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Many assets, such as mortgage-backed securities, corporate bonds, gov-
ernment bonds, emerging-market debt, bank loans, swaps and many other
derivatives, private equity, and real estate, are traded in over-the-counter
(OTC) markets. Traders in these markets search for counterparties, incur-
ring opportunity or other costs. When counterparties meet, their bilateral
relationship is strategic; prices are set through a bargaining process that
reflects each investor’s alternatives to immediate trade.

We provide a theory of dynamic asset pricing that directly treats search
and bargaining in OTC markets. We show how the explicitly calculated equi-
librium allocations and prices depend on investors’ search abilities, bargain-
ing powers, and risk aversion, and how the time signature of price reactions
to supply or demand shocks depends on the speed with which counterparties
interact. We discuss a variety of financial applications and testable implica-
tions.

Investors in our model contact one another randomly at some mean rate
that reflects search ability. When two agents meet, they bargain over the
terms of trade based on endogenously determined outside options. Investors
are infinitely lived and gains from trade arise from time-varying costs or ben-
efits of holding assets. We show how the equilibrium bargaining powers of the
counterparties are determined by search opportunities, using the approach
of Rubinstein and Wolinsky (1985).

We first study how search frictions affect asset prices in a steady-state
equilibrium in which agents face idiosyncratic risk and with no aggregate
risk. We compute steady-state prices both with risk-neutral and risk-averse
agents, and show how risk aversion can be approximated in a risk-neutral
setting using “holding costs” that capture the utility losses of suboptimal
diversification or hedging.

Naturally, search-based market incompleteness is priced by risk-averse
agents with time-varying hedging demands. Indeed, under stated conditions,
illiquidity discounts are higher if investors can find each other less easily,
if buyers have more bargaining power, if the fraction of qualified owners is
smaller, if volatility is higher, or if risk aversion is higher. We also indicate
situations in which search frictions can lead naturally to an increase in the
price of the asset, conveying to it a search-induced scarcity value.

We introduce “aggregate liquidity shocks,” that is, shocks that affect the
holding costs of many agents simultaneously. We show that, under certain
conditions, when an aggregate liquidity shock occurs, the price drops and
recovers only slowly. The speed of the price recovery depends on the search
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intensity that determines the speed of reallocation of securities to the more
liquid agents and on the time that it takes for illiquid agents to become liquid,
for example to “recapitalize.” Also, the risk of future aggregate liquidity
shocks significantly lowers the post-recovery price level. Search frictions thus
affect both the general level of prices as well as the resiliency of the market to
aggregate shocks. More illiquid markets (those with lower search intensities)
have generally lower price levels, larger price reactions to supply shocks, and
slower price recovery.

When an aggregate liquidity shock occurs, the expected utilities of asset
owners, even those owners who are not directly affected by the liquidity shock
themselves, decrease because selling opportunities worsen: Sellers’ search
times increase and their bargaining positions deteriorate. Conversely, the
expected utilities of agents “waiting on the sideline,” those with no asset
position, increase at times of aggregate liquidity shock, because they may
have the opportunity to purchase securities at distressed prices.

We discuss how our results contribute to an explanation of the time signa-
tures of price responses to several types of aggregate liquidity shocks, to cor-
porate bonds that are downgraded or in default (Hradsky and Long (1989)),
to sovereign bonds during “debt crises,” to individual stocks at index in-
clusion or exclusion events (as in Greenwood (2005)), to stocks affected by
sudden large outside orders (Andrade, Chang, and Seasholes (2005) and Co-
val and Stafford (2005)), or to catastrophe reinsurance risk premia after large
unexpected losses in capital caused by events such as major hurricanes (Froot
and O’Connell (1999)), among other relevant empirical phenomena.

The point of departure of this paper is a variant of the basic risk-neutral
search-based pricing model of Duffie, Gârleanu, and Pedersen (2005). While
Duffie, Gârleanu, and Pedersen (2005) focus on the steady-state pricing of a
simple consol bond and treat the behavior of marketmakers and the impli-
cations of search frictions for bid-ask spreads, this paper instead treats the
implications of search frictions for risky asset pricing. We provide (i) the
impact on asset prices of risk aversion in a setting with search, above and
beyond the usual implications of risk sharing in incomplete markets, (ii) the
implications of search frictions for the time dynamics of price responses to
supply or demand shocks, and (iii) the determination of endogenous bargain-
ing power1 based on the alternative search opportunities of the buyers and

1Duffie, Gârleanu, and Pedersen (2005) take the bargaining powers of buyers and sellers
as exogenous to the model.
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sellers.
Search models have been studied extensively in the context of labor eco-

nomics, starting with the “coconuts” model of Diamond (1982), and in the
context of monetary economics, for example, Trejos and Wright (1995). As
for search-based models of asset pricing, Weill (2002) and Vayanos and Wang
(2002) have extended the risk-neutral version of our model in order to treat
multiple assets in the same economy, obtaining cross-sectional restrictions
on asset returns. Duffie, Gârleanu, and Pedersen (2005) treat marketmakers,
showing that search frictions have different implications for bid-ask spreads
than do information frictions. Miao (2004) provides a variant of this model.
Weill (2003) studies the implications of search frictions in an extension of
our model in which marketmakers’ inventories “lean against” the outside
order flow. Newman and Rierson (2003) present a model in which sup-
ply shocks temporarily depress prices across correlated assets, as providers
of liquidity search for long-term investors, supported by empirical evidence
of issuance impacts across the European telecommunications bond market.
Duffie, Gârleanu, and Pedersen (2002) use a search-based model of the im-
pact on asset prices and securities lending fees of the common institution
by which would-be shortsellers must locate lenders of securities before be-
ing able to sell short. Difficulties in locating lenders of shares can allow for
dramatic price imperfections, as, for example, in the case of the spinoff of
Palm, Incorporated, documented by Mitchell, Pulvino, and Stafford (2002)
and Lamont and Thaler (2003).

Our results also complement the literature treating the effect on asset
prices of an exogenously specified trading cost (Amihud and Mendelson
(1986), Constantinides (1986), Vayanos (1998), Huang (2003), and Acharya
and Pedersen (2005)) by endogenizing the trading cost in the context of OTC
markets. Krainer and LeRoy (2002) study housing prices in a different search
framework. Longstaff (2004) addresses market frictions with the device of
deterministic “blackout” periods on individual trade.

The remainder of the paper is organized as follows. Section 1 lays out a
baseline model with risk-neutral agents. Section 2 then treats an OTC market
for a risky asset whose risk-averse owners search for potential buyers when the
asset ceases to be a relatively good endowment hedge. We characterize how
search frictions magnify risk premia beyond those of a liquid but incomplete-
markets setting. Section 3 provides the implications of search frictions for
price reactions to supply or demand shocks, showing especially how the time
pattern of “price recovery” is influenced by search frictions. Finally, Section 4
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describes the empirical implications of search frictions for asset pricing in a
range of actual OTC markets. Some proofs and supplementary results are
relegated to appendices.

1 Basic Search Model of Asset Prices

This section introduces a baseline risk-neutral model of an over-the-counter
market, that is, a market in which agents can trade only when they meet
each other, and in which transaction prices are bargained. This baseline
model, simplified from Duffie, Gârleanu, and Pedersen (2005) by stripping
out marketmakers, is then generalized in the remainder of the paper to treat
risk aversion, and the effects of aggregate liquidity shocks.

Agents are risk-neutral and infinitely lived, with a constant time-preference
rate β > 0 for consumption of a single non-storable numeraire good.2

An agent can invest in a bank account — which can also be interpreted
as a “liquid” security — with a risk-free interest rate of r. As a form of credit
constraint that rules out “Ponzi schemes,” the agent must enforce some lower
bound on the liquid wealth process W . We take r = β in this baseline model,
since agents are risk neutral.

Agents may trade a long-lived asset in an over-the-counter market. The
asset can be traded only bilaterally, when in contact with a counterparty.
We begin for simplicity by taking the OTC asset to be a consol, which pays
one unit of consumption per unit of time. Later, when introducing the effect
of risk aversion, we generalize to random dividend processes.

An agent is characterized by an intrinsic preference for asset ownership
that is “high” or “low.” A low-type agent, when owning the asset, has a
holding cost of δ per time unit. A high-type agent has no such holding
cost. We could imagine this holding cost to be a shadow price for ownership
due, for example, to (i) low liquidity, that is, a need for cash, (ii) high
financing or financial-distress costs, (iii) adverse correlation of asset returns
with endowments (formalized in Section 2), (iv) a relative tax disadvantage,
as studied by Dai and Rydqvist (2003) in an empirical analysis of search-
and-bargaining effects in the context of tax trading,3 or (v) a relatively low

2Specifically, an agent’s preferences among adapted finite-variation cumulative con-
sumption processes are represented by the utility E

(∫ ∞

0
e−βt dCt

)

for a cumulative con-
sumption process C, whenever the integral is well defined.

3Dai and Rydqvist (2003) study tax trading between a small group of foreign investors
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personal use for the asset, as may happen, for example, for certain durable
consumption goods such as homes. The agent’s intrinsic type is a Markov
chain, switching from low to high with intensity λu, and back with intensity
λd. The intrinsic-type processes of any two agents are independent.4

A fraction s of agents are initially endowed with one unit of the asset.
Investors can hold at most one unit of the asset and cannot shortsell. Because
agents have linear utility, it is without much loss of generality that we restrict
attention to equilibria in which, at any given time and state of the world,
an agent holds either 0 or 1 unit of the asset. Hence, the full set of agent
types is T = {ho, hn, lo, ln}, with the letters “h” and “l” designating the
agent’s current intrinsic liquidity state as high or low, respectively, and with
“o” or “n” indicating whether the agent currently owns the asset or not,
respectively.

We suppose that there is a “continuum” (a non-atomic finite measure
space) of agents, and let µσ(t) denote the fraction at time t of agents of type
σ ∈ T , so that

1 = µho(t) + µhn(t) + µlo(t) + µln(t). (1)

Equating the per-capita supply s with the fraction of owners gives

s = µho(t) + µlo(t). (2)

An agent finds a counterparty with an intensity λ, reflecting the efficiency
of the search technology. We assume the counterparty found is randomly
selected from the pool of other agents, so that the probability that the coun-
terparty is of type σ is µσ(t). Thus, the total intensity of finding a type-σ
investor is λµσ. Hence, assuming that the law of large numbers applies, hn
investors contact lo investors at a total (almost sure) rate of λµloµhn and,
since lo investors contact hn investors at the same total rate, the total rate
of such counterparty matchings is 2λµloµhn. Duffie and Sun (2004) provide

and a larger group of domestic investors. They find that investors from the “long side
of the market” get part of the gains from trade, under certain conditions, which they
interpret as evidence of a search-and-bargaining equilibrium.

4All random variables are defined on a probability space (Ω,F , P r) with corresponding
filtration {Ft : t ≥ 0} of sub-σ-algebras of F satisfying the usual conditions, as defined by
Protter (1990). The filtration represents the resolution over time of information commonly
available to investors.
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a discrete-time search-and-matching model in which the exact law of large
numbers for a continuum of agents indeed applies in this sense.5

To solve the model, we proceed in two steps. First, we use the insight that
the only form of encounter that provides gains from trade is one in which
low-type owners sell to high-type non-owners. From bargaining theory, we
know (see Appendix A) that at these encounters, trade occurs immediately.
We can therefore determine the asset allocations without reference to prices.
Given the time-dynamics of the masses, {µ(t) : t ≥ 0}, we then consider an
investor’s lifetime utility, depending on the investor’s type, the bargaining
problem, and the resulting price.

In equilibrium, the rates of change of the fractions of the respective in-
vestor types are

µ̇lo(t) = −2λµhn(t)µlo(t) − λuµlo(t) + λdµho(t)

µ̇hn(t) = −2λµhn(t)µlo(t) − λdµhn(t) + λuµln(t)

µ̇ho(t) = 2λµhn(t)µlo(t) − λdµho(t) + λuµlo(t) (3)

µ̇ln(t) = 2λµhn(t)µlo(t) − λuµln(t) + λdµhn(t).

The intuition for, say, the first equation in (3) is straightforward: Whenever
an lo agent meets an hn investor, he sells his asset and is no longer an lo
agent. This (together with the law of large numbers) explains the first term
on the right hand side of (3). The second term is due to intrinsic type changes
in which lo investors become ho investors, and the last term is due to intrinsic
type changes from ho to lo.

Duffie, Gârleanu, and Pedersen (2005) show that there is a unique stable
steady-state solution for {µ(t) : t ≥ 0}, that is, a constant solution defined
by µ̇(t) = 0. The steady state is computed by using (1)–(2) and the fact
that µlo + µln = λd/(λu + λd), in order to write the first equation in (3) as a
quadratic equation in µlo, given as Appendix equation (C.1).

Having determined the steady-state fractions of investor types, we com-
pute the investors’ equilibrium intensities of finding counterparties of each
type and, hence, their utilities for remaining lifetime consumption, as well as
the bargained price P . The utility of a particular agent depends on his cur-
rent type, σ(t) ∈ T , and the wealth W (t) in his bank account. Specifically,

5Giroux (2005) proves that the cross-sectional distribution of agent types in a natural
discrete-time analogue of this model indeed converges to the continuous-time model studied
here.
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lifetime utility is W (t) + Vσ(t), where, for each investor type σ in T , Vσ is a
constant to be determined.

In steady state, the rate of growth of any agent’s expected indirect utility
must be the discount rate r, which yields the steady-state equations

0 = rVlo − λu(Vho − Vlo) − 2λµhn(P − Vlo + Vln) − (1 − δ)

0 = rVln − λu(Vhn − Vln)

0 = rVho + λd(Vho − Vlo) − 1 (4)

0 = rVhn + λd(Vhn − Vln) − 2λµlo(Vho − Vhn − P ).

The price is determined through bilateral bargaining. A high-type non-
owner pays at most his reservation value ∆Vh = Vho − Vhn for obtaining the
asset, while a low-type owner requires a price of at least ∆Vl = Vlo − Vln.
Nash bargaining, or the Rubinstein-type game considered in Appendix A,
implies that the bargaining process results in the price

P = ∆Vl(1 − q) + ∆Vh q , (5)

where q ∈ [0, 1] is the bargaining power of the seller.
While Nash equilibrium is consistent with exogenously assumed bargain-

ing powers, Appendix A applies the device of Rubinstein and Wolinsky (1985)
to calculate the unique bargaining powers that represent the limiting prices
of a sequence of economies in which, once a pair of counteparties meets to
negotiate, one of the pair is selected at random to make an offer to the other,
at each of a sequence of offer times separated by intervals that shrink to zero.
Specifically, suppose that when two agents find each other, one of them is
chosen randomly, the seller with probability q̂ and the buyer with probabil-
ity 1 − q̂, to suggest a trading price. The other either rejects or accepts the
offer, immediately. If the offer is rejected, the owner receives the dividend
from the asset during the current period. At the next period, ∆t later, one
of the two agents is chosen at random, independently, to make a new offer.
The bargaining may, however, break down before a counteroffer is made. A
breakdown may occur because at least one of the agents changes valuation
type, or if one of the agents meets yet another agent, and leaves his current
trading partner, provided agents can indeed continue to search while engaged
in negotiation. In that case, as shown in Appendix A, the limiting price as
∆t goes to zero is represented by (5), with the bargaining power of the seller
q equal to q̂. This simple solution, in which the only “bargaining advantage”
that matters in the limit is the likelihood of being selected as the agent that

8



makes the next offer, arises because a counterparty’s ability to meet an al-
ternative trading partner while negotiating makes that counterparty more
impatient, but also increases the trading partner’s risk of breakdown, to the
point that these two effects are precisely offseting.

If, however, agents cannot search for alternative trading partners during
negotiations, then the limiting price is that associated with the bargaining
power

q =
q̂(r + λu + λd + 2λµlo)

q̂(r + λu + λd + 2λµlo) + (1 − q̂)(r + λu + λd + 2λµhn)
. (6)

For the comparative statics that follow, we will use the limiting bargaining
power associated with search during negotiation, in order to simplify the
analysis by avoiding the dependence in (6) of the seller’s bargaining power q
on various parameters that may be shifted as part of the experiment being
considered.

The linear system (4)-(5) of equations has a unique solution, with

P =
1

r
−
δ

r

r(1 − q) + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq
. (7)

This price (7) is the present value, 1/r, of dividends, reduced by an illiq-
uidity discount. The price is lower and the discount is larger, ceteris paribus,
if the distressed owner has less hope of switching type (lower λu), if it is more
difficult for the owner to find other buyers (lower µhn), if the buyer may more
suddenly need liquidity himself (higher λd), if it is easier for the buyer to find
other sellers (higher µlo), or if the seller has less bargaining power (lower q).

These intuitive results are based on partial derivatives of the right-hand
side of (7) — in other words, they hold when a parameter changes without
influencing any of the others. We note, however, that the steady-state type
fractions µ themselves depend on λd, λu, and λ. The following proposition
offers a characterization of the equilibrium steady-state effect of changing
each parameter.

Proposition 1 The steady-state equilibrium price P is decreasing in δ, s,
and λd, and is increasing in λu and q. Further, if s < λu/(λu + λd), then
P → 1/r as λ → ∞, and P is increasing in λ for all λ ≥ λ̄, for a constant
λ̄ depending on the other parameters of the model.
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The condition that s < λu/(λu + λd) means that, in steady state, there is
less than one unit of asset per agent of high intrinsic type. While this corre-
sponds to the intuitively anticipated increase in market value with increasing
bilateral contact rate, the alternative is also possible. With s > λu/(λu+λd),
the marginal investor in perfect markets has the relatively lower reservation
value, and search frictions lead to a “scarcity value.” For example, a high-
type investor in an illiquid OTC market could pay more than the Walrasian
price for the asset because it is hard to find, and given no opportunity to ex-
ploit the effect of immediate competition among many sellers. This scarcity
value could, for example, contribute to the widely studied on-the-run pre-
mium for Treasuries, as discussed in Section 4.

It can be checked that the above results extend to risky dividends in
at least the following senses: (i) If the cumulative dividend is risky with
constant drift ν, then the equilibrium is that for a consol bond with dividend
rate of ν; (ii) if the dividend rate and illiquidity cost are proportional to a
process X with Et[X(t+ u)] = X(t)eνu, for some constant growth rate ν,
then the price and value functions are also proportional to X, with factors of
proportionality given as above, with r replaced by r−ν; (iii) if the dividend-
rate process X satisfies Et[X(t+ u)] = X(t) + mu for a constant drift m
(and if illiquidity costs are constant), then the continuation values are of the
form X(t)/r + vσ for owners and vσ for non-owners, where the constants vσ

are computed in a similar manner.
Next, we model risky dividends, using case (i) above, in the context of

risk-averse agents. In a previous version of the paper, we described how one
can use case (iii) in a model in which investors have risk limits based on
value at risk.

2 Risk-Aversion

This section provides a version of the asset-pricing model with risk aversion,
in which the motive for trade between two agents is the different extent to
which they derive hedging benefits from owning the asset. We provide a sense
in which this economy can be interpreted in terms of the baseline economy
of Section 1.

Agents have constant-absolute-risk-averse (CARA) additive utility, with
a coefficient γ of absolute risk aversion and with time preference at rate β.
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An asset has a cumulative dividend process D satisfying

dD(t) = mD dt+ σD dB(t), (8)

where mD and σD are constants, and B is a standard Brownian motion with
respect to the given probability space and filtration (Ft). Agent i has a
cumulative endowment process ηi, with

dηi(t) = mη dt+ ση dB
i(t), (9)

where the standard Brownian motion Bi is defined by

dBi(t) = ρi(t) dB(t) +
√

1 − ρi(t)2 dZ i(t), (10)

for a standard Brownian motion Z i independent of B, and where ρi(t) is the
“instantaneous correlation” between the asset dividend and the endowment
of agent i. We model ρi as a two-state Markov chain with states ρh and
ρl > ρh. The intrinsic type of an agent is identified with this correlation
parameter. An agent i whose intrinsic type is currently high (that is, with
ρi(t) = ρh) values the asset more highly than does a low-intrinsic-type agent,
because the increments of the high-type endowment have lower conditional
correlation with the asset’s dividends. As in the baseline model of Section
1, agents’ intrinsic types are pairwise-independent Markov chains, switching
from l to h with intensity λu, and from h to l with intensity λd. An agent
owns either θn or θo units of the asset, where θn < θo. For simplicity, no
other positions are permitted, which entails a loss in generality. Agents can
trade the OTC security only when they meet, as previously. The agent type
space is T = {lo, ln, ho, hn}. In this case, the symbols ‘o’ and ‘n’ indicate
large and small owners, respectively. Given a total supply Θ of shares per
investor, market clearing requires that

(µlo + µho)θo + (µln + µhn)θn = Θ, (11)

which, using (1), implies that the fraction of large owners is

µlo + µho = s ≡
Θ − θn

θo − θn

. (12)

We consider a particular agent whose type process is {σ(t) : t ≥ 0}, and
let θ denote the associated asset-position process (that is, θ(t) = θo whenever
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σ(t) ∈ {ho, lo} and otherwise θ(t) = θn). We suppose that there is a perfectly
liquid “money-market” asset with a constant risk-free rate of return r, which,
for simplicity, is assumed to be determined outside of the model, and with
a perfectly elastic supply, as is typical in the literature treating multi-period
asset-pricing models based on CARA utility, such as Wang (1994). The
agent’s money-market wealth process W therefore satisfies

dW (t) = (rW (t) − c(t)) dt+ θ(t) dD(t) + dη(t) − P dθ(t),

where c is the agent’s consumption process, η is the agent’s cumulative en-
dowment process, and P is the asset price per share (which is constant in
the equilibria that we examine). The last term thus captures payments in
connection with trade. The consumption process is required to satisfy mea-
surability, integrability, and transversality conditions stated in Appendix C.

We consider a steady-state equilibrium, and let J(w, σ) denote the in-
direct utility of an agent of type σ ∈ {lo, ln, ho, hn} with current wealth
w. Assuming sufficient differentiability, the Hamilton-Jacobi-Bellman (HJB)
equation for an agent of current type lo is

0 = sup
c∈R

{− e−γc + Jw(w, lo)(rw − c+ θomD +mη)

+
1

2
Jww(w, lo)(θ2

oσ
2
D + σ2

η + 2ρlθoσDση) − βJ(w, lo)

+ λu[J(w, ho) − J(w, lo)] + 2λµhn[J(w + Pθ, ln) − J(w, lo)]},

where θ = θo − θn. The HJB equations for the other agent types are similar.
Under technical regularity conditions found in Appendix C, we verify that

J(w, σ) = −e−rγ(w+aσ+ā), (13)

where

ā =
1

r

(

log r

γ
+mη −

1

2
rγσ2

η −
r − β

rγ

)

, (14)

and where, for each σ, the constant aσ is determined as follows. The first-
order conditions of the HJB equation of an agent of type σ imply an optimal
consumption rate of

c = −
log(r)

γ
+ r(w + aσ + ā). (15)
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Inserting this solution for c into the respective HJB equations yields a system
of equations characterizing the coefficients aσ.

The price P is determined using Nash bargaining with seller bargaining
power q, similar in spirit to the baseline model of Section 1. Given the
reservation values of buyer and seller implied by J(w, σ), the bargaining
price satisfies alo − aln ≤ Pθ ≤ aho − ahn. The following result obtains.

Proposition 2 In equilibrium, an agent’s consumption rate is given by (15),
the value function is given by (13), and (alo, aln, aho, ahn, P ) ∈ R

5 solve

0 = ralo + λu

e−rγ(aho−alo) − 1

rγ
+ 2λµhn

e−rγ(Pθ+aln−alo) − 1

rγ
− (κ(θo) − θoδ̄)

0 = raln + λu

e−rγ(ahn−aln) − 1

rγ
− (κ(θn) − θnδ̄) (16)

0 = raho + λd

e−rγ(alo−aho) − 1

rγ
− κ(θo)

0 = rahn + λd

e−rγ(aln−ahn) − 1

rγ
+ 2λµlo

e−rγ(−Pθ+aho−ahn) − 1

rγ
− κ(θn),

with

κ(θ) = θmD −
1

2
rγ

(

θ2σ2
D + 2ρhθσDση

)

(17)

δ̄ = rγ(ρl − ρh)σDση > 0, (18)

as well as the Nash bargaining equation,

q
(

1 − erγ(Pθ−(alo−aln))
)

= (1 − q)
(

1 − erγ(−Pθ+aho−ahn)
)

. (19)

A natural benchmark is the limit price associated with vanishing search
frictions, characterized as follows.

Proposition 3 If s < µhn + µho, then, as λ→ ∞,

P →
κ(θo) − κ(θn)

rθ
. (20)
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In order to compare the equilibrium for this model to that of the baseline
model, we use the linearization ez − 1 ≈ z, which leads to

0 ≈ ralo − λu(aho − alo) − 2λµhn(Pθ − alo + aln) − (κ(θo) − θoδ̄)

0 ≈ raln − λu(ahn − aln) − (κ(θn) − θnδ̄)

0 ≈ raho − λd(alo − aho) − κ(θo)

0 ≈ rahn − λd(aln − ahn) − 2λµlo(aho − ahn − Pθ) − κ(θn)

Pθ ≈ (1 − q)(alo − aln) + q(aho − ahn).

These equations are of the same form as those in Section 1 for the indirect
utilities and asset price in an economy with risk-neutral agents, with divi-
dends at rate κ(θo) for large owners and dividends at rate κ(θn) for small
owners, and with illiquidity costs given by δ̄ of (18). In this sense, we can
view the baseline model as a risk-neutral approximation of the effect of search
illiquidity in a model with risk aversion. The approximation error goes to
zero for small agent heterogeneity (that is, small ρl−ρh).

6 Solving specifically
for the price P in the associated linear model, we have

P =
κ(θo) − κ(θn)

rθ
−
δ̄

r

r(1 − q) + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq
. (21)

The price is the sum of the perfect-liquidity price (that for the case of
λ = +∞), plus an adjustment for illiquidity that can be viewed as the present
value of a perpetual stream of risk premia that are due to search frictions.
The illiquidity component depends on the strength of the difference in hedg-
ing motives for trade by two types of agents, in evidence in the factor δ̄
defined by (18). One of these types of agents can be viewed as the natural
hedger; the other can be viewed as the type that provides the hedge, at an ex-
tra risk premium. The illiquidity risk premium need not be increasing in the
degree of overall “market risk” exposure of the asset, and would be non-zero
even if there were no aggregate endowment risk.7 Graveline and McBrady

6The error introduced by the linearization is in O
(

(aho − alo)
2 + (ahn − aln)2 + (Pθ −

alo + aln)2
)

, which, by continuity, is in O
(

(ρl − ρh)2
)

for a compact parameter space.
Hence, if ρl − ρh is small, then the approximation error is an order of magnitude smaller,
of the order (ρl − ρh)2.

7We could arrange for the absence of aggregate endowment risk, for example by having
half the population exposed positively to the asset, the other half exposed negatively, in
an offsetting way, with the portions of endowment risks that are orthogonal to the asset
returns being idiosyncratic and adding up (by the law of large numbers) to zero. (We
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(2005) empirically link the size of repo specials in on-the-run treasuries to
the motives of financial services firms to hedge their inventories of corporate
and mortgage-backed securities. The repo specials, which are reflections of
search frictions in the treasury repo market, are shown to be larger when
the inventories are larger, and larger when interest-rate volatility is higher,
consistent with (18).

Numerical Example. We select parameters for a numerical illustration of
the implications of the model for a market with an annual asset turnover
rate of about 50%, which is roughly that of the over-the-counter market for
corporate bonds. Table 1 contains the exogenous parameters for the base-case
risk-neutral model, and Table 2 contains the resulting steady-state fractions
of each type and the price. The search intensity of λ = 625 shown in Table 1
implies that an agent expects to be in contact with 2λ = 1250 other agents
each year, that is, 1250/250 = 5 agents a day. Given the equilibrium mass
of potential buyers, the average time needed to sell is 250× (2λµhn)

−1 = 1.8
days. The switching intensities λu and λd mean that a high-type investor
remains a high type for an average of 2 years, while an illiquid low type
remains a low type for an average of 0.2 years. These intensities imply an
annual turnover of 2λµloµhn/s = 49% which roughly matches the median
annual bond turnover of 51.7% reported by Edwards, Harris, and Piwowar
(2004). The fraction of investors holding a position is s = 0.8, the discount
and interest rates are 5%, sellers and buyers each have half of the bargaining
power q = 0.5, and the illiquidity cost is δ = 2.5, as implied by the risk
aversion parameters discussed below.

We see that only a small fraction of the asset, µlo/s = 0.0028/0.8 =
0.35% of the total supply, is mis-allocated to low intrinsic types because of
search frictions. The equilibrium asset price, 18.38, however, is substantially
below the perfect market price of 1/r = 20, reflecting a significant impact
of illiquidity on the price, despite the relatively small impact on the asset
allocation. Stated differently, we can treat the asset as a bond whose yield,
dividend rate of 1 divided by price, is 1/18.38 = 5.44%, or 44 basis points
above the liquid-market yield r. This yield spread is of the order of magnitude
of the corporate-bond liquidity spread estimated by Longstaff, Mithal, and

can adjust our model so that the asset is held in zero net supply, allowing short and long
positions; this was done in the risk-limits section.)
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λ λu λd s r β q δ
625 5 0.5 0.80 0.05 0.05 0.5 2.5

Table 1: Base-case parameters for baseline model.

µho µhn µlo µln P
0.7972 0.1118 0.0028 0.0882 18.38

Table 2: Steady-state masses and asset price, baseline model.

Neis (2004), of between 9 and 65 basis points, depending on the specification
and reference risk-free rate.

The base-case risk-neutral model specified in Table 1 corresponds to a
model with risk-averse agents with additional parameters given in Table 3 in
the following sense. First, the “illiquidity cost” δ = δ = 2.5 of low-intrinsic-
type is that implied by (18) from the hedging costs of the risk-aversion model.
Second, the total amount Θ of shares and the investor positions, θo and θn,
imply the same fraction s = 0.8 of the population holding large positions,
using (12). The investor positions that we adopt for this calibration are
realistic in light of the positions adopted by high and low type investors in
the associated Walrasian (perfect) market with unconstrained trade sizes,
which, as shown in Appendix B, has an equilibrium large-owner position size
of 17,818 shares and a small-owner position size of −2, 182 shares. Third, the
certainty-equivalent dividend-rate per share, (κ(θo) − κ(θn))/(θo − θn) = 1,
is the same as that of the baseline model. Finally, the mean parameter
µD = 1 and volatility parameter σD = 0.5 of the asset’s risky dividend implies
that the standard deviation of yearly returns on the bond is approximately
σD/P = 2.75%.

γ ρh ρl µη ση µD σD Θ θo θn

0.01 −0.5 0.5 10000 10000 1 0.5 16000 20000 0

Table 3: Additional base-case parameters with risk-aversion.

Figure 1 shows how prices increase with liquidity, as measured by the
search intensity λ. The graph reflects the fact that, as the search intensity
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Figure 1: Proportional price reduction relative to the perfect-market price, as a function
of the search intensity λ.

λ becomes large, the allocation and price converge to their perfect-market
counterparts (Propositions 1 and 3).

Figures 2 and 3 show how prices are discounted for illiquidity, relative
to the perfect-markets price, by an amount that depends on risk aversion
and volatility. As we vary the parameters in these figures, we compute both
the equilibrium solution of the risk-aversion model and the solution of the
associated baseline risk-neutral model that is obtained by the linearization
(21), taking δ from (18) case by case.

We see that the illiquidity discount increases with risk aversion and
volatility, and that both effects are large for our benchmark parameters.
The illiquidity discount ranges between 1% and 40%, depending on the risk
and risk aversion.

These figures also show that the equilibrium price of the OTC market
model with risk aversion is generally well approximated by our closed-form
expression (21).
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Figure 2: Proportional price reduction relative to the perfect-market price, as a function
of the investor risk aversion γ. The dashed line corresponds to the model with risk-
averse agents (Equations (16)–(19)). The solid line corresponds to the linearized model
(Equation (21)), in which the parameters δ̄ and κ change with γ.

3 Aggregate Liquidity Shocks

So far, we have studied how search frictions affect steady-state prices and
returns in a setting in which agents receive idiosyncratic liquidity shocks,
with no macro-uncertainty.

Search frictions affect not only the average levels of asset prices, but
also the asset market’s resilience to aggregate shocks. We examine this by
characterizing the impact of aggregate liquidity shocks that simultaneously
affect many agents. We are interested in the shock’s immediate effect on
prices, the time-pattern of the price recovery, the ex-ante price effect due to
the risk of future shocks, and the change in equilibrium search times.

Our results are broadly consistent with the description by Froot and
O’Connell (1999) of the behavior of catastrophe reinsurance risk premia af-
ter large unexpected losses in capital caused by events such as major hurri-
canes. After large initial jumps in reinsurance premia caused by the sudden
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Figure 3: Proportional price reduction relative to the perfect-market price, as a function
of a volatility scaling factor that scales both ση and σD. The dashed line corresponds to
the model with risk-averse agents (Equations (16)–(19)). The solid line corresponds to the
linearized model (Equation (21)), in which the parameters δ̄ and κ change with ση and
σD.

reduction in risk-bearing capacity, gradual price declines occur over subse-
quent months as new capital finds its way into the sector. Chen, Noronha,
and Singhal (2004), Greenwood (2005), Harris and Gurel (1986), and Kaul,
Mehrotra, and Morck (2000), among others, document much shorter-lived
price reactions to supply shocks in equity markets caused by changes in the
definition of stock indices, at which time the position changes of committed
index investors must be absorbed by other investors. Andrade, Chang, and
Seasholes (2005) provide evidence of similar price reactions, again jumps fol-
lowed by gradual price recoveries, following outside order imbalances on the
Taiwanese stock market. While the stock markets treated in these studies
are not over-the-counter, our model can be used as an abstraction of the
process by which providers of liquid capital are located and drawn into the
market in order to exploit temporary shortages in the levels of capital held
by specialists. (Grossman and Miller (1988) and Weill (2003) focus only on
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the supply of immediacy by specialists.)
While highly stylized, our model of periods of abnormal expected re-

turns and price momemtum following supply shocks also provides additional
microeconomic foundations for prior asset-pricing research on “limits to ar-
bitrage,” or “good deals,” such as Shleifer and Vishny (1997) and Cochrane
and Saa-Requejo (2001).

We adjust the baseline model of Section 1 (or, as explained, the linearized
version of the risk-premium model of Section 2) by introducing occasional,
randomly timed, aggregate liquidity shocks. At each such shock, a fraction of
the agents, randomly chosen, suffer a sudden “reduction in liquidity,” in the
sense that their intrinsic types simultaneously jump to the low state. The
shocks are timed according to a Poisson arrival process, independent of all
other random variables, with mean arrival rate ζ .

Again appealing to the Law of Large Numbers, at each aggregate liquid-
ity shock, the distribution of agents’ intrinsic types becomes µ = µ̄, where
the post-shock distribution µ̄ is in [0, 1]4, satisfies (1)–(2), and has an ab-
normally elevated quantity of illiquid agents, both owners and non-owners.
Specifically, µ̄lo > µlo(t) and µ̄ln > µln(t). Each high-type owner remains a
high type with probability 1 − πho(t) = µ̄ho/µho(t), and becomes a low type
with probability πho. Similarly, a high-type non-owner remains high type
with probability 1 − πhn(t) = µ̄hn/µhn(t) and becomes low type with proba-
bility πhn. Conditional on π(t), the changes in types are pairwise independent
across the space of agents. This aggregate “liquidity shock” does not directly
affect low-type agents. Of course, it affects them indirectly because of the
change to the demographics of the market in which they live. By virtue of
this specification, the post-shock distribution of agents does not depend on
any residual “aftereffects” of prior shocks, a simplification without which the
model would be relatively intractable.

In order to solve the equilibrium with an aggregate liquidity shock, it is
helpful to use the “trick” of measuring time in terms of the passage of time
t since the last shock, rather than absolute calendar time. Knowledge of the
time at which this shock occurred enables an immediate translation of the
solution into calendar time.

We first solve the equilibrium fractions µ(t) ∈ R
4 of agents of the four

different types. At the time of an aggregate liquidity shock, this type distri-
bution is equal to the post-shock distribution µ(0) = µ̄ (where, to repeat, “0”
means zero time units after the shock). After an aggregate liquidity shock,
the cross-sectional distribution of agent types evolves according to the ODE
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(3), converging (conditional on no additional shocks) to a steady state as the
time since last shock increases.

Given this time-varying equilibrium solution of the investor type distri-
bution, we turn to the agents’ value functions. The value Vσ(t) depends on
the agent’s type σ and the time t since the last aggregate liquidity shock.
The values evolve according to

V̇lo(t) = rVlo(t) − λu(Vho(t) − Vlo(t)) − 2λµhn(P (t) + Vln(t) − Vlo(t))

−ζ(Vlo(0) − Vlo(t)) − (1 − δ)

V̇ln(t) = rVln(t) − λu(Vhn(t) − Vln(t)) − ζ(Vln(0) − Vln(t))

V̇ho(t) = rVho(t) − λd(Vlo(t) − Vho(t))

−ζ((1 − πho(t))Vho(0) + πho(t)Vlo(0) − Vho(t)) − 1 (22)

V̇hn(t) = rVhn − λd(Vln − Vhn) − 2λµho(Vho − Vhn − P )

−ζ((1 − πhn(t))Vhn(0) + πhn(t)Vln(0) − Vhn),

P (t) = (Vlo(t) − Vln(t))(1 − q) + (Vho(t) − Vhn(t))q,

where the terms involving ζ capture the risk of an aggregate liquidity shock.
This differential equation is linear in the vector V (t), depends on the de-
terministic evolution of µ(t), and has the somewhat unusual feature that it
depends on the initial value function V (0). To solve this system, it is useful
to express it in the vector form:

V̇ (t) = A1(µ(t))V (t) − A2 −A3(µ(t))V (0), (23)

where A1(µ(t)) ∈ R
4×4, A2 ∈ R

4×1, and A3 ∈ R
4×4 are the coefficient ma-

trices. Treating V (0) as a fixed parameter, the unique solution to the linear
ODE that satisfies the appropriate transversality condition is

V (t) =

∫ ∞

t

e−
R

s

t
A1(µ(u)) du (A2 + A3(µ(s))V (0)) ds. (24)

At t = 0, this gives

V (0) =

∫ ∞

0

e−
R

s

0
A1(µ(u)) du (A2 + A3(µ(s))V (0)) ds, (25)

and we can then derive the initial value function V (0) as the fixed point:

V (0) =

(

I4 −

∫ ∞

0

e−
R

s

0
A1(µ(u)) duA3(µ(s)) ds

)−1 (
∫ ∞

0

e−
R

s

0
A1(µ(u)) duA2 ds

)

,
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(26)

where I4 ∈ R
4×4 is the identity matrix. Equations (24) and (26) together

represent the solution. One notes that we take the bargaining power q as
exogenous for simplicity, rather than incorporating the effects of delay during
negotiation that stem for interim changes in the value functions.

Numerical Examples. We will illustrate some of the most noteworthy
effects of a liquidity shock using a numerical example, and then state some
general properties. We suppose that the search intensity is λ = 125, that
types change idiosyncratically with intensities λu = 2 and λd = 0.2, that
the fraction of owners is s = 0.75, that the riskless return is r = 10%, that
buyers and sellers have equal bargaining powers (that is, q = 0.5), that the
illiquidity loss rate is δ = 2.5, that the intensity of an aggregate liquidity
shock is ζ = 0.1, and that the post-shock distribution of types is determined
by µ̄lo = 0.377 and µ̄ln = 0.169. These parameters are consistent with a shock
from steady state8 at which high types become low types with probability
0.5.

In order to motivate the results, one could imagine that an aggregate
liquidity shock is associated with an event at which a large fraction of in-
vestors incur a significant loss of risk-bearing capacity, and thus have a higher
shadow price for bearing risk. For example, at the default of Russia in 1998,
those asset managers specializing in emerging market debt who had had po-
sitions in Russian issues would have had a substantially reduced appetite
for holding Argentinian sovereign debt issues (the asset of concern), despite
the lack of any material direct connection between the Russian and Argen-
tinian economies, because of the asset managers’ direct losses of capital due
to the Russian default, and perhaps indirectly through demands for liquida-
tion by relatively unsophisticated clients. Or, for example, when Hurricane
Andrews struck, reinsurers with exposure to that event would have had a
sudden reduction in capital available to cover monoline insurers facing, say,
earthquake risk. While one could use the model of aversion to correlated
endowment risk of Section 2 to compute the illiquidity loss rate δ associated
with an aggregate shock, we would prefer to discuss the implications of the
aggregate shock in more general terms, abstracting from the determination
of the illiquidity loss rate δ.

8The steady-state masses, absent new shocks, are µlo = 0.004 and µln = 0.087.
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Figure 4: The top panel shows the price as a function of time when an aggregate liquidity
shock at time 0.4. The bottom panel shows the corresponding annualized realized returns.

So, thinking of the aggregate shock as a simultaneous loss in capital to
many investors that induces a reduced appetite by them for owning the asset
in question, we may view an investor affected by the shock as having the
intensity λu for a “recapitalizing” event, after which that investor no longer
has an elevated “distress cost” δ for owning the asset.

The price and return dynamics associated with these parameters are
shown in Figure 4. The top panel of the figure shows prices and the bottom
panel shows realized instantaneous returns, both as functions of calendar
time for a specific state of nature. At time t = 0.4, the economy experiences
an aggregate liquidity shock, causing the asset price to drop suddenly by
about 15%. Notably, it takes more than a year for the asset price to recover
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to a roughly normal level. A buyer who was able to locate a seller imme-
diately after the shock and realized an annualized return of roughly 30%
for several months. While one is led to think in terms of the value to this
“vulture” buyer of having retained “excess” liquidity so as to profit at times
of aggregate liquidity shocks, our model has only one type of buyer, and is
therefore too simple to address this sort of vulture specialization.

The large illustrated price impact of a shock is due to the large number
of sellers and the relatively low number of potential buyers that are available
immediately after a shock. The roughly 50% reduction in potential buyers
that occurred at the illustrated shock increased a seller’s expected time to
find a potential buyer from 6.2 days immediately before the shock to 12.4 days
immediately after the shock. Further, once a seller finds a buyer, the seller’s
bargaining position is poor because of his reduced outside search options and
the buyer’s favorable outside options.

Naturally, high-type owners who become low-type owners experience the
largest utility loss from a shock.9 The utility loss for low-type owners is also
large, since their prospects of selling worsen significantly. High-type owners
who do not themselves become low-type during the shock are not affected
much since they expect the market to recover to normal conditions before
they need to make a sale (given that λd = 0.2 is small relative to the length
of the recovery period). The agents who don’t hold the asset when the shock
hits are positively affected since they stand a good chance of being able to
benefit from the sell-side pressure.

The prospect of future aggregate liquidity shocks affects prices. For this,
we compare the price a “long time after” a shock has hit (absent new shocks,
that is, limt→∞ P (t)) with the steady-state asset price, P ζ=0 = 9.25 asso-
ciated with an economy with no aggregate shocks (ζ = 0), but otherwise
the same parameters. The presence of aggregate liquidity shocks reduces the
price, in this sense, by 12.5%.

There are two channels through which the price responds after an ag-
gregate shock. One is the search technology for trading. The other is the
recovery of individual investors from the shock itself, captured by the switch-
ing intensities λu and λd. We have already motivated λu as the mean rate at
which a financially distressed investor can be recapitalized.

9The utilities of the owners drop from Vho = 9.29 and Vlo = 9.14, respectively, to
Vho = 9.24 and Vlo = 8.47, while the values of the non-owners increase from Vhn = 1.13
and Vln = 1.10 to Vhn = 2.22 and Vln = 1.51.
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In order to better disentangle the effects of trading illiquidity from the
effects of the shock on the distribution over time of advantaged (high-type)
and disadvantaged agents, we change the numerical example so as to have
more high-type investors than assets at all times, even after a shock. With
perfectly liquid trading (λ = +∞), therefore, the price would be unaffected
by the aggregate liquidity shock. Specifically, we adjust the parameters used
to create Figure 4 by reducing the probability that an individual agent is ad-
versely affected by an aggregate shock from 0.5 to 0.17, so that µ̄lo = 0.128
and µ̄ln = 0.115. Figure 5 illustrates the time signature of the price reac-
tion to an aggregate shock of this relatively benign variety, for two different
values of the search intensity λ. Although the perfect-market price would
be unaffected, search frictions cause an immediate negative return, followed
by a price recovery over time that is accelerated by increasing the search
intensity.

The features of these numerical examples are relatively general. An ad-
verse liquidity shock causes an instantaneous price drop, price momentum
during a relatively time-consuming recovery period, a reduced long-run price
recovery level (due to the risk of future shocks), and an increase in expected
selling times. The “time signature” of the price response reflects both the
expected time for an adversely affected agent to recover (for example, for a
distressed investor to find new financing), as captured by the parameter λu,
and the time required for the assets to move from adversely affected sellers
to potential buyers, in light of search frictions captured by the parameter
λ. The latter effect incorporates both the trading delay due to search and
the implications of temporarily superior outside options for potential buyers
during negotiation with distressed sellers.

After an aggregate liquidity shock, the dynamics of agents’ value functions
and the price depend on the demography-induced time patterns of search
times. In particular, a shock reduces the quantity of buyers and increases
the quantity of sellers, which motivates part a) of the following proposition.
Should the masses of these agents evolve monotonically following a shock,
then so do the value functions and the price. It is possible, however, for
the quantity of buyers to continue to decrease for some period after a shock
before rebounding toward the steady-state value, due to the potentially large
proportional increase in the quantity of sellers. The following proposition
accounts for this and related effects.
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Figure 5: The top panel shows the price as a function of time when an aggregate liquidity
shock happens at time 0.4. This is plotted both with a low search intensity λ = 125 (solid
line, left axis), and a high search intensity λ = 625 (dashed lined, right axis). The bottom
panel shows the annualized realized returns, again both for a low λ (solid line) and a high
λ (dashed line).

Proposition 4 There exist a time T̄ and a strictly positive mean arrival rate
ζ̄ such that:

a.) For any mean arrival rate ζ of aggregate shocks less than ζ̄ and time T
larger than T̄ , if an aggregate shock arrives at T : (i) the jumps at T in
the value functions of the owners (Vho and Vlo) are downward, (ii) the
jumps at T in the value functions of the non-owners (Vhn and Vln) are
upward, and (iii) the jump at T in the price is downward.

b.) For any mean arrival rate ζ of aggregate shocks less than ζ̄ and any
time t larger than T̄ : (i) the value functions of the owners (Vho and
Vlo) are increasing at t, (ii) the value functions of the non-owners (Vhn
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and Vln) are decreasing at t, and (iii) the price is increasing at t.

Moreover, if µ̄ is such that µ̇hn(0) ≥ 0 and µ̇lo(0) ≤ 0, then10 one can take
T̄ = 0.

4 Market Implications

We turn to a discussion of asset pricing in markets, particularly OTC mar-
kets, that are characterized by trade delayed by search for suitable counter-
parties. We discuss how our results are related to a variety of interesting
empirical phenomena, and survey more generally the market implications of
the recently growing literature on search in financial markets.

Exemplifying the imperfect ability to match buyers and sellers in OTC
markets, traders in the market for European corporate loans ironically de-
scribe11 trade in that market as “by appointment.” Most major corporate
bond markets are over-the-counter, and search problems are prevalent. Chen,
Lesmond, and Wei (2005) relate this illiquidity of corporate bonds to their
yield spread. Indeed, consistent with our Propositions 1 and 2, more illiquid
bonds have higher yield spreads, that is, lower prices.

An extreme example of price impacts in relatively less liquid OTC markets
is the study of Chinese equity prices by Chen and Xiong (2001). Certain
Chinese companies have two classes of shares, one exchange traded, the other
consisting of “restricted institutional shares” (RIS), which can be traded
only privately. The two classes of shares are identical in every other respect,
including their cash flows. Chen and Xiong (2001) find that RIS shares trade
at an average discount of about 80% to the corresponding exchange-traded
shares. Similarly, in a study involving U.S. equities, Silber (1991) compares
the prices of “restricted stock” — which, for two years, can be traded only
in private among a restricted class of sophisticated investors — with the
prices of unrestricted shares of the same companies. Silber (1991) finds that
restricted stocks trade at an average discount of 30%, and that the discount
for restricted stock is increasing in the relative size of the issue. These price
discounts can be captured in our search framework, but would be difficult to

10The equivalent conditions are that the mass dynamics due to trading are dominated by
those due to the change in intrinsic types, namely λdµ̄ho −λuµ̄lo ≤ 2λµ̄hnµ̄lo, respectively
2λµ̄hnµ̄lo ≤ λuµ̄ln − λdµ̄hn.

11See, for example, The Financial Times, November 19, 2003.
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explain using standard models based on asymmetric information, given that
the two classes of shares are claims to the same dividend streams, and given
that the publicly-traded share prices are easily observable.

A large literature, surveyed by Amihud, Mendelson, and Pedersen (2006),
addresses liquidity premia in equity markets, focusing mainly on non-search
sources of illiquidity. Lagos (2005) examines the contribution to the equity
premium puzzle of illiquidity in a search-based asset pricing model.

Even in the most liquid OTC markets the relatively small price effects
arising from search frictions receive significant attention by economists. For
example, the market for U.S. Treasury securities, an over-the-counter market
considered to be a benchmark for high liquidity, has widely noted illiquidity
effects that differentiate the yields of on-the-run (latest-issue) securities from
those of off-the-run securities. Positions in on-the-run securities are normally
available in large amounts from relatively easily found traders such as hedge
funds and government-bond dealers. Because on-the-run issues can be more
quickly located by short-term investors such as hedgers and speculators, they
command a price premium, even over a package of off-the-run securities of
identical cash flows. Ironically, episodically large on-the-run premia could
actually be partly due to “scarcity premia,” in the sense of Section 1. That
is, because their superior liquidity causes some on-the-run issues to be such
a dominant vehicle for trade, the extremely high velocity of circulation de-
manded by market participants can at some times be large relative to that
available in light of the limits to the OTC search technology, and small but
notable price premia can apply. The importance ascribed to these relatively
small premia is explained by the exceptionally high volume of trade in this
market, and also by the importance of disentangling the illiquidity impact
on measured Treasury interest rates for informational purposes elsewhere in
the economy. Longstaff (2002) measures relatively larger illiquidity effects
on government security prices during “flights to liquidity,” which he char-
acterizes as periods during which a large demand for quick access to a safe
haven causes Treasury prices to temporarily achieve markedly higher prices
than equally safe government securities that are not as easily found.

Part of the spread between on-the-run and off-the-run treasuries is due
to a premium in the effective lending fees for on-the-run issues that is larger
when on-the-run issues are higher to find. In the OTC equities lending mar-
ket, traders use terminology such as “to get a locate” of lendable shares. A
search-based theory of securities lending is developed in Duffie, Gârleanu, and
Pedersen (2002) and extended to multiple assets in Vayanos and Weill (2005).
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Empirical evidence of the impact on treasury prices and securities-lending
premia (“repo specials”) can be found in Duffie (1996), Jordan and Jordan
(1997), and Krishnamurthy (2002), who estimates that much of the on-the-
run price premia in 30-year issues has been due, on average, to repo specials.
Lending “specials” in equity markets are measured by Geczy, Musto, and
Reed (2002), D’Avolio (2002), and Jones and Lamont (2002). Difficulties in
locating lenders of shares sometimes cause dramatic price imperfections, as
was the case with the spinoff of Palm, Incorporated, one of a number of such
cases documented by Mitchell, Pulvino, and Stafford (2002). Fleming and
Garbade (2003) document a new U.S. Government program to improve liq-
uidity in treasury markets by allowing alternative types of treasury securities
to be deliverable in settlement of a given repurchase agreement, mitigating
the costs of search for a particular issue.

Consistent with the results of Section 2, that search frictions exacerbate
risk premia stemming from hedging motives, Graveline and McBrady (2005)
find that Treasury repo specials are empirically linked to hedging, particu-
larly by financial firms exposed to inventories of mortgage-backed securities
and corporate bonds. In particular, repo specials are higher when the inven-
tories to be hedged are larger, and when interest-rate volatility is higher.

Section 3 shows how our model can be used to characterize the implica-
tions of a widespread shock to the abilities or incentives of traders to take
asset positions. An increase in the number of would-be sellers and a reduc-
tion in the number of potential buyers result in a price drop, in part because
of the higher fraction of assets held by distressed traders, and also because
of the worsened bargaining position of sellers. Over time, the price recovers
as distressed sellers recover from the adverse effects of the shock itself, and
as trading, limited by search frictions, reallocates the asset from distressed
sellers to potential buyers.

One finds this sort of time signature of price reactions to supply or de-
mand shocks in several markets. For instance, in the corporate bond markets,
one observes large price drops and delayed recovery in connection with major
downgrades or default (Hradsky and Long (1989)), when certain classes of in-
vestors have an incentive (or a contractual requirement) to sell their holdings.
Anecdotally, similar reactions in the prices of emerging-market sovereign debt
frequently occur, for example, during a major debt crisis (though it is hard
to measure “fundamentals” in this case). Another prominent example is
provided by the reinsurance markets, in which such price patterns occur in
response to sudden large aggregate claims against providers of insurance at
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times of major natural disasters, as documented by Froot and O’Connell
(1999).

As an example of the impact of aggregate liquidity shocks described by
Proposition 4, when stocks are “dumped” by index investors during index
recomposition events, the associated price reactions, as described by Shleifer
(1986), Harris and Gurel (1986), Kaul, Mehrotra, and Morck (2000), Chen,
Noronha, and Singhal (2004), Greenwood (2005), among others, have time
signatures of the sort predicted by our model.

The dynamics of price reactions to outside order imbalances, documented
for example in Andrade, Chang, and Seasholes (2005) and Coval and Stafford
(2005) are also consistent with the thrust of our model in Section 3. While
Andrade, Chang, and Seasholes (2005) analyze a specialist market rather
than an OTC market, they indicate that the most apparent suppliers of liq-
uidity to this market at times of order imbalances are outside investors, who
seem to take time, even days, to “find” the trading opportunity in sufficient
numbers to drive the prices back to normal. Coval and Stafford (2005) doc-
ument analogous stock-price reactions associated with imbalanced inflows
and redemptions of capital to mutual funds. Weill (2003) characterizes the
optimal behavior of marketmakers in absorbing supply shocks in order to
mitigate search frictions by “leaning against” the outside order flow.

As we show in Section 2, higher risk (in the form of higher dividend
volatility or higher correlation between the dividends and an agent’s endowed
income) magnifies the impact on prices of search frictions, because higher risk
increases the utility losses of distressed owners until they can find a suitable
buyer. One can generalize the model (as we did in a previous version of the
paper) to incorporate risk limits on the size of traders’ positions. Agents
compensate for larger risks with reduced position limits. As a result, a larger
fraction of agents must hold the risky asset, and liquidity is further reduced
because finding a buyer is more difficult. Hence, shocks to volatility can lead
to increased liquidity frictions and price drops, especially if risk-management
practices imply a simultaneous tightening of position limits.

Search frictions also help explain how the relative size of an asset in
the economy may affect its price (or price-dividend ratio). Proposition 1 of
this paper shows that if a higher fraction (s) of the agents must hold the
asset, then the price must fall. When comparing stocks cross-sectionally,
moreover, a role for search frictions arises from the additional implications
of selection of participants into a market. Investors prefer, all else equal,
to participate in markets for larger stocks. If, for instance, the number of

30



investors participating in the market for a firm’s shares is proportional to
the size of the firm, correspondingly shorter mean delays for locating suitable
counterparties for trades in the shares of larger firms would lead to higher
price-dividend ratios. Such cross-sectional asset-pricing results are studied
more directly by Weill (2002) and Vayanos and Wang (2002), who extended
our baseline model to treat multiple assets and showed, among other results,
that securities with a larger free float (shares available for trade) are more
liquid and have lower expected returns, and that concentrations of trade in a
favored security, may explain some of the price difference between on-the-run
and off-the-run Treasury securities.

Duffie, Gârleanu, and Pedersen (2005) study the implications of search
frictions for marketmakers.12 Here, outside investors remain able to find
other outside investors with some search intensity λ, but can also find mar-
ketmakers with some intensity ρ. This framework captures the feature that
investors bargain sequentially with marketmakers. The price negotiation
between a marketmaker and an investor reflects the investor’s outside op-
tions, including in particular the investor’s ability to meet and trade with
other investors or marketmakers. It is shown that the marketmaker’s bid-ask
spread is lower if the investor can find other investors on his own more easily.
Further, the spread is lower if an investor can approach other marketmak-
ers more easily. In other words, more “sophisticated” investors are quoted
tighter spreads by marketmakers. Examples can be found in the typical hub-
and-spoke structure of contact among marketmakers and their customers in
OTC derivative markets. This distinguishes our search-based theory from
traditional information-based theories that predict that more sophisticated
(in this setting, more informed) investors are quoted wider spreads by mar-
ketmakers (Glosten and Milgrom (1985)).

In OTC markets for interest-rate derivatives, a “sales trader” and an
outside customer negotiate a price, implicitly including a dealer profit margin
that is based in part on the customer’s (perceived) outside option. The
risk that customers have superior information about future interest rates is
normally regarded as small. The customer’s outside option depends on how
easily he can find a counterparty himself and how easily he can access other
dealers. As explained by Commissioner of Internal Revenue (2001) (page 13)
in recent litigation regarding the portion of dealer margins on interest-rate

12Other search-based models of intermediation include Rubinstein and Wolinsky (1987),
Bhattacharya and Hagerty (1987), Moresi (1991), Gehrig (1993), and Yavaş (1996).
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swaps that can be ascribed to dealer profit, dealers typically negotiate prices
with outside customers that reflect the customer’s relative lack of access to
other market participants. In order to trade OTC derivatives with a bank, for
example, a customer must have, among other arrangements, an account and
a credit clearance. Smaller customers often have an account with only one,
or perhaps a few, banks, and therefore have fewer search options. Hence, a
testable implication of a version of this model with investors of heterogeneous
search intensities is that investors with fewer search options (typically, small
unsophistcated investors) receive less competitive prices. We note that these
“small” investors are less likely to be informed, so that models based on
informational asymmetries alone would reach the opposite prediction.

Newman and Rierson (2003) use our approach in a search-based model of
corporate bond pricing, in which large issues of credit-risky bonds temporar-
ily raise credit spreads throughout the issuer’s sector, because providers of
liquidity such as underwriters and hedge funds bear extra risk as they search
for long-term investors. They provide empirical evidence of temporary bulges
in credit spreads across the European Telecom debt market during 1999-2002
in response to large issues by individual firms in this sector. Studying a dif-
ferent set of markets, Mikkelson and Partch (1985) find empirical support for
“the notion that underwriting spreads are in part compensation for the sell-
ing effort.” In particular, they find that underwriting spreads are positively
related to the size of the offering.

Appendices

A Explicit Bargaining Game

The setting considered here is that of Section 1, with two exceptions. First,
agents can interact only at discrete moments in time, ∆t apart. Later, we
return to continuous time by letting ∆t go to zero. Second, the bargaining
game is modeled explicitly.

We follow Rubinstein and Wolinsky (1985) and others in modeling an
alternating-offers bargaining game, making the adjustments required by the
specifics of our setup. When two agents are matched, one of them is chosen
randomly — the seller with probability q̂, the buyer with probability 1 − q̂
— to suggest a trading price. The other either rejects or accepts the offer,
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immediately. If the offer is rejected, the owner receives the dividend from
the asset during the current period. At the next period, ∆t later, one of
the two agents is chosen at random, independently, to make a new offer.
The bargaining may, however, break down before a counteroffer is made. A
breakdown may occur because either of the agents changes valuation type,
whence there are no longer gains from trade. A breakdown may also occur
if one of the agents meets yet another agent, and leaves his current trading
partner. The latter reason for breakdown is only relevant if agents are allowed
to search while engaged in negotiation.

We consider first the case in which agents can search while bargaining.
We assume that, given contact with an alternative partner, they leave the
present partner in order to negotiate with the newly found one. The offerer
suggests the price that leaves the other agent indifferent between accept-
ing and rejecting it. In the unique subgame perfect equilibrium, the offer
is accepted immediately (Rubinstein (1982)). The value from rejecting is
associated with the equilibrium strategies being played from then onwards.
Letting Pσ be the price suggested by the agent of type σ with σ ∈ {lo, hn},
letting P̄ = q̂Plo + (1− q̂)Phn, and making use of the motion laws of Vlo and
Vhn, we have

Phn − ∆Vl = e−(r+λd+λu+2λµlo+2λµhn)∆t(P̄ − ∆Vl) +O(∆2
t )

−Plo + ∆Vh = e−(r+λd+λu+2λµlo+2λµhn)∆t(−P̄ + ∆Vh) +O(∆2
t ) .

These prices, Phn and Plo, have the same limit P = lim∆t→0 Phn = lim∆t→0 Plo.
The two equations above readily imply that the limit price and limit value
functions satisfy

P = ∆Vl (1 − q) + ∆Vh q, (A.1)

with

q = q̂. (A.2)

This result is interesting because it shows that the seller’s bargaining power,
q, does not depend on the parameters — only on the likelihood that the seller
is chosen to make an offer. In particular, an agent’s intensity of meeting other
trading partners does not influence q. This is because one’s own ability to
meet an alternative trading partner: (i) makes oneself more impatient, and
(ii) also increases the partner’s risk of breakdown, and these two effects cancel
out.
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This analysis shows that the bargaining outcome used in our model can
be justified by an explicit bargaining procedure. We note, however, that
other bargaining procedures lead to other outcomes. For instance, if agents
cannot search for alternative trading partners during negotiations, then the
same price formula (A.1) applies with

q =
q̂(r + λu + λd + 2λµlo)

q̂(r + λu + λd + 2λµlo) + (1 − q̂)(r + λu + λd + 2λµhn)
. (A.3)

This bargaining outcome would lead to a similar solution for prices, but the
comparative-static results would change, since the bargaining power q would
depend on the other parameters.

B Walrasian Equilibrium with Risk Aversion

This section derives the competitive equilibrium with risk averse agents (as
in Section 2) who can immediately trade any number of risky securities. We
note that this is different from a competitive market with fixed exogenous
position sizes, that is, it is different from the limit considered in Proposition 3.

Suppose that the Walrasian price is constant at P , that is, agents can
trade instantly at this price. An agent’s total wealth — cash plus the value
of his position in risky assets — is denoted by W̄ . If an agent chooses to
hold θ(t) shares at any time t, then the wealth-dynamics equation is

dW̄t = (rW̄t − rθtP − ct) dt+ θt dDt + dηt.

The HJB equation for an agent of intrinsic type σ ∈ {h, l} is

0 = sup
c,θ

{Jw(w, σ)(rw − c+ θ(mD − rP ) +mη)

+
1

2
Jww(w, σ)(θ2σ2

D + σ2
η + 2ρσθσDση)

+ λ(σ, σ′)[J(w, σ) − J(w, σ′)] − e−γc − βJ(w, σ)},

where λ(σ, σ′) is the intensity of change of intrinsic type from σ to σ′. Con-
jecturing the value function J(w, σ) = −e−rγ(w+aσ+ā), optimization over θ
yields

θσ =
mD − rP − rγρσσDση

rγσ2
D

. (B.1)
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Market clearing requires

µhθh + µlθl = Θ,

with µh = 1 − µl = λu/(λu + λd), which gives the price

P =
mD

r
− γ

(

Θσ2
D +

σDση [ρlλd + ρhλu]

λu + λd

)

. (B.2)

Inserting this price into (B.1) gives the quantity choices

θh = Θ +
σηλd [ρl − ρh]

σD(λu + λd)
(B.3)

θl = Θ −
σηλu [ρl − ρh]

σD(λu + λd)
. (B.4)

C Proofs

Proof of Proposition 1: The dependence on δ and q is seen immediately,
given that no other variable entering Equation (7) depends on either δ or q.

Viewing P and µσ as functions of the parameters λd and s, a simple
differentiation exercise shows that the derivative of the price P with respect
to λd is a positive multiple of

(rq + λu + 2λµhnq)

(

1 + 2λ
∂µlo

∂λd

(1 − q)

)

− (r(1 − q) + λd + 2λµlo(1 − q))

(

2λ
∂µhn

∂λd

q

)

,

which is positive if ∂µlo

∂λd

is positive and ∂µhn

∂λd

is negative.

These two facts are seen as follows. From Equations (1)-(3) and the fact
that µlo + µln = λd(λd + λu)

−1 = 1 − y, where

y =
λu

λu + λd

,

it follows that µlo solves the equation

2λµ2
lo + (2λ(y − s) + λu + λd)µlo − λds = 0. (C.1)
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This quadratic equation has a negative root and a root in the interval (0, 1),
and this latter root is µlo.

Differentiating (C.1) with respect to λd, one finds that

∂µlo

∂λd

=
s− µlo − 2λ ∂y

∂λd

µlo

2λµlo + 2λ(y − s) + λu + λd

> 0,

since ∂y

∂λd

< 0. Similar calculations show that

∂µhn

∂λd

=
−λd + 2λ ∂y

∂λd

µhn

2λµlo + λu + λd

< 0,

which ends the proof of the claim that the price decreases with λd. Like
arguments can be used to show that ∂µlo

∂λu
< 0 and that ∂µhn

∂λu
> 0, which

implies that P increases with λu.
Finally,

∂µlo

∂s
=

λd + 2λµlo

2λµlo + 2λ(y − s) + λu + λd

> 0

and

∂µhn

∂s
=

−λu − 2λµhn

2λµlo + λu + λd

< 0,

showing that the price decreases with the supply s.
In order to prove that the price increases with λ for λ large enough, it is

sufficient to show that the derivative of the price with respect to λ changes
sign at most a finite number of times, and that the price tends to its upper
bound, 1/r, as λ tends to infinity. The first statement is obvious, while
the second one follows from Equation (7), given that, under the assumption
s < λu/(λu + λd), λµlo stays bounded and λµhn goes to infinity with λ.

�

Proof of Proposition 2: We impose on investors’ choices of consumption
and trading strategies the transversality condition that, for any initial agent
type σ0, e

−βTE0[e
−rγWT ] → 0 as T goes to infinity. Intuitively, the condi-

tion means that agents cannot consume large amounts forever by increasing
their debt without restriction. We must show that our candidate optimal
consumption and trading strategy satisfies that condition.
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We conjecture that, for our candidate optimal strategy, E0[J(WT , σT )] =
e(β−r)TJ(W0, σ0). Clearly, this implies that the transversality condition is
satisfied, since

e−βTE0[e
−rγWT ] = −e−βTE0

[

J(WT , σT )erγ(ā+aσ
T

)
]

≤ − sup
σ

erγ(ā+aσ)e−rTJ(W0, σ0)

→ 0.

This conjecture is based on the insights that (i) the marginal utility, u′(c0), of
time-0 consumption must be equal to the marginal utility, e(r−β)TE0[u

′(cT )],
of time T consumption; and (ii) the marginal utility is proportional to the
value function in our (CARA) framework. (See Wang (2002) for a similar
result.)

To prove our conjecture, we consider, for our candidate optimal policy,
the wealth dynamics

dW =

(

log r

γ
− raσ − rā+ θσmD +mη

)

dt+ θσσD dB + ση dB
i − P dθσ

=

(

−raσ + θσmD +
1

2
rγσ2

η +
r − β

rγ

)

dt+ θσσD dB + ση dB
i − P dθσ

= M(σ) dt+
√

Σ(σ) dB̂ − P dθσ,

where M , Σ and the standard Brownian motion B̂ are defined by the last
equation.

Define f by

f(Wt, σt, t) = Et[J(WT , σT )] = −Et[e
−rγ(WT +aσT

+ā)].

Then, by Ito’s Formula,

0 = ft + fwM(σ) +
1

2
fwwΣ(σ) (C.2)

+
∑

{σ′ :σ′ 6=σ}

λ(σ, σ′) (f(w + z(σ, σ′)P, σ′, t) − f(w, σ, t)) ,

where λ(σ, σ′) is the intensity of transition from σ to σ′ and z(σ, σ′) is −1, 1,
or 0, depending on whether the transition is, respectively, a buy, a sell, or an
intrinsic-type change. The boundary condition is f(w, σ, T ) = −e−rγ(w+aσ+ā).

The fact that f(w, σ, t) = e(β−r)(T−t)J(w, σ) now follows from the facts
that (i) this function clearly satisfies the boundary condition, and (ii) it
solves (C.2), which is confirmed directly using (16) for aσ.
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�

Proof of Proposition 3: This result follows from Equations (16)–(19) as
well as the fact that λµhn → ∞ and λµlo is bounded.

�

Proof of Proposition 4: We start by considering two versions of the sys-
tem (22), characterized by masses µi

hn(t) and µi
lo(t), i ∈ {1, 2}, such that

µ1
hn(t) ≥ µ2

hn(t), µ
1
lo(t) ≤ µ2

lo(t), π
1
ho ≥ π2

ho, and π1
hn ≥ π2

hn. We show that, if
ζ is small enough, the following relationships hold at all times t:

V 1
lo ≥ V 2

lo

V 1
ho ≥ V 2

ho

V 1
hn ≤ V 2

hn (C.3)

V 1
ln ≤ V 2

ln

P 1 ≥ P 2.

We then use this result to prove the Proposition.
Letting ∆Vo = Vho − Vlo, ∆Vn = Vhn − Vln, and φ = ∆Vo − ∆Vn, the

motion equations (22) for ζ = 0, for any of the two mass configurations, are

V̇lo = (r + ζ)Vlo − λu∆Vo − 2λµhnqφ− ζVlo(0) − (1 − δ) (C.4)

V̇ln = (r + ζ)Vln − λu∆Vn − ζVln(0) (C.5)

V̇ho = (r + ζ)Vho + λd∆Vo − ζVho(0) + ζπho∆Vo(0) − 1 (C.6)

V̇hn = (r + ζ)Vhn + λd∆Vn − 2λµho(1 − q) − ζVhn(0) (C.7)

+ ζπho∆Vn(0)φ

∆V̇o = (r + λd + λu + ζ)∆Vo + 2λµhnqφ (C.8)

− ζ(1 − πho)∆Vo(0) − δ

∆V̇n = (r + λd + λu + ζ)∆Vn − 2λµlo(1 − q)φ (C.9)

− ζ(1 − πhn)∆Vn(0)

φ̇ = (r + λd + λu + 2λµhnq + 2λµlo(1 − q) + ζ)φ− δ (C.10)

− ζ(1 − πho)∆Vo(0) + ζ(1 − πhn)∆Vn(0)

Letting ψ = (∆Vo,∆Vn)>, Equations (C.8)–(C.9) can be further written as

ψ̇ = Aψ +B, (C.11)
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with

A =

[

r + λd + λu + ζ + 2λµhnq −2λµhnq
−2λµlo(1 − q) r + λd + λu + ζ + 2λµlo(1 − q)

]

and

B = −

[

ζ(1 − πho)∆Vo(0) + δ
ζ(1 − πhn)∆Vn(0)

]

.

We are going to show that, given the way in which the entries of A1 and
B1 compare with those of A2, respectively B2, ψ1 ≤ ψ2 for all t. To that end,
consider a continuum of systems defined by Aα(t) = αA1(t) + (1 − α)A2(t)
and Bα(t) = αB1(t) + (1 − α)B2(t), and consider the derivative of (C.11)
with respect to α,

∂

∂t

(

∂ψα

∂α

)

=
∂Aα

∂α
ψ + Aα

∂ψα

∂α
+
∂Bα

∂α
. (C.12)

The solution is

∂ψα

∂α
(t) = −

∫ ∞

t

e−
R

s

t
Aα(u) du

(

∂Aα

∂α
+
∂Bα

∂α

)

ds. (C.13)

Note that

∂Aα

∂α
+
∂Bα

∂α
= 2λφα

[

q (µ1
hn − µ2

hn)
(1 − q) (µ2

lo − µ1
lo)

]

+ ζ

[

(π1
ho − π2

ho)∆Vo(0)
(π1

hn − π2
hn)∆Vn(0)

]

is positive, so it suffices to sign the elements of the matrix eM , where the
matrix M is of the form

M =

[

c− a a
b c− b

]

with a > 0 and b > 0. It is immediate that the signs of the elements of eM

are the same as for the matrix eKeM for any scalar K — in particular, for
K large enough to make all entries of K + M positive. We conclude that
∂ψ/∂α ≤ 0, so that ψ1 ≤ ψ2.

It now follows from (C.5) that V 1
ln ≤ V 2

ln, which, together with ∆V 1
n ≤

∆V 2
n , implies that V 1

hn ≤ V 2
hn. The matters are not as simple with the owner

value functions, since the fact that a positive ζ makes the chances of being
hit by a shock lower for parameter set 2 works against our desired conclusion.
This is why we need ζ small enough.
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In order to conclude that V 1
ho ≥ V 2

ho, we need that

λd

(

∆V 2
o − ∆V 1

o

)

− ζ
(

π1
ho − π2

ho

)

∆Vo(0) ≥ 0

for all t. Since the inequality holds for ζ = 0, it suffices to show that

lim
t→∞

∆V 2
o − ∆V 1

o

π1
ho − π2

ho

> 0

and make use of continuity. Equation (C.13) provides a desired lower bound
on ∆V 2

o − ∆V 1
o of at least ε (π1

ho − π2
ho) for t large enough and ε > 0 small

enough.
Having obtained that V 1

ho ≥ V 2
ho, it immediately follows from the definition

of ∆Vo that V 1
lo ≥ V 2

lo. Finally, it is clear that P 1 ≥ P 2.
We use the comparison result just proved to prove the Proposition. We

start with part a.). By letting µ2(t) = µ(t), i.e., the economy under con-
sideration, and µ1 = µ(∞), i.e., a steady-state economy without shocks, it
follows that the values of owners and the price are strictly lower at any point
following the shock — in particular, at 0 — than their eventual value. The
opposite is true for the values of the non-owners. To complete the proof
of this statement, we need to show that, for all t, µhn(t) < µhn(∞) and
µlo(t) > µlo(∞).

To that end, consider the dynamics of µlo:

µ̇lo(t) = −2λµlo(t)
2 − (2λ (µh(t) − s) + λu + λd)µlo(t) + λds.

Since µh(t) < µh(∞), µlo(0) > µlo(∞), and µlo(t) > 0 a simple comparison
theorem (e.g., Birkhoff and Rota (1969), page 25) shows that µlo(t) > µlo(∞)
for all t. Likewise, µhn(t) < µhn(∞).

For part b.), let µ2(t) = µ(t) and µ1(t) = µ(t + dt) for an arbitrary
dt > 0 and monotonicity of the value functions and price with respect to
time follows, provided that the masses are monotonic. The masses, however,
need not be monotonic. In general, only one of µlo and µhn is monotonic,
while the other may move away from its steady-state value for a while before
its derivative changes sign. Both masses are therefore monotonic for all t if
µ̇hn(0) ≥ 0 and µ̇lo(0) ≤ 0, which proves the last assertion of the Proposition.
Otherwise, they are monotonic for t ≥ T2 for some T2 > 0.

�
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Duffie, D., N. Gârleanu, and L. H. Pedersen (2005). Over-the-Counter
Markets. Econometrica 73, 1815–1847.

Duffie, D. and Y. Sun (2004). The Exact Law of Large Numbers for Pair-
wise Random Matching. Unpublished working paper. Graduate School
of Business, Stanford University.

Edwards, A. K., L. E. Harris, and M. S. Piwowar (2004). Corporate Bond
Market Transparency and Transaction Costs. Working paper, The Se-
curities and Exchange Commission.

Fleming, M. J. and K. D. Garbade (2003). The Specials Market for U.S.
Treasury Securities and the Federal Reserve’s Lending Program. Un-
published working paper. Federal Reserve Bank of New York.

Froot, K. and P. O’Connell (1999). The Pricing of US Catastrophe Rein-
surance. In K. Froot (Ed.), The Financing of Catastrophe Risk, pp.
195–232. University of Chicago Press.

Geczy, C. C., D. K. Musto, and A. V. Reed (2002). Stocks are Special
Too: An Analysis of the Equity Lending Market. Journal of Financial
Economics 66, 241–269.

Gehrig, T. (1993). Intermediation in Search Markets. Journal of Economics
and Management Strategy 2, 97–120.

Giroux, G. (2005). Markets of a Large Number of Interacting Agents.
Working Paper, Department of Mathematics, Université de Sher-
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