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ABSTRACT

As the clearinghouses for a major portion of the world's rapidly increasing international trade flows,

ocean ports and the efficiency with which they process cargo have become an ever more important

topic. Yet, there exist very little data that allows one to compare port efficiency measures of any kind

across ports and, especially, over time. This paper provides a new statistical method of uncovering

port efficiency measures using U.S. Census data on imports into U.S. ports. Unlike previous

measures, this study's methodology can provide such estimates for a much broader sample of

countries and years with little cost. Thus, such data can be used by future researchers to examine a

myriad of new issues, including the evolution of port efficiencies over time and its effects on

international trade flows and country-level growth.
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INTRODUCTION 
 

As the clearinghouses for a major portion of the world’s rapidly increasing international 

trade flows, ocean ports and the efficiency with which they process cargo have become an ever 

more important topic.  Poorly-performing ports can substantially reduce trade volumes and may 

have a greater dampening impact on trade for small, less-developed countries than many other 

trade frictions (Clark et al., 2004, and Wilson et al., 2003).  Disruptions to U.S. ports, such as the 

recent congestion issues at the ports of Los Angeles and Long Beach, quickly become national 

news because they can substantially impact supply chains throughout the country (MacHalaba, 

2004).  Local governments and port authorities are perhaps the most concerned with port 

efficiency, as ports compete with each other for cargo volume.   

Despite the obvious significance of port efficiency, consistent and comparable 

measurement of such efficiencies is a daunting task.  A myriad of factors contribute to port 

efficiency.  Some of the more obvious factors include dock facilities, connections to rail and 

trucking lines, harbor characteristics (including channel depth and ocean/tidal movements), time 

to clear customs, and labor relations.  However, both consistent data and methods that allow 

construction of a measure or index that allows comparisons across ports are not currently 

available.  As stated in a recent report to Congress by the U.S. Department of Transportation, 

Maritime Administration (MARAD),  

“MARAD concluded that it was unable to provide the requested comparison of the most 
congested ports in terms of operational efficiency due to a lack of consistent national port 
efficiency data … comparing port efficiency would require the creation of new 
methodologies and the collection of data that were not available for this report” (U.S. 
Department of Transportation, Maritime Administration, 2005, p. 8).1   
 

                                                           
1 This study is available from the “Publication” link at MARAD’s website: www.marad.dot.gov.  Unavailability of 
port comparison measures is also echoed in the academic literature by Bichou and Gray (2004). 
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This concession by MARAD is of great importance as the main motivation for the report was a 

Congressional request for a comparison of port efficiency, not only for commercial reasons, but 

also for national security concerns in light of Operation Iraqi Freedom.  This paper is a first 

attempt to provide a new methodology which is relatively simple and costless for the estimation 

of port efficiency over time. 

 The literature is not devoid of attempts to measure port efficiency.  One common 

methodology is through the use of surveys.  A recent indicator of port efficiency has been 

constructed from annual firm-level surveys for the years 1995 through 2000 and reported in the 

Global Competitiveness Report.  These surveys ask firms to rank countries’ port efficiency from 

1 to 7, where 1 indicates that the firm strongly disagrees with the statement “Port facilities and 

inland waterways are extensive and efficient”, whereas 7 indicates the firm strongly agrees with 

the statement.  Other studies have used these measures and found that the measures have a strong 

and significant effect on trade. (Clark et al., 2004, and Wilson et al., 2004)  Similarly, Sanchez et 

al. (2003) use survey data on port efficiency to examine transports costs to Latin American ports 

and find that such measures are substantial components of these transport costs and have an 

impact on trade flows that is similar in magnitude to that of distance.2 

 Drawbacks of survey data are, first, they rely on impressions of survey participants where 

observations of port efficiencies per se may be confounded with other factors connected with the 

country of the port’s location.  Second, existing surveys of port efficiencies have only been 

administered at a point in time or for a limited timeframe.  Thus, there is almost no information 

on how port efficiencies evolve over time from these studies.   

                                                           
2 Besides studies based on country-level survey measures of foreign port efficiencies, the U.S. Army Corps (ACE) 
also conducts approximately ten-year surveys of all facility locations in U.S. ports, including information on depth, 
berthing distance to wharf, and railway connections.  To our knowledge, no one has used these data to develop 
measures of port efficiency.  A major difficulty would be aggregation of data across facilities/docks at a port since 
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 An alternative methodology to measure port efficiencies, used by a number of studies is 

data envelopment analysis (DEA).  This procedure uses data on inputs, outputs and production 

function theory to derive an estimate of the most efficient production frontier across a group of 

ports.  This then allows a calculation of port efficiency based on deviations from this frontier.  

Examples include Roll and Hayuth (1993), Martinez-Budria et al. (1999), Tongzon (2001), and 

Estache et al. (2004).3  Drawbacks of this approach include, first, functional form assumptions 

that may not be correct.  In particular, these methods typically assume constant returns to scale, 

though econometric evidence from production function estimates discussed below typically find 

economies of scale.  A second drawback is that these methodologies do not generate any 

measure of error by which to gauge statistical confidence and are quite susceptible to bias from 

outliers.  A third drawback is relatively strong data requirements of both inputs and output that 

are consistently measured across sample ports and time periods in the sample.  This is a likely 

reason that most DEA studies are quite limited in the scope of ports analyzed.   

 Another alternative is econometric estimation of production/cost functions for ports 

which is found in a more limited number of studies.  Estache et al. (2002) is an example of such 

a study and provides a review of previous analyses using these methodologies.  While 

econometric estimation provides standard errors for its port efficiency measures in order to judge 

confidence in such measures, these studies suffer from similar difficulties with data requirements, 

particularly measurement of labor, capital and other inputs.  As a result, such studies in the 

previous literature focus on only a handful of ports at a time and none that we are aware of have 

focused on U.S. ports. 

                                                                                                                                                                                           
no volume measures are given for each facility/dock.  The surveys also occur infrequently which also gives little 
time series information on how the port facilities evolve over time. 
3 There is also a related literature on a similar methodology called Free Disposal Hull (FDH) and Wang et al. (2003) 
compares these methodologies in measuring container port production efficiencies. 
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 In response to difficulties encountered by the previous literature, this paper provides an 

entirely new method of uncovering port efficiency measures using U.S. Census data on imports 

into U.S. port districts (hereinafter referred to as “ports”).  This methodology is econometric-

based, providing standard errors of our estimated port efficiency measures, and uses readily 

available and high-quality data to estimate port efficiencies across literally hundreds of ports 

over a lengthy number of years.  

 Our starting point is the information contained in the measure of “import charges” 

incurred by the goods in transit, as reported in the U.S. Census data.  More specifically, the U.S. 

Census defines import charges as: 

 “…the aggregate cost of all freight, insurance, and other charges (excluding U.S. import 
duties) incurred in bringing the merchandise from alongside the carrier at the port of 
exportation – in the country of exportation – and placing it alongside the carrier at the 
first port of entry in the United States.”   

 
These import charges consist of three primary components: 1) costs associated with loading the 

freight and disembarking from the foreign port, 2) costs connected with transportation between 

ports, and 3) costs associated with U.S. port arrival and unloading of the freight.  Component 1 is 

directly related to the foreign port’s efficiency, at least for the portion of the port services 

connected with loading freight and efficient disembarking of ships.  There are undoubtedly other 

foreign port services and attributes that are not included in this import charges measure.  

However, to the extent that the efficiency of these non-included services is strongly correlated 

with the efficiency of the included services, component 1 of import charges should be a good 

measure of overall foreign port efficiency.  In analogous fashion, U.S. port efficiencies are 

directly connected to component 3 of import charges. Component 2 costs, connected with 

transportation between ports, are identified with a few observable factors.  Namely, ocean freight 
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costs have been found to be highly correlated with distance, while insurance costs correlate with 

value per weight of the product (e.g., see Clark et al. (2004), pp. 8-9).   

 This study implements a simple statistical analysis to disentangle and separately identify 

the effect of these three components.  Namely, a regression of import charges on distance 

measures, weight and value of the product, and other observables described in the next section, 

remove component 2 effects and leave components 1 and 3 in the error term along with random 

white noise.  Identifying components 1 and 3 can be accomplished through the introduction of 

“fixed effects” for the U.S. and foreign ports.  In particular, there are repeated shipments to many 

U.S. ports in a given year for a given product originating from the same foreign port, we can 

include a dummy variable (fixed effect) for each foreign port and uncover its underlying 

contribution to import charges.  Likewise, with multiple observations for each U.S. port for a 

given year and a given product, a dummy variable (fixed effect) uncovers each U.S. port’s 

underlying contribution to import charges. These port fixed effects provide measures of port 

efficiencies.  That is, as a port’s contribution to import charges (i.e., the costs of getting the 

products to the docks and unloaded) increases, costs increase, and, thus, will be inversely related 

to the port’s efficiency.  

 Estimation of these measures of U.S. and foreign port efficiencies allow the construction 

of efficiency measures and a ranking of ports by efficiency.  These estimates are then compared 

with the rankings with the main “survey-based” measures produced by the Global 

Competitiveness Report that offer rankings of foreign ports.  These comparisons yield a 

statistical correlation that suggests the model is, indeed, picking up efficiencies for our sample’s 

ports.  As mentioned above, unlike previous studies, the approach also allows for a time series 

analysis of the data that allows dynamic measures and comparisons of efficiencies over time; i.e., 
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from 1991 through 2003.  We also show how our methodology allows estimation of efficiencies 

for a subset of shipments (e.g., containerized) or products. 

 The rest of the paper proceeds as follows.  The next section provides details of our 

statistical methodology to uncover U.S. and foreign port efficiency and describes our data.  The 

following section provides our results including new efficiency rankings of U.S. and foreign 

ports, comparison to previous rankings, and an analysis of changes in rankings over time.    

 

METHODOLOGY 

 Our statistical methodology follows Clark et al. (2004), with important modifications to 

uncover U.S. and foreign port fixed effects – the measures of U.S. and foreign port efficiencies.  

The model estimated is given by equation (1) and is based on a simple cost model of transporting 

goods: 

     ICijkt = � + �1Distij + �2Wgtijkt + �3Valwgtijkt + �4Contijkt + �5Volijt + �6Contijkt×Wgtijkt + 

               �7Contijkt×Valwgtijkt + �8Im_Imbalij + �9Ex_Imbalij + �i + �j + �k + �t + �ijkt.               (1) 

ICijkt represents import charges and is specified in logarithm form, where (i) indexes U.S. ports, 

(j) indexes foreign ports, (k) indexes 6-digit Harmonized System (HS) products, and (t) indexes 

year.   Distij is the logarithm of nautical miles between port (i) and (j) and is expected to have a 

positive coefficient (�1) as freight charges increase with distance transported.  Wgtijkt is the 

logarithm of weight for product (k) transported between ports (i) and (j) in year (t) and is 

expected to be directly correlated with freight costs and, thus, have a positive sign for �2.  

Valwgtijkt is the U.S. dollar value of the shipments divided by its weight in kilos in logarithm 

form.  Holding weight constant, a higher value of the product per unit is expected to increase 

insurance costs, and thus, �3 is expected to have a positive sign as well.   Contijkt is the percent of 
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shipments between port (i) and (j) for product (k) in year (t) that use container ships.  Container 

shipments are expected to be a more efficient means of transportation, and therefore, �4 should 

have a negative sign.  Volijt is the total volume of trade in kilos across all products between port 

(i) and (j) for a given year (t) in logarithm form.  Economies of scale arguments would suggest a 

negative sign for �5, while congestion effects would suggest a positive sign.  The next two terms 

are interactions of our containerization variable with weight and value per weight terms to allow 

for the possible variation in efficiencies from containerization depending on how heavy or 

valuable the product is.  The following two terms are included to account for trade imbalances 

between foreign and U.S. port pairs, as import charges may be higher if a ship is more likely to 

travel empty in one of the directions.  Im_Imbalij is the logarithm of the difference between 

imports and exports when this difference is positive and “0” otherwise.  Similarly, Ex_Imbalij is 

the logarithm of the difference between exports and imports when this difference is positive and 

“0” otherwise.  We expect �8 and �9 to be positive and identical unless traveling into a U.S. port 

empty is systematically more or less costly than traveling out of a U.S. port empty. 

 The final sets of estimated parameters are the model’s fixed effects – sets of dummy 

variables.  �i is the set of fixed-effects parameters that estimate the separate impact of each U.S. 

port on import charges holding all other factors constant.  These represent the estimated 

measures of U.S. port efficiencies, with lower coefficients suggesting a more efficient port.  In 

analogous fashion, �j are the foreign port fixed-effects parameters and identify foreign port 

efficiencies.  �k are product fixed-effects that control for other (unobserved) characteristics of 

products beyond value per weight that affect import charges differently across products.  �t is a 

set of year effects that capture macroeconomic and technological shocks to import charges. 
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Finally, �ijkt is assumed to be a random, white-noise error term.  One effect is excluded from each 

set of fixed effects to avoid perfect multicollinearity with our constant term, �. 

 It is important to stress what our fixed-effects measurements of port efficiency capture 

and how they may differ from other “efficiency” measures.  Given how import charges are 

calculated, we are only capturing factors that affect the shipment costs that are connected with 

navigating the harbor and unloading the goods dockside.  Efficiency of other port activities, 

particularly intermodal connections, are less likely to be captured. However, since import 

charges include port tariffs, we are also capturing any factors that affect these tariffs, such as port 

administration and financing efficiency.  This begs the question why port tariffs are not an 

equally appropriate measure of efficiency.  The answer is that such tariffs do not necessarily 

include costs associated with navigation of the harbor, tide restrictions, and other factors that can 

delay shipments into ports.  We also note that such harbor and navigation costs do not factor into 

efficiency measures derived through DEA calculations of estimation of production or cost 

functions that only consider the use of dockside inputs (capital and labor typically) for the 

observed output.  A port may be fully efficient once the ship is dockside, but a high-cost (hence, 

inefficient) port due to navigation difficulties, congestion, etc.  This highlights another important 

advantage of our methodology. 

The main difference with the specification employed in this paper and that employed in 

Clark et al. (2004) is the estimation of foreign port efficiencies with fixed effects.  Clark et al. 

(2004) does not estimate these, but instead includes survey measures of foreign port efficiencies 

reported in the Global Competitiveness Report (various issues) -- henceforth, referred to as GCR 

measures -- as a regressor in their specification.  In other words, the difference is that in the 

present study the import charge data reveal foreign port efficiencies, whereas Clark et al. (2004) 
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uses an external data source.  There are two main strengths of the fixed effect model relative to 

the GCR measure of foreign port efficiencies.  First, foreign port efficiencies are measured by 

year for as many years as the trade data exist, whereas the GCR measure is only reported 

beginning in 1995.  Second, the GCR measure is only available for a limited set of countries 

(approximately 50), whereas we can estimate such measures for all foreign ports, not just 

countries.  As in this study, Clark et al. (2004) includes U.S. port fixed effects in its specification.  

However, Clark et al. (2004) does not report these, nor do they make the link to using these as 

measures of U.S. ports’ efficiencies.4 Towards the end of the paper we compare our 

measurements of foreign port efficiencies with the GCR measures.  

A final issue is the role of market power in determining import charges, either from ports 

or carriers.  Estimation of the specification in (1) is based on a model of marginal costs of 

transporting merchandise and handling shipments.  For example, as noted by Clark et al. (2004), 

it’s possible that two different ports may have identical efficiencies, but one port charges more in 

fees due to greater market power.   Clark et al. (2004) included measures of market power, 

including information on price-fixing agreements and cooperative agreements between ports and 

carriers, and found that they did not provide any significant explanatory information for import 

charges.5  Finally, to the extent that “larger” ports have greater market power, our volume 

measure will control for market power effects. 

 

                                                           
4 On a more technical note, Clark et al. (2004) specifies their dependent variable as the logarithm of import charges 
divided by the weight of the product. The study also combines the value and weight regressors into one variable by 
taking the logarithm of the ratio of value to weight.  An obvious statistical concern with this is that the value to 
weight regressor is endogenous with the dependent variable as they both contain the weight variable.  For this 
reason, the present study does not use ratios of the variables. 
5 Sanchez et al. (2003) provided a similar analysis to Clark et al. (2004) focusing only on Latin American ports and 
also found no significant correlation between these proxies for market power and import charges. 
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DATA 

 The data used in this analysis are from two sources both provided by the National Data 

Center (NDC) of the Army Corps of Engineers (ACE).  ACE maintains public-use trade data 

comparable to the U.S. Census IA 245 files.  These data are generated from Census files and 

matched to Customs vessel entrances/clearances for more complete and accurate vessel and U.S. 

port data.  This data set is used to construct ICijkt, Valwgtijkt, Contijkt, Volij, Im_Imbalij, 

Ex_Imbalij, and related interaction terms over all the years available with the necessary data - 

1991 through 2003. 

 ACE has also developed a preliminary databank containing port-to-port nautical miles.  

There are 375 different US ports in these data which connect to 1789 different domestic and 

foreign ports.  This data set is used to construct the distance (Distij) variable.  Merging these 

distance data into the trade data was problematic since the files did not have common U.S. port 

codes.  The authors developed a correspondence between the two datasets for these U.S. port 

codes in order to merge the data. 

The combined database contains millions of observations, where the unit of observation 

is a U.S. port, foreign port, a six-digit HS product code and year.  Such a large data set presents 

some computation difficulties.  To mitigate this, we first limit our sample to the top 100 foreign 

ports by import volume which covers over 81% of all U.S. import activity.  Second, we 

estimated our model for each year, rather than the full sample.  Yearly samples had hundreds of 

thousands of observations and each required over 10 hours of computation time on a Linux 

machine with 8 Gigabytes of RAM using the statistical package, STATA. 
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RESULTS AND PORT EFFICIENCY ESTIMATES 

OLS is applied to equation (1) for each year of our sample, 1991 through 2003, and 

TABLE 1 provides our econometric results.  Before focusing on the estimates for the port fixed 

effects (our measures of port efficiencies), a short discussion of the overall fit and efficacy of the 

model is provided.  

 The fit of the model to the data is quite high and stable across years, with R2 statistics 

ranging from 0.90 to 0.92, indicating that our control variables explain 90% (or more) of the 

variation in import charges.  F-statistics confirm the statistical significance for each of our sets of 

fixed effects at the 1% significance level.   

In general, the control regressors separately listed in TABLE 1 have expected signs and 

conform to results from previous studies.  Given these control regressors are in logarithm form, 

the coefficients on these regressors can be read as elasticities.  Distance is positively correlated 

with import charges and its coefficient ranges from 0.1277 to 0.2123 over the sample years.  

Thus, these estimates suggest that a 10% increase in distance will increase import charges from 

1.3 to 2.1%.  This is consistent with previous studies in that there is not a one-to-one increase in 

import charges with distance.  Weight and value per unit (VALWGT) are also positively 

correlated with import charges.  Import charges increase almost one-to-one with weight, as 

indicated by a coefficient that averages around 0.91 over the sample years.  The coefficient 

estimates on VALWGT suggest that a 10% increase in the value per kilo increases import 

charges by 5.5%.   The volume measure displays an estimated positive correlation with import 

charges for all but one year and is typically statistically significant though very small in 

magnitude.  This suggests that congestion effects of volume slightly outweigh the economies of 

scale effects.  As expected, the effect of containerization, everything else equal, is a reduction in 
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import charges, though the elasticity is fairly small, averaging about -0.05 over our sample years.  

The terms interacted with the containerization variable are also statistically significant, though 

small in magnitude as well.  The positive coefficient on CONT×WGT suggests that the cost-

reducing effects of containerization are mitigated for heavier products.  On the other hand, the 

negative coefficient on CONT×VALWGT reveals that the cost-reducing impact of 

containerization is larger for products with higher value per unit.  The final controls for which 

we list results in TABLE 1 are our trade imbalance measures which are typically not statistically 

significant.  Clark et al. (2004), using alternative measure of trade imbalances, likewise finds no 

robust evidence that trade imbalances affect import charges in a significant manner.   

  

Estimated Port Efficiency Measures 

U.S. Port Efficiencies Measures 

 The model estimated for our results in Table 1 also includes sets of fixed effects for U.S. 

ports, foreign ports, and 6-digit HTS products.  Each of these sets of fixed effects is jointly 

statistically different from zero at the 1% significance level in all regressions. Column 1 of 

TABLE 2 provides the average fixed-effect estimate for the top 50 (by volume) U.S. ports across 

all years in our sample and ranks them from most efficient to least efficient port.  These port 

fixed effects coefficients provide estimates of a port’s impact on import charges that are 

independent from other variables included in our regression.  The inclusion of product fixed 

effects in our regression, for example, means that the port fixed effects should be free of bias 

from differences in the mix of products a port handles.  The lower (or more negative) the 

coefficient, the lower the U.S. port’s effects on import charges all other variables held constant 

and, thus, the more efficient the port.   
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To avoid perfect multicollinearity with our constant term, we dropped the Port of 

Oakland from the set of U.S. port fixed effects.  Thus, the fixed-effects estimates in TABLE 2 

are relative to the Port of Oakland’s effect on import charges which is zero by construction.  

Given our dependent variable is in logarithm form, the coefficients in column 1 in TABLE 2 are 

approximately equal to the percentage difference (in decimal form) in the port’s effect on import 

charges relative to the Port of Oakland effect, after controlling for all other factors.  For example, 

a coefficient of -0.02 indicates that the component of import charges connected with that port is 

roughly 2% less than the same port costs in the Port of Oakland for a shipment of the same 

product from a foreign port that is the same distance away.  To get the percentage difference in 

efficiency from Oakland, one simply takes the difference in the exponent of the fixed effect 

coefficient minus one and multiplies by 100.6  Statistical confidence of the fixed-effects 

estimates for our top 50 ports all average greater than 95% over our sample years. 

An examination of the U.S. port fixed effects estimates reveals that many of the Gulf 

Coast and West Coast ports rank in the upper half of the list, with Gulfport, Mississippi topping 

the list with a coefficient of -0.087, indicating import charges average roughly 8% less than the 

Port of Oakland.  The island ports of Honolulu, Hawaii and San Juan are essentially outliers at 

the bottom of the list in terms of efficiency with coefficients of 0.349 and 0.609, respectively.  

Overall, there is a significant range of estimated port efficiencies.  Only 15 of the 50 ports are 

within 0.05 of the Port of Oakland; that is, within roughly 5% of the Port of Oakland’s impact on 

import charges.  The average port has a fixed effect around 0.08 with a standard deviation for the 

sample around 0.11.   

                                                           
6 This percentage will be quite close to the fixed effect coefficient (in decimal) form when the coefficients are close 
to zero, as is true of many of our estimated coefficients. 
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We note that precision of our estimates for port efficiencies of ports smaller than the top 

50 are generally quite weak and it is difficult to have much confidence in our estimates for these 

ports.  However, the top 50 ports account for over 97% of all import volume into the U.S., so our 

methodology obtains significant results for virtually all U.S. import activity. 

As indicated throughout this paper, an important feature of this study’s new method of 

estimating port efficiencies is the ability to derive such estimates for each port over time – not 

just a cross-sectional comparison.  As an example of the benefit of this time series element, 

Column 3 of TABLE 2 provides the change in the U.S. port’s fixed effect coefficient over the 

sample years relative to the Port of Oakland’s effect on import charges.  These come from 

subtracting the port’s average fixed effect for the initial three years of 1991 through 1993 from 

the port’s average fixed effect from the final three years of the sample, 2001 through 2003.  A 

negative coefficient indicates that the port became more efficient relative to the Port of Oakland 

over this period, whereas a positive coefficient indicates that it became less efficient. 

 There is a wide variation in ports’ efficiency changes over this time period, with the 

average experience being a loss in efficiency of 0.06 relative to the Port of Oakland; in other 

words, everything else equal, an import shipment to the average port cost roughly 6% more in 

import charges relative to Oakland in the early 2000s than in it did in the early 1990s.  One other 

pattern to note is that Gulf of Mexico ports consistently gained in efficiency relative to Oakland 

over this period, whereas East coast ports, generally lost ground.   

 To get a more detailed view of time series changes, FIGURES 1, 2 and 3 plot out port 

efficiency coefficients (relative to Oakland) on an annual basis for certain select ports.  FIGURE 

1 plots West Coast ports, FIGURE 2 plots Gulf of Mexico ports, and FIGURE 3 plots East Coast 

ports.  FIGURE 1 shows that other West Coast ports generally lost ground to the Port of Oakland 
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in terms of efficiency over our sample period.  One can also observe that the Port of Long Beach 

lost some efficiency relative to the other ports during this period as well.  Gulf Coast ports 

displayed in FIGURE 2 show a fair amount of variation in efficiency over the sample period, 

though their efficiencies by the end of the period are very similar to the first year of the sample.  

Houston and New Orleans have similar efficiency measures over time, while the Port of Mobile 

is slightly less efficient, particularly over the late 1990s and early 2000s.  The East Coast ports 

displayed in FIGURE 3 show the largest changes in relative efficiency rankings over time.  In 

particular, the Port of Norfolk goes from the most efficient of the group to the least efficient over 

time, while Port Everglades goes from the least efficient of the group in 1991 to one of the more 

efficient by 2003. 

 

Foreign Port Efficiencies Measures 

 Analogous to the estimated U.S. port fixed effects, the estimated foreign port fixed 

effects provide measures of foreign port efficiencies, where the smaller (or more negative) the 

coefficient, the more efficient the port relative to the port we exclude from our foreign port set – 

Rotterdam, the Netherlands.  Column 1 of TABLE 3 provides our estimates of foreign port fixed 

effects from the OLS results using our entire sample and ranks them from most efficient to least 

efficient port.  Column 2 of TABLE 3 lists the foreign port’s market share of total U.S. imports, 

while column 3 of TABLE 3 provides the change in the foreign port’s fixed effect coefficient 

from the early 1990s to the early 2000s relative to the Port of Rotterdam’s effect on import 

charges. 

 A number of obvious patterns emerge in the rankings of the foreign ports.  The upper half 

of the list (the most-efficient ports) is primarily European and Japanese ports.  The middle of the 
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list is generally populated by newly-industrialized countries in Southeast Asia, such as Taiwan 

and Korea, while the least-efficient ports are primarily Central American and Chinese ports.  As 

with the U.S. port efficiency measures, most are estimated to be statistically different from zero – 

the efficiency of the Rotterdam port by construction – at the 5% significance level or better.   

 Column 3 of TABLE 3 shows how estimated port efficiency measures changed over our 

sample period.  As with the U.S. port data, we calculate this as the average port efficiency from 

2001 through 2003 minus the average port efficiency from 1991 through 1993.  There is 

substantial variation in port efficiency changes over the sample with a standard deviation of 0.16, 

but the average change in port efficiency relative to Rotterdam is -0.05, or a 5% efficiency gain.  

 

Comparing Our Foreign Port Efficiency Measures to the GCR Measures 

 As mentioned, previous literature has used the GCR measures as proxies for foreign port 

efficiency.  While these measures are only available for certain countries, one can examine how 

comparable this study’s measures are to the GCR measures by aggregating our port measures by 

country (using our import market shares as weights) and calculating a pairwise correlation.  

Clark et al. (2004) reports and uses the GCR measures for the year 1998.  An average country-

level port efficiency measure for the 1997-1999 period using this study’s estimated port 

efficiencies is constructed, which yields 29 matches with the GCR data.  The pairwise correlation 

is 0.33 between the two measures and is statistically significant at the 7% confidence level.   

 Interestingly, the two contiguous countries to the U.S. yield unexpected port efficiencies 

measures using our methodology, with Canada’s ports ranking as some of the worst and 

Mexico’s ports ranking as some of the best in the world.  Our current control regressors may not 

be adequately capturing these countries special geography with the U.S.  If we discard these two 
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observations, the correlation between this study’s estimated measures of port efficiencies and the 

GCR measures is 0.65 and statistically significant at the 1% confidence level.  This suggests that 

our study’s measures are capturing similar port efficiency effects to the GCR measures (with the 

exception of contiguous countries).  However, this paper’s methodology can provide such port 

efficiency measures for many more years than the GCR data and for conceivably all foreign 

ports (not just countries) from which the U.S. imports. 

 

U.S. Port Efficiencies for Select Products: Steel and Autos 

 Another significant advantage of the methodology in this paper is our ability to easily 

estimate port efficiencies for only a subset of products.  This is done by simply re-estimating the 

model represented in equation (1) for only observations on the products of interest.  For example, 

TABLES 4 and 5 provide information on U.S. port efficiencies estimated when focusing on only 

steel products or autos, respectively, using data for the year 1999.  For both products, the port 

efficiencies are again measured relative to the Port of Oakland, which is a significant port for 

both types of imported products.  Panel A of each table displays ports with at least a 1% market 

share in the product and which are significantly different than Oakland in terms of efficiency, 

while Panel B of each table displays other ports with at least 1% market share that are not 

statistically different than Oakland in terms of efficiency.  Our estimates reported in TABLE 4 

suggest that both the Ports of Tampa and Baton Rouge are significantly more efficient for 

handling steel products, while Los Angeles, Chester, Camden, and San Juan are ports with 

significant market shares, but less efficient than Oakland in handling these products.  In autos 

(TABLE 5), the Port of Brunswick, Georgia is estimated to be significantly more efficient than 
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all other ports, while Long Beach, Norfolk, Charleston, Tacoma, New York & New Jersey, and 

Boston are estimated to be significantly inefficient relative to Oakland. 

 

CONCLUSION 

 This study provides new measures of ocean port efficiencies through simple statistical 

tools using U.S. data on import flows from 1991 through 2003.  Unlike previous measures using 

surveys, DEA, or production/cost function estimation, this study’s methodology can provide 

such estimates for a much broader sample of countries and years with little cost.  It also has the 

flexibility to quickly provide port efficiency comparisons on a commodity-by-commodity basis 

(e.g., which U.S. ports are more efficient at handling steel products).  The costliness and strong 

data requirements of other methodologies is likely why MARAD was unable to identify or 

provide any port efficiency comparison in a recent Congressional request.  Beyond the important 

role of informing policy makers, the readily-available measures of port efficiency can used by 

future researchers to examine a myriad of new issues, including the evolution of port efficiencies 

over time and its effects on international trade flows and country-level growth.  
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TABLE 1: OLS Estimates of Determinants of Import Charges for U.S. Imports, 1991-2003. 
  Dependent Variable: Import Charges 

Regressors 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 
DIST 0.1643* 0.1785* 0.1883* 0.1978* 0.1573* 0.1508* 0.1892* 0.1967* 0.1710* 0.2123* 0.2106* 0.1893* 0.1277* 
 (0.0050) (0.0052) (0.0052) (0.0052) (0.0052) (0.0050) (0.0050) (0.0049) (0.0054) (0.0053) (0.0057) (0.0052) (0.0050) 
WGT 0.9046* 0.9103* 0.9141* 0.9124* 0.9121* 0.9156* 0.9161* 0.9088* 0.9143* 0.9046* 0.9013* 0.9053* 0.8953* 
 (0.0024) (0.0028) (0.0026) (0.0021) (0.0022) (0.0016) (0.0018) (0.0020) (0.0023) (0.0023) (0.0025) (0.0023) (0.0024) 
VALWGT 0.5550* 0.5818* 0.5718* 0.5267* 0.5326* 0.5276* 0.5466* 0.5498* 0.5540* 0.5335* 0.5377* 0.5465* 0.5381* 
 (0.0045) (0.0052) (0.0051) (0.0039) (0.0044) (0.0030) (0.0034) (0.0039) (0.0044) (0.0045) (0.0048) (0.0046) (0.0047) 
CONT -0.0454* -0.0489* -0.0365* -0.0466* -0.0465* -0.0334* -0.0352* -0.0466* -0.0318* -0.0551* -0.0607* -0.0568* -0.0693* 
 (0.0059) (0.0069) (0.0065) (0.0051) (0.0056) (0.0040) (0.0046) (0.0051) (0.0058) (0.0058) (0.0063) (0.0059) (0.0061) 
VOL 0.0073* 0.0055* 0.0059* 0.0063* 0.0057* 0.0020 0.0068* 0.0041* 0.0039* 0.0096* 0.0009 0.0055* -0.0008* 
 (0.0015) (0.0017) (0.0015) (0.0015) (0.0015) (0.0014) (0.0015) (0.0015) (0.0017) (0.0016) (0.0017) (0.0016) (0.0016) 
CONT*WGT 0.0068* 0.0064* 0.0060* 0.0068* 0.0070* 0.0053* 0.0054* 0.0069* 0.0066* 0.0088* 0.0089* 0.0083* 0.0107* 
 (0.0005) (0.0006) (0.0006) (0.0005) (0.0005) (0.0004) (0.0004) (0.0005) (0.0005) (0.0005) (0.0006) (0.0005) (0.0005) 
CONT*VALWGT -0.0040* -0.0044* -0.0074* -0.0036* -0.0041* -0.0029* -0.0047* -0.0083* -0.0118* -0.0103* -0.0118* -0.0119* -0.0095* 
 (0.0010) (0.0011) (0.0011) (0.0009) (0.0010) (0.0007) (0.0008) (0.0009) (0.0010) (0.0010) (0.0011) (0.0010) (0.0010) 
IM_IMBAL -0.0003 0.0016 -0.0010 0.0014 -0.0048* -0.0008 -0.0039* -0.0003 -0.0014 -0.0028* 0.0008 -0.0021* 0.0020* 
 (0.0009) (0.0010) (0.0010) (0.0010) (0.0010) (0.0008) (0.0010) (0.0010) (0.0012) (0.0010) (0.0011) (0.0010) (0.0009) 
EX_IMBAL -0.0006 0.0008 -0.0012 0.0013 -0.0052* -0.0006 -0.0042* -0.0010 -0.0017 -0.0031* 0.0004 -0.0031* 0.0008 
 (0.0009) (0.0010) (0.0010) (0.0010) (0.0009) (0.0008) (0.0009) (0.0010) (0.0011) (0.0010) (0.0010) (0.0009) (0.0009) 
              
Number of 
Observations 337677 343131 371185 379158 382293 456418 465566 521467 437691 473245 442076 483595 549804 
R-Squared 92 92 92 92 92 91 91 91 91 91 90 91 90 
F-Statistic 748 756 823 893 891 942 943 1024 857 923 817 917 1009 
Notes: All variables are logged. A constant intercept term was included, as well as U.S. port fixed effects, foreign port fixed effects, and 6-digit  
HTS product fixed effects.  * indicates significance at the 1% level.         
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TABLE 2: U.S. Port Efficiencies 

Port Name 

Port Fixed Effects: 
Efficiencies 
Relative to 
Oakland 

Port’s Market 
Share of U.S. 

Import Volume 
Over Sample 

Years (percent) 

Change in Port 
Efficiency Relative to 
Oakland from 1991-
1993 Period to 2001-

2003 Period 
Gulfport, MS -0.087 0.22 -0.028 
Port Hueneme, CA -0.087 0.77 0.206 
San Francisco, CA -0.082 0.27 0.119 
Pascagoula, MS -0.082 0.43 -0.099 
Port Huron, MI -0.046 0.34 0.147 
Freeport, TX -0.028 0.54 0.114 
Baton Rouge, LA -0.018 0.68 -0.083 
Oakland, CA 0.000 3.82 0.000 
Galveston, TX 0.022 0.31 -0.012 
New Haven, CT 0.023 0.17 0.233 
Gramercy, LA 0.024 0.17 NA 
Portland, OR 0.026 1.42 0.015 
Chester, PA 0.030 0.46 0.060 
Lake Charles, LA 0.035 0.65 -0.435 
Newport News, VA 0.038 0.33 0.129 
Beaumont, TX 0.039 0.96 0.203 
Long Beach, CA 0.045 14.91 0.080 
Boston, MA 0.048 0.71 0.073 
Corpus Christi, TX 0.048 1.21 0.284 
Norfolk, VA 0.051 2.82 0.131 
Los Angeles, CA 0.051 15.96 0.043 
Houston, TX 0.054 4.08 0.018 
Savannah, GA 0.064 2.04 0.074 
Mobile, AL 0.066 0.39 0.074 
Charleston, SC 0.069 3.64 0.067 
Jacksonville, FL 0.071 1.67 -0.070 
Philadelphia, PA 0.072 1.60 -0.051 
Brunswick, GA 0.072 0.53 -0.291 
Wilmington, NC 0.073 0.31 0.160 
Baltimore, MD 0.079 3.18 -0.021 
New Orleans, LA 0.080 1.92 0.053 
NY & NJ 0.091 12.07 0.022 
Providence, RI 0.095 0.21 -0.203 
St. Croix, VI 0.104 0.70 0.023 
Port Everglades, FL 0.114 1.01 -0.088 
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Detroit, MI 0.116 0.32 -0.054 
Miami, FL 0.123 1.59 -0.014 
Texas City, TX 0.130 0.69 0.263 
Seattle, WA 0.145 5.32 0.027 
Paulsboro, NJ 0.145 0.42 0.707 
Tacoma, WA 0.152 3.62 0.021 
Richmond, CA 0.155 0.27 0.524 
Tampa, FL 0.169 0.19 0.074 
Marcus Hook, PA 0.175 0.20 0.793 
Wilmington, DE 0.182 0.65 -0.001 
San Diego, CA 0.190 0.51 -0.027 
Port Arthur, TX 0.218 0.71 0.053 
Morgan City, LA 0.230 0.86 -0.246 
San Juan, PR 0.349 0.68 0.038 
Honolulu, HI 0.609 0.29 0.133 
Notes: “NA” indicates that this figure is not available for this port, since it did not have an 
estimated port fixed effect for one of the years. 
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TABLE 3: Foreign Port Efficiencies 

Port Name 

Port Fixed 
Effects: 

Efficiencies 
Relative to 
Rotterdam 

Port’s Market 
Share of U.S. 

Import Volume, 
1991- 2003 
(percent) 

Change in Port 
Efficiency 
Relative to 

Rotterdam from 
1991-1993 Period 

to 2001-2003 
Period 

Dos Bocas, Mexico -0.252 0.36 -0.254 
Forcados, Nigeria -0.175 0.26 NA 
Zeebrugge, Belgium -0.053 0.19 -0.479 
Shimizu, Japan -0.050 0.63 -0.109 
Chiba, Japan -0.031 0.58 0.171 
Bremerhaven, Germany -0.017 4.03 -0.027 
Antwerp, Belgium -0.015 2.32 0.060 
Osaka, Japan -0.010 0.98 0.099 
Rotterdam, Netherlands 0.000 2.24 0.000 
Chi Lung, Taiwan 0.013 1.93 -0.001 
Escravos Oil Terminal, Nigeria 0.014 0.22 NA 
Le Havre, France 0.017 1.18 -0.005 
Hamburg, Germany 0.018 0.53 -0.034 
Kawasaki, Japan 0.019 0.21 0.162 
Hakata, Japan 0.023 0.26 0.160 
Bremen, Germany 0.026 0.64 0.008 
Fos, France 0.035 0.18 -0.094 
Pajaritos, Mexico 0.046 0.59 -0.594 
Nagoya, Japan 0.052 3.27 -0.065 
Southhampton, United Kingdom 0.053 0.69 -0.007 
Puerto Plata, Dominican Republic 0.057 0.17 -0.166 
Tai Chung, Taiwan 0.061 0.25 0.054 
Emden, Germany 0.064 0.67 -0.203 
Kao Hsiung, Taiwan 0.066 2.54 -0.018 
Liverpool, United Kingdom 0.066 0.4 -0.072 
All Other Colombian/Caribbean Ports 0.068 0.36 0.063 
Haifa, Israel 0.069 0.31 -0.176 
Kobe, Japan 0.077 2.21 -0.022 
Felixstowe, United Kingdom 0.080 1.01 -0.074 
Tokyo, Japan 0.083 4.21 -0.067 
Toyohashi, Japan 0.084 2.52 -0.260 
Rio Grande, Brazil 0.090 0.22 -0.105 
Goteborg, Sweden 0.096 0.72 -0.068 
Yokohama, Japan 0.100 2.78 0.039 
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Inchon, South Korea 0.101 0.22 0.125 
All Other South Korea Ports 0.107 0.27 0.084 
Pusan, South Korea 0.108 2.74 0.026 
Sarnia (Ont), Canada 0.109 0.35 NA 
Amuay Bay, Venezuela 0.112 0.38 -0.096 
Hong Kong, Hong Kong 0.113 9.31 0.004 
Kwa Ibo Termina, Nigeria 0.117 0.32 NA 
Rio Haina, Dominican Republic 0.125 0.26 -0.101 
Sullom Voe, United Kingdom 0.126 0.21 NA 
Yokosuka, Japan 0.127 0.91 -0.026 
Mizushima, Japan 0.127 0.17 0.114 
All Other Venezuelan Ports 0.133 0.61 -0.109 
Yokkaichi, Japan 0.136 0.39 0.255 
Buenos Aires, Argentina 0.137 0.21 -0.250 
Singapore, Singapore 0.141 1.65 -0.008 
Puerto La Cruz, Venezuela 0.142 0.67 0.268 
La Spezia, Italy 0.144 0.56 -0.105 
Penang, Malaysia 0.144 0.49 -0.039 
Genoa, Italy 0.147 0.5 -0.056 
All Other Thai Ports 0.149 0.23 0.034 
Jahore, Malaysia 0.153 0.2 -0.024 
Durban, South Africa 0.154 0.23 0.012 
All Other Japan Ports 0.158 0.66 0.222 
Melbourne, Australia 0.160 0.22 -0.252 
Mongstad, Norway 0.166 0.22 NA 
Limon, Costa Rica 0.166 0.31 -0.140 
La Salina, Venezuela 0.169 0.25 -0.045 
Karachi, Pakistan 0.171 0.28 -0.102 
Rio de Janeiro, Brazil 0.174 0.19 -0.164 
Leghorn, Italy 0.179 0.54 -0.093 
Puerto Cortes, Honduras 0.185 0.44 -0.024 
Valencia, Spain 0.190 0.19 -0.154 
Kelang, Malaysia 0.192 0.4 -0.071 
Sao Paulo, Brazil 0.193 0.64 -0.221 
Laem Chabang, Thailand 0.193 0.42 NA 
Bangkok, Thailand 0.195 0.96 -0.016 
All Other Malaysia Ports 0.202 0.32 -0.148 
Ras Tanura, Saudia Arabia 0.204 1.09 -0.165 
Saint John (NB), Canada 0.213 0.27 NA 
Onsan, South Korea 0.217 0.32 0.265 
Al Fuhayhil, Kuwait 0.218 0.17 -0.259 
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Colombo, Sri Lanka 0.225 0.28 -0.102 
Veracruz, Mexico 0.228 0.31 -0.195 
All Other China Ports 0.234 0.98 -0.024 
Jakarta, Indonesia 0.238 0.64 -0.074 
Yantian, China 0.242 1.84 0.026 
All Other Indonesia Ports 0.252 0.19 -0.020 
Bombay, India 0.253 0.29 -0.203 
Ching Tao, China 0.255 0.33 -0.103 
St. Petersburg, Russia 0.259 0.3 -0.434 
Al Bakir, Iraq 0.259 0.35 NA 
Shanghai, China 0.267 2.04 -0.156 
Dagu/Tanggu, China 0.268 0.3 -0.128 
Dalian, China 0.270 0.21 -0.151 
Santo Tomas de Castillo, Guatemala 0.272 0.43 -0.121 
Chittagong, Bangladesh 0.287 0.27 -0.076 
Hiroshima, Japan 0.301 0.39 0.301 
Duran, Ecuador 0.301 0.2 -0.190 
Manilla, Philippines 0.316 0.7 -0.030 
Arzew, Algeria 0.347 0.23 0.483 
High Seas, Gulf of Mexico 0.353 1.05 -0.109 
Puerta Miranda, Venezuela 0.470 0.21 -0.022 
Windsor (Ont), Canada 0.512 0.18 0.141 
Bonny, Nigeria 0.580 0.22 NA 
Point Tupper (CBI), Canada NA 0.17 NA 
Cayo Arcos, Mexico NA 0.65 NA 
Notes: “NA” indicates that this figure is not available for this port, since it did not have an 
estimated port fixed effect for one of the years. 
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TABLE 4: Port Efficiencies for U.S. Ports That Handle at Least 1% of US Imported 

Steel, 1999 
 
PANEL A: Ports With Significantly Different 
Efficiencies in Handling Steel Products Than the 
Port of Oakland 

Port Name 

U.S. Import 
Market Share 

in Steel 
Products 

Port (Fixed 
Effects) 

Efficiencies 
Tampa, FL 1.21 -0.439 
Baton Rouge, LA 4.91 -0.249 
Los Angeles, CA 9.47 0.073 
Chester, PA 1.09 0.112 
Camden, NJ 1.75 0.151 
San Juan, PR 1.91 0.251 
   
   
   
   
PANEL B: Ports With No Significantly Different 
Efficiencies in Handling Steel Products Than the 
Port of Oakland 

Port Name 

U.S. Import 
Market Share 

in Steel 
Products  

New Orleans, LA 22.86  
Houston, TX 8.29  
Philadelphia, PA 5.94  
Long Beach, CA 4.80  
Detroit, MI 4.51  
Chicago, IL 3.96  
Baltimore, MD 3.50  
Savannah, GA 3.44  
NY & NJ 2.31  
Mobile, AL 1.60  
New Haven, CT 1.59  
Cleveland, OH 1.50  
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TABLE 5: Port Efficiencies for U.S. Ports That Handle at Least 1% of US Imported 

Autos, 1999 
 
PANEL A: Ports With Significantly Different 
Efficiencies in Handling Autos Than the Port of 
Oakland 

Port Name 

U.S. Import 
Market Share 

in Autos 

Port (Fixed 
Effect) 

Efficiency 
Brunswick, GA 2.95 -0.271 
Long Beach, CA 11.29 0.090 
Norfolk, VA 3.96 0.106 
Charleston, SC 3.67 0.111 
Tacoma, WA 3.73 0.117 
NY & NJ 13.00 0.153 
Boston, MA 1.83 0.428 
   
   
   
   
PANEL B: Ports With No Significantly Different 
Efficiencies in Handling Autos Than the Port of 
Oakland 

Port Name 

U.S. Import 
Market Share 

in Autos  
Los Angeles, CA 14.35  
Jacksonville, FL 7.39  
Baltimore, MD 6.49  
Portland, OR 6.27  
Seattle, WA 5.11  
Port Hueneme, CA 3.98  
San Diego, CA 3.50  
Houston, TX 2.14  
Wilmington, DE 1.77  
Vancouver, WA 1.06  
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FIGURE 1: West Coast Ports' Efficiencies Relative to Oakland, 1991-2003
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FIGURE 2: Gulf of Mexico Ports' Efficiencies Relative to Oakland, 1991-2003
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FIGURE 3: East Coast Ports' Efficiencies Relative to Oakland, 1991-2003
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