-horizon slope coefficients and R2 are in a small sample (of the

same length as the data) when we use the unadjusted dp as regressor versus the adjusted ˜dp. For the one-break

case reported in the top panel of Table 8, we use the following algorithm:

step 1 To find the true parameters, we estimate the (1, 3, 5)-year VECM under the assumption of one break

in 1991 for the full sample. This delivers reduced form estimates: b = (.0121, .2098, .1410, .1868, .0176).

Throughout, ρ = .9616, the value implied by the mean price-dividend ratio in the sample.

step 2 We invert these reduced form parameters to obtain structural parameters based on the identification

scheme described above. We need to take a stance on the fraction of the variance in the dividend-price ratio

attributable to expected dividend growth (equation 36). We set Vz = 0.3, but the results are not sensitive

to this choice. The implied structural parameters are: Θ = (.8344, .0182, .0355, .1371, .0004,−.0005).

step 3 In each Monte Carlo iteration, we draw a new 178 × 3 vector of i.i.d. standard normal variables. The

structural shocks (εt, ζt, ξt) are these standard normal variables pre-multiplied by Σ
1
2
u , where Σu is the

covariance matrix of the structural innovations:

Σu =







σ2ε λ 0

λ σ2ζ χ

0 χ σ2ξ







step 4 We recursively build up time-series for x, r − r̄, z, and ∆d − d according to (25) and (24). We form a

time series for the demeaned dividend-price ratio from (27).

step 5a Under the null hypothesis of 1 break in 1991, the break-adjusted series for returns, dividend growth

and the dividend-price ratio are obtained by adding constant long-run means r̄, d, and dp to the demeaned



series. I.e. the adjusted dp series is the demeaned series plus the mean over the entire sample 1927-2004,

which is dp = −3.272. Likewise, the adjusted dividend growth series ∆d is formed by adding to the

demeaned series ∆d− d the sample mean d = .0432. We then back out r̄ = d+ (1 + d) exp(dp) = .0827,

and form the adjusted return series as the demeaned series plus this r̄.

step 5b On the other hand, the unadjusted series still displays a break in 1991. To obtain the unadjusted

series we need to add in a different mean before and after 1991. As before, we assume d did not change,

so that the change in dp entirely comes from a change in r̄. The unadjusted dp series is obtained by

adding in the 1927-1991 mean (-3.133) before 1991 and the 1992-2004 mean (-3.968) after 1991. Likewise

for returns we add in .0886 before 1991 and .0629 after 1991. These are the subsample means dp and r̄

that were reported in lines 1 and 2 of Table 6 (left panel).

step 6 We form annualized, cumulative long-horizon returns and dividend growth rates 1
H

∑H
j=1∆rt+j and

1
H

∑H
j=1∆dt+j in the same way. There is one set of unadjusted series and one set of adjusted series,

corresponding to each horizon H.

step 7 After the formation, we discard the first 100 observations (burn-in), and are left with the same number

of observations as in the data: 78- longest horizon+1. For the 1-, 3-, and 5-year system we report on, the

longest horizon is 5, so all statistics are computed with 74 observations.

step 8 We then run univariate 1-, 3-, and 5-year ahead predictability regressions of adjusted returns and divi-

dend growth on both unadjusted and adjusted dividend-price ratios. We keep track of the predictability

coefficients and regression R2.

step 9 We repeat this procedure 10,000 times and report the average predictability coefficients and R2 across

Monte Carlo iterations.

The Monte Carlo exercise in the two-break case is exactly analogous (bottom panel of Table 8). In step

1, we estimate the 1-, 3-, and 5-year ahead VECM system under the null of 2-breaks in 1954 and 1994. The

VECM coefficient vector is b = (0.0795, 0.4089, 0.1391, 0.1743, 0.0157). The implied structural parameter vector

for Vz = 0.3 is Θ = (0.6974, 0.0293, 0.0635, 0.1339, 0.0014,−0.0012). To construct the unadjusted dp and return

series we use the means reported in the right panel of Table 6.

We conduct a separate Monte Carlo exercise for the out-of-sample predictability (panels 2 and 3 in Table

5). We simulate the model under the null hypothesis of two breaks in 1954 and 1994. For simplicity we use the

same true parameters in both panels 2 and 3. They are obtained from estimating the 1-year ahead VECM under

the assumption of two breaks in 1954 and 1994, but for the period 1947-2004, which is the same sample period

as we use in the data (panel 1 of Table 5). We then construct adjusted and unadjusted dp ratios as in the above

algorithm, and run the same out-of-sample predictions as in the data.



Table 1: Forecasting Returns and Dividend Growth with the Dividend-Price Ratio.

This table reports estimation results for the equations rt+1− r̄ = κr(dpt−dp)+τrt+1 and ∆dt+1−d = κd(dpt−dp)+τdt+1. The first

two columns report the equation for returns. The next two columns report the predictability equation for dividend growth. The last

two columns are for excess returns instead of gross returns. The table reports point estimates and standard errors in parentheses of

κr and κd, as well as regression R
2 in square brackets. The parameters (r̄, d, dp) are the sample means of log returns r (log excess

returns in the last two columns), log dividend growth ∆d and the log dividend-price ratio dp. The top panel compares the case

of no break in the log dividend-price ratio (dp is fixed) with the case where there is a break in the log dividend-price ratio: dp1
is the sample mean log dividend-price ratio for 1927-1991 and dp2 is the mean for 1992-2004. The estimation is by GMM, where

the moments are the OLS normal conditions. Standard errors are by Newey-West with four lags. Row 1 reports results for the full

sample; rows 2 and 3 report results for two subsamples. Row 4 reports the F-statistic and associated p-value from a Chow test with

null hypothesis of no structural break in 1991 in the forecasting equations. The bottom panel compares the case of no break in the

log dividend-price ratio (dp is fixed) with the case where there are two breaks in the log dividend-price ratio: (dp1 is the sample

mean log dividend-price ratio for 1927-1954 (row 6), dp2 is the mean for 1955-1994 (row 7), and dp3 is the mean for 1995-2004 (row

8). Row 9 reports the F-statistic and associated p-value from a Chow test with null hypothesis of no structural breaks in 1954 and

1994 in the forecasting equations.

Returns Dividend Growth Excess Returns

Sample No Break 1 Break No Break 1 Break No Break 1 Break

1927-2004 .094 .235 .005 .019 .113 .282

(.046) (.058) (.037) (.047) (.049) (.059)

[.038] [.100] [.000] [.001] [.050] [.132]

1927-1991 .235 .235 .014 0.014 .295 .295

(.065) (.065) (.053) (.053) (.071) (.071)

[.087] [.087] [.001] [.001] [.125] [.125]

1992-2004 .235 .235 .035 .035 .241 .241

(.134) (.134) (.103) (.103) (.139) (.139)

[.199] [.199] [.006] [.006] [.198] [.198]

Chow F -stat 3.408 .134 .114 .024 4.383 .230

p-val [.038] [.875] [.892] [.977] [.016] [.795]

Sample No Break 2 Breaks No Break 2 Breaks No Break 2 Breaks

1927-2004 .094 .455 .005 .124 .113 .441

(.046) (.081) (.037) (.073) (.049) (.101)

[.038] [.223] [.000] [.032] [.050] [.193]

1927-1954 .510 .510 .037 .037 .529 .529

(.175) (.175) (.182) (.182) (.192) (.192)

[.163] [.163] [.002] [.002] [.170] [.170]

1955-1994 .383 .383 .142 .142 .336 .336

(.106) (.106) (.077) (.077) (.144) (.144)

[.240] [.240] [.064] [.064] [.151] [.151]

1995-2004 .532 .532 .226 .226 .539 .539

(.129) (.129) (.097) (.097) (.145) (.145)

[.546] [.546] [.126] [.126] [.533] [.533]

Chow F -stat 4.390 .235 .998 .500 3.261 .186

p-val [.003] [.918] [.414] [.736] [.016] [.945]



Table 2: Tests for Change in Mean of Log Dividend-Price Ratio

The first panel reports dates of structural breaks in the mean of the log dividend price ratio estimated by the Perron procedure as

well as the changes in the mean before and after the breaks. The second panel reports sup-F (i,j) statistics where i is the number of

breaks under the null hypothesis and j is the number of breaks under the alternative. ‘*’, ‘**’, ‘***’ denote significance at the 1%,

5% and 10% level, respectively. The third panel reports the number of breaks chosen according to the Bayesian Information criterion

(BIC) and the modified Schwartz’ criterion proposed by Liu, Wu, and Zidek (1997) (LWZ). The tests allow for autocorrelation in

the residuals and the trimming value is set to 5% of the sample. The bottom panel reports first and second order autocorrelation

coefficients, an Augmented Dickey Fuller test, testing the null hypothesis of a unit root (and associated p-value), and the time-series

standard deviation for the unadjusted log dividend-price ratio, the log price ratio adjusted for a change in its mean in 1991, and the

log dividend-price ratio adjusted for a change in its mean in 1954 and 1994.

# of Breaks Date(s) ∆dp

1 1991 -.86

2 1954, 1994 -.37, -.78

Test (H0, H1) Statistic

sup-F (0,1) 13.7***

sup-F (0,2) 23.9***

sup-F (1,2) 9.64*

Information Criterion # of Breaks

LWZ 2

BIC 2

Persistence Properties of Adjusted Dividend-Price Ratio

AC(1) AC(2) ADF Test p-val s.d.

dp, unadjusted .91 .81 -1.383 .586 .42

˜dp, adjusted, 1 break .77 .55 -3.016 .038 .26

˜dp, adjusted, 2 breaks .61 .23 -4.731 .010 .20



Table 3: Tests for Change in Mean of Financial Ratios

The top half of the table reports the test-statistic of a sup-F Perron structural break tests of the null hypothesis of no break against

the alternative hypothesis of one (first row) or two (second row) breaks with unknown break date. It reports the p-value of the test

statistic, as well as the resulting break date. The last column reports the estimated change in means before and after the break(s).

These tests are performed for the log earnings-price ratio ep = e−p, the log book value -to-market value of equity ratio bm = b−m,

the log dividend-earnings ratio de = d − e, the log dividend-price ratio adjusted for repurchases dprep, and the log dividend-price

ratio of the universe of CRSP firms that excludes the NASDAQ firms dpnas.

Structural Break Tests

H0 H1 sup−F-Test p-value Date(s) ∆mean

ep 0 break 1 break 15.5 < 1% 1990 -.67

0 break 2 breaks 18.0 < 1% 1953, 1994 -.50, -.62

bm 0 break 1 break 9.3 < 10% 1953 -.80

0 break 2 breaks 17.9 < 1% 1953, 1990 -.71, -.33

de 0 break 1 break 5.6 > 10% 1993 -.24

0 break 2 breaks 5.3 > 10% 1990, 1993 +.27, -.46

dpnas 0 break 1 break 10.2 < 5% 1992 -.75

0 break 2 breaks 18.1 < 1% 1954, 1995 -.35, -.70

dprep 0 break 1 break 3.7 > 10% 1990 -.43

0 break 2 breaks 4.5 > 10% 1954, 1991 -.23, -.34

0 break 3 breaks 20.1 < 1% 1957, 1973, 1990 -.46, +.50, -.57



Table 4: Forecasting Returns With Other Financial Ratios.

This table reports estimation results for the equation rt+1− r̄ = κr(yt− y)+ τrt+1, where y is the log earnings-price ratio ep = e− p
in the first row, the log book-to-market value ratio bm = b−m in the second row, the log dividend-price ratio without the NASDAQ

firms dpnas in the third row, and the repurchase adjusted log dividend-price ratio dprep in the fourth row. The table reports point

estimates and standard errors in parentheses of κr, and the regression R2 in brackets. The regressor is the unadjusted valuation

ratio in the first column, the one-break adjusted valuation ratio in the second column, and the two-break adjusted valuation ratio

in the third column. For the predictor dprep, we report the three-break case as well. The break dates for all regressors are reported

in Table 3. The sample is 1946-2004 in row 1, and 1927-2004 in all other rows.

Predictor y No Break 1 Break 2 Breaks 3 Breaks

ep .119 .214 .216

(.030) (.039) (.045)

[.104] [.190] [.185]

bm .070 .255 .308

(.036) (.063) (.064)

[.030] [.154] [.188]

dpnas .110 .250 .417

(.048) (.056) (.090)

[.043] [.105] [.182]

dprep .191 .282 .361 .576

(.054) (.065) (.084) (.097)

[.079] [.126] [.161] [.250]



Table 5: Out-of-Sample Predictability.

The table reports one-period-ahead return forecast errors based on the Random Walk model (row 1) and based on the forecasting

equation rt+1 − r̄ = κr(dpt − dp) + τrt+1 with fixed dp (row 2). Rows 3 through 5 use the real time Perron procedure to estimate

̂dp
P
. We report results for three different methods of selecting the number of break: the sequential sup-F test with 10% critical

value, and the LWZ and BIC information criteria. Rows 6 and 7 use the ex-post break adjusted dividend price ratios with a change

in dp in 1991 (row 6), and two changes in the mean dp in 1954 and 1994 (row 7). Rows 8 and 9 use the Hamilton approach to

construct adjusted dividend-price ratios ̂dp
H
. The regime switching probabilities are estimated in real time, but the regime means

are estimated from the full sample. We consider the cases of two regimes (row 8) and three regimes (row 9). All numbers denote

returns per annum. The second and third panels report results from a Monte Carlo exercise. We simulate the structural model under

the null hypothesis that the data generating process has one break in 1991 (panel 2) or has two breaks in 1954 and 1994 (panel 3).

We compare the same three out-of sample forecasting exercises as in the data (panel 1). Except in the last panel, we also look at

the forecast errors when we only correct for the second break and not the first one. The structural parameters in panels 2 and 3 are

the same and were obtained from the Vector Error Correction Model (VECM) parameters estimated under the assumption of two

breaks in 1954 and 1994 for the period 1947-2004, the same forecasting period as in panel 1.

Mean absolute error Root mean squared error

Panel 1: Data

Benchmarks

Random Walk .1338 .1605

Unadjusted dp .1411 .1685

Pure OOS

̂dp
P

- Perron sequential sup-F .1350 .1661

̂dp
P
- Perron LWZ criterion .1391 .1680

̂dp
P
- Perron BIC criterion .1370 .1646

Pseudo OOS
˜dp - ex-post, 1 break .1309 .1558
˜dp - ex-post, 2 breaks .1158 .1421

̂dp
H

- Hamilton, 1 break .1330 .1590

̂dp
H

- Hamilton, 2 breaks .1238 .1509

Panel 2: Monte Carlo - 1 break

Random Walk .1212 .1525

Unadjusted dp .1210 .1555
˜dp - ex-post, 1 break .1058 .1334

Panel 3: Monte Carlo - 2 breaks

Random Walk .1222 .1533

Unadjusted dp .1203 .1516
˜dp - ex-post, 1 break .1165 .1493
˜dp - ex-post, 2 breaks .1064 .1336



Table 6: Implied Changes in Steady-state Expected Returns and Dividend Growth

The top panel (bottom panel) of the table reports the mean log dividend-price ratio (log earnings-price ratio) in the subsamples, as

well as the difference between the two. On the second row is reports the mean return r in the subsamples if all of the changes in

dp (ep) in the first row were attributable to changes in mean returns. The third row reports mean dividend growth rates d in the

subsamples if all of the changes in dp (ep) in the first row were attributable to changes in mean dividend growth. The left panel

reports the case of one break; the right panel the case of two breaks. For the log dividend-price ratio the break date is estimated to

be 1991 for the one break case (1954 and 1994 for the two break case). For the log earnings-price ratio, the break is estimated to be

1990 for the one break case (1953 and 1994 for the two break case). In the bottom panel, we also report the change in the payout

rate, the log dividend-earnings ratio de. The sample for the top panel is 1927-2004, the sample for the bottom panel is 1946-2004

(see Appendix A).

Dividend-Price Ratio

27-91 92-04 Change 27-54 55-94 95-04 Changes

dp -3.133 -3.968 -.835 -2.940 -3.301 -4.086 -.362, -.785

r ↓, d constant 8.86% 6.29% -2.60% 9.83% 8.16% 6.07% -1.67%, -2.09%

d ↑, r constant 5.00% 7.54% 2.54% 4.07% 5.68% 7.76% 1.61% , 2.08%

Earnings-Price Ratio

46-90 91-04 Change 46-53 54-94 95-04

ep -2.540 -3.202 -.662 -2.217 -2.652 -3.267 -.435, -.616

Payout rate de -.665 -.779 -.114 -.606 -.661 -.889 -.056, -.227

r ↓, d constant 11.72% 9.24% -2.47% 13.70% 11.25% 8.87% -2.46%, -2.38%

d ↑, r constant 6.38% 8.79% 2.41% 4.52% 6.83% 9.16% 2.31%, 2.33%



Table 7: Estimation with Long-Horizon Moments

This table reports GMM estimates for the parameters (κd, κr, φ), their asymptotic standard errors and p-values. The results in

panel A are for the system with one-year ahead equations for dividend growth and returns (H = 1, N = 0). The results in panel B

are for the system with one-year, three-year and five-year ahead equations for dividend growth and returns (H = {1, 3, 5}, N = 2).

The estimation is by GMM. The first stage weighting matrix is the identity matrix. The asymptotic standard errors and p-values

are computed using the Newey-West HAC procedure (second stage weighting matrix) with four lags in panel A and H = 5 lags in

panel B. The first number in the last column denotes the present-value constraint violation of the univariate OLS slope estimators:

(1 − ρφols)−1(κolsr − κolsd ). It is expressed in the same units as κd and κr. In panel B this number is the average violation of the

three constraints, one constraint at each horizon. The second number in the last column reports the average moment violation. In

panel A that number is not available (N/A) because the system is exactly identified. The dividend-price ratio in rows 1 and 4 is the

unadjusted one. In rows 2 and 5, the dividend-price ratio is adjusted for one break in 1991 (see equation 8), and in rows 3 and 6, it

is the series adjusted for two breaks in 1954 and 1994. All estimation results are for the full sample 1927-2004.

κd κr φ PV violation moment violation

Panel A: No Long-Horizon Moments H = {1}

No Break .005 .094 .945 -.046 N/A
(.037) (.046) (.052)

1 Break (’91) .019 .2353 .813 .004 N/A
(.047) (.0554) (.052)

2 Breaks (’54, ’94) .124 .4553 .694 -.001 N/A
(.073) (.0792) (.070)

Panel B: Long-Horizon Moments H = {1, 3, 5}

No Break .021 .068 .990 .189 .205
(.018) (.038) (.032)

1 Break (’91) .012 .210 .834 .076 .085
(.019) (.043) (.042)

2 Breaks (’54, ’94) .080 .409 .697 .100 .144
(.065) (.078) (.060)



Table 8: Long-Horizon Predictability in Data and Monte Carlo Exercise.

The table reports results from univariate regressions of cumulative long-horizon returns on the log dividend-price ratio. The left

columns denote slope coefficients for one-year, three-year, and five-year horizon regressions; the middle columns report standard

errors for the slope coefficients; the right columns report the corresponding regression R2. The rows labeled ‘Data, dp unadj.’ denote

regressions run with real data using the unadjusted log dividend-price ratio as independent variable. The rows labeled ‘Data, dp

adj.’ denote regressions run with real data using the log dividend-price ratio, adjusted for a break in the mean dp. In the top panel

there is one break in this mean in 1991; in the bottom panel there are two breaks in 1954 and 1994. The results for the data are

contrasted with a the results from a Monte carlo exercise. The return and dividend growth system is estimated until 1991 in the

top panel (1954 in the bottom panel) on real data. The estimated parameters imply ‘true’ structural parameters. The theoretical

long-horizon slope coefficients and regression R2 are reported in the row with label ‘True Values in Sim.’ For these parameters,

the structural model is then simulated 10,000 times for 78 periods. The row ‘Sim., dp unadj.’ denotes the Monte carlo average

slope coefficient and R2 statistic using the unadjusted log dividend-price ratio as independent variable. The row ‘Sim., dp adj.’ also

reports regression coefficients and statistics of regressions on artificial data, but now the independent variable comes from a model

where the mean r is adjusted to equal the change in dp in the data.

κr s.e. R2 (%)

Horizon 1 3 5 1 3 5 1 3 5

One Break in 1991

True Values in Sim. .222 .187 .159 N/A N/A N/A 8.9 20.0 25.2

Sim., dp unadj. .115 .092 .075 .064 .034 .025 5.1 11.5 14.6

Data, dp unadj. .087 .095 .071 .065 .037 .026 2.4 8.1 9.2

Sim., dp adj. .264 .214 .175 .093 .048 .034 10.5 22.7 28.0

Data, dp adj. .220 .200 .150 .084 .047 .033 8.6 20.0 22.0

Two Breaks in 1954 and 1994

True Values in Sim. .456 .330 .249 N/A N/A N/A 20.7 37.0 38.8

Sim., dp unadj. .128 .089 .064 .063 .032 .023 6.2 11.5 12.8

Data, dp unadj. .087 .095 .071 .065 .037 .026 2.4 8.1 9.2

Sim., dp adj. .483 .340 .249 .110 .052 .037 21.4 37.5 38.6

Data, dp adj. .442 .355 .231 .102 .054 .041 20.7 37.4 30.8



Figure 1: Forecasting Returns - Rolling Regressions

The top panel plots estimation results for the equation rt+1 − r̄ = κr(dpt − dp) + τrt+1. It shows the estimates for κr using 30-year
rolling windows. The dashed line in the left panels denote the point estimate plus or minus one standard deviation. The parameters
r̄ and dp) are the sample means of log returns r and the log dividend-price ratio dp. The data are annual for 1927-2004. The middle

panel gives the slope coefficient κr from a regression where the right-hand side variable is ˜dp, adjusted for 1 break in 1991 (see

Section 3.3). The bottom panel gives the slope coefficient κr from a regression where the right-hand side variable is ˜dp, adjusted for
2 breaks in 1954 and 1994 (see Section 3.3). The standard errors are asymptotic.
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Figure 2: Change in the Mean of the Dividend-Price Ratio.

The top left panel plots the log dividend-price ratio dpt = dt − pt (solid line) as well as its sample means dp1 in the subsample
1927-1991 and dp2 in the subsample 1992-2004 (dashed line). The bottom left panel overlays the subsample means dp1 in 1927-1954,

dp2 in 1955-1994, and dp3 in 1995-2004. The top right panel plots the adjusted dividend-price ratio ˜dpt = dpt − dp1, t = 1, ..., τ and
dpt − dp2, t = τ, ..., T . The bottom right panel plots the adjusted dividend-price ratio in the two-break case. In the two bottom
panels, the adjusted series is rescaled so that it coincides with the adjusted series for the first subsample.
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Figure 3: The Empirical Distribution of the Dividend-Price Ratio.

The figure plots the smoothed empirical distribution of the log dividend-price ratio dp (solid line), alongside the smoothed density
obtained from drawing from the empirical distribution with replacement (bootstrap, dash-dotted line), and the smoothed density
from a Monte-Carlo exercise (dashed line).
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Figure 4: Recursive Estimation of the Empirical Distribution of the Dividend-Price Ratio.

We recursively estimate an AR(1) for the log dividend-price ratio dp, dpt+1 = c + φdpt + τdpt+1 using data up to time t + 1, and

bootstrap percentiles of the empirical distribution by drawing with replacement from the residuals {τdp1 , · · · , τdpt+1}. The dashed
lines represent the 2.5, 5, 95, and 97.5 percentiles of the bootstrapped distribution. The initial sample is 1927-1951. Each successive
exercise adds one year of data. The solid line represents the observed log-dividend-price ratio in deviation from its recursive sample
mean.
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Figure 5: Regime Switching Model for the Log Dividend-Price Ratio - Two Regimes

This figure reports estimation results from a Hamilton regime-switching model for the log dividend-price ratio d− p.
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Figure 6: Estimation with Long-Horizon Moments

This figure compares the univariate OLS long-horizon regression coefficients, κd(H)−OLS and κr(H)−OLS to the GMM estimates
that impose the present-value restriction (12), κd(H)−GMM and κr(H)−GMM . The system contains 10 equations, 5 return and
5 dividend growth equations. The horizons (in years) are H ∈ 1, 3, 5, 7, 10. The top panel uses the unadjusted dp ratio as predictor,

the middle panel uses the ˜dp ratio adjusted for one break in 1991, and the bottom panel uses the ˜dp ratio adjusted for two breaks
in 1954 and 1994.
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