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evidence often interpreted as behavioral underreaction to market timing.
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1 Introduction

We study the dynamic, quantitative relations between stock returns and equity financing

decisions using a fully-specified neoclassical model augmented with costly external equity.

The issue is important. Recent literature in empirical corporate finance has uncovered

an array of evidence often interpreted as substantiating a window-of-opportunity theory of

financing decisions in response to systematic mispricing in equity markets. In particular, Rit-

ter (2003) argues that managers can create value for existing shareholders by timing financing

decisions to take advantage of time-varying relative costs of debt and equity caused by market

inefficiencies. Managers can issue equity when their stock prices are high and turn to internal

funds or debt when stock prices are low. As supporting evidence, Ritter cites many empirical

studies that document long-run abnormal returns following corporate financing events.

Using simulations, we demonstrate that our neoclassical model can reproduce simultane-

ously, and in many cases quantitatively, many stylized facts often interpreted as behavioral

market timing. These facts include: (i) the amount and frequency of equity issuance are pro-

cyclical (e.g., Choe, Masulis, and Nanda (1993)); (ii) the new equity share in total amount of

new equity and debt financing is a significantly negative predictor of aggregate stock market

returns (e.g., Baker and Wurgler (2000)); (iii) firms conducting seasoned equity offerings

underperform nonissuing firms with similar size and book-to-market in the long run, and the

magnitude of this underperformance increases with the volume of issuance (e.g., Loughran

and Ritter (1995), and Spiess and Afflect-Graves (1995)); (iv) the operating performance of

issuing firms exhibits substantial improvements prior to the equity offerings, but then deteri-

orates, and issuing firms are also disproportionately high-investing, high-growth firms (e.g.,

Loughran and Ritter (1997)); (v) there exists a positive long-term stock price drift for firms



distributing cash back to shareholders, and the magnitude of the drift is stronger among

value firms (e.g., Lakonishok and Vermaelen (1990), Ikenberry, Lakonishok, and Vermaelen

(1995), and Michaely, Thaler, and Womack (1995)); and finally (vi) capital investment is

negatively associated with future stock returns in the cross section, and the magnitude of

this association is stronger among firms with higher cash flows (e.g., Titman, Wei, and Xie

(2004), Anderson and Garcia-Feijóo (2005), Polk and Sapienza (2005), and Xing (2005)).

We deliberately do not include any behavioral bias in our model, in which firms choose

investment and financing decisions optimally in response to aggregate and firm-specific

productivity shocks. Firm-specific shocks affect corporate decisions through operating cash

flows. And aggregate shocks affect corporate decisions through both operating cash flows

and an exogenously-specified stochastic discount factor that admits a countercyclical price of

risk, as in Berk, Green, and Naik (1999). Our simulations suggest that systematic mispricing

seems unnecessary to generate the evidence often interpreted as behavioral underreaction to

market timing, or more generally, the window-of-opportunity theory of financing decisions.

However, investor sentiment, for example, as modeled by Barberis, Huang, and Santos (2001),

can potentially affect the countercyclical price of risk exogenously specified in our model.

We therefore do not suggest that the timing-related evidence is fully rational, but we do

argue that investor sentiment seems unnecessary.

The intuition driving our results is simple. Controlling for expected productivity, the

investment-to-asset ratio correlates negatively with expected returns: all else equal, firms

with lower costs of capital invest more. And the balance-sheet constraint equating the sources

of funds with the uses of funds implies that equity issuing firms are disproportionally high

investment-to-asset firms and cash-distributing firms are disproportionally low investment-

to-asset firms. The negative investment-return relation then implies that equity issuance
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should correlate negatively with expected returns, and that cash distribution (dividend or

share repurchase) should correlate positively with expected returns. Moreover, because ex-

pected productivity is procyclical, capital investment is also procyclical, a common prediction

across neoclassical models (e.g., Kydland and Prescott (1982)) and a fact well-documented

in the business cycle literature (e.g., King and Rebelo (1999)). The balance-sheet constraint

then implies that new equity share must be procyclical and predict stock market returns

with a negative sign, given that the aggregate expected return is countercyclical.

Firm-level profitability is mean-reverting in the model as well as in the data (e.g., Fama

and French (1995, 2000)). Ex-post, equity issuers tend to be firms that have experienced big,

positive firm-specific profitability shocks in the recent past. But going forward, issuers face

the same conditional distribution of shocks as other firms do. When looking back at the his-

torical data, econometricians are likely to observe that the operating performance of issuing

firms displays substantial improvements before the issuance but deteriorates afterwards.

Our work is related to several recent papers. Carlson, Fisher, and Giammarino (2004b)

construct a real options model and argue that prior to equity issuance, a firm has an option

to expand along with some assets in place. This composition is levered and risky. If the

exercise of the option is financed by equity, risk must drop. This mechanism can potentially

generate the long-term underperformance following equity issuance. We complement their

work mainly by analyzing the negative long-term drift following equity issuance and the

positive long-term drift following cash distribution simultaneously in a unified framework.

Carlson et al. leave the cash-distribution side largely open. Moreover, by modeling business

cycles explicitly, we also reproduce the procyclical equity issuance waves and the negative

predictive relation between the new equity share and stock market returns.

In the context of initial public offerings, Pástor and Veronesi (2005) develop a model of
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optimal timing in which waves of initial offerings are driven by declines in expected market

returns, increases in expected aggregate profitability, or increases in prior uncertainty about

the average future profitability of new firms. Our investment-driven mechanisms complement

their insights because we study the powerful role of capital investment in the context of

raising and distributing capital by publicly traded firms and its impact on the cross section

of expected returns. Further, different from the Pástor and Veronesi (2003, 2005) valuation

framework in the style of Ohlson (1995), our model is rooted in neoclassical economics in

the style of Cochrane (1991).

We also extend Zhang (2005a) by solving explicitly a fully-specified neoclassical model.

Doing this allows us to use computational experiments to evaluate quantitatively to what ex-

tent our economic mechanisms can reproduce the timing-related evidence. While the match

of model moments to data moments is by no means perfect, our simulations demonstrate that

these mechanisms are at least quantitatively relevant, if not important. In contrast, Zhang’s

analysis is largely qualitative, although the scope of his analysis is broader. Our simulations

also yield several additional insights including, among others, the procyclical equity issuance,

the predictive relation between the new equity share and stock market returns, the positive

relation between the volume of issuance and the magnitude of the underperformance, and

the mean-reverting operating performance of issuing firms.

The rest is organized as follows. We construct the dynamic model in Section 2. Section 3

calibrates and solves the model. Section 4 simulates the model and presents the quantitative

results. Section 5 briefly discusses related literature. Finally, Section 6 concludes.
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2 The Model

We construct a fully-specified neoclassical model, similar to that used in Zhang (2005b),

augmented with costly equity financing. While Zhang studies the value premium, we

study financing-related anomalies. It is reassuring, to us at least, that models with similar

microeconomic foundations can be used to confront different anomalies, even though these

anomalies are often treated in different strands of the empirical finance literature.

We start by describing the technology and stochastic discount factor in the economy. We

then delineate how firms maximize their market value by making their investment, financing,

and payout decisions. Finally, we discuss how risk and expected returns are determined

endogenously in connection with these corporate policies.

Technology Production requires one input, capital, kt, and is subject to both an aggregate

productivity shock and an idiosyncratic productivity shock. The aggregate shock, xt, has a

stationary and monotone Markov transition function, Qx(xt+1|xt), and is given by:

xt+1 = x (1 − ρx) + ρxxt + σxε
x
t+1, (1)

where εx
t+1 is an i.i.d. standard normal variable. The aggregate shock is the unique source of

systematic risk; otherwise all firms will have expected returns equal to the real interest rate.

In the model, the firm-specific shock is the unique source of firm heterogeneity. The firm-

specific shock, zjt, is uncorrelated across firms, indexed by j, and have a common stationary

and monotone Markov transition function, Qz(zjt+1|zjt), given by:

zjt+1 = ρzzjt + σzε
z
jt+1, (2)

where εz
jt+1 is an i.i.d. standard normal variable. εz

jt+1 and εz
it+1 are uncorrelated for any
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pair (i, j) with i 6= j. Moreover, εx
t+1 is independent of εz

jt+1 for all j.

And the production function is given by:

yjt = ext+zjtkα
jt, (3)

where yjt and kjt are the operating profits and capital stock of firm j at time t, respectively.

Further, 0<α<1, so the production displays decreasing return to scale.

Stochastic Discount Factor Following Berk, Green, and Naik (1999), we specify

exogenously the stochastic discount factor without solving the consumer’s problem. This

research strategy seems reasonable because we aim to link expected returns to firm

characteristics through value-maximizing corporate policies.

Let mt+1 denote the stochastic discount factor from time t to t+1. We specify

log mt+1 = log η + γt (xt − xt+1) (4)

γt = γ0 + γ1(xt − x) (5)

where 1 > η > 0, γ0 > 0, and γ1 < 0 are constant parameters. Equation (4) is in essence

a reduced-form representation of the intertemporal rate of substitution for a fictitious

representative consumer. To capture the time-varying price of risk, equation (5) assumes

that γt decreases in the demeaned aggregate productivity, xt−x̄. We remain agnostic about

the economic forces driving the time-varying price of risk. Potential sources include, among

others, countercyclical risk aversion (e.g., Campbell and Cochrane (1999)), countercyclical

amount of economic uncertainty (e.g., Bansal and Yaron (2004)), and loss aversion (e.g.,

Barberis, Huang, and Santos (2001)).
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Corporate Policies Upon observing the current aggregate and firm-specific productivity

levels, firm j chooses optimal investment, ijt, to maximize its market value. The capital

accumulation follows:

kjt+1 = ijt + (1 − δ)kjt (6)

where δ denotes the depreciation rate, which is constant across time and across firms.

Capital investment entails quadratic adjustment costs, denoted cjt:

cjt ≡ c(ijt, kjt) =
a

2

(
ijt
kjt

)2

kjt where a > 0 (7)

The adjustment-cost function satisfies that ∂c/∂i > 0, ∂2c/∂i2 > 0, and ∂c/∂k < 0. In other

words, both the total and the marginal costs increase with the level of investment. The total

adjustment cost also decreases with capital, displaying economy of scale.

When the sum of investment, ijt, and adjustment cost, cjt, exceeds internal funds, yjt,

the firm raises new equity capital, ejt, from the external equity markets:

ejt ≡ max {0, ijt + cjt − yjt} (8)

We assume that the equity is the only source of external financing. This simplification is

reasonable because we focus on the dynamic relations between stock returns and equity

financing decisions. The relation between stock returns and debt offerings is also interesting

(e.g., Spiess and Affleck-Graves (1999)), but we leave that topic for future research.

External equity financing is costly (e.g., Smith (1977), Lee, Lochhead, Ritter, and Zhao

(1996), Altinkilic and Hansen (2000)). To capture this effect, we follow Gomes (2001) and

Hennessy and Whited (2005) and assume that for each dollar of external equity raised by the

firm, it must pay proportional flotation costs. We also capture fixed costs of equity finance.
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The total financing-cost function is hence parameterized as:

λjt ≡ λ(ejt) = λ01{ejt>0} + λ1ejt (9)

where λ0 >0 captures the fixed costs, 1{ejt>0} is the indicator function that takes the value

of one if the event described in {·} occurs, and λ1ejt >0 captures the proportional costs.

When the sum of investment and adjustment cost is lower than internal funds, the firm

pays the difference back to shareholders. The payout, djt, is thus:

djt ≡ max {0, yjt − ijt − cjt} (10)

The firm does not incur any costs when paying dividends or conducting share repurchase.

We do not model corporate cash holdings or the specific forms of the payout because these

ingredients are not necessary for our economic questions at hand. Equation (10) only pins

down the total amount paid to shareholders, but not the methods of distribution.

Because there are costs associated with raising capital, but not with distributing payout,

firms will only use external equity as the last resort when internal funds are not sufficient

to finance current investment. Equivalently, it is never optimal to issue new equity while

paying cash back to shareholders.

Dynamic Value Maximization Let v(kjt, zjt, xt) denote the market value of equity for

firm j. And define:

d̃jt ≡ djt − ejt − λ(ejt) = yjt − ijt − cjt − λ(max {0, ijt + cjt − yjt}) (11)

d̃jt is the effective cash accrued to the shareholder that equals cash distribution minus the

sum of external equity raised and the financing costs. We can now formulate the dynamic
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value-maximizing problem for firm j as follows:

v(kjt, zjt, xt) = max
ijt

d̃jt +

∫∫
mt+1v(kjt+1, zjt+1, xt+1) Qz (dzjt+1|zjt) Qx (dxt+1|xt) (12)

subject to the capital accumulation equation (6).

Risk and Expected Return In our model, risk and expected returns are determined

endogenously along with value-maximizing corporate policies. Evaluating the value function

at the optimum yields:

vjt = d̃jt + Et [mt+1vjt+1] ⇔ 1 = Et [mt+1rjt+1] (13)

where firm j’s stock return is defined as:

rjt+1 ≡
vjt+1

vjt − d̃jt

(14)

Note that v(kjt, zjt, xt) is the cum-dividend firm value. Define pjt ≡ vjt− d̃jt to be the ex-

dividend firm value, then rjt+1 reduces to the usual definition, rjt+1 =
pjt+1+d̃jt+1

pjt
.

We can rewrite equation (13) as the beta-pricing form (e.g., Cochrane (2001, p. 19)):

Et[rjt+1] = rft + βjtλmt (15)

where rft≡ 1
Et[mt+1]

is the real interest rate from period t to t+1. Risk is defined by:

βjt ≡
−Covt[rjt+1, mt+1]

Vart[mt+1]
(16)

and the price of risk is defined by:

λmt ≡
Vart[mt+1]

Et[mt+1]
(17)
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From equations (15) and (16), it is clear that risk and expected returns are two

endogenous variables to be determined along with optimal firm-value and policy functions.

All endogenous variables are functions of three state variables, the endogenous state, kjt,

and two exogenous states, xt and zjt. The functional forms are not available analytically but

they can be obtained using numerical techniques.

3 Solving the Model

To solve the model, we first need to calibrate 14 parameters (α, x̄, ρx, σx, ρz, σz, η, f , γ0, γ1,

δ, a, λ0, and λ1) by matching at least 14 moments. The success of this procedure depends on

picking moments that can identify these parameters. A sufficient condition for identification

is a one-to-one mapping between the vector of parameters and a subset of the data moments

with the same dimension. Although the model does not yield such a closed-form mapping,

we exercise care in choosing appropriate moments to match.

All parameters are calibrated in monthly frequency. We start with three aggregate return

moments including the mean and volatility of real interest rate and the average Sharpe ratio.

As in Zhang (2005b), we use these three moments to pin down tightly the three parameters

in the stochastic discount factor.1 The long-run average level of the aggregate productivity

x̄ is purely a scaling variable. We choose its numerical value to be −3.751 such that the

average long-run level of assets is approximately one.

The persistence of the aggregate productivity, ρx, is set to be 3
√

0.95, and its conditional

volatility, σx, is set to be 0.007/3=0.0023. With the first-order autoregressive specification

for xt in equation (1), these monthly parameter values correspond to quarter values of 0.95

1Specifically, the log pricing kernel in equations (4) and (5) implies that the real interest rate
is 1/Et[mt+1] = (1/η) exp(−µm − (1/2)σ2

m) and the maximum Sharpe ratio is σt[mt+1]/Et[mt+1] =√
exp(σ2

m(exp(σ2
m) − 1))/ exp(σ2

m/2), where µm≡ [γ0+γ1(xt−x̄)](1−ρx)(xt−x̄) and σm≡σx[γ0+γ1(xt−x̄)].
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and 0.007, respectively, as in Cooley and Prescott (1995). To choose the persistence ρz

and conditional volatility σz of the firm-specific productivity, we follow Gomes, Kogan, and

Zhang (2003) and Zhang (2005b) and restrict these two parameters using the cross-sectional

moments of firm distribution. One direct measure of the dispersion is the cross-sectional

volatility of individual stock returns. Another measure is the cross-sectional standard

deviation of market-to-book. These goals are achieved by setting ρz =0.965 and σz =0.10.

Following Hennessy and Whited (2005), we use as empirical targets five simple summary

statistics: the mean and volatility of investment-to-asset, the average ratio of operating

income to assets, the frequency of equity issuance, and the average ratio of net equity to

assets. The average investment-to-asset helps identify the depreciation rate δ, the volatility

of investment-to-asset helps identify the adjustment-cost parameter a, the average operating

income-to-asset ratio helps identify the curvature of the production function α, and the two

financing variables help identify the financing-cost parameters λ0 and λ1. Finally, we choose

the fixed cost, f , to match the average market-to-book ratio to that in the data.

Table 1 reports our calibration of parameter values. Other than a few exceptions, these

parameter values are similar to those used in Zhang (2005b). Using this parametrization,

we solve the model using the standard value function iteration technique (see Appendix A

for a detailed description of our algorithm). We then simulate the model using the value

function and optimal policy functions to create an artificial panel of 5000 firms with 480

monthly observations for each firm. This procedure is repeated 100 times. Table 2 reports

the model-implied unconditional sample moments averaged across these 100 simulations.

The overall fit reported in Table 2 seems reasonably good. The mean and volatility

of risk-free rate and the average Sharpe ratio simulated from the model are very close to

those observed in the data. This fit is perhaps not surprising because we pin down three
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Table 1 : Parameter Choices

This table reports our parameter choices. We need to calibrate 14 parameters: the capital share α; the long-

run average level of aggregate productivity x̄; the persistence of aggregate productivity ρx; the conditional

volatility of aggregate productivity shocks σx; the persistence of firm-specific productivity ρz; the conditional

volatility of firm-specific productivity shocks σz; the three parameters in the stochastic discount factor η,

γ0, and γ1; the fixed cost of production f ; the rate of capital depreciation δ; the adjustment-cost parameter

a; the fixed cost of financing λ0; and the proportional factor of financing costs λ1.

α x̄ ρx σx ρz σz η γ0 γ1 f δ a λ0 λ1

0.70 −3.751 0.951/3 0.007/3 0.965 0.100 0.994 50 −1000 0.005 0.01 15 0.08 0.025

parameters, η, γ0, and γ1, using exactly these three moments. The model moments of the

investment-to-asset ratio are also close to its data moments. The average market-to-book

ratio in the model, 1.88, is close to that in the data, 1.49. One caveat is that the frequency

of equity issuance in the model, 28.5%, is much higher than that in the data, 9.9%. The

reason is probably that in the model external equity is the only source of outside funds.

Figure 1 plots our numerical solutions of the value function and the optimal investment

policy against the endogenous state variable, capital stock k, and the two exogenous state

variables, aggregate productivity x and firm-specific productivity z. Because there are three

state variables, we first fix x= x̄ and plot the functions against k and z in Panels A and C.

We then fix z= z̄ and plot the functions against k and x in Panels B and D. From Panels A

and B, because of decreasing return to scale, firm value is increasing and concave function of

capital k. The value function also increases with aggregate productivity x and firm-specific

productivity z. From Panels C and D, investment-to-asset decreases with capital stock k but

increases with aggregate and firm-specific productivity. Our model thus predicts that small

firms with relatively less assets-in-place and growth firms with relatively high profitability

tend to invest more and grow faster, consistent with Fama and French (1995).
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Figure 1 : The Value Function and Optimal Investment Policy Function

This figure plots the value function v(k, z, x) and the investment-to-asset ratio i
k (k, z, x) as functions of

one endogenous state variable k, and two exogenous state variables x and z. Because there are three state

variables, we fix x = x̄ and plot the value and policy functions against k and z in Panels A and C, respectively,

in which the arrows indicate the direction along which z increases. We then fix z = z̄ and plot the value and

policy functions against k and x in Panels B and D, respectively, in which the arrows indicate the direction

along which x increases.
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Table 2 : Unconditional Moments from the Simulated and Real Data

This table reports unconditional sample moments generated from the simulated data and from the real data.

We simulate 100 artificial panels each of which has 5000 firms and 480 monthly observation. We report the

cross-simulation averaged results. The average Sharpe ratio in the data is from Campbell and Cochrane

(1999). The data moments of the real interest rate are from Campbell, Lo, and MacKinlay (1997). All other

data moments are from Hennessy and Whited (2005).

Data Model

Average annual risk free rate 0.018 0.021
Annual volatility of risk free rate 0.030 0.029
Average annual Sharpe ratio 0.430 0.405
Average annual investment-to-asset ratio 0.130 0.119
The volatility of investment-to-asset ratio 0.006 0.013
Average annual operating income-to-asset ratio 0.146 0.255
The frequency of equity issuance 0.099 0.285
Average new equity-to-asset ratio 0.042 0.043
Average market-to-book ratio 1.493 1.879
The volatility of market-to-book 0.230 0.242

Based on the optimal investment-to-asset ratio, we plot in Figure 2 the implied new

equity-to-asset ratio and the payout-to-asset ratio from equations (8) and (10). From Panels

A and B, the new equity-to-asset ratio closely mimics the patterns of the investment-to-asset

ratio. Small firms with relatively less capital and growth firms with relatively high firm-

specific productivity tend to issue more equity. This prediction is largely consistent with

the evidence documented in Barclay, Smith, and Watts (1995) and Fama and French (2005).

And from Panel B, firms tend to use more equity when aggregate economic conditions are

relatively good, i.e., when x is high, a pattern consistent with the evidence in Choe, Masulis,

and Nanda (1993). Finally, from Panels C and D, the payout-to-asset ratio increases with

capital stock, although the relation is not strictly monotonic. Small firms with less assets

distribute relatively little cash, while big firms with more assets distribute more. This

prediction also is consistent with Barclay et al., who report that dividend yields correlate

positively with the log of total sales, a measure of firm size.
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Figure 2 : Optimal Equity-Financing and Payout Police-Functions

This figure plots the new equity-to-asset ratio e
k (k, z, x) and the payout-to-asset ratio d

k (k, z, x) as functions

of one endogenous state variable, capital stock k, and two exogenous state variables, aggregate and firm-

specific productivity x and z. Because there are three state variables, we fix x = x̄ and plot the functions

against k and z in Panels A and C, in which the arrows indicate the direction along which z increases. In

Panels B and D, we fix z = z̄ and plot the functions against k and x, and the arrows indicate the direction

along which x increases.
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4 Empirical Implications

We now investigate whether our model can quantitatively reproduce the relations between

stock returns and financing decisions that have attracted considerable attention in recent em-

pirical corporate finance literature. We follow the quantitative-theory approach of Kydland

and Prescott (1982) and Berk, Green, and Naik (1999) to conduct computational experi-

ments to compare the model moments with those in the data. Specifically, we simulate 100

artificial panels, each of which has 5,000 firms and 480 months. And the sample size is com-

parable to the COMPUSTAT data set often used in empirical studies. We then implement

empirical procedures on each artificial panel, report cross-simulation averaged results, and

compare them to their counterparts in the real data.

We aim at a broad range of empirical studies in the literature. We first study the cyclical

properties of equity issuance as applied to equity issuance waves and the predictive rela-

tions between the new equity share and aggregate stock market returns. Then we examine

the long-run stock-price performance and operating performance of issuing firms, as well as

the long-run stock-price performance of cash-distributing firms. Finally, we generate the

negative investment-return relation which is at the heart of our economic mechanisms.

4.1 Equity Issuance Waves

A larger number of firms issue common stocks and the proportion of external financing ac-

counted for by equity is substantially higher in economic expansions (e.g., Taggart (1977),

Marsh (1982), and Choe, Masulis, and Nanda (1993)). In particular, Choe et al. docu-

ment that the relative frequency of equity offers, defined as the number of equity offerings

per month scaled by the number of listed firms, and the dollar volume of security offerings

scaled by CPI are both procyclical. And in multiple regressions, the new equity share, de-
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fined as the ratio of common stock issues to the sum of common stock and bond issues in

dollar volume per month, increases with business cycle measures such as the growth rate

of industrial production, and decreases with stock market volatility. Finally, neither stock

market run-up nor interest rate changes have significant explanatory power in the presence

of business cycle measures and stock market volatility.

We ask whether our model can reproduce these empirical patterns. As in Zhang (2005b),

we define expansions in artificial data to be times when aggregate productivity is at least

one unconditional standard deviation above its long-run average, i.e., xt > x̄+ σx√
1−ρ2

x

. And

we define contractions to be times when aggregate productivity is at least one unconditional

standard deviation below its long-run average, i.e., xt <x̄− σx√
1−ρ2

x

.

We measure the relative frequency of equity issuance in the model as
∑N

j=1
1{ejt>0}

N
, where

1{ejt>0} is the indicator function that takes a value of one if firm j issues equity and zero

otherwise. N is the total number of firms in the economy. Because we do not model entry

and exit in the model, N remains constant over time. More important, incorporating entry

and exit is likely to reinforce our basic results. The reason is that the frequency of entry or

Initial Public Offerings tends to be procyclical and the frequency of exit or delisting tends

to be countercyclical, as shown in Pastor and Veronesi (2005).

We define the rate of aggregate equity financing as the total amount of new equity divided

by total assets:
∑N

j=1
ejt∑N

j=1
kjt

. And because we do not model debt, we define the new equity share

as the share of new equity out of total amount of financing or the sum of new equity and

internal funds:
∑N

j=1
ejt∑N

j=1
(ejt+yjt)

. We caution that our definition of the equity share does not

correspond exactly with the definition in the empirical literature (e.g., Baker and Wurgler

(2000)). But our definition seems to capture the essence underlying the new equity share

without complicating greatly the basic model structure.
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Table 3 : Conditional Moments of Equity Issuance

This table reports conditional moments of equity issuance from simulated panels. We report the average

frequency of equity issuance, the rate of aggregate equity financing, and the share of new equity in total

financing, all conditional on the economy being in expansions or contractions. We define expansions in

simulated panels to be times when aggregate productivity is at least one unconditional standard deviation

above its long-run average, i.e., xt > x̄+ σx√
1−ρ2

x

, and we define contractions to be times when aggregate

productivity is at least one unconditional standard deviation below its long-run average, i.e., xt <x̄− σx√
1−ρ2

x

.

The relative frequency of equity issuance is defined in the model as
∑N

j=1
1{ejt>0}

N , where 1{ejt>0} is the

indicator function that takes a value of one if firm j issues equity and zero otherwise, and N =5, 000 is the

total number of firms in the simulated economy. The rate of aggregate equity financing is defined as the total

amount of new equity divided by total assets, i.e.,
∑N

j=1
ejt∑

N
j=1

kjt
. Because we do not model debt, we measure the

new equity share as the share of new equity out of total financing including both new equity and internal

funds, i.e.,
∑

N
j=1

ejt∑
N
j=1

(ejt+yjt)
. For simulations create 100 artificial panels each with 5000 firms and 480 monthly

observations. The table reports the cross-simulation averaged results.

Panel A: Expansions Panel B: Contractions

The frequency The aggregate equity The new The frequency The aggregate equity The new
of equity issuance financing rate equity share of equity issuance financing rate equity share

0.825 0.030 0.526 0.015 0.002 0.036

Using simulated panels, we compute the average frequency of equity issuance, the average

rate of aggregate equity financing, and the average new equity share conditional on the

economy being in expansions or contractions. Table 3 reports the results. We observe that

equity issuance is strongly procyclical. The relative frequency of equity issuance is 82.5%

in expansions, and is only 1.5% in contractions. The rate of aggregate equity financing is

3.0% in expansions and is 0.2% in contractions. Finally, the new equity share is 52.6% in

expansions and is only 3.6% in contractions. This procyclical pattern in our simulations is

consistent with the evidence in Choe, Masulis, and Nanda (1993).

We also use simulated data to regress contemporaneously the rate of aggregate equity

financing and the new equity share onto the growth rate of aggregate output, defined as
∑N

j=1
yjt∑N

j=1
yjt−1

, prior six-month stock market returns, defined as
∑N

j=1
vjt

∑N
j=1(vjt−5−d̃jt−5)

, and stock

18



Table 4 : Contemporaneous Regressions of the Rate of Aggregate Equity Financing
and the New Equity Share in Total Financing onto Macroeconomic Variables

This table uses simulated data to regress contemporaneously the rate of aggregate equity financing,
∑N

j=1
ejt∑

N
j=1

kjt

and the share of new equity in total financing,
∑

N
j=1

ejt∑
N
j=1

(ejt+yjt)
, onto the growth rate of aggregate output

∑
N
j=1

yjt∑
N
j=1

yjt−1

, prior six-month stock market returns
∑

N
j=1

vjt
∑

N
j=1(vjt−5−d̃jt−5)

, and stock market volatility estimated

using the rolling prior 36 months of simulated data. We simulate 100 artificial panels, each has 5000 firms

and 480 monthly observations. We perform the regressions on each simulated panel and report the cross-

simulation average results. The numbers in parentheses are the cross-simulation averaged t-statistics adjusted

for heteroscedasticity and autocorrelations of up to 12 lags.

Panel A: The rate of aggregate equity financing Panel B: The new equity share

The growth rate of Prior six-month Stock market The growth rate of Prior six-month Stock market
aggregate output market return volatility aggregate output market return volatility

1.62 23.20
(29.99) (37.49)

0.06 0.69
(14.04) (13.05)

0.32 2.92
(9.76) (6.90)

1.37 0.01 0.16 22.27 0.03 0.74
(22.68) (2.95) (7.69) (29.37) (0.77) (3.17)

market volatility estimated with the rolling prior 36 months of simulated data. From Table

4, the results are largely consistent with Choe, Masulis, and Nanda (1993). In particular,

the rate of aggregate equity financing and the new equity share both correlate positively

with the growth rate of industrial production and with the stock market returns.

4.2 Predicting Stock Market Returns with the New Equity Share

In an important article, Baker and Wurgler (2000) show that the share of new equity issues in

total new equity and debt issues is a strong, negative predictor of future stock market returns.

Baker and Wurgler interpret this evidence as suggesting that firms time the market compo-

nent of their returns when issuing equity to exploit systematic mispricing in market returns.

We show that our model without mispricing can largely replicate the Baker and Wurgler
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Table 5 : Univariate, Predictive Regressions of One-Year-Ahead Market Returns

This table reports univariate, predictive regressions of annual percentage stock market returns on three

regressors. The regression equation is rt+1 = a + bXt + et+1, where rt denotes the real percentage returns

on the value-weighted (vw) market portfolio or the equally-weighted (ew) market portfolio. Xt denotes the

regressors including the dividend-to-price ratio, the book-to-market ratio, or the new equity share in the

sum of total new equity and internal funds. The dividend-to-price ratio, the book-to-market ratio, and the

equity share in new issues are standardized to have zero mean and unit variance. We simulate 100 artificial

panels, each of which has 5000 firms and 480 monthly observations. We perform the predictive regressions

on each simulated panel and report the cross-simulation averaged slopes and test statistics. For comparison,

we also report in data columns the results from Table 3 of Baker and Wurgler (2000).

Panel A: Dividend-to-price Panel B: Book-to-market Panel C: The new equity share

Data Model Data Model Data Model

b t(b) b t(b) b t(b) b t(b) b t(b) b t(b)

vw 5.01 (2.12) 12.99 (3.38) 4.61 (1.79) 14.32 (3.81) −7.42 (−3.86) −10.49 (−2.59)
ew 5.75 (2.04) 13.38 (3.50) 13.06 (2.83) 14.37 (3.84) −13.12 (−3.64) −10.47 (−2.60)

(2000) evidence. Specifically, we perform univariate, predictive regressions of one-year-ahead

stock market returns on the dividend yield, defined in the model as
∑N

j=1
djt

∑N
j=1

(vjt−d̃jt)
, on the

aggregate book-to-market, defined as
∑N

j=1
kjt

∑N
j=1

(vjt−d̃jt)
, and on the new equity share. Following

Baker and Wurgler (2000), we standardize all the predictors so that they have zero mean

and unit variance. The rationale is to make the slope coefficients of different regressors

comparable to each other. And as dependent variables, we use annual percentage returns on

both value-weighted and equal-weighted market portfolios.

Table 5 reports the results. The model largely reproduces the predictive regression results

obtained in the data. The dividend yield and the aggregate book-to-market ratio are both

significantly positive predictors of future stock market returns. More important, the new

equity share is a significantly negative predictor of future stock market returns.

We caution again that our definition of the equity share in the model does not correspond

exactly with that in Baker and Wurgler (2000). This difference makes direct comparison be-
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tween our simulation results and their evidence somewhat difficult. However, our definition

does capture the basic intuition underlying the predictive power of the new equity share, i.e.,

the strong procyclicality of the new equity share gives rise to its negative correlation with

the countercyclical aggregate expected returns.

4.3 The Long-Term Underperformance Following Seasoned

Equity Offerings

In an influential contribution, Loughran and Ritter (1995) document that firms issuing eq-

uity earn much lower returns on average over the next three to five years than nonissuing

firms with similar characteristics (see also Spiess and Affleck-Graves (1995)). The magnitude

of this underperformance varies over time. Firms issuing during light issuance periods do not

underperform much, while firms issuing during high-volume periods severely underperform.

To study whether our model can quantitatively generate this evidence, we replicate

Loughran and Ritter’s (1995) analysis reported in their Table VIII. Specifically, we use

simulated panels to perform Fama-MacBeth (1973) monthly cross-sectional regressions of

percentage stock returns onto the market value, book-to-market, and an issue dummy:

rjt+1 = b0 + b1 log(MEjt) + b2 log(BMjt) + b3 ISSUEjt + εjt+1 (18)

where rjt+1 is the percentage return on stock j in from the beginning of month t to the

beginning of month t+1, and all the regressors are dated at the beginning of month t.

We define market value in the model to be the ex-dividend firm value, vjt−d̃jt, and book-

to-market to be
kjt

vjt−d̃jt

. Following Loughran and Ritter (1995), we evaluate MEjt as the

market value of equity of firm j on the most recent fiscal year that ended prior to the month

t. Similarly, BMjt is the book-to-market ratio of firm j on the most recent fiscal year that
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ended prior to the month t. And ISSUEjt is a dummy variable that takes a value of one if firm

j has conducted one or more equity issues within the previous five years, and zero otherwise,

i.e., ISSUEjt≡1{
∑

59
τ=0

ejt−τ >0}. We also halve the sample into months following light issuance

activity and months following heavy issuance activity. Specifically, we partition the sample

on the basis of the fraction of the sample firms in a month that have issued equity during

the prior five years. The light-issuance sample has all the months with the fraction below its

median, and the heavy-issuance sample has all the months with the fraction above its median.

From Table 6, the model does a decent job in reproducing the empirical evidence. When

the issue dummy is used alone, issuing firms underperform by 0.49% per month in the

data with a t-statistic of −3.98. And its model counterpart is 0.99% per month with a

t-statistic of −3.87. Controlling for size and book-to-market in the regressions reduces the

underperformance to 0.38% in the data and to 0.64% in the model, and both are significant.

More important, the model also reproduces quantitatively the positive relation between

the magnitude of the underperformance and the volume of equity issuance. In the last two

regressions in Table 6, we divide the sample periods into months following light issuance

activity and months following heavy issuance activity. Loughran and Ritter (1995) show

that issuing firms underperform by an insignificant amount of only 0.17% per month

following light issuance activity but by a significant amount of 0.60% following heavy issuance

activity. From the last column, issuing firms following light issuance activity in the model

underperform by an insignificant 0.32% per month, while issuing firms following heavy

issuance activity underperform by a significant 0.95% per month.
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Table 6 : Fama-MacBeth (1973) Monthly Cross-sectional Regressions of Percentage
Stock Returns on Size, Book-to-Market, and a New Issues Dummy

This table reports the Fama-MacBeth (1973) monthly cross-sectional regressions: rjt+1 =b0+b1 log(MEjt)+

b2 log(BMjt)+b3 ISSUEjt +εjt+1, where rjt+1 denotes the percentage return on firm j during month t. MEjt

is the market value of firm j on the most recent fiscal year ending before month t. BMjt is the ratio of the

book value of equity to the market value of equity for firm j on the most recent fiscal year ending before

month t. And ISSUEjt is a dummy variable that equals one if firm j has conducted at least once equity

offerings within the past 60 months preceding month t, and equals zero otherwise. The light-issuance sample

has all the months with the fraction of issuing firms below its median, and the heavy-issuance sample has

all the months with the fraction of issuing firms above its median. We simulate 100 artificial panels, each

of which has 5000 firms and 480 monthly observations. We then perform the cross-sectional regressions on

each simulated panel and report the cross-simulation averaged slopes and Fama-MacBeth t-statistics. We

also compare our results to those reported in Loughran and Ritter (1995, Table VIII).

Sample log(ME) log(BM) ISSUE

Data Model Data Model Data Model

All months − − − − −0.49 −0.99
− − − − (−3.98) (−3.87)

All months −0.05 0.67 0.30 0.66 −0.38 −0.64
(−0.91) (4.52) (4.57) (8.36) (−3.68) (−2.87)

Periods following −0.26 0.31 0.20 0.42 −0.17 −0.32
light volume (−3.12) (2.28) (1.80) (5.77) (−1.19) (−0.90)

Periods following 0.16 1.03 0.39 0.90 −0.60 −0.95
heavy volume (2.11) (6.16) (6.30) (9.43) (−3.98) (−4.24)

4.4 The Long-Term Operating Performance Following Seasoned

Equity Offerings

In another influential article, Loughran and Ritter (1997) document that the operating

performance of issuing firms displays substantial improvement prior to the equity offerings,

but then deteriorates. Issuing firms are also disproportionately high-investing and high-

growth firms. The authors interpret their evidence as consistent with Jensen’s (1993)

hypothesis that corporate culture excessively focuses on growth, and managers are as

overoptimistic about the future profitability of the issuing firms as outside investors.

We show that our model without empire-building and overoptimism can quantitatively
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reproduce the Loughran and Ritter (1997) evidence. To this end, we use simulated panels

to replicate their Table II by reporting the medians of the operating performance for issuing

firms and matching firms for nine years around the issuance. Specifically, following Loughran

and Ritter, we choose matching nonissuers by matching each issuing firm with a firm that

has not issued equity during the prior five years as follows. If there is at least one nonissuer

in the same industry with end-of-year zero assets within 25 to 200 percent of the issuing

firm, the nonissuer with the closest operating income-to-asset ratio is used.2 We also report

the Z-statistics testing the equality of distributions between the issuers and nonissuers using

the Wilcoxon matched-pairs signed-ranks test, and the Z-statistics testing the equality of

distributions between the changes in the ratios from year 0 to year +4.3 Under the null

hypothesis that the issuer and the nonissuer measures are drawn from the same distribution,

Z follows a standard normal distribution.

We consider four operating performance measures: (i) OIBD/assets, where OIBD denotes

operating income before depreciation, measured as
yjt

kjt
in the model; (ii) return on assets

or profitability, measured as
kjt+1−kjt+d̃jt

kjt
in the model, (iii) the investment-to-asset ratio,

measured as
ijt

kjt
in the model; and (iv) market-to-book, measured as

vjt−d̃jt

kjt
in the model.

Table 7 reports the quantitative results. Consistent with the evidence in Loughran and

Ritter (1997), issuers in the model experience deterioration in the operating performance.

After equity issuance, the operating income-to-asset ratios and profitability of issuers become

significantly lower than those of nonissuers. However, the model-implied operating income-

2In the real data, if no nonissuer meets this criterion, Loughran and Ritter (1997) then rank all nonissuers
with year 0 assets of 90 to 110 percent of the issuer, and the firm with the closest, but higher operating
income-to-asset ratio is used. Because we do not distinguish different industries in the model, we simply use
the 25 to 200 percent restriction on end-of-year zero assets to choose matching nonissuer.

3Denote the difference in the accounting measure between issuer i and its matching firm by diff i ≡
measure(issueri)− measure(nonissueri). We rank the absolute values of the diff i from 1 to N e, the total
number of issuing firms. We then sum the ranks of positive values of diff i, and denote the sum with D. The

Z-statistics are computed as Z = D−E[D]
σD

, where E[D]= Ne(Ne+1)
4 and σD = Ne(Ne+1)(2Ne+1)

24 .
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to-asset and profitability levels are on average much higher than those observed in the data.

The reason is probably that the denominator in the model variables corresponds to the fixed

assets in the data, which are only part of the total assets.

What drives the deteriorating accounting performance of firms after issuing equity? Intu-

itively, the firm-level profitability in the model is driven by the persistent and mean-reverting

firm-specific productivity in equation (2). Therefore, ex-post, issuers tend to be firms that

have recently experienced extremely high firm-specific shocks, εz
jt+1. But going forwards, is-

suers face the same conditional, standard normal distribution of these shocks as other firms

do. When we as econometricians look at the historical sample, we are likely to observe

the mean-reverting behavior in the cross-sectional difference in productivity, zjt, measured

empirically as the differences in profitability between issuers and matching nonissuers.

Table 7 also shows that issuers in the model have persistently higher investment-to-asset

and market-to-book ratios than matching nonissuers. And from Panel C, these differences

are mostly significant. Moreover, the model does a decent job in matching the mean-reverting

behavior of the investment-to-asset and market-to-book ratios.

4.5 The Long-Term Performance of Firms Distributing Cash

When firms raise capital, they underperform matching firms in the future three to five years.

But when firms distribute cash back to shareholders, they outperform matching firms. For

example, Ikenberry, Lakonishok, and Vermaelen (1995) show that the average abnormal

four-year buy-and-hold return after the announcements of open market share repurchases

is 12.1% in 1980–1990. And the average abnormal return is 45.3% for value firms, but is

insignificantly negative for growth firms. Similarly, Michaely, Thaler, and Womack (1995)

show that stock prices continue to drift in the same direction in the years following the
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Table 7 : Median Operating Performance Measures and Market-to-Book for Issuers
and Matching Nonissuers

Panels A and B report the median operating performance measures for the issuing and matching firms.

Panels C and D report the Z-statistics testing the equality of distributions between the issuers and matching

nonissuers using the Wilcoxon matched-pairs singed-ranks test. We simulate 100 artificial panels, each of

which has 5000 firms and 480 monthly observations. The monthly flow variables are aggregated within

a given year to create annual variables. Stock variables are measured at the beginning of the year. We

perform the tests on each simulated panel and report the cross-simulation average results. We also compare

our results to those reported in Table II of Loughran and Ritter (1997).

Event year Operating Profitability Investment- Market-to-book
income-to-asset to-asset

Panel A: Issuer medians

Data Model Data Model Data Model Data Model

−4 16.1% 26.0% 5.8% 12.7% 8.2% 0.6% 1.20 1.45
−3 16.6% 26.9% 6.0% 16.0% 8.5% 1.8% 1.42 1.54
−2 16.4% 28.5% 6.0% 19.6% 9.9% 7.0% 1.59 1.77
−1 17.0% 30.1% 6.4% 23.4% 10.2% 13.5% 2.40 1.95

0 15.8% 27.8% 6.3% 27.2% 10.0% 23.1% 1.96 2.48
+1 14.2% 25.8% 5.3% 15.7% 10.6% 23.4% 1.68 2.22
+2 12.7% 24.5% 3.9% 13.1% 9.3% 19.2% 1.65 2.09
+3 12.1% 23.6% 3.3% 13.3% 8.7% 16.6% 1.58 2.00
+4 12.1% 23.0% 3.2% 13.1% 8.1% 14.7% 1.43 1.97

Panel B: Nonissuer medians

Data Model Data Model Data Model Data Model

−4 16.4% 25.5% 6.1% 9.9% 5.0% 3.5% 1.04 1.48
−3 15.6% 25.8% 5.8% 12.2% 5.4% 1.3% 1.12 1.45
−2 15.4% 26.3% 5.3% 14.0% 5.6% 0.6% 1.19 1.45
−1 15.1% 27.0% 5.5% 15.7% 5.7% 1.2% 1.30 1.48

0 15.8% 27.8% 5.7% 17.4% 5.9% 3.0% 1.45 1.55
+1 15.2% 26.8% 5.3% 19.7% 6.5% 6.4% 1.41 1.69
+2 14.1% 25.6% 4.8% 18.3% 6.5% 10.1% 1.43 1.81
+3 13.8% 24.8% 4.6% 16.3% 6.6% 12.0% 1.48 1.86
+4 13.5% 24.2% 4.2% 15.8% 6.6% 13.4% 1.44 1.91

Panel C: Z-statistics testing the equality of distributions
between the issuers and matching nonissuers

−4 −0.92 −0.03 −2.10 4.84 12.00 −8.26 3.65 −4.14
−3 2.87 −2.74 1.12 9.36 13.69 3.71 5.64 10.41
−2 4.73 −7.48 3.42 15.40 16.16 23.56 8.87 32.07
−1 7.68 −14.69 6.58 23.56 17.10 43.96 16.98 42.53

0 −1.06 −49.80 6.50 32.77 15.46 49.58 10.36 47.56
+1 −3.02 5.65 0.35 −13.83 14.55 40.27 7.52 26.60
+2 −5.29 4.92 −5.26 −16.29 11.24 20.57 4.11 11.81
+3 −5.40 4.90 −6.58 −8.70 8.64 8.81 1.74 1.44
+4 −4.43 4.64 −5.76 −7.54 7.91 0.63 −0.51 −0.85

Panel D: Z-statistics testing the equality of distributions
between the change in the ratios from year 0 to year +4

0 to +4 −4.59 5.09 −5.57 −7.46 −5.96 59.25 −8.52 45.70
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announcements of dividend initiations and omissions.

To study whether our model can quantitatively generate these empirical results, we

replicate Tables 3 and 4 in Ikenberry, Lakonishok, and Vermaelen (1995) using our simulated

panels. In the model, we identify firms with positive dividends as those conducting stock

repurchase in the data. Our model only pins down the total amount of payout, not its specific

forms: the Miller-Modigliani (1991) dividend irrelevancy theorem holds in our neoclassical

model. We report mean annual returns from buying an equally-weighted portfolio of

repurchasing firms, beginning in the month following the repurchase and for the subsequent

four years. We also report total compounded returns for up to four years, and compare the

returns of the cash-distributing firms to returns of reference portfolio.

We follow closely Ikenberry, Lakonishok, and Vermaelen (1995) in forming our reference

portfolio. All firms in our simulated panel are sorted each month into one of 50 size and

book-to-market portfolios by taking the intersections of ten size deciles and five book-to-

market quintiles. Then all firms are ranked in the beginning of calendar year and are held

for the following 12 months. Beginning in the next month, the one-year buy-and-hold return

is calculated for each firm in a given portfolio. We use the equally-weighted average of all

annual returns in a given portfolio as the benchmark return for the firms ranked in that

particular size and book-to-market portfolio. The ranking of a particular firm may change

from year to year. To accommodate this feature, we allow the benchmark to change over time.

Table 8 reports annual buy-and-hold returns and compounded holding period returns up

to four years following share repurchases, both in the data and in the model. The table

shows that cash-distributing firms indeed earn higher average returns than nondistributing

firms. But the magnitudes of the differences seem much lower in the simulated data than

those in the real data.
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Table 8 : Annual Buy-and-Hold Returns and Compounded Holding Period Returns
Up to Four Years Following Market Share Repurchases

This table reports annual and compounded buy-and-hold percentage returns following share repurchases

for up to four years. Compounded holding-period returns assume annual rebalancing. We form equally-

weighted portfolios for the whole sample. We construct the reference portfolio using benchmark returns

corresponding to the repurchase sample, matched on the basis of size and book-to-market ranking. To form

reference portfolio, we sort all firms in our simulated panel each month into one of 50 size and book-to-

market portfolios (the intersections of ten size deciles and five book-to-market quintiles). We rank all firms

in the beginning of calendar year and hold them for the following 12 months. Beginning in the next month,

we calculate the one-year buy-and-hold return for each firm in a given portfolio. We then use the equal-

weighted average of all annual returns in a given portfolio as the benchmark returns for firms ranked in that

particular size and book-to-market portfolio. We rebalance the portfolio annually. We simulate 100 artificial

panels, each of which has 5000 firms and 480 monthly observations. We perform the empirical analysis on

each simulated panel and report the cross-simulation average results. We also compare our results to those

reported in Table 3 of Ikenberry, Lakonishok, and Vermaelen (1995).

Panel A: Annual buy-and-hold returns Panel B: Compounded holding period returns

Repurchase Reference Difference Repurchase Reference Difference
firms portfolio firms portfolio

Data Model Data Model Data Model Data Model Data Model Data Model

Year 1 20.80 10.56 18.76 9.81 2.04 0.74 20.80 10.56 18.76 9.81 2.04 0.74
Year 2 18.12 8.93 15.81 8.71 2.31 0.22 42.69 19.56 37.53 18.47 5.16 1.06
Year 3 21.77 8.26 17.18 8.12 4.59 0.14 73.75 27.98 61.15 26.49 12.60 1.49
Year 4 8.56 7.86 9.51 7.77 −0.96 0.10 88.62 36.44 76.48 34.30 12.14 2.14

We also examine the annual buy-and-hold returns and compounded holding-period

returns following cash distribution by book-to-market quintiles. We rank all firms into

size deciles, and further sort each decile into book-to-market quintiles. The lowest book-to-

market ratios are assigned to quintile one. We form the reference portfolio using benchmark

returns corresponding to the repurchase sample, matched on size and book-to-market.

From Table 9, the model can reproduce the empirical pattern that the magnitude of the

long-run stock-price drift following cash distribution is stronger in value firms than that in

growth firms (e.g., Ikenberry, Lakonishok, and Vermaelen (1995, Table 4)). However, the

magnitudes of the drift in the model are again much lower than that observed in the data.
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Table 9 : Annual Buy-and-Hold Returns and Compounded Holding Period Returns
by Book-to-Market Quintiles Following Cash Distribution

This table reports annual and compounded buy-and-hold percentage returns for equally-weighted portfolios

of firms distributing cash for up to four years following market share repurchases by book-to-market quintile

ranking. Compounded holding-period returns assume annual rebalancing. Ranks are determined by sorting

all firms into size deciles. Each decile is further sorted into quintiles on the basis of book-to-market, with the

lowest ratios assigned to quintile one. We form the reference portfolio using benchmark returns corresponding

to the repurchase sample, matched on the basis of size and book-to-market ranking. We create 100 artificial

panels of 5000 firms each and with 480 observations for each firm. The unit time period is one month.

We perform these analysis on each simulated panel and report across-simulation averaged results, and we

compare our results to those reported in Ikenberry, Lakonishok, and Vermaelen (1995, Table 4).

Annual buy-and-hold returns Compounded holding period returns

Repurchase Reference Difference Repurchase Reference Difference
firms portfolio firms portfolio

Data Model Data Model Data Model Data Model Data Model Data Model

Panel A: Book-to-market quintile 1 (growth stocks)

Year 1 15.72 11.17 16.83 10.47 −1.11 0.70 15.72 11.17 16.83 10.47 −1.11 0.70
Year 2 17.86 9.95 16.60 9.83 1.26 0.12 36.40 21.46 36.22 20.56 0.18 0.90
Year 3 12.00 9.46 13.61 9.38 −1.61 0.07 52.77 31.73 52.77 30.51 −1.98 1.23
Year 4 4.98 9.14 6.42 9.04 −1.44 1.11 60.38 42.42 60.38 40.55 −4.31 1.89

Panel B: Book-to-market quintile 2

Year 1 20.59 10.98 18.43 10.33 2.16 0.65 20.59 10.98 18.43 10.33 2.16 0.65
Year 2 12.34 9.51 15.07 9.36 −2.73 0.14 35.47 20.67 36.28 19.79 −0.81 0.88
Year 3 22.39 8.85 17.29 8.77 5.10 0.08 65.80 29.99 59.84 28.74 5.96 1.25
Year 4 3.20 8.51 6.99 8.41 −3.79 0.10 71.10 39.47 71.02 37.54 0.08 1.93

Panel C: Book-to-market quintile 3

Year 1 19.49 10.90 16.46 10.29 3.03 0.62 19.49 10.90 16.46 10.29 3.03 0.62
Year 2 18.23 9.31 17.33 9.11 0.90 0.20 41.27 20.28 36.64 19.38 4.63 0.91
Year 3 20.77 8.48 16.57 8.36 4.20 0.12 70.61 28.98 59.29 27.67 11.32 1.32
Year 4 7.45 8.09 10.35 8.01 −2.90 0.09 83.32 37.71 75.78 35.71 7.54 2.00

Panel D: Book-to-market quintile 4

Year 1 23.43 10.81 22.84 10.19 0.59 0.62 23.43 10.81 22.84 10.19 0.59 0.62
Year 2 15.16 8.98 12.73 8.78 2.43 0.20 42.14 19.78 38.48 18.84 3.66 0.93
Year 3 24.05 8.04 18.32 7.90 5.73 0.14 76.32 27.84 63.85 26.44 12.47 1.40
Year 4 12.44 7.65 11.06 7.53 1.38 0.12 98.24 35.82 81.97 33.69 16.27 2.13

Panel E: Book-to-market quintile 5 (value stocks)

Year 1 24.15 10.50 19.49 9.69 4.66 0.82 24.15 10.50 19.49 9.68 4.66 0.82
Year 2 26.01 8.35 17.23 8.08 8.78 0.27 56.44 18.72 40.08 17.51 6.36 1.21
Year 3 29.81 7.38 20.49 7.21 9.32 0.17 103.07 25.94 68.78 24.23 34.29 1.71
Year 4 16.17 6.87 12.94 6.77 3.23 0.10 135.91 32.86 90.62 30.50 45.29 2.37

29



4.6 Capital Investment, External Finance, and Stock Returns

The finance-related anomalies are intimately linked to the investment-return relation.

Richardson and Sloan (2003) document that the negative relation between external finance

and future stock returns varies systematically with the use of the proceeds. When the pro-

ceeds are invested in net operating assets as opposed to being stored as cash, there exists a

stronger negative relation. And there is no evidence on the negative relation for refinancing

transactions. Lyandres, Sun, and Zhang (2005) document that adding a return factor based

on real investment into calendar-time factor regressions makes underperformance following

equity issuances largely insignificant and reduces its magnitude by 37–46%. This evidence

highlights the importance of capital investment in driving the financing-related anomalies.

To study the investment-return relation in our model, we reproduce the main empirical

analysis of Titman, Wei, and Xie (2004), who recently document a negative, firm-level

relation between capital investment and average subsequent returns.4 Both Richardson and

Sloan and Titman et al. interpret this evidence as investors underreaction to empire building

implications of real investment. As we show below, our model without underreaction or

empire building can quantitatively reproduce the negative investment-return relation.

To this end, we use simulated panels to form five portfolios based on capital investment

(abbreviated as CI hereafter). Following Titman, Wei, and Xie (2004), we define CI that

corresponds to the portfolio formation year t as CIjt−1 =
CEjt−1

(CEjt−2+CEjt−3+CEjt−4)/3
− 1, where

CEjt−1 is firm j’s capital expenditure scaled by sales during year t−1. We measure CEjt−1

in the model as the investment-to-output ratio,
ijt−1

yjt−1
, because the output price is normalized

to be one. The last three-year moving-average capital expenditure in the denominator of

4This negative investment-return relation is well-known in the aggregate data, see Cochrane (1991). Other
empirical studies documenting the negative investment-return relation in the firm-level include Anderson and
Garcia-Feijóo (2005), Lyandres, Sun, and Zhang (2005), and Xing (2005).
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CIjt−1 is used to project the firm’s benchmark investment.

In the beginning of year t, we sort all firms into quintiles based on their year t−1 CI

measures in ascending order. The firms remain in these portfolios for the whole year t; the

portfolios are rebalanced annually. We then construct a CI-spread portfolio that has a long

position in the two lowest CI portfolios and a short position in the two highest CI portfolios.

The returns for this zero-cost portfolio are calculated by subtracting the average returns of

the highest CI portfolios from the average returns of the lowest CI portfolios.

We also calculate the value-weighted monthly excess returns for each CI portfolio from

year t to t + 1. Following Titman, Wei, and Xie (2004), we measure excess returns relative

to benchmarks constructed to have similar firm characteristics such as size, book-to-market,

and price momentum. Specifically, we form 125 benchmark portfolios that capture these

characteristics. Starting in year t, the universe of common stocks is sorted into five portfolios

based on firm size at the end of year t−1. And the breakpoints for size are obtained by

sorting all firms into quintiles based on their size measures at the end of year t−1 in ascending

order. The size of each firm in our sample is then compared with the breakpoints to decide

which portfolio the firm belongs to. Firms in each size portfolio are further equally sorted

into quintiles based on their book-to-market ratio at the end of year t−1. Finally, the firms

in each of the 25 size and book-to-market portfolios are equally sorted into quintiles based

on their prior-year return. In all, we obtain 125 benchmark portfolios.

We calculate excess returns using these 125 characteristic-based benchmark portfolios.

Each year, each stock is assigned to a benchmark portfolio according to its rank based on size,

book-to-market, and prior returns. Excess monthly returns of a stock are then calculated

by subtracting the returns of the corresponding benchmark portfolio from the returns of

this particular stock. The excess returns on individual stocks are then used to calculate the
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value-weighted excess monthly returns on the test portfolios that are formed based on CI.

Table 10 reports the results both in the data and in the simulations. Consistent with

Titman, Wei, and Xie (2004), Panel A reports that firms with low CI earn higher average

returns than firms with high CI. The model-implied average CI-spread is 10.6% per annum,

which falls short of that documented in the data, 16.9%.

We also perform the following Fama-MacBeth cross-sectional regressions

rjt+1 = λ0t + λ1tCIjt + λ2tCIjt × DCFjt + εjt+1 (19)

where rjt+1 is the benchmark-adjusted value-weighted return on individual stock i during

period t. DCF is the dummy variable based on the cash flow, measured as operating income

scaled by total assets,
yjt

kjt
in the model. If firm j’s cash flow is above the median cash flow

of the year, DCF equals one, otherwise it equals zero.

Panel B of Table 10 suggests that, consistent with Titman, Wei, and Xie (2004), there

exists a negative correlation between future stock return and capital investment in the sim-

ulated data. And the magnitude of this correlation increases with the operating income-to-

asset ratio, as shown by the negative slope of λ2t for the interaction term, CIjt×DCFjt. The

model-implied slopes are also quantitatively similar to those observed in the data.

5 Related Literature

We briefly discuss our connection to the literature in this section. Brav, Geczy, and

Gompers (2000) document that the underperformance following seasoned equity offerings is

concentrated primarily in small-growth issuing firms, and suggest that the underperformance

reflects a more pervasive return pattern related to size and book-to-market. We provide an
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Table 10 : Excess Returns of Capital Investment (CI) Portfolios

Panel A presents the distribution of excess returns on five CI portfolios and the CI-spread portfolio. CI

denotes the capital investment measure. We use investment-to-asset ratio to create the CI portfolios.

We report the monthly mean excess returns, the standard deviation, the maximum, the median, and the

minimum of the excess returns. The CI portfolios are constructed as follows. In year t, all stocks are

sorted into quintiles based on their CI measures in ascending order to form five CI portfolios. Value-

weighted monthly excess returns on a portfolio are calculated from year t to year t+1. The excess return

on an individual stock at time t is calculated by subtracting the returns of characteristic-based benchmark

portfolios from the stock return at time t. The CI-spread denotes the zero-investment portfolio that has a

long position in the two lowest CI portfolios and a short position in the two highest CI portfolios. The

return series for this portfolio is calculated by subtracting the sum of the returns on the highest two

portfolios from that on the two lowest CI portfolios, and then dividing the result by two. All portfolios

are rebalanced annually. Panel B reports the results of the Fama-MacBeth (1973) cross-sectional regression:

rjt+1 =λ0t+λ1tCIjt+λ2tCIjt DCFjt +εjt+1, where rjt+1 is the benchmark-adjusted value-weighted return on

individual stock j at during month t. DCF is the dummy variable based on cash flow, measured as operating

income scaled by total assets, measured in the model as
yjt

kjt
. If the cash flow of one firm is above the median

cash flow of the year, its DCF equals one, and zero otherwise. We simulate 100 artificial panels, each of

which has 5000 firms and 480 monthly observations. The monthly flow variables are aggregated within one

given year to create their corresponding annual variables. We perform the tests on each simulated panel and

report the cross-simulation average slopes and test statistics. We also compare our results to those reported

in Table 1 (Panel A) and Table 6 (Panel A) in Titman, Wei, and Xie (2004).

Panel A: Excess return distribution of capital investment portfolios

CI Portfolio Mean Std Max Median Min

Data Model Data Model Data Model Data Model Data Model

Lowest 0.042 0.066 0.010 0.048 3.38 0.16 0.06 0.07 −3.11 −0.06
2 0.083 0.011 0.007 0.031 2.26 0.08 0.10 0.01 −2.76 −0.06
3 0.055 −0.006 0.006 0.023 1.84 0.05 0.03 −0.01 −2.07 −0.06
4 −0.083 −0.021 0.005 0.027 1.38 0.04 −0.06 −0.02 −1.88 −0.08
5 −0.127 −0.040 0.010 0.045 2.61 0.06 −0.08 −0.04 −4.08 −0.14

CI-spread 0.169 0.106 0.009 0.003 3.30 0.071 0.12 0.07 −2.63 0.05

Panel B: rjt+1 = λ0t + λ1tCIjt + λ2tCIjt × DCFjt + εjt+1

CI CI × DCF

Data Model Data Model

λ −0.79 −0.64 −0.76 −0.45
t-stat (−2.80) (−3.65) (−2.19) (−3.33)
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economic explanation of their evidence because the model suggests that both equity issuers

and small-growth firms are high-investing firms.

Eckbo, Masulis, and Norli (2000) report that a multifactor asset pricing model can reduce

the underperformance to an insignificant level, and argue that issuing firms are less risky

because their leverage ratios are lowered as a result of equity issuance. We complement

their work by suggesting the investment-based mechanism that can potentially drive their

risk evidence. Moreover, Lyandres, Sun, and Zhang (2005) document that even after equity

issuance, issuing firms have book and market leverage ratios substantially higher than those

of matching nonissuers, inconsistent with the leverage explanation of the underperformance.

Schultz (2003) argues that using event studies is likely to find long-term underperformance

ex post, even though there is no underperformance ex ante.5 Weighing each period equally as

in calendar-time factor regressions solves this problem. We add to Schultz’s (2003) pseudo-

market-timing insight in two ways. First, we provide an economic explanation for his key

premise that firms are more likely to issue when stock prices are high so they can receive more

for their equity. We show that optimal equity financing is highly procyclical, i.e., firms invest

more and thus naturally issue more equity in expansions when stock prices are relatively high.

Second, our argument applies to event-time as well as calendar-time evidence because the

model predicts that issuing firms are expected to earn lower rates of returns ex ante.

Our work is also related to several other papers casting some doubt on behavioral mar-

ket timing, but from the perspective of capital structure choice. Leary and Roberts (2005)

argue that the persistence of leverage is likely driven by dynamic optimizing behavior with

adjustment costs. Hennessy and Whited (2005) construct a dynamic trade-off model with

5If early in a sample period, issuing firms underperform, there will be few issues in the future because
investors are less interested in them. The average performance will be weighed more towards the early issues
that underperformed. If early issuing firms outperform, there will be many more issues in the future. The
early performance will be weighed less in the average performance.
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endogenous leverage, payout, and investment and show that leverage varies negatively with

an external-finance-weighted-average Q, a result documented by Baker and Wurgler (2002).

Strebulaev (2003) constructs a dynamic trade-off model of capital structure with adjustment

costs and show that the model can reproduce the empirical relation between leverage and

stock return documented by Welch (2004). Liu (2005) shows that historical market-to-book

and stock return obtain their explanatory power of leverage because of adjustment costs and

the time-varying nature of the target leverage. None of these papers studies the predictive

relation between past financing decisions and future stock returns, i.e., the return-related

evidence of behavioral market timing. Our work fills this gap.

More generally, our work is related to the literature that tries to understand the economic

determinants of the anomalies in the cross section of returns by analyzing firm decisions

(e.g., Berk (1995), Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2003), Carl-

son, Fisher, and Giammarino (2004, 2005), Kogan (2004), Cooper (2005), and Zhang (2005a,

2005b)). Except for Carlson et al. (2005), these papers do not study the quantitative relation

between equity financing and stock returns. We contribute to the literature along this line.

6 Conclusion

We use a fully-specified neoclassical model augmented with costly equity financing as a

laboratory to study the quantitative relations between stock returns and equity financing.

Simulations show that the model can simultaneously and in many cases quantitatively

reproduce: (i) procyclical equity issuance; (ii) the predictive relation between aggregate

equity share and stock market returns; (iii) long-term underperformance following equity

issuance and the positive relation of its magnitude with the volume of issuance; and (iv) the

mean-reverting behavior in the operating performance of issuing firms. Our model does not
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have apparent behavioral bias, we suggest that the evidence often interpreted as behavioral

underreaction to market timing or the window-of-opportunity theory of financing decisions

can be potentially consistent with efficient markets.

However, although going in the right direction, our quantitative results on the positive

long-term stock price drift of cash-distributing firms and the positive relation between its

magnitude and book-to-market are fairly weak. Improving the quantitative performance of

the model along this dimension remains a significant challenge for future research.
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A Computational Appendix

We use the value function iteration procedure to solve the individual firm’s problem given
in equation (12). We solve the value function and the optimal decision rule on a grid in a
discrete state space.

We specify a grid with 50 points for the capital stock with an upper bound k. The up-
per bound is large enough to be nonbinding at all times. We construct the grid for capital
stock recursively, following McGrattan (1999), i.e., ki = ki−1 + ck1 exp (ck2 (i − 2)), where
i=1, . . . , 50 is the index of grid points and ck1 and ck2 are two constants chosen to provide
the desired number of grid points and k, given a pre-specified lower bound k. This recursive
construction assigns more grid points around k, where the value function has most of its
curvature. The state variables x and z in equations (1) and (2), respectively, are defined
on continuous state spaces. And to compute the numerical solution to the model, we need
to transform the continuous state spaces into discrete state spaces. Because both produc-
tivity processes are highly persistent in monthly frequency, we use the method described in
Rouwenhorst (1995). We use 15 grid points for x process and 17 points for z process. In all
cases our quantitative results are robust to finer grids.

Once the discrete state space is available, the conditional expectation operator in (12) can
be carried out as a matrix multiplication. The expected return Et[rjt+1]=Et[vjt+1]/(vjt−djt)
can be calculated in the same way. We use piecewise linear interpolation extensively to
obtain firm value, optimal investment, and expected return, which do not lie directly on the
grid points. Finally, we use discrete, global search routine in maximizing the right-hand side
of the value function (12). This routine is slow but precise. Specifically, we compute the
objective function on an even-spaced grid of k, with boundary [k, k] with 20,000 points. The
computer programs for solving the value function and for simulating the model are available
upon request.
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