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In this paper, we argue that the distribution of durable goods offered in markets tends to be

compressed relative to the distribution of consumers' underlying preferences. In particular, there are

strong incentives for conformity in markets for durable goods. The reason for conformity is natural:

durables (for example houses) are traded and as a result, demand for these goods is influenced by

their resale value. Agents may like one product, but purchase another because of resale concerns. We

show that (1) there is a tendency to conform to the average preference; (2) conformity depends

primarily on the number of people with extreme preferences; (3) conformity increases with increases

in durability, patience, and the likelihood of trade; and (4) equilibrium conformity is not necessarily

optimal. Surprisingly, there tends to be too little conformity in equilibrium. Conformity also creates

a demand for rental markets. Renting does not necessarily decrease conformity however. Instead,

renting tends to exaggerate conformity in the owner-occupied market.
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“Conformity, in terms of size, condition & features, tends to support
your home’s market value more than anything else.” 1

1. Introduction

What determines the mix of products in a market? In standard supply and demand
models, the mix of products is determined by preferences and costs. Holding
everything else equal, goods which are preferred relative to other goods should
be produced and consumed in greater amounts. This prediction rests simply on
the idea that consumers demand the goods that they most prefer. On the other
hand, people often complain that there is too little variety in certain markets.
One market that has received particular attention in this regard is the housing
market. New houses often have features and styles that differ only superficially
from one house to the next. New housing developments are often derided because
they consist merely of “cookie-cutter” houses or “McMansions.” These houses are
virtually the same — most have cathedral ceilings, walk-in closets, built-in jacuzzis,
mud rooms, and so forth. Of course many of these features are desirable but it
seems unlikely that preferences are so aligned as to justify such a homogeneous
mix of products.
In this paper, we argue that there are powerful incentives for conformity in

markets for durable goods. The reason is natural. A durable good, like a house,
is traded from time-to-time and as a result, the current demand for the good is
influenced by its resale value. Resale concerns can be so strong as to cause an
individual to purchase a good that he dislikes relative to other available goods. If
this occurs we say that the individual is conforming to the market.
We analyze these issues with a matching model in which agents buy and sell a

durable good. The durable good is a long-lived durable that must be resold from
time-to-time. Although the specific function of the durable is not important for
the analysis, we refer to the durable as a house. There are two types of houses
in the market and agents differ according to their preferences over the two types.
Frictions in the resale market imply that agents are not matched perfectly with
others who have the same preferences. Thus, if someone buys an unusual house,
he runs the risk that he will not be able to sell it if he needs to move. We show that
in equilibrium, there is a tendency to conform to the average preference. That

1Quoted from Accurate Appraisals. See http://www.accurate-appraisal.com/faq.htm.
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is, some agents choose to purchase goods that they do not prefer because they
anticipate that they will have to sell it later. Conformity is common — rather than
being a knife-edge phenomenon, conformity is the typical outcome in the model.
In the model the decision of whether or not to conform depends on the number
of people with extreme preferences rather than the average preference. Because
resale concerns rise with durability and the incidence of trade, there is greater
conformity in markets for long-lived durables and in markets with frequent trade.
The equilibrium level of conformity in the model is usually not optimal. Sur-

prisingly, the model suggests that there is typically too little conformity in durable
goods markets. There are two reasons for this inefficiency. First, by conforming,
agents reduce search costs. If they have a house that few others want, they will
have difficulty selling it if they need to move. Of course the original builder has
an incentive to conform to reduce the severity of these search costs. However,
the search costs affect both buyers and sellers. Because the original owner only
internalizes his own search costs, he has too little incentive to conform. Second,
even when the house is sold, there is a possibility that the house will not be an
ideal match for the new owner. This is a matching cost. The seller typically will
not internalize the social costs incurred when someone “settles” for a house that
is not ideal for their needs. Since it is more likely that he will be matched with
someone who has a common preference, by conforming, the original owner could
reduce the costs of such a mis-match. Only if the seller completely captures all
of the surplus from the trade would he fully internalize this cost. Again, there is
typically too little incentive to conform.
Finally, we consider the possibility of rent in the market for durable goods. By

eliminating resale concerns, rent can potentially reduce conformity. The opposite
can also happen. Agents who prefer uncommon types may choose to rent while
people with typical preferences (the majority) choose to remain in the owner-
occupied housing market. In this case, there is even greater incentive to conform
in the owner-occupied market.
The classic example of conformity is perhaps the Keynesian beauty contest.

Keynes originally compared financial investors with participants in a newspaper
beauty contest. In most models of the Keynesian beauty contest, payoffs are
assumed to depend on both one’s own action and the average action of the other
players. Models of this sort generate conformity because agents with intermediate
preferences conform to the majority. Our model endogenizes the Keynesian beauty
contest. While agents in our model do not care directly about the preferences or
actions of other agents, in equilibrium they act as though they do. Because they
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buy and sell a common set of goods, durability and trade endogenously align the
preferences of the agents.
The rest of the paper is organized as follows: Section 2 presents the model. In

this section we describe optimal behavior and define and characterize equilibrium.
Section 3 presents the main results of the paper. In this section we show that
conformity increases with durability and the incidence of trade. Section 3 also
considers welfare and the possibility of rent. Section 4 discusses the results and
relates our paper to the existing literatures on durables, conformity, and optimal
product diversity. Section 5 concludes.

2. Model

We consider a continuous-time matching model in which agents can own one of
two types of a durable good. Although our analysis holds for any durable good,
we assume that the good in our model is a house. We denote the two types of
houses as type a and b. Since we want to focus on heterogeneity in tastes, we
assume that the costs of producing each type are equal. The houses could differ
along many dimensions. For example, type a houses could be “traditional-style”
houses while type b could be “modern-style” houses. Alternatively, type a could
be a two-story house with a large yard while type b might be a one-story house
with a small yard. Every agent must have a house in every period.
We normalize the utility functions so that all consumers get a flow utility of

1 from living in the type a house. Consumers have different tastes for the type
b house. Specifically, each consumer has an individual taste parameter z which
quantifies their preference for type b houses. For a consumer with taste parameter
z the flow utility from living in a type b house is 1 + z. The flow utility for an
agent with a given z and a given house x ∈ {a, b} is thus

uz (x) =

½
1 if x = a

1 + z if x = b
.

We assume that z is distributed over the population according to a distribution
function F .
From time to time agents switch houses. Agents may switch their house for

one of two reasons. First, the house may “die”. We think of the “death” of a
house as capturing mainly normal depreciation but it may also include extreme
idiosyncratic events such as fires, severe water damage, and so forth. When this
occurs, the agent must build a new house. We refer to this event as the “build
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shock.” An agent who gets the build shock decides which type of house to build
and incurs a building cost c. The building cost is the same for all agents and for
either type of house.
Second, the agent may be required to trade his house which we refer to as the

“trade shock”. Agents who get the trade shock must move out of their house and
into a new house. To better motivate the trade shock, we imagine that each agent
lives and works in one of two cities of equal size. Agents who get the trade shock
have to move from one city to the other. When this happens the agent first has
an opportunity to trade his house. The agent is matched randomly with a trading
partner who is moving in the opposite direction. If both agents agree to trade,
they simply exchange houses, otherwise the trade is rejected. If the trade fails, the
agents are forced to scrap their old houses and build new houses of their choice.
Let π be the difference between the build cost c and the scrap value of their old
house. It is important to emphasize that agents are not trading because their
preferences over houses change. They trade simply because they have to move
from one city to the other. Thus, in the trade state, some agents will exchange
houses of the same type (e.g., an a for an a) as well as houses of different types.
Because π is only incurred by agents who fail to trade, we refer to π as the

“trade penalty.” One can alternatively interpret the trade penalty as reflecting
other costs of buying and selling a house. For instance, one could think of π as
the expected cost of engaging in a protracted search in an environment with the
possibility of re-matching.2 Under this interpretation π would include the cost of
renting while traders search for new houses and would also include the forgone
interest on the sale price while a house waits to be sold. Sales commissions, fees
and the costs of renovations could also be included in the trade penalty π.
If agents do not get the build or the trade shock they simply continue residing

in their current house. We assume that the build shocks and trade shocks are
independent Poisson processes with exogenous arrival rates δ and γ respectively.
Agents seek to maximize the discounted sum of flow utilities less costs. The
discount rate is r > 0. The next section analyzes the optimal behavior in this
model.

2Allowing for agents to re-match greatly complicates the analysis. By ruling out this pos-
sibility, we gain tractability because the agent’s trade decisions do not depend on the type of
house they possess.
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2.1. Optimal Policies and Conformity

In this section we analyze the consumers maximization problem and present our
definition of conformity. Throughout, we confine our attention to stationary equi-
libria. In a stationary equilibrium, consumers decide which types of houses to
build and also which types of houses to accept in trade, taking the strategies of
the other agents and the distribution of houses, both of which are time-invariant,
as given. The main result in this section (Proposition 1) shows the form that the
optimal policy takes. As we will demonstrate, the optimal policy is described by
three critical values z1, z2, and z3. These critical values define four intervals. In the
first interval (agents with z < z1), agents trade a’s exclusively in the trading stage
and build a’s in the building stage. In the second interval (z1 < z < z2) agents
build a’s but accept either a or b in trade. In the third interval (z2 < z < z3)
agents build b’s and accept both a or b in trades. In the fourth interval (z3 < z)
agents trade b’s exclusively and build b’s. After analyzing the optimal trading and
building decisions, in the next section, we turn to equilibrium.
We use standard dynamic programming techniques to analyze the agents’ op-

timization problems. A policy (or strategy) for any agent consists of a decision
rule in the trade state and a decision rule in the building state. The trade rule
will specify whether an agent accepts or rejects a trade once he enters the trade
state given the type of house he has. The build rule will specify which type of
house the agent builds when he enters the build state.
Let V (x; z) be the value of following an optimal policy for a given agent with

taste parameter z who currently owns a house of type x ∈ {a, b}. Let B (z) be the
continuation value of entering the build state and let T (x; z) be the continuation
value of entering the trading state when the agent has a type x house. Because
we are focusing on the behavior of a single agent, we suppress the argument z in
the following discussion. The value function satisfies3

rV (x) = u (x) + δ [B − V (x)] + γ [T (x)− V (x)] . (1)
3This value function can be obtained as the limit of a discrete-time dynamic programming

environment. If ∆t is a discrete time interval, we could write the Bellman equation as

V (x) = u (x)∆t+
1

1 + r (∆t)
× {(1− δ (∆t)) (1− γ (∆t))V (x)

+ (δ (∆t) (1− γ (∆t)) + δ (∆t) γ (∆t)) [B − V (x)] +γ (∆t) (1− δ (∆t)) [T (x)− V (x)]}

where we have assumed that if the agent simultaneously gets the build and trade shocks, he
must build. Multiplying by (1 + r (∆t)) and taking limits as ∆t→ 0 gives equation (1).
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The continuation value of receiving the build shock is simply

B = max {V (a) , V (b)}− c. (2)

The payoff to entering the trade stage T (x) is more involved. In the trade
stage, agents observe each other’s houses but not their taste parameters. They
then simultaneously choose to either accept or reject the trade. If they both agree
to trade, they swap houses. If either disagrees, the trade is rejected. In this case,
both traders pay the trade penalty π and get new houses of their choice. (Recall
that when a trade is rejected, the traders scrap their current houses and build
new ones; π is the build cost less the scrap value).
To compute T (x), consider an agent who receives the trade shock and currently

possesses a type x house. Suppose that he is matched with someone with a
type y house. If the trade occurs, the agent gets the type y house. His payoff
in this case is simply V (y). If either one rejects the trade then he selects a
new house of his choice and pays the trade penalty. His payoff in this case is
max {V (a) , V (b)} − π. Notice that the agent’s trade decision is only relevant if
his trading partner chooses to accept the trade. We therefore assume that agents
accept trades whenever V (y) > max {V (a) , V (b)} − π and reject otherwise.4

Notice also that neither V (y) nor max {V (a) , V (b)} − π depend on x. Thus,
trade decisions are independent of the type of house the agent possesses when he
enters the trade stage.
It is easy to show that if an agent builds type x ∈ {a, b} then he also accepts

x in trade. To see this, first note that because the agent chooses to build x, it
must be the case that V (x) = max {V (a) , V (b)}. As a result, he also chooses x
whenever he gets the trade shock and the trade is rejected. Thus, if he is offered
x in trade, he gets V (x) if he accepts the offer and V (x) − π if he declines the
offer. For future reference, we present this observation as a Lemma. All proofs
are in the appendix.

Lemma 1. If an agent builds type x ∈ {a, b}, then he also accepts type x in
trade.

An immediate implication of Lemma 1 is that no agent rejects all houses in
trade. In addition, because an agent’s trading decisions are independent of his
trading partner’s taste parameter and also independent of the house he owns, there

4This assumption rules out the trivial and uninteresting equilibrium in which agents always
reject every trade.
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are only three relevant trading rules to consider: (1) accept a only; (2) accept b
only; or (3) accept either a or b. We denote these trading rules simply as a, b,
and ab.We refer to agents who accept only a particular type of house (either a or
b but not both) as exclusive traders. Agents who play ab and thus accept both
types are said to be inclusive traders.
Our aim is to express the value functions V (x) , T (x) and B in terms of the

policies of the other agents. To do this, we first define λ (y, τ) as the probability
of being matched with someone who has a type y house and who follows trading
rule τ ∈ {a, b, ab}.5 For example, λ (a, ab) is the probability of meeting someone
who possesses a type a house and follows trading rule ab. Agents who accept type
x ∈ {a, b} houses in trade either follow the exclusive trading rule x or the inclusive
trading rule ab. The probability of meeting an agent who accepts a type x house
in trade is therefore

P
τ∈{x,ab}

P
y∈{a,b} λ (y, τ). We can now write the expected

value of entering the trading state with a type x house as

T (x) =
X

τ∈{x,ab}

X
y∈{a,b}

(λ (y, τ)max {V (y) ,max {V (a) , V (b)}− π}) (3)

+

⎛⎝1− X
τ∈{x,ab}

X
y∈{a,b}

λ (y, τ)

⎞⎠ (max {V (a) , V (b)}− π)

Because we can express the continuation values T (x) and B in terms of the
value function V (x) and the matching probabilities λ (y, τ), equation (1) implic-
itly defines the value function itself solely in terms of the underlying matching
probabilities. Given any set of values V (a) and V (b) , and fixed trading proba-
bilities, equation (3) implies associated values T (a) and T (b) and equation (2)
implies an associated value B. Equation (1) then implies a new set of values
V̂ (a) , V̂ (b). It is straightforward to show that this mapping satisfies Blackwell’s
sufficient conditions for a contraction mapping and thus has a unique fixed point.
We summarize this in the following Lemma:

Lemma 2. Given matching probabilities λ (x, τ) for x ∈ {a, b} and τ ∈ {a, b, ab}
with

P
τ∈{a,b,ab}

P
y∈{a,b} λ (y, τ) = 1 there exist unique values V (a) , V (b) , T (a) ,

T (b) , and B satisfying (1), (2), and (3).
5In a stationary equilibrium, λ (x, τ) will be uniquely determined by the strategies of the

other agents.
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An optimal policy in our model consists of a building rule (whether to build a
or b) and a trading rule (whether to accept a, b or both). Because the continuation
values in Lemma 2 are fixed numbers, the optimal policy is stationary.
We now characterize the optimal policy. We first note that there are only four

relevant policies. To see this note that if you follow the trade rule a (an exclusive
trading rule) then by Lemma 1 you must build a type a house in the build stage.
Similarly, if you are an exclusive b trader, you build type b. Thus, without loss
of generality we can confine our attention to four possible policies: build a and
follow trade rule a; build a and follow trade rule ab; build b and follow trade rule
b or build b and follow trade rule ab. We can write these policies compactly as
(x, τ) where x ∈ {a, b} and τ ∈ {a, b, ab}.
Agents with different taste parameters z choose different policies. Intuitively,

agents with sufficiently negative z’s (who strongly dislike type b houses) build type
a houses and accept only type a houses in trade. Similarly, agents with sufficiently
positive z’s (who have strong preferences for b houses) build type b and accept
only type b in trade. Agents with intermediate values of z do not have strong
preferences for either type and thus accept either a or b in trade. The following
proposition formalizes this intuition. Specifically, it shows that the optimal policy
for any agent is determined by three cutoff values z1, z2, and z3. These cutoffs
define four intervals. In the first interval agents play (a, a) (they accept only a in
trade and build a when they get the build shock). In the second interval agents
play (a, ab). In the third interval agents play (b, ab), and in the last interval agents
play (b, b) .

Proposition 1. Given non-negative λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) sum-
ming to 1, define z1, z2, and z3 as follows:

z1 = −π {r + δ + γ [1− λ (a, a)]}

z2 = γπ [λ (a, a)− λ (b, b)]

z3 = π {r + δ + γ [1− λ (b, b)]}
Then, for any z < z1 the optimal strategy is (a, a) ; for z1 < z < z2 the optimal
strategy is (a, ab) ; for any z2 < z < z3 the optimal strategy is (b, ab) and for
z > z3 the optimal strategy is (b, b).

Notice that the cutoffs depend only on the number of exclusive traders of each
type. The precise distribution of tastes of other traders is not relevant once λ (a, a)
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and λ (b, b) are given. In particular, the average taste parameter is unimportant.
The building decisions of the other agents is also irrelevant. Whether the inclusive
traders build more a’s or more b’s has no bearing on an individual’s decision. It is
important to understand the economic intuition behind this proposition. Because
the logic is identical for the b cutoff (z3) we focus on the determination of the a
cutoff (z1).
Consider an agent with a taste parameter z less than zero who optimally

follows an (a, a) policy. Suppose that he receives the trade shock and is matched
with someone who has a b and considers a “one-shot” deviation from his optimal
policy. Specifically, suppose that he decides to accept the b house but then revert
to the trade rule a for subsequent trade shocks. There are costs and benefits to
this deviation. The benefit is that he will avoid the immediate trade penalty π.
There are two costs. First, he will reside in a house other than his preferred type
for some time. This expected loss is z/ (r + δ + γ) (recall that z < 0). Second,
he may encounter someone who follows an exclusive a trading rule while he still
has the b house. In this case he pays the trade penalty π.6 The expected cost
is πγλ (a, a) / (r + δ + γ). The discount rate (r + δ + γ) reflects both the agents
impatience and the likelihood of moving out of the type b house (which occurs
if the house “dies” or if he gets another trade shock). There are no additional
costs because if the agent is matched with any other type of trader, then the
trade penalties are the same as if he continued to follow the (a, a) policy. With
probability λ (b, ab) + λ (b, b) he declines the trade (which he would do under the
(a, a) policy) and with probability λ (a, ab) he accepts the trade (which he would
do under the (a, a) policy). Thus, we can write the net benefit of this deviation
as

π +
z

r + δ + γ
− π

γλ (a, a)

r + δ + γ
≤ 0 (4)

The inequality follows because we assumed that it was optimal to follow (a, a).
If the agent is indifferent between (a, a) and (a, ab), this expression would hold
with equality. Rearranging this expression shows that the expression is zero only
if z = z1 as given in the Proposition.7

Note that the final component of (4) depends on λ (a, a). If λ (a, a) is high
then many people turn down b’s in the trade stage. The higher is λ (a, a), the

6Note that he would not experience this trade penalty if he did not deviate from the (a, a)
strategy.

7Note that the agent could alternatively consider a deviation in which he accepts b and
continues to follow the policy (a, ab) until he again finds himself holding a type a house. This
deviation is somewhat more complicated but results in the same cutoff. The costs and benefits
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more costly it is to follow the (a, ab) policy. There is an important feedback effect
to this logic. If I believe that many people decline b’s in trade then I will decline
b’s. If enough people behave as I do, this will confirm my beliefs. This “positive
feedback” effect introduces the possibility of multiple equilibria — a possibility we
will demonstrate in the next section.
Given λ (a, a), z1 is closer to zero the closer r, δ and γ are to 0. Thus, given

z, an agent is more likely to be exclusive if the object is very durable (low δ), if
the agent is very patient (low r), and if it is unlikely that he will trade (low γ).
Intuitively, if the object is very durable and you are not likely to trade it, and
you care a lot about the future, then you don’t want to get stuck with the wrong
house.
Like the trading cutoffs z1 and z3 the building cutoff z2 is also determined by

the number of extreme traders. In particular, z2 is determined by the difference
λ (a, a) − λ (b, b). If λ (a, a) > λ (b, b) then z2 > 0. Note that z1 + z3 = z2.
Only if λ (a, a) and λ (b, b) are exactly equal will z2 = 0. The z2 cutoff is of special
interest because it determines the equilibrium number of houses of each type built.
If z2 > 0 for instance, there may be people who prefer b houses but build a’s when
they get the build shock (i.e., for whom 0 < z < z2). We say that if an agent
builds a house other than the type dictated by his taste parameter z, then the
agent is conforming to the market.

Definition 1. If z2 6= 0 then we say that there is conformity in the market. If
z2 > 0 then the market conforms on type a houses, and if z2 < 0 then the market
conforms on type b houses. If z2 = 0 then we say that there is no conformity.

To summarize, the optimal policy — what types should an agent accept in
trade and what type should the agent build — depends on the behavior of agents
with extreme preferences for each types of house rather than the behavior of the
typical agent. Specifically, whether or not an agent conforms depends on the

are
−z

r + δ + γ [λ (a, ab) + λ (a, a)]
+ π

γλ (a, a)

r + δ + γ [λ (a, ab) + λ (a, a)]| {z }
Costs

π + π
γ (λ (b, ab) + λ (b, b))

r + δ + γ [λ (a, ab) + λ (a, a)]| {z }
Benefits

Equating these terms reveals that the critical z is again z1 as in Proposition 1.
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relative number of exclusive traders of a and b houses. If there are many people
who accept only a houses then there is a strong incentive to reject b houses in
trade and to build a houses in the build stage even if you enjoy living in the b
house more than the a house. The dependence on other traders is greater if the
durable is very long-lived, if trade is likely, and if the agents are very patient.
We now turn to the solution of the model in which we define and characterize

the equilibrium.

2.2. Equilibrium

Before we provide a definition of an equilibrium, we first describe the relationship
between the policies followed by the agents and the matching probabilities implied
by the policies. Proposition 1 implies that optimal policies are chosen according
to three cutoff values z1, z2, and z3. The number of people who follow policy
(a, a) is F (z1); the number who follow (a, ab) is F (z2)− F (z1); the number who
follow (b, ab) is F (z3)−F (z2) and the number who follow (b, b) is 1−F (z3). We
will use this information to compute the implied matching probabilities below.
This computation is more delicate than it might seem. While it is true that in
equilibrium, the number of people who follow policy (a, a) or policy (b, b) is the
same as λ (a, a) and λ (b, b), the difficulty arises because typically the number of
people who follow policy (a, ab) or policy (b, ab) is different than λ (a, ab) and
λ (b, ab). (Thus for example F (z2)−F (z1) is different than λ (a, ab).) The reason
that these numbers differ is that often one type of house will be rejected more often
than the other type. This effectively causes a difference between the distribution
of houses for sale and the distribution of houses built. In fact, there are three
potentially distinct distributions of houses in our model: the distribution of houses
built, the distribution of houses in existence and the distribution of houses for
sale on the market. Because the houses for sale are a random selection from the
existing housing stock and because houses do not remain on the market after
their initial match, the distribution of houses on the market is the same as the
distribution of houses in existence. When a trade is rejected however, agents
effectively transform their current house into the type of house they want (at
the cost π). If one house is rejected more frequently than the other, then the
distribution of houses in existence will differ systematically from the distribution
of houses built. For instance, if type b houses are rejected more frequently than
a houses, the steady state number of b houses in existence (and for sale on the
market) will be less than the number of b houses built.
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In fact, the distribution of houses built often differs from the distribution of
houses for sale in durable goods models with matching frictions. For instance, if
we assumed that houses remained on the market until they were sold, then if b
houses were rejected more often than a houses, the housing market would have
relatively more b houses waiting to be sold. In this case, there would again be a
difference between the distribution of houses built and houses for sale. Unlike our
model however, in this case the distribution of existing houses would be the same
as the distribution of houses built because once a house is built, it would remain
in use until it depreciated. Indeed, there is a natural analog to this phenomenon
in the real world. Because houses that are difficult to sell remain vacant for some
time, the distribution of houses built is not the same as the distribution of houses
for sale.8

Now we turn to the computation of the matching probabilities for any given
set of cutoffs z1, z2, and z3. Denote the number of people who follow pol-
icy s and hold type x as Ps (x). Thus x is either a or b while a policy s ∈
{(a, a) , (b, b) , (a, ab) , (b, ab)}. Agents who follow exclusive trading rules always
hold the same type of house that they build. As a result Pa,a (b) = Pb,b (a) = 0
and

Pa,a (a) = λ (a, a) = F (z1)

Pb,b (b) = λ (b, b) = 1− F (z3)
Traders who follow inclusive trading rules sometimes live in houses other than

the type they build. To illustrate, consider agents who play strategy (a, ab).
Pa,ab (a) of these agents hold a, and Pa,ab (b) of them hold b. Moreover, Pa,ab (a)+
Pa,ab (b) equals the total number of people playing strategy (a, ab), i.e., F (z2) −
F (z1) . Because people who play (a, ab) always acquire a houses when they get the
build shock or when a trade is declined, the only way for them to acquire a b is to
get a trade shock and match with someone who has b and accepts a. By Lemma
1 these people must be playing an inclusive (i.e. ab) trading strategy. There are
Pa,ab (b) + Pb,ab (b) such traders. Thus, the flow out of Pa,ab (a) is

γPa,ab (a) (Pa,ab (b) + Pb,ab (b)) .

The flow into Pa,ab (a) consists of people in Pa,ab (b) who either (1) get a trade
shock and match with someone who has a and plays an inclusive trading strategy,
or (2) get a trade shock and match with someone who plays strategy (a, a) or (3)

8Recall that one interpretation of the trade penalty in our model is a cost due to vacancy.
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get the build shock (and thus build a). Thus, the flow into Pa,ab (a) is

Pa,ab (b) [γ (Pa,ab (a) + Pb,ab (a) + Pa,a (a)) + δ]

In steady state the inflows and outflows exactly offset. This requires

γPa,ab (a)Pb,ab (b) = Pa,ab (b) [γ (Pb,ab (a) + Pa,a (a)) + δ]

Similar relationships hold for people who play (b, ab). These equations can be
solved for the steady state values of Pa,ab (a) , Pa,ab (b) , Pb,ab (a), and Pb,ab (b) as
functions of z1, z2 and z3. These values give us the implied matching probabilities.
We summarize these relationships in the following Lemma.

Lemma 3. Let z1, z2 and z3 be given. Define

ra =
δ + γF (z1)

F (z3)− F (z2)
, rb =

δ + γ [1− F (z3)]
F (z2)− F (z1)

then the steady state values of Pa,ab (a) , Pa,ab (b) , Pb,ab (a) , and Pb,ab (b) are given
by

Pa,ab (b) =
γrb

γra + γrb + rarb
(F (z2)− F (z1))

Pa,ab (a) =
γra + rarb

γra + γrb + rarb
(F (z2)− F (z1))

Pb,ab (a) =
γra

γra + γrb + rarb
(F (z3)− F (z2))

Pb,ab (b) =
γrb + rarb

γra + γrb + rarb
(F (z3)− F (z2))

and the steady state matching probabilities are

λ (a, a) = F (z1)

λ (b, b) = 1− F (z3)
λ (a, ab) = Pa,ab (a) + Pb,ab (a)

λ (b, ab) = Pa,ab (b) + Pb,ab (b)
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An equilibrium is a fixed point in the matching probabilities. Given the per-
ceived matching probabilities, agents follow optimal policies. The matching prob-
abilities are, in turn, implied by the policies chosen as described in Lemma 3.
This leads to a mapping from perceived probabilities to implied probabilities. An
equilibrium is a fixed point of this mapping. We now present a formal definition
of a steady state equilibrium.

Definition 2. A steady state equilibrium consists of four non-negative numbers
λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) summing to one, and three cutoffs z1, z2
and z3 such that

1. Given λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) , Proposition 1 implies the
cutoffs z1, z2 and z3.

2. Given z1, z2 and z3, Lemma 3 implies λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab).

To prove that an equilibrium exists, note that the cutoffs for the exclusive a
and b traders (z1 and z3) are each governed only by the number of exclusive a and b
traders respectively. More precisely, z1 is completely defined once λ (a, a) = F (z1)
is given. Similarly, z3 depends on only λ (b, b) = 1− F (z3) . This implies that we
can analyze the determination of these cutoffs separately. Define two mappings
La,a : [0, 1] → [0, 1] and Lb,b : [0, 1] → [0, 1] as follows: Let λ (a, a) ∈ [0, 1] and
λ (b, b) ∈ [0, 1] be given. Set

La,a (λ (a, a)) = F (−π {r + δ + γ [1− λ (a, a)]}) ∈ [0, 1] (5)

and
Lb,b (λ (b, b)) = 1− F (π {r + δ + γ [1− λ (b, b)]}) ∈ [0, 1] . (6)

While these mappings may not be continuous (which would occur if F had mass
points at certain z’s for instance), they are both increasing functions on a compact
set which implies that each has at least one fixed point.

Lemma 4. The mappings La,a and Lb,b defined by (5) and (6) each have at least
one fixed point.

Any combination of fixed points of these mappings correspond to equilibrium
values of λ (a, a) and λ (b, b). To complete the construction of an equilibrium,
given any fixed points λ (a, a) and λ (b, b) , define z1, z2 and z3 as in Proposition
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1 and calculate λ (a, ab) and λ (b, ab) as in Lemma 3. The resulting matching
probabilities λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab), and cutoffs z1, z2 and z3
satisfy the definition of a steady state equilibrium. This establishes the following
proposition:

Proposition 2. Given any distribution of types F, there exists at least one steady
state equilibrium.

Since each mapping may have more than one fixed point, there may be multiple
steady state equilibria. We now consider two examples. Example 1 illustrates
a case in which there is a unique equilibrium and the market conforms to the
average taste. Example 2 shows that conformity may arise due to the multiplicity
of equilibria even when the distribution is symmetric around zero, so that the
average consumer is indifferent between the two types.

Example 1 Suppose that F is uniform on the interval [−q + µ, q + µ]. We as-
sume that the distribution is wide in the sense that −q+µ < −π (r + δ + γ).
Figure 1 shows the fixed points mappings La,a and Lb,b for different values
of the mean taste µ. The light dashed line corresponds to µ = 0. In this
case, the distribution is symmetric around zero and thus La,a = Lb,b. In
the unique equilibrium λ (a, a) = λ (b, b) and z2 = 0. Thus there is no con-
formity in equilibrium. The dark lines correspond to the case in which
µ > 0. Because F has shifted to the right, Lb,b has shifted up while La,a has
shifted down relative to the light dashed line. In the resulting equilibrium
λ (a, a) < λ (b, b) and z2 < 0 so that the market conforms on type b.

Example 2 Suppose that F is symmetric about 0 but not uniform. The map-
pings La,a and Lb,b are identical (as in the first example when µ = 0).
Figure 2 shows an example in which this mapping has multiple fixed points.
Note that by symmetry F (0) = 1/2 and thus the mapping is bounded
above by 1/2. As it is drawn there are three fixed points λ∗1 < λ∗2 < λ∗3.
By setting λ (a, a) = λ∗i and λ (b, b) = λ∗j (i, j = 1 or 2) we can con-
struct nine possible equilibria. Three of these are non-conforming equilibria
(when λ (a, a) = λ (b, b)) and the other six are conforming equilibria (when
λ (a, a) 6= λ (b, b)).

Clearly conformity is a generic property of equilibrium in our model. Non-
conforming equilibria only occur in knife-edge cases in which λ (a, a) = λ (b, b)
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while conforming equilibria occur in all other cases. In the next section we show
that markets for highly durable goods in which trade is common have a strong
tendency to conform.

3. Results and extensions

In this section we analyze the relationship between conformity and the underly-
ing parameters of the model. We pay particular attention to durability and the
frequency of trade. We then discuss the welfare properties of the equilibrium.
Finally, we consider the implications of allowing for a rental market that coexists
with the owner-occupied market.

3.1. Comparative Statics

In this section we consider how variations in the durability of the good, the fre-
quency of the trade shocks, the subjective time discount factor and the trade
penalty affect the equilibrium. To facilitate the analysis, we place restrictions
on the distribution F to rule out multiple equilibria. The following assumption
provides sufficient conditions for a unique equilibrium.

Assumption 1 F has a density function f which is symmetric about the mean
µ, quasi-concave and single peaked with f (µ) < 1

πγ
.

The following proposition states the main result in this section.

Proposition 3. If F satisfies Assumption 1 then

1. The equilibrium is unique.

2. The market conforms to the mean taste whenever µ 6= 0 (i.e., the market
conforms on a if µ < 0 and conforms on b if µ > 0 ).

3. If µ 6= 0, an increase in durability (lower δ), patience (lower r), the likelihood
of trade (higher γ) or the trade penalty (higher π) causes conformity to
increase.

Part 1 of the proposition (uniqueness) follows from the bound on f in As-
sumption 1 which ensures that the fixed point mappings La,a and Lb,b never have
slopes greater than 1. Part 2 of Proposition 3 demonstrates that conformity is a
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generic property within this class of distributions and is therefore to be expected
in equilibrium. While the market conforms to the average taste, it does so because
there are more exclusive traders on that side of the market. The third result in
the proposition demonstrates that conformity increases with patience, the trade
penalty, durability, and the incidence of trade.
If δ =∞ then the good is a non-durable. In this case, there is no conformity

in equilibrium. Since the good does not survive beyond the immediate period in
which it is produced and sold, there is no concern about its resale value. As a
result, consumers purchases of nondurables should be a pure reflection of their
own idiosyncratic valuations of the goods. For lower values of δ, resale becomes
more of a concern. Because the highest depreciation objects will be held by a wide
variety of people, their features should better reflect the average valuation of the
good rather than just the tastes of the initial purchaser.
If γ = 0 then the good is never traded. In this case, again there is no incentive

to conform. Once the good is purchased, an agent will retain it until the good
falls apart. Therefore, when he decides which type to purchase, he should take
into account only his own preferences. For higher values of γ, there is an increased
incentive to conform to the average taste. This is due naturally to the increased
likelihood of trade. While the intuition for this result is natural, it seems to
stand in stark contrast to free-market folklore — rather than encouraging market
diversity, increased trade in durable goods encourages market conformity.
High γ and low δ affect conformity in the same way. Intuitively, if the durable

is traded frequently then it is important to have a durable which is valued by the
other traders. Holding the probability of trade fixed, increasing the durability of
the good extends its expected service life. As a result, there are more opportunities
for it to change hands. By the same token, holding the depreciation rate fixed,
increasing the likelihood of trade also causes the good to be exchanged more often.
The intuition for the effects of r and π on conformity is also natural. Higher

trade penalties increase the cost of having trades rejected and thus increase the
incentive to conform. If agents have low discount rates the future possibility
of resale weighs more heavily on their current purchasing decisions which again
increases the incentive to conform.

3.2. Welfare

The previous section shows that in the case of durable goods, conformity is the rule
rather than the exception. In this section, we consider the welfare implications
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of conformity. While conformity has an obvious cost — people live in houses that
they don’t prefer — it also has benefits. Conformity lowers search costs by reducing
the probability of having a trade rejected. Naturally, social welfare is lower when
houses are vacant or when people are forced to conduct protracted searches for a
good match. Furthermore, if houses are long-lived, the original owner will almost
surely transfer the home to another agent who may or may not like that type of
house. The potential mismatch of preferences and allocations is a cost to society
that conformity mitigates by increasing the value of the home for subsequent home
owners. As a result, we cannot conclude that conformity is inefficient. A social
planner may want some degree of conformity.
Below, we explore the welfare implications of conformity in our model. We

do this by considering examples that illustrate the costs and benefits of confor-
mity. Surprisingly, the examples suggest that often there is too little conformity
in equilibrium. The first two examples isolate the two benefits that come from
conformity. In each case, the benefits to conformity outweigh the costs. We then
present an example that demonstrates that there can be too much conformity.
This happens when the two benefits work in opposite directions.
We assume that a social planner values the flow utility of all agents equally and

seeks to maximize the steady state flow of utility in each period. The following
Lemma provides an expression for flow of social welfare in the steady state.

Lemma 5. For any given cutoffs z1, z2 and z3, let Pa,ab (a) , Pb,ab (a) , Pa,ab (b) and
Pb,ab (b) be given as in Lemma 3 and define

ψa,ab =

µ
Pa,ab (a)

F (z2)− F (z1)

¶
and ψb,ab =

µ
Pb,ab (b)

F (z3)− F (z2)

¶
.

Then, the flow of social welfare is

W (z1, z2, z3) = {1− πγ [λ (b, b) + λ (b, ab)]}F (z1)

+

Z z2

z1

©
ψa,ab [1− πγλ (b, b)] +

¡
1− ψa,ab

¢
[1 + z − πγλ (a, a)]

ª
dF (z)

+

Z z3

z2

©¡
1− ψb,ab

¢
[1− πγλ (b, b)] + ψb,ab [1 + z − πγλ (a, a)]

ª
dF (z)

+

Z ∞

z3

{1 + z − πγ [λ (a, a) + λ (a, ab)]} dF (z)− δc.

Each term in the welfare function has a natural economic interpretation. The
first term is the flow of welfare to the (a, a) traders. Since they are exclusive
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traders, they always hold type a houses and thus they all receive a flow utility of
1. In addition, they sometimes incur the trade penalty by matching with (b, b) and
(b, ab) traders. The second term is the flow of welfare for agents who follow the
(a, ab) policy. These individuals sometimes hold a houses but sometimes hold b’s.
The fraction of time these agents hold the a house is ψa,ab. In this case, their flow
utility is 1 less the trade hazard of meeting an exclusive b trader. The remaining
fraction of time

¡
1− ψa,ab

¢
they hold b houses. In this case, their flow utility

is 1 + z less the trade hazard of meeting an exclusive a trader. The remaining
terms have analogous interpretations. Notice that all agents are equally likely to
experience the depreciation shock so all welfare flows are reduced by δc.
We now consider the welfare implications of increasing or decreasing confor-

mity. Conformity can increase welfare through two separate channels. First,
increased conformity can reduce the incidence of the trade penalty. Second, in-
creased conformity means that the average type resides in their preferred house
more often. The following two examples illustrate these effects.

One Inclusive and One Exclusive Type One of the costs associated with
insufficient conformity is that trades will be declined too often. This happens
because in equilibrium, agents internalize only their own trade penalties and not
those of their trading partners. Agents at the z2 cutoff are indifferent between
building either type of house. For these agents, the benefits to living in their
preferred houses if they choose not to conform, is exactly offset by the benefits of
reducing the incidence of the trade penalty if they choose to conform. Because
the house they build will be rejected by one group of exclusive traders, these
agents impose a negative trade externality on one group of exclusive traders and
a positive trade externality on the other. Since there are more exclusive traders
on the conforming side of the market, social welfare would rise if the marginal
agents conformed.
The following example isolates this effect. Suppose there are two types of

agents. Call these types “medium”, and “high”. The high type has a strong
preference for b while the medium type has a weak preference for a. We write
their z’s as zM and zH respectively. We choose zH to ensure that the high traders
play an exclusive trading strategy in equilibrium (i.e., they play (b, b)).9 The
medium agents may or may not conform. The number of medium agents is α and
the number of high agents is (1− α). In the equilibrium, λ (b, b) = (1− α) and

9The biggest z3 can be is π (r + δ). If zH > π (r + δ), then the high types will play (b, b) in
any equilibrium.
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there is conformity on b. Specifically, the building cutoff is

z2 = −γπ (1− α) < 0

In the market equilibrium, the medium types decide to follow strategy (a, ab) if
zM < z2 and follow (b, ab) otherwise.10 To determine whether increased conformity
is socially desirable, we compute the social welfare when the medium types play
strategy (a, ab) and compare it to the welfare when they play (b, ab).
If the medium agents follow strategy (a, ab), then F (z2)−F (z1) = α and the

medium types never trade with the high types. In this case, Pa,ab (a) = α and
Pa,ab (b) = Pb,ab (a) = Pb,ab (b) = 0. Using Lemma 5, welfare is

Wa,ab = 1 + z
H (1− α)− 2πγα (1− α)− δc

where the subscript a, ab indicates that the medium types play strategy (a, ab).
On the other hand, if the medium agents follow strategy (b, ab) then by similar
calculations welfare is

Wb,ab = 1 + αzM + (1− α) zH − δc.

Strategy (a, ab) is socially preferable to (b, ab) if Wa,ab ≥ Wb,ab. It is straightfor-
ward to show that this requires

−2πγ (1− α) ≥ zM

Recalling that in equilibrium z2 = −γπ (1− α) the social optimum requires

2z2 ≥ zM

Put differently, the socially optimal policy calls for twice as much conformity as
in the market equilibrium.
The reason for conforming in this case is to avoid the trade penalty. If the

medium agents are close to the equilibrium z2 then they are balancing the benefits
of having the type of house they prefer with the costs of incurring the trade
penalty more often. Because they do not care about the trade penalty for the
other agents, they are too reluctant to conform to the majority type. The social
planner internalizes both trade penalties every time a trade is declined and thus
sets a cutoff that is twice the equilibrium cutoff.
10Note that because the high types follow an exclusive strategy, for the medium types, there

is no operational distinction between strategies (a, a) and (a, ab) and between (b, b) and (b, ab).
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Two inclusive types The previous example showed that, because conforming
to the market reduces trade penalties, and because agents only internalize their
own trade penalties, there can be too little conformity in equilibrium. This ex-
ample highlights another source of inefficiency caused by too little conformity. If
agents are willing to trade (i.e., they are inclusive), then conforming implies that
your trading partners will live in their preferred houses more often. Because agents
only care about the houses they live in, conformity can again be inefficiently low
in equilibrium.
Suppose there are two types “low” and “high”. We assume that −π (r + δ) <

zL < 0 and 0 < zH < π (r + δ). This assumption places the z’s sufficiently close
to zero that each type will play an inclusive strategy in equilibrium. Since these
are the only types, no agents play exclusive strategies (λ (a, a) = λ (b, b) = 0) and
as a result z2 = 0 and thus in the market equilibrium there is no conformity. As
before, we assume there are α low types and (1− α) high types. We contrast the
social welfare when both types play inclusive strategies with the cases in which
the types conform either on a or on b.
If the two types conform on a, meaning that they both build and trade a, then,

using Lemma 5, the flow of social welfare is simply

W(a,a),(a,a) = 1− δc,

where the subscript indicates that both types play (a, a) (note that the allocations
that emerge when both types play (a, a) are the same as those when both types
play (a, ab)). Likewise, if they conform on b, the flow of welfare is

W(b,b),(b,b) = 1 + z
Lα+ zH (1− α)− δc.

The difference W(b,b),(b,b) − W(a,a),(a,a) is positive if and only if the mean taste
µ = zLα+ zH (1− α) is positive.
Computing the flow of welfare for the inclusive cases is more involved because

the agents sometimes have a house other than the type they build. After some
algebra, we find the flow of social welfare for the inclusive strategy to be

W(a,ab)(b,ab) = 1 + α

µ
γ

γ + δ
(1− α)

¶
zL + (1− α)

µ
1− γ

γ + δ
α

¶
zH − δc

Comparing the inclusive non-conforming cases with the conforming equilib-
rium shows that W(a,a),(a,a) is preferred to W(a,ab)(b,ab) if

α

µ
γ

γ + δ
(1− α)

¶£
−zL

¤
> (1− α)

µ
1− γ

γ + δ
α

¶
zH
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Likewise, conforming on b is preferred to not conforming ifµ
γ

γ + δ
(1− α)

¶
zH >

µ
1− γ

γ + δ
(1− α)

¶£
−zL

¤
It is easy to show that only one of these conditions can hold at a time so that if
conforming on b is preferable to playing an inclusive strategy then it is strictly
worse to conform on a.
If we take the limit of these expressions as either the trade hazard approaches

infinity, or as the depreciation shock approaches zero, these conditions amount to
merely saying that conforming on a is preferable if µ < 0 and conforming on b is
preferable if µ > 0. The intuition for this result is clear. If γ is very high then
an individual agent will not reside in a given house for very long and thus should
make a building decision that fits with the preferences of the average agent. If
δ is very low then a given house will remain for very long and will therefore be
occupied in equilibrium by the average agent.

The Possibility of Too Much Conformity The previous two examples sug-
gest that there is in general too little conformity in equilibrium. Individuals do not
sufficiently internalize trade costs when they decline trades nor do they sufficiently
internalize the costs that arise because someone “settles” for a house that isn’t
a good match. Both forces seem to lead to too little conformity. It is however,
possible that these forces could work in opposing directions.
Consider a hybrid example with three types: low, medium and high. Denote

these types as zL, zM , and zH . Assume that zH is high enough to ensure that he
follows the (b, b) policy while zL is low enough that he follows an (a, ab) policy.
We consider the optimal choice for the middle type. Assume that there are µ
middle agents, (1− µ)α low agents and (1− µ) (1− α) high agents.
If the middle types follow strategy a, ab then none of them ever get a b house

(the only b builders follow exclusive strategies). If the middle types follow strategy
b, ab then, as in the second example, the low and middle types will occasionally
hold type a and type b houses. It is not too difficult to show that the difference
between the two welfare flows Wb,ab and Wa,ab is

Wb,ab −Wa,ab = µψb,ab
£
zM + πγ (1− µ) (1− α)

¤
+πγ (1− µ) (1− α)

£
2
¡
1− ψa,ab

¢
(1− µ)α+ µψb,ab

¤
+(1− µ)α

¡
1− ψa,ab

¢
zL.
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The first line summarizes the costs and benefits that accrue to the middle agent
if they adopt the b, ab policy instead of the a, ab policy. In this case, they reside
in the b house for a fraction of time. The fraction they spend in the type b
house is ψb,ab. Because there are (1− µ) (1− α) exclusive b traders, when the
middle agents hold the b houses, they reduce the incidence of the trade penalties
by πγ (1− µ) (1− α). At the same time, holding the b houses reduces their flow
utility by zM (recall that the middle types prefer the a house so zM < 0). If these
were the only costs and benefits of adopting one policy or another then the critical
zM = −πγ (1− µ) (1− α) which is simply the build cutoff z2 in this example.
The second and third lines of the expression above represent external costs

and benefits not internalized by the middle agent. The second line reflects the
reduction in trade penalties experienced by both the high and low types. The high
types now have a probability µψb,ab of encountering a middle type who holds a b
house in the trade stage. In this case, there will be no trade penalty. In addition,
the high types also encounter low types who happen to possess b houses in the
trade stage. The number of low types in this state is (1− µ)α

¡
1− ψa,ab

¢
. The

number 2 reflects the fact that two trade penalties are avoided in this case (one
for the low type and one for the high type).
In the equilibrium, z2 = −πγ (1− µ) (1− α) < 0. If the last two lines are

negative however there will be too much conformity in the sense that the optimal
strategy would call for the middle types to play (a, ab) even if they preferred the
b house. This would require

zL < −πγ 1− α

α

∙
2 (1− µ)α+ µ

µ
ψb,ab

1− ψa,ab

¶¸
.

Recall that zL > z1 = −π (r + δ + γ) . Thus if

r + δ + γ > γ
1− α

α

∙
2 (1− µ)α+ µ

µ
ψb,ab

1− ψa,ab

¶¸
there is a possibility that there could be too much conformity. Solving for ψb,ab
and 1−ψa,ab in terms of µ,α, δ and γ requires some tedious algebra which we will
spare the reader11. With these terms, we can rewrite the expression as

r+δ+γ > γ
1− α

α

∙
2 (1− µ)α+ [δ (µγ + δ) [δ + γ (1− µ)] + µ (µγ + δ) [δ + γ (1− µ) (1− α)]]

[γδµ (1− µ)α+ µ (µγ + δ) (δ + γ (1− µ) (1− α))]

¸
11Details are available from the authors.
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Note that the right hand side goes to zero as α goes to 1. Therefore for small
enough α the above inequality always holds. This is natural. The more agents
there are who prefer a, the more the social planner wants them to conform. As
α increases, we replace the exclusive high types (who prefer b) with inclusive low
types (who prefer a). As a result, the benefits to conforming on b disappear, while
the costs increase.
To summarize, individuals do not internalize the costs and benefits of their

actions in the search market. They trade off the costs of living in a house that
they don’t prefer with the benefits to reducing trade penalties. These costs and
benefits exactly balance for the critical agents (those at z2). The social planner
takes all trade costs into account. Also, unlike the individuals in the market
equilibrium,the social planner places more weight on the house lived in by the
average type. Both considerations typically lead the social planner to choose
greater conformity than the market implies. As the last example shows however,
there can be too much conformity if these forces work in opposite directions.

A Numerical Illustration The examples above starkly illustrated the forces
that cause conformity to be inefficiently low in equilibrium. Those examples
considered simple cases with at most three types of agents. Here we consider
the equilibrium and optimal level of conformity for a continuum of agents when
the taste parameter is distributed normally. Unlike the two-type examples above,
the equilibrium here is much too complicated to solve analytically. Instead we
numerically solve for the equilibrium and calculate the optimal level of conformity.
These examples again demonstrate that there is often too little conformity in
equilibrium.
Figure 3 plots the flow of welfare W given by Lemma 5 for various values of

the conformity cutoff z2. As mentioned above, we assume that the distribution
of tastes F (z) is normal with unit variance and with mean µ. We consider three
different means: µ = 0.0, µ = 0.25 and µ = 0.5. The remaining parameters are set
as follows: r = 0.02, δ = 0.05, and γ = 0.10. The discount rate and depreciation
rate are roughly in line with their real-world counterparts. The trade hazard
rate implies that people move roughly once every ten years. For illustration, we
set π = 5 (the building cost c matters neither for equilibrium nor for welfare
comparisons). For each mean, we first compute the equilibrium z1, z2 and z3
and the corresponding match probabilities (the λ’s). We then vary the level of
conformity by changing z2 while holding z1 and z3 fixed. Each line in Figure 3
corresponds to the flow of welfare for a separate mean. For µ = 0, the optimal level
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of conformity and the equilibrium level of conformity are both 0. For µ = 0.25,
there is conformity in equilibrium. This is reflected in the negative value of z2
(the equilibrium z2 is −0.072). The optimal level of conformity (holding z1 and z3
fixed) is even lower: the flow of welfare is maximized at z2 = −0.254. For µ = 0.5,
the contrast is even greater. In equilibrium z2 is −0.177 while the optimal level
of z2 is −0.558.
Figure 4 calculates the optimal choice for all of the cutoffs simultaneously

for several different means. The figure compares the optimal cutoffs with the
equilibrium cutoffs. The equilibrium and optimal cutoffs are plotted on the vertical
axis while the horizontal axis plots the mean of F (z) (again F is normal with a
variance of 1). Figure 4 shows that for µ > 0 there is conformity in equilibrium
(z2 < 0). Not surprisingly, the equilibrium level of conformity rises with the mean.
Notice that the optimal level of conformity rises even faster than the equilibrium
level of conformity. Also, as the mean rises, the cutoffs for the exclusive a and b
traders both fall. More individuals prefer the b houses and thus there is more and
more pressure to decline the a houses in trade.

3.3. Renting and Leasing

In this section we extend the model to allow the agents to rent the durable good.
Introducing a rental market is a natural extension because it lets people enjoy the
durable without having to worry about resale. Intuitively, the option to rent will
be more attractive if one has unusual tastes. For instance, luxury or exotic cars
are often leased while more mainstream cars are usually bought outright. This
is exactly the pattern one would expect given our model. The people who lease
exotic cars do not want to conform and thus do not want to participate in the
secondary market. In contrast, people who own mainstream cars can easily find
buyers if they need to sell. Of course, there are other reasons that attract people to
rental markets. For instance, in the rental market for housing, many people rent
because they expect to move in the near future (graduate students and untenured
faculty for instance). While this is clearly important for the rental market for
houses, we abstract from this motive to maintain our focus on conformity.
In the model, the rental market attracts agents with the strongest preferences

for a or b. In equilibrium this could lead to either more or less conformity as
exclusive traders leave the market for owner occupied houses and choose to rent.
We focus on the case in which the cost of renting is sufficiently high so that at
most one type of house is rented. In this case, an active rental market creates
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even more conformity in the ownership market.
There are two markets in the renting model: the owner-occupied market and

the rental market. We assume that when an agent receives the build shock, he now
has the option of renting a house rather than building one. If some agents choose
to rent, the number of people in the owner-occupied market will be less than
1. Moreover, the distribution of types in the owner-occupied market will differ
from the original distribution F . Agents who rent pay a constant flow rental cost
q for the house they rent. They can leave the rental market and re-enter the
build stage at any time. As before, agents in the owner-occupied market follow
one of the four policies (a, a), (a, ab), (b, ab) or (b, b). We continue to let λ (x, τ)
denote the fraction of owners who possess x ∈ {a, b} but follow the trading rule
τ ∈ {a, b, ab}.12
Given the fractions λ (a, a), λ (a, ab), λ (b, ab), and λ (b, b), we can construct the

values to owning a type a and b house in the owner-occupied market for any agent.
These values V (a) , V (b) are the same as those in Lemma 2. The continuation
value for an agent who receives the build shock is now

B = max {R,V (a)− c, V (b)− c}

where R is the continuation value of renting. Although renters always have the
option to return to the build stage, they will never choose to do so in equilibrium.
Since renters simply reside in the type of house that suits them best, we can write
the value of renting as

R = max

½
u (a)− q

r
,
u (b)− q

r

¾
.

The following proposition shows that for any set of matching probabilities,
only the agents with the strongest preferences choose to enter the rental market.

Proposition 4. For fixed λ (a, a), λ (a, ab), λ (b, ab), and λ (b, b) , there exist two
cutoffs ρ ∈ {−∞} ∪ [z1, 0] and η ∈ [0, z3] ∪ {+∞} such that

1. All agents with taste parameter z ≤ ρ choose to rent type a houses.

2. All agents with taste parameter z ≥ η choose to rent type b houses.
12Note that the sum of the λ’s is still 1 even though the number of owners is no longer the

entire population.
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3. All agents with taste parameter z ∈ (ρ, η) remain in the owner-occupied
market and follow policies prescribed in Proposition 1.

If renting attracts anyone, it attracts people in the tails of the distribution F .
These agents have strong preferences over which type of house they want to live
in and are either paying the trade penalty frequently or have to endure periods in
which they live in a house other than the type they prefer. Notice that if ρ = −∞,
no one rents a. It is also important to realize that the proposition implies that
if anyone rents a then all z < z1 rent a and so there will be no one who follows
the (a, a) policy in the owner occupied market. Similar observations hold for the
b rental cutoff.
The cost of renting is q per unit time. If there were free entry and exit into the

housing market and if tenants could be instantly and costlessly replaced whenever
a vacancy opened up then q = (r + δ) c. This just says that the steady state
rental price is equal to the Jorgensonian user cost of capital. In this case, one
can show that the rental market completely resolves the matching problem and
thus all agents choose to rent. If vacancies are not costless to fill however, the
rental price should exceed the user cost. Specifically, we write q = (r + δ +m) c >
(r + δ) c where m is the rental markup due to matching difficulties. Depending
on the magnitude of the markup, the rental market may or may not be active.
If the rental market is active, it is possible that only one type of house will
be rented. In the discussion below, we make several comparisons between the
equilibrium with renting and the equilibrium when there is no possibility of rent.
We use a superscript 0 to denote equilibrium variables in the model without
rent. Define ma = γπ

c

£
λ0 (b, ab) + λ0 (b, b)

¤
, mb = γπ

c

£
λ0 (a, ab) + λ0 (a, a)

¤
and

let m∗ = max
©
ma,mb

ª
. (Note that m∗ ≥ 1/2). The following Lemma describes

the possibilities that may arise for different values of m.

Lemma 6. Let q = (r + δ +m) c and let m∗ be defined as above. The following
statements are true:

1. If m = 0 then every agent weakly prefers renting to owning.

2. If mc > γπ then the rental market is shut down.

3. If m∗c ≥ mc > 1
2
γπ then the rental market must be active in equilibrium

but only one type will be rented.13

13Note, if γπ > mc > m∗c it is possible that there is an equilibrium with rent even though
the equilibrium without rent is still viable.
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4. If mc < 1
2
γπ then the rental market must be active in equilibrium and

moreover it is possible that both types will be rented.

It is convenient to work with the case in which only one type rents. We there-
fore assume that 1

2
γπ < mc < m∗c so that we are in case 3 of the Lemma. To

ensure that the equilibrium in the owner-occupied market is still unique, we as-
sume that the distribution of taste parameters has a density f which is symmetric
about its mean µ, quasi-concave and single peaked with f (µ) < 1

πγ
1
2
. We assume

that µ > 0 so that, by proposition (3), in the absence of the rental market there
is a unique equilibrium in which the agents conform on type b houses. In this
equilibrium, z02 < 0 and thus we must have λ

0 (a, a) > λ0 (b, b).
Now introduce the possibility of renting. By Proposition 4, associated with the

original equilibrium matching probabilities λ (a, a)0 , λ (b, b)0, λ (a, ab)0 , λ (b, ab)0

we have cutoffs ρ0 and η0 that identify the agents who wish to enter the rental
market. Because mc < m∗c (by assumption) Lemma 6 implies that the original
equilibrium is no longer valid. Thus, the rental market must be active. In this
case, the following proposition says that conformity will increase in the owner-
occupied market.

Proposition 5. Let f be symmetric about µ > 0, quasi-concave and single
peaked with f (µ) < 1

πγ
1
2
and assume that 1

2
γπ < mc < m∗c. Then there ex-

ists an equilibrium in which only agents who prefer a houses rent. Moreover,
in this equilibrium, the owner-occupied market has greater conformity than the
equilibrium without the possibility of rent.

Intuitively, the agents who prefer the a houses have the greatest incentive
to abandon the owner-occupied market and rent. These agents paid the trade
penalty more than half of the time they got the trade shock. The rental market
offers them an opportunity to have the type they prefer at a lower effective cost.
When the exclusive a traders leave the owner-occupied market, the probability
of matching with someone with an a house drops even further. There is more
conformity on the type b house and more exclusive b traders. This draws other
agents with z < 0 into the rental market.14

14Note that for lower m there may be equilibria in which both extremes choose to rent. In
this case, the owner-occupied market would have no conformity (since there are no exclusive
types left). However, it is not necessary to have both types renting for low m. In particular, for
m in the neighborhood of 0, there is always an equilibrium in which all agents with z < 0 + ε
decide to rent which agents with z > 0 + ε choose to own (and vice versa).
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The function of the rental market in this model is to allow agents to satisfy
their tastes for unusual goods without incurring the costs of reselling a good that
few others want. Of course, the rental market for housing is not driven primarily
by this concern. Casual observation strongly suggests that people who rent do
so because they anticipate moving in the near future. At the same time, there
are other markets for durable goods where leasing does indeed cater to people
with uncommon tastes. The most obvious example of this is the market for
luxury automobiles. While leasing has become relatively common in recent years,
conventional cars — pickup trucks, Honda Accords, Civics, Ford Escorts, etc.— are
rarely leased. In contrast, luxury cars like BMWs, Lexus, Mercedes, etc. are
leased frequently.

4. Discussion and Related Literature

There are several noteworthy implications and extensions of the model. Perhaps
the most glaring simplification in our model is the assumed trading mechanism.
Traders are restricted to simple swaps which rules out bargaining with prices.
Moreover, traders only get a single match, and if this match does not result in
trade they pay a trading penalty and leave the trade stage with the house that they
desire. This trading mechanism greatly simplifies the model by making the agents’
trading rules independent of the type of house that they possess when they enter
the trade stage. While these assumptions are convenient for the analysis they are
also highly stylized. Nevertheless, we argue that the insights that emerge from
the model will still hold under more realistic assumptions.
First, consider extending the model to allow for price negotiations. There

are many trade mechanisms that one could consider (take-it-or-leave-it offers,
double auctions etc.). As long as agents preferences (their taste parameters) are
private information, none of these mechanisms is ex-post efficient (Myerson and
Satterthwaite (1983)). Put differently, some trades with positive surplus will not
occur. Thus, while these mechanisms will improve efficiency, they do not fully
eliminate the two inefficiencies in the model: Trades will still be rejected too often,
and too many people will occupy houses that they do not prefer. Even if we allowed
for efficient trading mechanisms (which would require that taste parameters be
observable), there would still not be a sufficient degree of conformity. To take
a specific example, consider the Nash bargaining solution in which each agent
gets half of the surplus in a trade. The efficient amount of conformity requires
that agents who build houses fully internalize the costs and benefits that arise
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when this house is transferred to someone else. Because agents get only half of
the surplus under Nash bargaining, they do not fully internalize these costs. As
a result, even though trade decisions are efficient (taking the build decisions as
given, agents trade whenever there is positive joint surplus), the build decisions
are still inefficient and there is still too little conformity.
Allowing agents to continue searching after the initial trade is rejected would

also leave our basic results intact. Agents would still have an incentive to conform
and the level of conformity and the willingness to trade would still be inefficient.
In fact, allowing for repeated matches when agents need to sell suggests that there
are additional reasons to conform. By owning the type of house that most agents
prefer (the majority house), agents reduce their expected sales costs by reducing
their time on the market. Owning the minority house implies high costs of trade
relative to the other type. We could capture this effect by assuming that the trade
penalties were type-specific. If the trade penalties vary inversely with the average
willingness to accept that type of house in trade then the incentive to conform is
increased.
It is difficult to devise policies that would fully resolve all of the potential

inefficiencies in the model. Providing the correct trade incentives, for instance,
would likely require taxes or subsidies that are specific to the agents intrinsic
preferences. Unlike the incentive to trade, the efficient level of conformity could
be achieved with simple government policies. Because our model suggests that
diversity in durable goods markets should be discouraged, a tax on unusual houses
would improve efficiency.
In addition to the theoretical results, the model generates empirical implica-

tions that could conceivably be tested against real world data. For instance, the
model predicts that we should observe relatively more conformity in the housing
stock in towns with frequent turnover. By the same token, individuals that are
likely to move should conform and purchase “typical” houses (or to rent). Tenured
professors for example should live in houses with more “character” compared to
untenured professors who should own “typical” houses or rent (casual observa-
tion suggests that this is indeed the case). Similar arguments hold with other
durables. Cars that are leased should, ceteris paribus, be more exotic than cars
that are owned.
Our paper is closely related with three separate lines of research. The first is

the literature on conformity itself. Perhaps the best-known paper in this literature
is Bernheim (1994). In that paper, agents care about both the action they take
and their perceived type which in turn depends on their action. Since the agents
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all want to be perceived to be a single common type, their actions reflect both
their own ideal action and their desire to be perceived to be of a certain status.
When agents care strongly about status, those with intermediate preferences all
choose the same action (they conform). Agents with extreme types choose not to
conform yet their choices are still distorted somewhat towards the common desired
type (Bernheim says that these agents “express their individuality”). The main
difference between our environment and Bernheim’s is that the desire to conform in
our model arises endogenously through resale concerns while in Bernheim’s model,
agents conform because their preferences place weight on public perceptions of
their type.15

The second line of research our paper relates to is the literature on durable
goods in matching models. Although there are many related papers in this liter-
ature, two are particularly noteworthy. Wheaton (1990) considers a search model
of housing with two types of occupants (families and singles) and two types of
houses (large and small). The focus of his paper is on the optimal level of search
intensity. He shows that unless the searcher captures all of the surplus of a trade,
there will be too little search effort in the model. Our results on the inefficiency of
conformity that flow from trades being declined too often echo Wheaton’s finding.
Importantly, Wheaton’s model is perfectly symmetric and the housing stock is ex-
ogenous. Conformity, as we have defined it, deals with the choice of the housing
stock and equilibrium asymmetry of types and houses. As a result, he does not ad-
dress conformity in his model. Smith (2002) considers an environment with many
types of agents and many types of perfectly durable goods. Unlike our model,
agents are never required to trade. In the model, agents attempt to “trade up” to
secure a better durable in the long-run. As a result trade decisions are ultimately
governed by the agents individual preferences rather than the preferences of their
trading partners. In addition, Smith like Wheaton (1990) makes the supply of
15There are other important concepts of conformity that have been addressed in the literature.

Social norms can be rationalized as equilibria in repeated games. Prominent papers include
Akerlof (1980), Kandori (1992), and Okuno-Fujiwara and Postlewaite (1995). In these models
agents adhere to social conventions to avoid punishment by other players in the future. Also
related is the literature on optimal product diversity. (See among others Spence (1976), Dixit and
Stiglitz (1977), Mankiw and Whinston (1987), and Tirole (1993) chapter 7). In these models,
consumers have a taste for variety and imperfectly competitive firms make entry decisions.
Typically, the equilibrium amount of entry implies a less than optimal level of product diversity
(i.e., there is too little entry). In our framework, we highlight the opposite concern. Agents in
our model care about resale which endogenously generates a preference against diversity and in
equilibrium there is typically too little conformity (too much diversity).
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durables exogenous and thus does not focus on equilibrium conformity.16

Finally, our model is also related to the literature on liquidity and matching
models. (See among others Kiyotaki and Wright (1989) and (1993)). In our
model, the equilibrium value of holding a good reflects both its intrinsic utility to
the agent and the potential resale value of the good. In matching models of money,
the currency (which is durable) is often assumed to be intrinsically worthless (i.e.,
fiat money). As a result, the equilibrium value of money in these models is due
solely to its trade value. Indeed, conformity in our model can be interpreted as
arising because of the liquidity value of the durable. The more agents prefer a
given type, the higher its resale value and thus more agents will accept it in trade.

5. Conclusion

We have shown that a consumer’s demand for a durable good is governed not only
by his individual preferences but also by the preferences of other market partici-
pants. This interdependence of preferences arises in markets for durables because
of the inevitable resale of durable goods. If a majority of the people who buy
durables desire goods with certain features, then the original owners will choose
to buy goods with these features even if they do not like them. The incentive to
conform to the majority taste is strongest for long-lived durable goods that are
traded frequently. For non-durable goods (goods with a very high depreciation
rate) or for durables that are never traded, there is no incentive to conform.
There are two features which lead to conformity in our model. First, because

there is a chance that agents will have to sell their house, they care about its
resale value. The lower the depreciation rate is, and the more likely it is that they
will have to enter the resale market, the more they care about the resale value.
In our model, the resale value of the home is determined simply by the likelihood
that it will be declined in trade. Second, frictions in the resale market (due to
matching) generate the possibility that the house will be purchased by someone
with different preferences from the current owner. As a result, the resale value
depends on the average preferences of the buyers in the resale market.
In equilibrium, the degree of conformity is typically suboptimal. Surprisingly,

there is typically too little conformity. That is, a social planner would prefer that
16There is also a large literature on the provision and resale of durable goods in market

settings. Following Akerlof (1970), much of this literature focuses on how adverse selection
problems affect the provision and resale of durables. See Hendel and Lizzeri (1999), (2002), and
House and Leahy (2004)) for recent contributions.

33



agents think about the majority more than they actually do. By not conforming,
agents impose two negative externalities on members of the majority. First, people
with the majority taste incur greater search costs because of product diversity.
Second, some members of the majority with moderate preferences settle for the
type they do not prefer. Inefficiently low conformity arises because the original
builders do not fully internalize these external costs.
Finally, we show that rental markets are likely to arise in environments in

which there is already a high degree of conformity. In this case, the agents with
the minority preferences leave and join the rental market and conformity in the
owner-occupied market increases.
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Appendix: Proofs of the Propositions

Lemma 1 If an agent builds type x, then he accepts type x in trade.

Proof. The proof is trivial and is identical for a and b. If the agent builds type a then V (a) ≥ V (b).
Then if he is offered a in trade, he gets V (a) if he accepts the offer and V (a)− π if he declines the offer.

Lemma 2 Given matching probabilities λ (x, τ) for x ∈ {a, b} and τ ∈ {a, b, ab} with
P

τ∈{a,b,ab}
P
y∈{a,b} λ (y, τ) =

1 there exist unique values V (a) , V (b) , T (a) , T (b) , and B satisfying (1), (2), and (3).

Proof. The proof follows from standard dynamic programming techniques.

Lemma 3 Let z1, z2 and z3 be given. Define

ra =
δ + γF (z1)

F (z3)− F (z2)
, rb =

δ + γ [1− F (z3)]
F (z2)− F (z1)

then the steady state values of Pa,ab (a) , Pa,ab (b) , Pb,ab (a) , and Pb,ab (b) are given by

Pa,ab (b) =
γrb

γra + γrb + rarb
(F (z2)− F (z1)) , Pa,ab (a) =

γra + rarb
γra + γrb + rarb

(F (z2)− F (z1))

Pb,ab (a) =
γra

γra + γrb + rarb
(F (z3)− F (z2)) , Pb,ab (b) =

γrb + rarb
γra + γrb + rarb

(F (z3)− F (z2))

and the steady state matching probabilities are

λ (a, a) = F (z1) ,λ (b, b) = 1− F (z3)

λ (a, ab) = Pa,ab (a) + Pb,ab (a) ,λ (b, ab) = Pa,ab (b) + Pb,ab (b)

Proof. Because in the steady state, Pa,ab (a) is constant, we had,

γPa,ab (a)Pb,ab (b) = Pa,ab (b) [γ (Pb,ab (a) + Pa,a (a)) + δ]

This implies:
γPa,ab (a)Pb,ab (b)− γPa,ab (b)Pb,ab (a) = γPa,ab (b)Pa,a (a) + Pa,ab (b) δ

γ

∙
Pa,ab (a)Pb,ab (b)

Pa,ab (b)Pb,ab (a)
− 1
¸
= (γPa,a (a) + δ)

1

Pb,ab (a)

Define B as:

B = γ

∙
Pb,ab (b)

Pb,ab (a)

Pa,ab (a)

Pa,ab (b)
− 1
¸

then we can write:

Pb,ab (a) =
δ + γPa,a (a)

B

Similar arguments for the {b, ab} agents give

Pa,ab (b) =
δ + γPb,b (b)

B

The total number of people who follow strategy {a, ab} is F (z2)− F (z1), thus,

Pa,ab (a) = F (z2)− F (z1)−
δ + γPb,b (b)

B
.

Similarly, for {b, ab} agents,
Pb,ab (b) = F (z3)− F (z2)−

δ + γPa,a (a)

B
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We can now form the ratios Pa,ab(a)
Pa,ab(b)

and Pb,ab(b)
Pb,ab(a)

as

Pa,ab (a)

Pa,ab (b)
=
[F (z2)− F (z1)]B

δ + γPb,b (b)
− 1

Pb,ab (b)

Pb,ab (a)
=
[F (z3)− F (z2)]B

δ + γPa,a (a)
− 1

Recalling the definition of B

B = γ

∙
Pb,ab (b)

Pb,ab (a)

Pa,ab (a)

Pa,ab (b)
− 1
¸

= γ

∙µ
[F (z3)− F (z2)]B

δ + γPa,a (a)
− 1
¶µ

[F (z2)− F (z1)]B
δ + γPb,b (b)

− 1
¶
− 1
¸

we get

B =
δ + γPa,a (a)

[F (z3)− F (z2)]
+

δ + γPb,b (b)

[F (z2)− F (z1)]
+

(δ + γPa,a (a)) (δ + γPb,b (b))

γ [F (z2)− F (z1)] [F (z3)− F (z2)]
Use the fact that Pa,a (a) = F (z1) and Pb,b (b) = 1− F (z3) as well as ra and rb as defined in the statement
of the Lemma, we can express B as

B = ra + rb +
rarb
γ

We can now solve for Pa,ab (a) , Pa,ab (b) , Pb,ab (a) and Pb,ab (b).

Pa,ab (b) =
δ + γPb,b (b)

B
=
rb (F (z2)− F (z1))

B

=
γrb

γra + γrb + rarb
(F (z2)− F (z1))

Pa,ab (a) =
γra + rarb

γra + γrb + rarb
(F (z2)− F (z1))

Pb,ab (a) =
γra

γra + γrb + rarb
(F (z3)− F (z2))

Pb,ab (b) =
γrb + rarb

γra + γrb + rarb
(F (z3)− F (z2))

Finally, by construction,
λ (a, ab) = Pa,ab (a) + Pb,ab (a) .

λ (b, ab) = Pa,ab (b) + Pb,ab (b) .

Lemma 4 The mappings La,a and Lb,b defined by (5) and (6) each have at least one fixed point.

Proof. Consider λ and λ0 both in [0, 1] with λ0 ≥ λ. It is straight forward to show that La,a
¡
λ0
¢
≥

La,a (λ). Existence then follows by Tarski’s fixed point theorem. The proof for Lb,b is identical.

Lemma 5 For any given cutoffs z1, z2 and z3, let Pa,ab (a) , Pb,ab (a) , Pa,ab (b) and Pb,ab (b) be given as in
Lemma 3 and define

ψa,ab =

µ
Pa,ab (a)

F (z2)− F (z1)

¶
and ψb,ab =

µ
Pb,ab (b)

F (z3)− F (z2)

¶
.

Then, the flow of social welfare is

W (z1, z2, z3) = {1− πγ [λ (b, b) + λ (b, ab)]}F (z1)

+

Z z2

z1

©
ψa,ab [1− πγλ (b, b)] +

¡
1− ψa,ab

¢
[1 + z − πγλ (a, a)]

ª
dF (z)

+

Z z3

z2

©¡
1− ψb,ab

¢
[1− πγλ (b, b)] + ψb,ab [1 + z − πγλ (a, a)]

ª
dF (z)

+

Z ∞
z3

{1 + z − πγ [λ (a, a) + λ (a, ab)]} dF (z)− δc.
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Proof. The probability that an agent who follows strategy (a, a) incurs the trade penalty is

γ [λ (b, b) + λ (b, ab)]

and the probability for a (b, b) agent is
γ [λ (a, a) + λ (a, ab)]

The flow utility for the (a, a)’s isZ z1

−∞
{1− δc− πγ [λ (b, b) + λ (b, ab)]} dF (z)

and for the (b, b)’s is Z ∞
z3

{1 + z − δc− πγ [λ (a, a) + λ (a, ab)]} dF (z)

The agents who follow inclusive strategies are somewhat more involved. Begin by considering the flow
utility of a particular agent of type z. Take any z ∈ [z1, z2] . These agents play (a, ab). If the agent has a in
inventory the probability of incurring the trade penalty is γλ (b, b), if they have b in inventory the probability
of incurring the trade penalty is, γλ (a, a) . The probability of incurring the building cost (the same in either
case) is δ. The fraction of (a, ab) agents that hold the house they build (a) is

Pa,ab (a)

F (z2)− F (z1)
.

The flow utility from the agents with this z is thusµ
Pa,ab (a)

F (z2)− F (z1)

¶
[1− πγλ (b, b)] +

µ
1− Pa,ab (a)

F (z2)− F (z1)

¶
[1 + z − πγλ (a, a)]− δc.

The flow utility for the entire group of (a, ab) agents isZ z2

z1

½µ
Pa,ab (a)

F (z2)− F (z1)

¶
[1− πγλ (b, b)] +

µ
1− Pa,ab (a)

F (z2)− F (z1)

¶
[1 + z − πγλ (a, a)]− δc

¾
dF (z)

Similar arguments give the flow utility for the (b, ab) traders asZ z3

z2

½µ
1− Pb,ab (b)

F (z3)− F (z2)

¶
[1− πγλ (b, b)] +

µ
Pb,ab (b)

F (z3)− F (z2)

¶
[1 + z − πγλ (a, a)]− δc

¾
dF (z)

Total welfare (W ) is the sum of the flow utility of the four types which can be rearranged to get

W = 1 +

µ
Pa,ab (b)

F (z2)− F (z1)

¶Z z2

z1

zdF (z) +
Pb,ab (b)

F (z3)− F (z2)

Z z3

z2

zdF (z) +

Z ∞
z3

zdF (z)− δc

−2πγ {F (z1) [1− F (z3)] + [Pa,ab (b) + Pb,ab (b)]F (z1) + [Pa,ab (a) + Pb,ab (a)] [1− F (z3)]}

Lemma 6 Let q = (r + δ +m) c, ma = γπ
c

£
λ0 (b, ab) + λ0 (b, b)

¤
, mb = γπ

c

£
λ0 (a, ab) + λ0 (a, a)

¤
and m∗ =

max
©
ma,mb

ª
. The following statements are true:

1. If m = 0 then every agent weakly prefers renting to owning.

2. If mc > γπ then the rental market is shut down.

3. If m∗c ≥ mc > 1
2γπ then the rental market must be active in equilibrium but only one type will be

rented.

4. If mc < 1
2γπ then the rental market must be active in equilibrium.
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Proof. Type (a, a) will prefer renting if

q ≤ γπ [λ (b, ab) + λ (b, b)] + (r + δ) c

type (b, b) prefers renting if
q ≤ γπ [λ (a, ab) + λ (a, a)] + (r + δ) c

If m = 0 then the inequalities hold for both (a, a) and (b, b) (the inequality is strict as long as λ (b, ab) +
λ (b, b) and λ (a, ab) + λ (a, a) are each greater than 0). This establishes 1.
Since neither λ (b, ab)+λ (b, b) nor λ (a, ab)+λ (a, a) can be greater than 1, the inequality is reversed for

mc > γπ. This establishes 2.
Note that if both (a, a) and (b, b) and prefered renting then, adding the expressions above, it must be the

case that
mc ≤ γπ

2

which is impossible if mc > γπ
2 . Thus if mc >

γπ
2 only one type can rent. Moreover, if mc < m∗c it is clear

that the original equilibrium cannot survive as one or the other exclusive types will deviate to the rental
market. This establishes 3.
Finally, observe that in any equilibrium, either λ (b, ab) + λ (b, b) ≤ 1

2 or λ (a, ab) + λ (a, a) ≤ 1
2 . Thus if

mc < 1
2γπ either the (a, a) types rent or the (b, b) types rent (or both). This establishes 4.

Lemma 7 If a density function f (z) with mean µ satisfies the following conditions:

1. Symmetry (S): for any x, f (µ+ x) = f (µ− x), and F (µ+ x) = 1− F (µ− x).

2. Quasi-Concave (QC): for any fixed x, the set {y : f (y) ≥ f (x)} is convex

then for any z < z0, F (z) ≥ 1− F (z0)⇔ f (z) ≥ f (z0).

Proof. Define x and x0 implicitly as z = µ+ x and z0 = µ+ x0. Since z0 > z, x0 > x. Clearly z is either
greater than or less than the mean µ.

1. Suppose z ≤ µ (so that x ≤ 0) then,

(a) F (z) ≥ 1 − F (z0) ⇒ F (µ+ x) ≥ 1 − F (µ+ x0) ⇒ (by S) ⇒ 1 − F (µ− x) ≥ 1 − F (µ+ x0) ⇒
F (µ+ x0) ≥ F (µ− x) ⇒ x0 > −x ≥ 0 and 0 ≥ x > −x0. We now have f (z0) = f (µ+ x0) =
f (µ− x0) ≤ f (y) for all y ∈ [µ− x0, µ+ x0] (by QC). Since z = µ+x > µ−x0 and z < z0 = µ+x0,
z is in this interval. Thus f (z) ≥ f (z0).

(b) F (z) ≤ 1 − F (z0) ⇒ F (µ+ x) ≤ 1 − F (µ+ x0) ⇒ (by S) ⇒ F (µ+ x) ≤ F (µ− x0) ⇒ x0 <
−x⇒ x < −x0 ⇒ f (z) = f (µ+ x) = f (µ− x) ≤ f (y) for all y ∈ [µ+ x, µ− x] (by QC) (recall
that x ≤ 0). Since z0 = µ+x0 < µ−x and z0 > z = µ+x, z0 is in this interval. Thus f (z0) ≥ f (z).

Thus if z ≤ µ, F (z) ≥ 1− F (z0)⇔ f (z) ≥ f (z0).

2. Suppose that z ≥ µ so that z0 ≥ µ. Because z0 > z ≥ µ and F is symmetric, F (z) ≥ 1
2 ≥ 1 − F (z0).

Moreover, f (y) ≥ f (z0) for all y ∈ [µ− x0, µ+ x0]. Since z ∈ [µ, z0] ⊂ [µ− x0, µ+ x0] we must have
f (z) ≥ f (z0).
Thus z ≥ µ⇒ F (z) ≥ 1− F (z0) and f (z) ≥ f (z0).

Lemma 8 For the equilibrium without the possibility of rent, the following statements are true:

1. If µ > 0 then F (z3)− F (z2) > F (z2)− F (z1) and λ (b, b) + λ (b, ab) > 1
2 > λ (a, a) + λ (a, ab).

2. If µ < 0 then F (z3)− F (z2) < F (z2)− F (z1) and λ (b, b) + λ (b, ab) < 1
2 < λ (a, a) + λ (a, ab).
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Proof. We prove the Lemma for the case µ > 0 (the proof for µ < 0 is identical). Note that µ > 0
implies that λ (a, a) < λ (b, b) and thus z2 < 0. Recall that z2 = z1 + z3 and that z1 < 0 < z3. Since z2 < 0
it must be the case that |z1| > z3. However, the distance z2 − z1 = z3 while z3 − z2 = |z1|. Thus,

z3 − z2 > z2 − z1

Since f is single-peaked, f is increasing in z for z < µ and decreasing in z for z > µ. We will show that for any
x > 0, f (z2 + x) > f (z2 − x). Fix x > 0. If z2+x > µ then, f (z2 + x) > f (µ+ x) (because z2+x < µ+x).
In addition, f (z2 − x) < f (µ− x). Since f (µ+ x) = f (µ− x) we have f (z2 + x) > f (z2 − x). If z2+x < µ
then f (z2 + x) > f (z2 − x) because f is increasing throughout this range.
Now consider F (z3)−F (z2) relative to F (z2)−F (z1). By assumption µ > 0. Make the following change

of variable: let y = 2z2 − z and write these asZ z2

z1

f (z) dz = −
Z z2

z2+(z2−z1)
f (2z2 − y) dy =

Z z2+(z2−z1)

z2

f (2z2 − y) dy

≤
Z z2+(z2−z1)

z2

f (y) dy <

Z z3

z2

f (y) dy

Here the first inequality (the third line) follows from the fact that f (z2 + x) > f (z2 − x) . To see this, let
x = y − z2 which is positive. The last inequality follows from the fact that z3 − z2 > z2 − z1.
With F (z3)− F (z2) > F (z2)− F (z1) , we can use the fomula’s in Lemma (3), to get the ratio of rb to

ra as
rb
ra
=

µ
F (z3)− F (z2)
F (z2)− F (z1)

¶µ
δ + γ [1− F (z3)]

δ + γF (z1)

¶
=

µ
F (z3)− F (z2)
F (z2)− F (z1)

¶µ
δ + γλ (b, b)

δ + γλ (a, a)

¶
> 1

Thus rb > ra. In the equilibrium, λ (a, ab) = Pa,ab (a) + Pb,ab (a) and λ (b, ab) = Pa,ab (b) + Pb,ab (b). Again
appealing to Lemma (3) gives

λ (b, b) + λ (b, ab) = λ (b, b) +
rarb

γra + γrb + rarb
(F (z3)− F (z2)) +

γrb
γra + γrb + rarb

(F (z3)− F (z1))

λ (a, a) + λ (a, ab) = λ (a, a) +
rarb

γra + γrb + rarb
(F (z2)− F (z1)) +

γra
γra + γrb + rarb

(F (z3)− F (z1))

Subtracting the second expression from the first gives the differenceD = λ (b, b)+λ (b, ab)−[λ (a, a) + λ (a, ab)]
as

D = λ (b, b)−λ (a, a)+ rarb
γra + γrb + rarb

[(F (z3)− F (z2))− (F (z2)− F (z1))]+
γrb − γra

γra + γrb + rarb
(F (z3)− F (z1))

Each of these terms is positive which completes the proof.

Proposition 1 Given non-negative λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) summing to 1, define z1, z2, and
z3 as follows:

z1 = −π {r + δ + γ [1− λ (a, a)]}
z2 = γπ [λ (a, a)− λ (b, b)]

z3 = π {r + δ + γ [1− λ (b, b)]}
Then, for any z < z1 the optimal strategy is (a, a) ; for z1 < z < z2 the optimal strategy is (a, ab) ; for any
z2 < z < z3 the optimal strategy is (b, ab) and for z > z3 the optimal strategy is (b, b).

Proof. We focus on the continuation value when an agent receives the build shock. At this point, an
agent chooses the type of house to build and formulates a contingency plan. Our strategy for the proof is to
calculate the building continuation value for each possible strategy. Agents must follow one of the following
four strategies {a, a} , {a, ab} , {b, ab} , and {b, b}. The optimal strategy is the one with the highest value in
the building stage. By construction, the dynamic programming problem is dynamically consistent. Thus if
it is optimal to follow strategy τ in one state, it is optimal to follow it in any other state.
Suppose that z follows strategy {a, a}. We write va,a (.) and τa,a (.) to denote the value of following this

strategy and the expected value of receiving the trade shock. Note these strategies may not be optimal (i.e.
va,a (x) ≤ V (x) and τa,a (x) ≤ T (x)). We consider each strategy in turn.
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1. Strategy {a, a}. If z follows {a, a} then he always rejects b in the trade stage τa,a (b) is irrelevant. The
trade value τa,a (a) is

τa,a (a) = va,a (a)− π [λ (b, ab) + λ (b, b)]

The consumption stage value is then,

va,a (a) =
1− δc− γπ [λ (b, ab) + λ (b, b)]

r
(7)

2. Strategy {a, ab} . When z accepts either a or b in the trading stage, we must calculate both the trade
value of a and b. Similarly, we must also consider the consumption value of both a and b. We begin
with the value functions in the trading stages. The trade value of possessing a is

τa,ab (a) = va,ab (a) + λ (b, ab) [va,ab (b)− va,ab (a)]− πλ (b, b)

The trade value of possessing b is

τa,ab (b) = va,ab (a) + [λ (b, b) + λ (b, ab)] [va,ab (b)− va,ab (a)]− πλ (a, a)

The consumption value for a satisfies

rva,ab (a) = 1− δc+ γ {λ (b, ab) [va,ab (b)− va,ab (a)]− πλ (b, b)} (8)

while the consumption value for b satisfies

rva,ab (b) = 1 + z + δ [va,ab (a)− va,ab (b)− c]
+γ {va,ab (a)− va,ab (b) + [λ (b, b) + λ (b, ab)] [va,ab (b)− va,ab (a)]− πλ (a, a)}

or,

rva,ab (b) = 1 + z − δc− δ [va,ab (b)− va,ab (a)] + γ {[λ (b, b) + λ (b, ab)] [va,ab (b)− va,ab (a)]− πλ (a, a)}
−γ [va,ab (b)− va,ab (a)]

Subtracting (8) gives

va,ab (b)− va,ab (a) =
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (b, b)]

Plugging this back into (8) we get the consumption value va,ab (a).

rva,ab (a) = 1 + γ

½
λ (b, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (b, b)]

¸
− πλ (b, b)

¾
− δc.

To compare the two strategies {a, ab} and {a, a}, consider an agent who receives the build shock. If he
decides to follow {a, ab} then his payoff is va,ab (a)−c while if he follows {a, a} his payoff is va,a (a)−c.
The agent will thus prefer {a, ab} to {a, a} if va,ab (a) > va,a (a)⇔

1 + γ

½
λ (b, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (b, b)]

¸
− πλ (b, b)

¾
− δc > 1− γπ [λ (b, ab) + λ (b, b)]− δc

or if
z > −π {r + δ + γ [1− λ (a, a)]} = z1

Then, any z > z1 will prefer strategy {a, ab} to {a, a}.

3. Strategy {b, ab} . Following the argument above we find the trade value of a is

τ b,ab (a) = vb,ab (b) + [λ (a, a) + λ (a, ab)] [vb,ab (a)− vb,ab (b)]− πλ (b, b)

while the trade value of possessing b is

τ b,ab (b) = vb,ab (b) + λ (a, ab) [vb,ab (a)− vb,ab (b)]− πλ (a, a)
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The consumption value for a satisfies

rvb,ab (a) = 1 + δ [vb,ab (b)− vb,ab (a)− c]
+γ (vb,ab (b)− vb,ab (a)− [λ (a, a) + λ (a, ab)] [vb,ab (b)− vb,ab (a)]− πλ (b, b))

and the consumption value for b satisfies

rvb,ab (b) = 1 + z − δc+ γ [−λ (a, ab) [vb,ab (b)− vb,ab (a)]− πλ (a, a)]

The implied difference is

vb,ab (b)− vb,ab (a) =
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ − γλ (a, a)

We can now solve for the consumption value vb,ab (b) (for this strategy, the continuation value for an
agent who gets the build shock is vb,ab (b)− c).

rvb,ab (b) = 1 + z + γ

∙
−λ (a, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (a, a)]

¸
− πλ (a, a)

¸
− δc

As before, we compare the continuation value for an agent who just received the build shock for
strategies {b, ab} and {a, ab}. The agent will prefer {b, ab} to {a, ab} if vb,ab (b) ≥ va,ab (a)⇐⇒

1 + z + γ

∙
−λ (a, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (a, a)]

¸
− πλ (a, a)

¸
− δc

≥ 1 + γ

½
λ (b, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (b, b)]

¸
− πλ (b, b)

¾
− δc

This expression can be rewritten as

(z + γπ [λ (b, b)− λ (a, a)])

½
1− γλ (a, ab)

r + δ + γ [1− λ (a, a)]
− γλ (b, ab)

r + δ + γ [1− λ (b, b)]

¾
≥ 0

or
(z + γπ [λ (b, b)− λ (a, a)])Ω ≥ 0

where

Ω ≡ 1− γλ (a, ab)

r + δ + γ [1− λ (a, a)]
− γλ (b, ab)

r + δ + γ [1− λ (b, b)]

We now show that Ω > 0. Without loss of generality assume that λ (b, b) ≥ λ (a, a) . Then,

Ω ≥ 1− γ

∙
λ (b, ab) + λ (a, ab)

r + δ + γ [1− λ (b, b)]

¸
.

Ω > 0 if

1 > γ

∙
λ (b, ab) + λ (a, ab)

r + δ + γ [1− λ (b, b)]

¸
r + δ + γ [1− λ (b, b)− λ (b, ab)− λ (a, ab)] > 0

which is satisfied since λ (b, ab) + λ (a, ab) + λ (a, a) + λ (b, b) = 1. This implies that Ω > 0. Because
Ω > 0, agents will prefer {b, ab} to {a, ab} whenever

z ≥ γπ [λ (a, a)− λ (b, b)] = z2.

Any z > z2 will prefer strategy {b, ab} to {a, ab}. Furthermore, z2 > z1 so these agents also prefer
{b, ab} to {a, a}.
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4. Strategy {b, b} . An agent who follows {b, b} always rejects a so τ b,b (a) is irrelevant. The trade value
τ b,b (b) is

τ b,b (b) = [λ (b, b) + λ (b, ab)] vb,b (b) + [λ (a, ab) + λ (a, a)] [vb,b (b)− π]

= vb,b (b)− π [λ (a, ab) + λ (a, a)]

The consumption value is

vb,b (b) =
1 + z − δc− γπ [λ (a, ab) + λ (a, a)]

r
.

As before, consider an agent who receives the build shock. If he decides to follow {b, ab} then his payoff
is vb,ab (a) − c while if he follows {b, b} his payoff is vb,b (a) − c. The agent will thus prefer {b, b} to
{b, ab} if vb,b (b) > vb,ab (b)⇔

1 + z − δc− γπ [λ (a, ab) + λ (a, a)]

> 1 + z + γ

∙
−λ (a, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (a, a)]

¸
− πλ (a, a)

¸
− δc

z > π [r + δ + γ [1− λ (b, b)]] = z3

Any z > z3 will play strategy {b, b} rather than {b, ab}.
Since z1 < z2 < z3 any agent with z < z1 prefers {a, a} to all of the other strategies. To see this
note that such an agent prefers {a, a} to {a, ab} by case one above. However, by case two, he also
prefers {a, ab} to {b, ab} and by case three prefers {b, ab} to {b, b}. Thus {a, a} is the optimal strategy
for this agent. Similar arguments imply that for z1 < z < z2 the optimal strategy is {a, ab} ; for any
z2 < z < z3 the optimal strategy is {b, ab} and for z > z3 the optimal strategy is {b, b}. This completes
the proof.

Proposition 2 Given any distribution of types F, there exists at least one steady state equilibrium.

Proof. By Lemma 4 La,a and Lb,b have at least one fixed point. Let λ (a, a), and λ (b, b) be fixed points
of La,a and Lb,b. We construct an equilibrium as follows:
Use λ (a, a), and λ (b, b) to construct z1, z2, and z3 from the definitions in 1. With z1, z2, and z3

compute λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) in accordance with Lemma 3. By construction λ (a, a),
λ (b, b), λ (a, ab) , and λ (b, ab) are equilibrium matching probabilities.

Proposition 3 If F satisfies Assumption 1 then

1. The equilibrium is unique.

2. There is conformity whenever µ 6= 0 and the market conforms to the mean taste (the market conforms
on a if µ < 0 and conforms on b if µ > 0 ).

3. If µ 6= 0, an increase in durability (lower δ), patience (lower r), the liklihood of trade (higher γ) or the
trade penalty (higher π) causes conformity to increase.

Proof.

1. By proposition 2, λ (a, a) is a fixed point of the mapping La,a,

λ (a, a) = La,a (λ (a, a)) = F (−π {r + δ + γ [1− λ (a, a)]})

By assumption F has a density and thus we can calculate the derivative of La,a. This derivative is

∂La,a (λ (a, a))

∂λ (a, a)
= f (z1)πγ > 0

The assumption guarantees that f (z1) ≤ f (µ) < πγ−1 which implies that the derivative satisfies
0 < f (z1)πγ < 1. Thus there can be at most one crossing. Similar arguments hold for Lb,b. Since
existence of at least one equilibrium is guaranteed by proposition 2, the equilibrium must be unique.
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2. Because F is symmetric about its mean, if µ = 0 then the unique equilibrium must have λ (a, a) =
λ (b, b) and z2 = 0 (no conformity). Let λ

∗ be the equilibrium λ∗ = λ (a, a) = λ (b, b) associated with
µ = 0. Note that for any l ≥ λ∗ we must have La,a (l) ≤ l (since the derivative of La,a is less than 1
by part 1) and for any l ≤ λ∗ we must have Lb,b (l) ≥ l by the same reasoning.
Consider µ > 0 (the argument for µ < 0 is identical). In this case, for any given l ∈ [0, 1] ,

F (−π {r + δ + γ [1− l]} ;µ > 0) < F (−π {r + δ + γ [1− l]} ;µ = 0)

and
1− F (π {r + δ + γ [1− l]} ;µ > 0) > 1− F (π {r + δ + γ [1− l]} ;µ = 0)

Therefore,
La,a (l) |µ>0 < La,a (l) |µ=0 ≤ l
Lb,b (l) |µ>0 > Lb,b (l) |µ=0 ≥ l

This implies that when µ > 0, l ∈ [λ∗, 1] cannot be a fixed point of La,a and l ∈ [0,λ∗] cannot be a
fixed point of Lb,b. Because the equilibrium is unique, we conclude that for µ > 0, the equilibrium
satisfies λ (b, b) > λ∗ > λ (a, a). This implies that z2 < 0 so consumers conform on b.

3. If µ > 0 then 1− F (z3) = λ (b, b) > λ (a, a) = F (z1) by part (2). This implies that z2 > 0. Moreover,
Lemma 7 implies f (z3) ≥ f (z1). Since f (z1) ≤ f (µ) < πγ−1, γπf(z1)

1−πγf(z1) > 0 and
γπf(z3)
1−πγf(z3) > 0. The

proof then follows by directly computing the derivatives ∂z2
∂δ ,

∂z2
∂r ,

∂z2
∂π and

∂z2
∂γ .

Proposition 4 For fixed λ (a, a), λ (a, ab), λ (b, ab), and λ (b, b) , there exist two cutoffs ρ ∈ {−∞} ∪ [z1, 0]
and η ∈ [0, z3] ∪ {+∞} such that

1. All agents with taste parameter z ≤ ρ choose to rent type a houses.

2. All agents with taste parameter z ≥ η choose to rent type b houses.

3. All agents with taste parameter z ∈ (ρ, η) remain in the owner-occupied market and follow policies
prescribed in Proposition 1.

Proof. Let va,a, va,ab, vb,ab and vb,b be the values of following each strategy given that the agent is
currently in the build stage. These values are defined in the proof of Proposition 1 and satisfy

rva,a (a) = 1− δc− γπ [λ (b, ab) + λ (b, b)]− rc

rva,ab (a) = 1 + γ

∙
λ (b, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (b, b)]

¸
− πλ (b, b)

¸
− δc− rc

rvb,ab (b) = 1 + z + γ

∙
−λ (a, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (a, a)]

¸
− πλ (a, a)

¸
− δc− rc

rvb,b (b) = 1 + z − δc− γπ [λ (a, ab) + λ (a, a)]− rc
An agent in the build stage can contemplate following one of the ownership policies (as above) or deviating
to the rental market. Thus in the build stage he chooses the maximum of {R,V (a)− c, V (b)− c} where R
is

R = max

½
1− q
r
,
1 + z − q

r

¾
.

Clearly these values depend on the agents type z. We thus write the values va,a, va,ab, vb,ab and vb,b as
functions of z. Specifically, let va,ab (z) , and vb,ab (z) be the values of following strategy {a, ab} and {b, ab}
respectively for an agent with taste parameter z who is currently in the build stage. The slopes, ∂v∂z , of these
values are increasing functions of z. Specifically, directly differentiating the expressions above gives:

∂va,a
∂z

= 0 <
∂va,ab
∂z

=

µ
1

r

¶µ
γλ (b, ab)

r + δ + γ [1− λ (b, b)]

¶
<

∂vb,ab
∂z

=

µ
1

r

¶µ
r + δ + γ [λ (b, ab) + λ (b, b)]

r + δ + γ [1− λ (a, a)]

¶
<

∂vb,b
∂z

=
1

r
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The slopes of these values (∂v∂z ) are increasing.
1

Define ρa,ab, ρb,ab implicitly as follows

1− q = rva,ab
¡
ρa,ab

¢
.

1− q = rvb,ab
¡
ρb,ab

¢
.

Let ρ = min
©
ρa,ab, ρb,ab

ª
. Note that no one with z > 0 will choose to rent a so the intersection of the a

rental line with vb,b is irrelevant. Define ηa,ab and ηb,ab implicitly as follows

1 + ηa,ab − q = rva,ab
¡
ηa,ab

¢
.

1 + ηb,ab − q = rvb,ab
¡
ηb,ab

¢
.

Let η = max
©
ηa,ab, ηb,ab

ª
.

If ρ > η then everyone rents (z > 0 rent b and z < 0 rent a). In the other cases, ρ < η and every z ∈ [ρ, η]
remains in the owner occupied market. If z1 > ρ then no one will rent a. If z1 < ρ then every z < ρ rents a.
Thus the number of people who rent a is F (ρ). If z3 < η then no one will rent b. If z3 > η then every z > η
rents b. Thus, the number of people who rent b is 1− F (η).

Proposition 5 Let f be symmetric about µ > 0, quasi-concave and single peaked with f (µ) < 1
πγ

1
2 and

assume that 1
2γπ < mc < γπ. If the equilibrium requires an active rental market, then there exists an

equilibrium in which only agents who prefer a houses rent. Moreover, in this equilibrium, the owner-occupied
market has greater conformity than the equilibrium without the possibility of rent.

Proof. Since µ > 0, by Lemma 8 we have λ0 (b, b) + λ0 (b, ab) > 1
2 > λ0 (a, a) + λ0 (a, ab) where we are

using the superscript notation as described in the text. Consider agents who played strategy (a, a) in the
original equilibrium. Since z1 < 0, these agents all strictly prefer type a houses and thus would rent a type
a house if they left the owner-occupied market. These agents will strictly prefer renting if

1− q
r

> va,a (a) =
1− δc− γπ

£
λ0 (b, ab) + λ0 (b, b)

¤
r

− c

Using the definition of q we see that these agents will rent if

(m) c < γπ
£
λ0 (b, ab) + λ0 (b, b)

¤
The same reasoning implies that agents who played (b, b) in the original equilibrium will prefer renting if

(m) c < γπ
£
λ0 (a, ab) + λ0 (a, a)

¤
.

Since λ0 (b, b) + λ0 (b, ab) > 1
2 > λ0 (a, a) + λ0 (a, ab), and because by assumption (m) c > 1

2γπ, either the
(a, a) agents prefer to rent at the original equilibrium or the original equilibrium is still a valid equilibrium
with an inactive rental market.
Suppose that (m) c < γπ

£
λ0 (b, ab) + λ0 (b, b)

¤
so that the (a, a) types prefer renting faced with the initial

equilibrium in the owner-occupied market. In this case, the original equilibrium will not survive (the (a, a)
types will deviate).
We construct a mapping Φ : [0, F (0)]→ [0, F (0)] as follows: Take any φ ∈ [0, F (0)], and let ζ = F−1 (φ)

(ζ solves φ = F (ζ)). Construct F̃ and f̃ as follows:

F̃ (z) =

(
0 for z ≤ ζ

F (z)−φ
1−φ for z > ζ

and f̃ (z) =

(
0 for z ≤ ζ
f(z)
1−φ for z > ζ

.

1Note that
∂vb,ab
∂z

>
∂va,ab
∂z

. To see this, recall the definition of Ω from the proof of Proposition 1

0 < Ω ≡ 1− γλ (a, ab)

r + δ + γ [1− λ (a, a)]
− γλ (b, ab)

r + δ + γ [1− λ (b, b)]
= r

h
∂vb,ab

∂z
−

∂va,ab

∂z

i
.

The inequality follows from the proof of proposition 1.
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It is easy to show that F̃ (z)−F (z) = − φ
1−φ [1− F (z)] so that F̃ (z) ≤ F (z) (and thus 1−F̃ (z) > 1−F (z)).

The associated density function has f̃ (z) = f(z)
1−φ <

f(0)
1−φ < 2f (µ) <

1
πγ where the last inequality follows from

our assumptions on F . As a result, f̃ satisfies the requirements for a unique equilibrium in the owner-occupied
market. Let

La,a
¡
λ1 (a, a)

¢
= F̃

¡
−π

©
r + δ + γ

£
1− λ1 (a, a)

¤ª¢
∈ [0, 1]

and
Lb,b

¡
λ1 (b, b)

¢
= 1− F̃

¡
π
©
r + δ + γ

£
1− λ1 (b, b)

¤ª¢
∈ [0, 1] .

be the fixed point mappings for the owner-occupied market with the distribution F̃ . Since f̃ < 1
πγ there is

a unique equilibrium. Let λ1 (a, a) , λ1 (a, ab), λ1 (b, b) , λ1 (b, ab) be the unique equilibrium set of trading
probabilities. Because F̃ (z) ≤ F (z) and 1 − F̃ (z) ≥ 1 − F (z), it must be the case that there is greater
conformity in the new equilibrium than in the original equilibrium without the rental market. That is,
λ1 (a, a) < λ0 (a, a) and λ1 (b, b) > λ0 (b, b)). Moreover, conformity grows with increases in φ. Define ρ as
above. We set φ0 = F̃ (ρ).
Note that if the original equilibrium is no longer viable then Φ (0) > 0. Also, if φ = F (0) then everyone

remaining in the owner-occupied market has z > 0. As a result, in equilibrium, everyone produces and trades
type b houses. In this case λ1 (a, ab) = λ1 (a, a) = 0 and thus, ρb,ab = − (m) c. Since ρ = min

©
ρa,ab, ρb,ab

ª
we have Φ (F (0)) = F (ρ) < F (0).
Thus, we have a mapping Φ on [0, F (0)] which satisfies Φ (0) > 0 and Φ (F (0)) < F (0). By the

intermediate value theorem (or by Brouwer’s Fixed Point Theorem) we must have a fixed point in the
interval. Since λ1 (a, a) < λ0 (a, a) and λ1 (b, b) > λ0 (b, b) for any φ ∈ [0, F (0)] , we conclude that in the
equilibrium with an active rental market there is even greater conformity than when there was no possibility
of renting.
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FIGURE 1: UNIQUE EQUILIBRIA WITH A UNIFORM DISTRIBUTION 

 
 
 
 
 

FIGURE 2: MULTIPLE EQUILIBRIA WITH A SYMMETRIC DISTRIBUTION 
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FIGURE 3: WELFARE AS A FUNCTION OF 2z  
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The figure plots the flow of welfare for the model when F(z) is distributed normally.  Three means (0, .25 
and .5) are considered.  Each distribution has the same standard deviation (1).   
 
 
 

FIGURE 4: EQUILIBRIUM AND OPTIMAL 1z , 2z , 3z  FOR DIFFERENT MEANS.  
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The figure shows the equilibrium cutoffs (the solid dark lines) and the optimal cutoffs (the light shaded 
lines) for different means of F(z).  In each case, F is normal with a unit variance.  The cutoffs are plotted on 
the vertical axis while the mean is on the horizontal axis.  




