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ABSTRACT

In science as well as technology, the diffusion of new ideas influences innovation and productive

efficiency. With this as motivation we use citations to scientific papers to measure the diffusion of

science through the U.S. economy. To indicate the speed of diffusion we rely primarily on the modal

or most frequent lag. Using this measure we find that diffusion between universities as well as

between firms and universities takes an average of three years. The lag on science diffusion between

firms is 3.3 years, compared with 4.8 years in technology for the same companies using the same

methodology. Industrial science diffuses fifty per cent more rapidly than technology, and academic

science diffuses still faster. Thus the priority publication system in science appears to distribute

information more rapidly than the patent system, although other interpretations are possible. We also

find that the speed of science diffusion in the same field varies by a factor of two across industries.

The industry variation turns out to be driven by frictional publication lags and firm size in R&D and

science. Friction increases the lag, but firm size in R&D and science decrease it. Industries having

a lot of R&D or science and composed of fields with little friction exhibit rapid diffusion. Industries

where the reverse is true exhibit slow diffusion.

James D. Adams
Department of Economics
3504 Russel Sage Laboratory
Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180-3590
and NBER
adamsj@rpi.edu

J. Roger Clemmons
Institute for Child Health Policy
University of Florida
PO Box 100147
Gainesville, FL 32610-0147
jrc@ichp.ufl.edu

Paula E. Stephan
Department of Economics
and Andrew Young School of Policy Studies
Georgia State University
Atalanta, GA 30303-3083
pstephan@gsu.edu



 

 
I. Introduction    

The speed with which science and technology leak out very likely increases both innovation and 

productive efficiency.  This is true for the simple reason that firms possess more knowledge when diffusion 

is more rapid.  But in addition, recent ideas may be more valuable than older ones.  Recent ideas could 

improve on earlier ones so that their quality is higher.  Recent ideas are less likely to have been 

commercialized.  And ideas could be recombinant, so that new ideas make earlier ideas more valuable. 

It follows that the rate of innovation and productive efficiency depend on diffusion, so that a faster rate 

of diffusion moves technology-in-use closer to the best-practice technology.  These points apply to science 

as well as to technology.  The diffusion of science is important because it contributes to output through an 

increase in the efficiency of research and development1.  This line of thought leads to several questions.  

How rapidly do science and technology leak out?  How does the speed of diffusion vary among firms and 

universities?  How and why does the speed of diffusion vary across industries?  

To answer these questions we begin by measuring the speed of diffusion of science, primarily using 

the modal or most frequent lag in citation as a measure of its central tendency.   Afterwards we compare 

this with the speed of diffusion of patented technology.   In this way we establish stylized facts about 

diffusion in both science and technology.  We rely on lags between citing and cited scientific papers and 

industrial patents for this purpose.  Our approach to estimating the lags builds on the methodology for 

estimating patent citation functions in Jaffe and Trajtenberg (1996, 1999, and 2002).  This use of a common 

methodology increases comparability of the measurements.  Even so, we do not claim that the two 

diffusion processes are the same, and indeed we find that they are rather different. 

Diffusion is the topic of a large literature, although none of this appears to describe, interpret, and 

compare the diffusion of science and technology as this paper does.  Griliches (1957) examined the 

adoption of hybrid corn by farmers in U.S. states and crop reporting districts.   His findings showed that 

lags in the adoption of hybrid corn shortened as profits from adoption increased.  Mansfield (1963) showed 

that adoption of the diesel locomotive by U.S. railroads resulted from growing advantages of diesel over 

                                                 
1 Adams (1990, 2005), Adams and Clemmons (2005), and Cohen, Nelson, and Walsh (2002) contain 
additional discussions. 

 



steam as influenced by profitability, liquidity, and other characteristics.  Mansfield (1991) found that many 

industrial innovations would have been impossible or would have been delayed without recent science. 

Monetary and other gains should also drive adoption of new scientific approaches.  For example, drug 

companies adopted biotechnology for the purpose of avoiding mass testing of chemical compounds 

(Henderson and Cockburn, 1996).  However, scarcity of molecular and cell biologists in industry hindered 

adoption, and led to the establishment of firms whose founders were academics.  In this way diffusion 

entailed entry (Audretsch and Stephan, 1996; Zucker, Darby, and Brewer, 1998; Ruttan, 2001, Ch. 10). 

      A related literature considers the role of intellectual property in diffusion.  Mansfield (1985) showed 

that knowledge of a company’s development efforts leaked out to competitors within 12 to 18 months.  

Once developed, knowledge of new products leaked out in 12 more months, but   imitation costs imposed 

additional lags.  Indeed Mansfield, Schwartz and Wagner (1981) found that imitation costs were two-thirds 

of innovation costs and that patenting increased these costs.   

Weak incentives hinder invention and its adoption in planned economies.  Berliner (1976) argued that 

inadequacies of the bonus system undermined Soviet Russia’s productive efficiency compared with 

Western economies.  Building on such evidence Dearden, Ickes, and Samuelson (1990), and Hart, Vishny, 

and Shleifer (1997) undertook theoretical studies of the limits to public sector innovation. 

To a lesser extent imperfect rewards to inventors may deter invention in firms.  Scherer (1984, chapter 

9) noted that firms’ innovative output rose at a decreasing rate with firm size and suggested that incentive 

failures were the cause.  Imperfections in patent rights across earlier and later inventors reduce incentives to 

improve products (Scotchmer 1991; 2004, Chapters 4, 5).  In summary a substantial literature relates 

technology diffusion to secrecy, adoption costs and incentives.  

Incentives in science often take the form of fame and reputation.  However, the priority system in 

science, as Robert Merton has shown, encourages individuals to share knowledge quickly, since sharing 

establishes property rights in science (Stephan, 2004).  For this reason the priority publication system may 

accelerate the diffusion of science compared with technology.  This hypothesis is strengthened by evidence 

on the use of secrecy to protect industrial technology (Levin, Klevorick, Nelson, and Winter, 1987; Cohen, 

Nelson, and Walsh, 2002; Furman and Stern, 2004). 
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Turning to our results we find that the modal lag among U.S. universities averages about three years.  

This lag does not increase systematically with geographic distance between researchers.  Citation lags vary 

strongly among fields, with physics and biology diffusing more rapidly than average and computer science 

and engineering diffusing less rapidly.  Variations in review times (Ellison, 2002) partly drive these 

differences.   Perhaps reflecting higher costs of absorption, citation lags between fields exceed within-field 

lags by 0.4 years.  To an extent same-university citations get around review lags.  Accordingly the lag on 

same-university citations averages 1.8 years—60 percent of the between-university lag.  

Science citation lags in industry are similar.  The lag on citations by firms to universities is 3.0 years.   

We find a lag that is10 percent longer, or 3.3 years, or in the case of firms citing each other. One 

interpretation is that firms impose strategic publication delays, but that the delays are slight.  The lag on 

same-firm citations is the same as the lag on same-university citations, which again suggests bypassing of 

publication lags.   

So far the findings apply to science.  To provide a benchmark for these results we estimate modal lags 

on patents for the same firms using the same methodology. When this is done we find that the lag on firm 

citations is 4.8 years.  Comparing these findings we find that science diffuses fifty percent faster among 

firms than patented technology.  In previous research U.S. patents  display a lag ranging from 4.6 to 5.3 and 

this lag is greater still between countries (Jaffe and Trajtenberg, 1996, 1999; Peri, 2005). Thus results from 

several sources indicate that technology diffuses more slowly than science. 

Additional results explore variation in science diffusion by industry and field.  The range of variation 

is large: a given science takes about twice as long to reach the slowest industry as the fastest.  Drugs and 

biotechnology, electrical equipment, and communications are industries to which science diffuses rapidly 

while diffusion occurs slowly in metals and machinery.  Section VI seeks to explain this puzzle. The 

dependent variable is the citation lag.  Independent variables include the instrumented frictional publication 

lag, mean firm R&D, and mean scientific papers.  We find that the frictional lag, a type of supply dynamic, 

increases the lag, but that firm size in R&D and science decrease it.  Industries having a lot of R&D and 

science and industries that are dominated by fields with little friction exhibit rapid diffusion.  Industries 

where the reverse is true exhibit slow diffusion.  These findings suggest that in science, just as in invention, 

dynamics of supply and firm optimization establish the speed of diffusion (Griliches, 1957). 
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The rest of the paper consists of six sections.  Section II discusses the citation function.  We use the 

modal lag implied by this function, or the lag at which citation peaks, to measure the central tendency of 

citation lags.  We discuss the modal lag and show that it is a robust statistic for ranking the speed of 

diffusion.  Section III describes the database of papers and citations on which the findings are based.  The 

data derive from the Institute for Scientific Information (ISI) and consist of 2.7 million scientific papers and 

20.2 million citations to these papers during 1981-1999.  The papers are written in 110 top U.S. universities 

and 200 top U.S. R&D firms that account for most science publication in the U.S. during this period.  

Section IV presents estimates of the speed of diffusion of science among U.S. universities.  Section V 

reports similar estimates of science’s speed of diffusion from universities to U.S. firms and among the 

firms.  In addition we report estimates of the speed of science diffusion by industry as well as field.  Finally 

the section estimates the speed of diffusion of patents for the firms. Section VI studies the sources of 

industry variation in science citation lags.  Section VII concludes and discusses additional research.  

II. The Citation Function 
We use the citation function to estimate the speed of diffusion between scientific papers.  Jaffe and 

Trajtenberg (1996, 1999) use this function to quantify the use of patents and their diffusion.  In this article 

we apply the citation function to scientific papers and science citations.  The citations are backward 

citations from later to earlier researchers because we are interested in how rapidly earlier science reaches 

later users.  Since the citation function is at the center of the empirical analysis of Sections IV-V, we 

provide a brief discussion in this section. 

We begin by clarifying the differences between science and patent citations.  Both refer to prior 

literature but the reasons for doing so are not clear.  Motivations include the influence of earlier ideas and 

their role in defining the problem and its solution.  This motive is apparent in patent citations, which limit 

commercial applications of inventions to improvements on prior art, and also in science citations.  Science 

citations are more likely to refute findings and they could be a strategy to achieve publication.  Science 

citations are controlled by authors while patent citations are often chosen by patent examiners and 

attorneys.   While referees of scientific journals suggest references, their inclusion requires author’s assent.  

Another difference is that a single patent office controls patent grants, so application dates as well as grant 

dates are known.  In science, numerous journals control publication, rejections occur, and initial application 
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dates are typically unknown.  We conclude that differences as well as similarities apply to science and 

patent citations, though their impact on diffusion is not obvious.   

We estimate the citation function on cells defined by the exogenous characteristics of citing and cited 

papers. Each cell includes a citation probability which is the dependent variable in the analysis.  This is 

composed of citations, papers citing, and papers cited as follows: 

(1)   
jtiT

iTjt
iTjt nn

c
p =   

In (1)  is the probability that a group i  paper published in yearT  cites a group  paper published in 

year t , .  is the number of citations or paper-pairs linked by citation.   is the number of 

papers that could but might not cite papers in group  at time t  whose number is .  For this reason  

is the number of potentially citing papers and  is the number of potentially cited papers.  Their product 

is the number of paper-pairs that could be linked by citation. Notice that (1) can be thought of as a

sampling rate by the average paper in group i  t time

iTjtp j

tT > iTjtc iTn

j jtn iTn

jtn

jtiT nn ×  

a T  a a se pplied to papers in group j t time t .  In the ca

of universities citing universities we use group i  and

 

T   to efer to citing field and year, while group j  is 

the cited field and t  the cited year.  The fields and years define four-dimensional cells in the data. 

 r

                                                

The citation function is a parametric representation of the probability of citation based on citing and 

cited fields and years that allows for intercepts corresponding to these characteristics.  However, we do not 

discuss the intercepts in this paper. This is because of the large number of intercept terms (ranging from 

several dozen to several hundred) and the variety of citation functions that we estimate.  Another reason is 

that our chief concern is with transitional diffusion and decay parameters2.  

  The citation function for universities citing universities is  

(2)  ( )[ ] ( )[ ]{ } iTjtutTtTiiTjtp tTij    2 exp1   11 exp +−−−−−= βββααα

 
2 The intercepts can be thought of as long-run linkages between science fields and institutions.   See 

Adams, Clemmons and Stephan (forthcoming) for a full description of estimated intercepts based on 
science citation functions for universities citing each other. 
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The ijα  terms capture the average probability that field  cites field , i j Tα  the average probability that a  

citation is made in periodT , and tα , the average probability that a citation is received in period t .  The 

probability parameters are defined relative to baseline values.  The ijα  parameters are normalized by the 

value for chemistry, whose value is set equal to 1.0.  Likewise, the Tα  and tα  parameters are normalized 

by the earliest citing and cited periods, whose values are set equal to 1.0. 

The exponential form of (2) accounts for the peaking of citations (see Figure 1) and compares closely 

to patent citation functions.  The 1β  parameter represents the rate of decay in citation to chemistry 

while i1β  is a vector of decay parameters relative to this baseline.  Thus i1β  in chemistry is fixed at 1.0.  

Finally 2β  governs overall diffusion.  Since 2β  positions the rate of citation, it is not identified by field 

independently of the ijα  vector.  Again we limit reported parameters to 1β , i1β , and 2β  for concise 

presentation of diffusion.  The error term is ; the equation is estimated by nonlinear least squares. iTjtu

In addition to citation functions for universities citing universities, we estimate similar functions for 

firms citing universities, and we estimate both science and patent citation functions for firms citing firms.  

The following explains how these differ from (2).  In the case of firms citing universities we include 

parameters Iα  that capture citing industry and two others, Jα  and jα , that capture citing and cited field. 

The vector of industry parameters is normalized by the value for one industry (petrochemicals), since 2β  

absorbs the overall citation probability   The citation function for firms citing universities is 

(3)   ( )[ ] ( )[ ]{ } iTjtutTtTiITjtp tTjJI      2  exp1     11 exp +−−−−−= βββααααα

If firms cite firms we include intercept vectors for citing and cited industries, Iα  and iα , and citing 

and cited fields Jα  and jα .  The citation function is 

(4)    ( )[ ] ( )[ ]{ } IiJjTtutTtTiIiJjTtp tTjJiI     2  exp1    11exp +−−−−−= βββαααααα
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In some of our analysis we allow for more freedom in the pattern of  diffusion.  For example, we allow the 

rate of decay in citation between universities to differ depending on whether the citing field is the same or 

different from the cited field.  Where firms cite universities and other firms, we allow the decay parameters 

to vary by industry as well as field.  In these cases i1β  becomes ik1β , where  stands for citing industry. k

The speed of diffusion is implicit in the estimates.  We show that the modal or most frequent lag 

in citation is a robust measure of speed given (2)-(4), which differ only in their intercept terms.  The modal 

lag for science field j, or the lag at which the citation probability peaks, is 

(5)  
j

ModalL
11

1
ββ

= . 

To prove (5) take the derivative of citation functions (2)-(4), set it equal to zero and solve for . ModalL

The cumulative citation probability for L=∞ is found by integrating (2)-(4).  This is given by:  

(6)  ( ) ( ) ( )[ ] ( )21111

2
2

 

0 11   exp1  exp 
βββββ

αβ
βββα

+
=−−−=∞ ∫

∞

jj
j dLLLC . 

We collapse the intercept terms into a single termα .   To compute the average lag in citation, multiply the 

probability of citation by the lag L  and integrate to a lag of infinity: 

(7) ( ) ( ) ( )[ ] ( ) ([ ]
( ) ( )

)
2 

211
2 

11

2 
11

2 
211

2

 

0 11    

    
  exp1  exp

βββββ

βββββα
βββα

+

−+
=−−−=∞ ∫

∞

jj

jj
j dLLLLM   

The result on the right is proved by applying integration by parts to the middle expression. However, this 

average is based on a cumulative “probability” that does not sum to unity, as (6) shows.  To obtain the 

mean divide (7) by (6) so that the probability mass is normalized to 1.0.  After some algebra we reach 

(8)  Modal
jjj

LL •=≈
+

+= 2211

1121111 βββββββ
 

The approximation is based on 0/ 112 ≈jβββ , which is true for the estimates in this paper.  Since  
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citations have a positive skew the mean exceeds the mode. The point of discussing the modal and mean 

lags is to show that they rank different fields in the same order3.  It follows that the modal lag is a robust 

way to compare speed of diffusion.  

There is another reason for comparing these measures.  The econometric estimates of (2)-(4) 

provide estimates of modal lags, whereas the figures and some of the regressions use mean lags.  According 

to (5) and (8), mean lags are about twice as long as modal lags.  The derivations in this section show that 

there is no inconsistency involved in finding that the mean exceeds the mode.  For the rest of this paper the 

modal and mean citation lags will measure the speed of diffusion of science and technology.    

III. Database 
The data consist of 2.4 million scientific papers written in the top 110 U.S. universities during 1981-

1999 and 18.8 million citations to those papers.  Also included are 230 thousand scientific papers written 

by the top 200 U.S. R&D firms as well as 640 thousand citations to these papers by other firm papers.  In 

addition the 200 firms make one million citations to papers by the 110 universities.  The universities and 

firms account for the majority of academic and industrial research conducted in the U.S.  The source of the 

data is ISI, the Institute for Scientific Information, in Philadelphia, Pennsylvania. 

The papers appear in 7137 scientific journals. Each journal is assigned to a unique science field along 

with the papers published in them.  The alternative to this journal assignment method is to assign papers 

according to sciences of “origin”, as given by author’s departments. But that approach is ruled out by the 

lack of standardized information on academic departments4. 

A. Distribution of Papers and Citations   

Table 1 describes the distribution of university and firm papers by science field. The first column 

contains the data for universities.  Sixty-one percent of university papers originate in agriculture, biology, 

                                                 
3 The median lag divides the probability mass into 50 percent before and after the median, which is 

Modaljjmedian LL •==−≈ 6931.0/6931.0/)2/1ln( 1111 ββββ .  This is again based on 

0/ 112 ≈jβββ .  Thus the modal, mean, and median lags rank diffusion speeds in the same order. 
4 As an experiment we tried to assign all papers of Harvard University to one of the 12 main science fields 
in our data using departmental address information.  About one-third of the papers could not be assigned to 
fields using this information.  Given the failure rate we abandoned the effort.    
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and medicine.  Chemistry, engineering, and physics rank second and account for 24 percent. Remaining 

fields (astronomy, computer science, earth sciences, economics and business, mathematics and statistics,  

and psychology) account for 15 percent of university papers.     

The second column shows an even greater concentration among fields in industrial science.  Nine 

fields are shown: astronomy, economics and business, and psychology account for less than one percent of 

industrial papers and are dropped from the table.  In the industrial distribution, agriculture, biology, and 

medicine account for 32 percent of papers instead of 61 percent as in universities.  Conversely chemistry, 

engineering and physics account for 59 percent of industrial papers rather than 24 percent.  Life science is 

simply less important in industry than in academia.  Another feature is the much greater importance of 

computer science, which accounts for five percent of industrial papers compared with one percent in 

academia.  While these differences are hardly surprising, they show that industrial citations originate far 

less often in life science than do academic citations.  

Notice that 223 out of 235 thousand industrial scientific papers, or 95 percent, belong to biology, 

chemistry, computer science, engineering, medicine, and physics.  Since a major point of this paper is its 

comparison of diffusion speeds in different sectors, we restrict our reporting (though not our estimation) to 

these six fields.      

Recall that the citation function is estimated on cells defined by citing and cited groups and years. 

Table 2 reports mean citation probabilities and their components by cell characteristics.  For each cell we 

calculate numbers of citations, potentially citing and cited papers, and mean probabilities.  For firms, the 

citing and cited groups include the added dimension of industry.  

Consider universities citing other universities, where citing and cited fields and years classify the 

cells5.   In the case where citing and cited universities are different, the number of cells is 36,8346.  In the 

case of same-university citations the number of cells is 21,8017. 

                                                 
5 For citations within the same university-field, where the majority of citations take place, we also keep 
track of citations and papers cited and citing of the top 20%, the middle 40%, and the lowest 40% of 
universities in each field. Within a field the cells are six-dimensional.  They consist of citing field, rank-
class, and year; and cited field, rank-class, and year. This extra dimension affects the intercept  terms. 
6 Cross-field citations do not occur in some years.  The number of within-field cells (allowing for rank) is 
9×12 for each citing and cited year combination.  Likewise the number of cross-field combinations is 
11×12.  The potential number of citing and cited year combinations is (19×18)/2.  The potential number of 
cells is (9×12 +11×12) × (19×18)/2=41,040.  But 4,206 of the cross-field cells do not exist.      
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Where firms cite universities, the cells are classified by citing industry, field and year, and cited field 

and year.  The number of citing industry-field-year, cited field-year cells is 30,604.  Finally consider firms 

citing firms. In this case the cells are classified by citing and cited industry, field and year.  They are thus 

six-dimensional.  There are 34,246 cells consisting of citations where citing and cited firms are different.  

The number of cells involving same-firm citations is 10,687.  

Table 2 describes the cells for different sets of data, but excluding same-institution citations.  The first 

three columns present mean citations and potentially cited and citing papers, where means are taken across 

cells.  The final column presents the mean citation probabilities computed according to equation (1).  

The three panels report means for different citing and cited sectors.  Panel A. presents means for 

universities citing other universities.  Mean citations and citing papers vary more than cited papers do, 

reflecting differences in size of citing fields.  Citations are of course more numerous in this dominant sector 

of U.S. science.  The probability of citation is on the order of 10-4.  

Panel B. reports means for firms citing universities by field and industry.  Since industrial papers are 

one-tenth as many as university papers, numbers of citations and papers citing are far less than in Panel A.8.  

The dominant role of chemistry, engineering, and physics in industry shows up in the larger means of 

papers in these fields relative to biology and medicine, as compared with Panel A.  The industry means 

indicate the greater frequency of citations and publications in pharmaceuticals and biotechnology and their 

scarcity, say, in metals and machinery.  Notice that mean probabilities based on firms citing universities are 

on the order of 10-5, about one-tenth as frequent as citation probabilities within academia and industry.     

Means by citing fields and industries are shown in Panel C., in which firms cite other firms.  The 

number of dimensions exceeds that of other panels since industry is taken into account on both citing and 

cited sides.  This and the smaller number of firm papers contribute to the low numbers of citations and 

papers cited  that are shown in panel C.9

                                                                                                                                                 
7 Same-university and same-firm citations differ from pure self-citation. True self-citations, where the same 
investigators reference their own research, are likely to diffuse even more rapidly than same-institution 
citations, which are the type that we record here.  
8 The mean number of potential university papers that are cited by firms in agriculture, biology, and 
medicine exceeds the numbers cited by universities.  This is because firms are latecomers to citation 
compare with universities, when article counts in these fields are larger. 
9 In panel B the cells are classified by citing industry, field and year; and by cited field and year.  In panel C 
industry, field, and year on both citing and cited sides classify the cells. 
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B. Mean Diffusion Lags by Sector 

Figure 1 graphs citation curves between universities, firms and universities, and between firms. The 

curves illustrate the mean citation probability arrayed by the lag between citing and cited papers.  The 

curves peak in the second year, though fitted citations peak later (see Sections IV and V).  The irregular 

shape of the firm-firm citation curve results from smaller sample sizes in these data. 

The narrowing of the curves is an artifact of differences in the citation probability.  To show this 

Figure 2 normalizes the curves in Figure 1 by the citation probability at a lag of one year.  This brings out 

differences in shape independently of scale.  The normalized curve for universities is higher at  

intermediate lags but otherwise lies close to the firm citation curves. This suggests a slightly faster speed of 

diffusion between universities.  Still, from a visual perspective, the diffusion of science proceeds at a very 

similar rate across sectors of the U.S. economy. 

Figure 3 introduces rank of universities citing other universities. We compute separate curves for 

universities ranked in the top 20 percent, middle 40 percent, and bottom 40 percent of their fields according 

to National Research Council (1995)10.  Figure 3 indicates a modest effect of rank of university-field on the 

speed of diffusion.  Top 20 percent citations occur slightly more rapidly than middle 40 percent and bottom 

40 percent citations.    

C. Influence of Geographic Distance  
The last four figures examine the influence of geographic distance on the speed of diffusion.  Figure 4  

graphs mean citation lags by distance between citing and cited universities.  For this graph we take a close-

in perspective.  We examine the relationship between mean citation lag and distance in intervals of 50 

miles up to 500 miles.  The thickened line displays mean lags for all observations.  The mean increases 

slightly, from 4.6 years within 50 miles to 4.9 years at 500 miles11.   Much of the  increase occurs within 

100 miles suggesting temporary localization of scientific information, perhaps due to local collaborations. 

                                                 
10 Peer rankings are missing for agriculture and medicine so that university-fields in these two disciplines 
are ranked according to size of federal R&D support in 1998.  This has the effect of blurring rankings by 
quality.  For more on this point, see Adams, Clemmons, and Stephan (forthcoming). 
11 Recall that the mean lag is twice as long as the modal lag hence the lags of four to five years in this 
figure.  For more, see (5) and (8) in Section II. 
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The other line graphs are based on data from top 20, middle 40, and bottom 40 percent university-

fields.  These data are subsets of the data yielding the main line graph.  The subsets form a nebulous cloud 

of points around this graph but the bottom 40 percent curve clearly lies above the mean.  Knowledge 

diffuses more slowly to the bottom 40 percent, and yet this difference is less than a tenth of the mean lag. 

Figure 5 takes a wide-angle perspective.  It examines the citation lags for distances ranging from 500 

to 3,000 miles.  The heavy line covers all the data and begins at a lag of 4.9 years, but declines to 4.7 years 

at 3,000 miles, which is the distance between the East and West coasts.  Across Figures 4 and 5 the mean 

lag follows an inverted-U shape with respect to distance.  It does not increase monotonically. 

We observe a sharp decline for top 20 percent university-fields at longer distances.  The citation lag at 

3,000 miles is 4.5 years, about the same as at 50 miles.  The lag increases with distance among the middle 

40 percent and is unrelated to distance among the bottom 40 percent. Apparently, top departments on both 

coasts work together more closely than others.     

Figures 6 and 7 re-examine interactions mean lags by distance in the case of firms citing universities 

and each other.  Figure 6 displays the lags by distances from 0 to 500 miles.  A tendency for citation lags to 

increase with distance is clear in Figure 6.  The increase is 0.5 years over 500 miles, with most of this 

occurring within 100 miles, hence the suspicion that collaboration drives it.  Figure 7 displays lags for 

distances from 500 to 3,000 miles.  The lag is flat for firms citing other firms but declines slightly for firms 

citing universities.  Together Figures 6 and 7 indicate a rough inverted-U in the citation lag structure.  

Based on Figures 3-7 we cannot say that science leaks out more slowly with distance.                      

IV. Regression Findings: Universities   
In this section and the next we present several estimates of diffusion speed.  While the findings can 

seem repetitive they are essential to getting the facts of diffusion right.  One can think of them as 

standardized experiments in diffusion that are readily compared.  We begin with the university sector.  The 

speed of diffusion is likely to be fastest in this sector, since being first to publish is a key to success.  For 

this reason the university estimates provide a benchmark for the estimates of citation lags in industrial 

science and technology, which are reported in Section V below. 

Tables 3 and 4 contain regressions that result from fitting citation function (2) to the data.  In these 

tables and others to follow we report the exponential portion of the citation function for the six fields that 
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dominate science.  Table 3 reports basic findings on the rate of diffusion among universities.  The first two 

columns concern citations between different universities.  The first column reports decay and diffusion 

parameters while the second reports estimated modal lags.  Towards the bottom are estimates of the 

baseline decay and diffusion parameters 1β and 2β .  The decay parameter is 1β =0.351.  This indicates a 

modal lag of 2.85 years for chemistry ( 1/1 β =1/0.351=2.85).  The diffusion parameter is 2β =0.000108.  

Taken together with 1β  this indicates a peak citation probability of ≈12 / ββ 0.00031. 

Field decay rates provide estimates of modal lags by field.  Using (5), where the modal lag 

equals i11/1 ββ , we find that the shortest lag is 1.75 years in physics while the longest is 4.25 years in 

computer science12.  The average of the modal lags across fields is 3.06 years. Variation in the speed of 

acceptance and publication across fields plays a part in these differences, while another part reflects 

differences in propensities to collaborate. Of course, fields with shorter modal lags exhibit more rapid 

decay in citation probabilities given the shape of the citation function.  

To see how frictional publication lags affect the diffusion of science, we introduce same-university 

citations, where these lags are less important.  The third and fourth columns of Table 3 report the parameter 

estimates and modal lags.  Lags for same-university citations occur 1.29 years sooner than for citations 

between universities.  In chemistry the modal lag is 1.65 years and lags for other fields are correspondingly 

shorter. The average of the estimates is 1.77 years.  Citations between universities are 73 percent slower 

(3.06/1.77=1.73).  Differences by field are shown in the final column.  Same-university citations get around 

most of the frictional publication lags.  This explains why same-university lags differ so little across fields 

as the last column shows.  The lag shortens most in computer science, where frictional lags are longest, and 

least in biology and physics, where these lags are shortest.   However, these are same-institution citations, 

not true self-citations.  Their speed of diffusion understates the speed of self-citation. 

Table 4 estimates a more elaborate citation function.  This distinguishes within-field from between-

field dimensions for every citing field.  This is done by estimating separate parameters when cited fields are 

the same or different as each citing field.  Within-field decay rates and modal lags appear in columns one 

and two.  Between-field decay rates and modal lags appear in columns three and four.  We expect between-
                                                 
12 Ellison (2002), Table 2 finds long submission-resubmission times in computer science but much shorter 
times in biology and physics.  
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field diffusion to proceed more slowly because of the higher cost of assimilating “outside” information.  

Computer science is the exception.  This reversal, in which outside fields are cited more rapidly, probably

follows from very short publication lags in cited fields such as electrical engineering and physics compared

with computer science itself.  

The within-field results in

 

 

 Table 4 are about the same as the total results in Table 3.  This shows how 

muc g 

rn imilar to diffusion among universities, we 

cons

e use 

ndings, in which citation function 

(3) 

ll 

l lags.  The estimates are quite close to 

the 

 

d field.  

Industries form rows of the table.  Fields form the columns until the last, which reports the average lag by 

h within-field citation dominates the parameter estimates.  In the third and fourth columns, where citin

and cited fields are different, decay parameters are smaller and implied modal lags are larger.  The average 

between-field lag is 3.41 years, about four months longer than the lag of 3.06 within-fields.  Thus, the 

additional delay due to the movement of knowledge across fields is a second order effect.  

V. Regression Findings: Firms 
We tu next to the diffusion of science in firms.  While s

ider a wider range of evidence for industry.  We estimate the speed of diffusion from universities to 

firms, between firms, and within firms, and we compare the estimates with the university results.  

Afterwards we examine the diffusion of science by industry and field.   At the end of the section w

patent data to estimate the speed of diffusion of technology and we compare this to science.   

A. Diffusion from Universities to Firms   

We begin with firms citing universities.  Tables 5 and 6 contain the fi

is fitted to the data.  As before the tables report exponential terms of the citation function (3) for the 

dominant fields of biology, chemistry, computer science, engineering, medicine, and physics, although a

fields and all parameters are included in the estimation procedure.   

Table 5 reports decay and diffusion parameters along with moda

university-university results.  The equally weighted average of the modal lags is 3.02 years compared 

with 3.06 in Table 3.  This confirms the intuition of Figures 1 and 2, that there is little difference in the rate

with which university research diffuses among sectors.  Another feature is that modal lags rank the fields in 

the same order in Tables 3 and 5. Physics remains the fastest field, computer science the slowest, and so on.  

Relative diffusion speeds are a feature of fields rather than broad sectors of the economy. 

Table 6 allows the rate of decay and thus the speed of diffusion to vary by industry an
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industry.  The first column for each science reports the estimated decay rate and its standard error, while 

the second reports the modal lag.  In this case the modal lag is ijModalL 11/1 ββ= .  Here 1β  is the baseline 

decay rate of citations for chemistry in petrochemicals and ik1β  is the decay rate of field  industr .    

There are 66 possible parameters representing six fields and 11 industries, but since certain fields are 

me

l lag 

istry, from 3.14 to 5.68 in computer 

scie

ong firms should be significantly 

slow  should drive a wedge between citing and cited 

publ on 

and the 

 

 is 

ions to other firms take 

near

i  in y k

negligible in several industries we obtain 59 significant para ters. 

Within the same field the speed of diffusion varies by a factor of two across industries.  The moda

ranges from 1.93 to 4.55 years in biology, from 2.13 to 3.59 in chem

nce, from 3.06 to 4.62 in engineering, from 2.03 to 3.37 years in medicine, and from 1.72 to 2.56 in 

physics.   The average lag in an industry is a mixture of field and industry effects but in spite of this drugs 

and biotechnology stand out as a rapidly-diffusing industry while machinery is slowly-diffusing.  This 

variation by industry is a puzzle to which we return in Section VI.  

B. Diffusion of Science in Firms  

If firms were to strategically defer publication, then diffusion am

er than diffusion elsewhere.  The additional strategic lag

ication years.  This is the issue that we explore in Tables 7 and 8, which contain estimates of equati

(4).  Table 7 reports a basic set of results.  The results suggest that strategic delays are not major in 

industrial science.  The average lag in column two for firms citing each other is 3.30 years.  This is three 

months longer than the 3.06 years observed for universities citing each other (Table 3, column two) 

3.02 years (Table 5, column two) for firms citing universities.  Of course the estimates cannot directly 

measure publication delays but the observed lags suggest that these delays are not large.  If they were, firms 

would cite an older literature than universities.  The only way to avoid this conclusion is to assume that

firms permanently block publication, in which case the lags would be censored.       

Columns three and four contain findings for firms citing themselves.  The average of the modal lags

1.70 years, about the same as the lag on same-university citations (1.77 years).  Citat

ly twice as long (3.30/1.70=1.94).  Still, same-firm citations occur 1.5 years faster than citations to 

other firms and this pattern closely resembles the findings for universities.   
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Table 8 explores the interfirm diffusion of science by industry as well as field.  We allow the citation 

decay parameter to vary in both dimensions to achieve this flexibility.  Industries form rows of the table, 

and

 

engi

eld and 

indu e a 

benchma ented 

ns for patents by U.S. universities and the federal government.  Their purpose is to 

understa

o 

ng 

e modal 

 energy-

saving te

nt 

 fields form the columns up to the last, which reports averages by industry.  Allowing for the fact that 

some of the sciences are negligible in several industries, we obtain 50 significant parameters out of 66.  

The speed of diffusion varies widely for the same field.  The modal lag ranges from 2.24 to 3.87 years

in biology, from 2.33 to 4.81 in chemistry, from 3.45 to 4.83 in computer science, from 2.11 to 4.34 in 

neering, from 2.47 to 6.10 in medicine, and from 1.81 to 3.32 in physics. Also, the average lags in the 

final column do not rank the industries in the same way.   This suggests that in a given industry and field, 

the value of new science available from other firms differs from its value in universities. 

C. Comparative Diffusion of Science and Technology  
We have established stylized facts concerning the diffusion of science by sector, fi

stry.   However, these results lack a benchmark outside of science.  In this section we provid

rk by comparing the interfirm speed of diffusion of science with the interfirm diffusion of pat

technology.   

We start by reviewing findings on the diffusion of patents.   Jaffe and Trajtenberg (1996) estimate 

citation functio

nd firms’ use of public sector technologies and its diffusion.  Using citing and cited grant years to 

define the diffusion lag, they find that the modal lag is 4.7 years.  Since grant years are analogous t

publication years, the estimate in this sense is comparable to modal lags in science.   In a study of 

international patent citations, Jaffe and Trajtenberg (1999) find that the modal lag for U.S. patents citi

other U.S patents varies from 4.6 years to 5.3 years, depending on technology field, with an averag

lag of five years.  These estimates again use citing and cited grant years to define the lags. 

Popp (2002) uses the citation function to compute stocks of energy-saving knowledge.  His goal is 

to distinguish the contributions of energy prices and stocks of knowledge to the search for new

chnologies.  His citation function uses the application year of citing patents and grant year of cited 

patents. The idea is that application year is a better measure of the date of the citing invention, while gra

year of the cited invention captures the date at which the information goes public.  Citing application year 

shortens the measured citation lag, and consistent with this, his estimate of the modal lag on energy patents 
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is 2.8 years.  Since patents require an average of two years from application date to grant date this result is 

close to the five year lag reported in Jaffe and Trajtenberg (1996, 1999).  

 Branstetter and Ogura (2005) estimate the citation function for U.S. patents citing scientific papers

of California’s research universities.  Citing year is the grant year while ci

 

ted year is the publication year.  

hus, th

 and 

lus the 

p 200 firms using data 

that span

s 

 years, with a mean of 4.78 years.  This lag is closely 

milar t  and 

                                                

T e concept of citation lag compares closely with that used in Jaffe and Trajtenberg (1996, 1999), 

except that lags run from invention to science rather than from invention to invention.  The modal lag 

between patents and scientific papers is 8.33 years.  This is the time that science takes to move first 

between researchers in academic and industrial science, and subsequently from industrial science to 

industrial invention13.  This double lag explains why the estimate exceeds others.  In fact, Branstetter

Ogura’s (2005) modal lag comes tantalizingly close to the sum of the 4.8 year modal lag on patents p

3.0 year modal lag in science based on publication years that we find in this paper.   

These comparisons are in a way wishful.  Earlier studies include a different set of firms than the 

top 200 R&D firms.  To remedy this we calculate a patent citation function for the to

 the same period as the science citation data.  We begin by drawing all 356,000 patents issued to 

the top 200 during 1975-1999, along with their citations14.  This is a 20 percent sample of all U.S. patents.  

It demonstrates the weight of the top 200 firms in U.S. technology.  Using citing and cited technology 

classes and grant years we construct cells that contain patent citation probabilities like equation (1) in 

Section II. Using these data we estimate a patent citation function very like the science citation function

reported in Tables 3-8.  Table 9 contains the results. 

 Columns one and two contain the estimated decay and diffusion parameters.  Modal lags are 

shown in column two.  These range from 3.77 to 5.83

si o modal lags found in other studies of patents citation that use grant years to construct the lags

estimates based on them.  The average lag on patents is 45 percent greater (4.78/3.30=1.45) than the lag of 

3.30 years on scientific papers reported in Table 7.  By this measure science diffusion is about 50 percent 

faster than technology’s. 

 
13 Adams (1990) finds a mean lag of 20 years for the peak effect of stocks of scientific papers on 
productivity growth.  Since the mean lag for the citation function is twice the modal lag (see (8)), a modal 
lag of 8.33 years corresponds to a mean of 16.67 years, not very different from 20 years. 
14 The data source is the NBER patent citation data described in Jaffe and Trajtenberg (2002). 
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Columns three and four report findings for modal lags on same-firm patent citations.  The average lag

drops to 2.97 years, imply

 

ing that other-firm citations on patents take 61 percent longer (4.78/2.97=1.61).  

This

ear why. 

nger for patents than scientific papers.  

This

  

reted results include all the empirical 

regu    rapidly in some 

field ce is 

on 

 of a field in all 

indu  

(9)  dsRAp
τ

βα τ
1 0 

l  

This resembles standard patent production functions (Griliches, 1984; Hall and Hayashi, 1989; Klette, 

1996) in that patents depend on the firm’s scientists and inventors , with exponen

 compares with 94 percent longer lags on other-firm science citations in Table 7 and suggests that 

frictional lags are relatively less important for patents than papers.   A possible explanation is that 

disclosure may begin with the application year, not the grant year. 

 Industrial science leaks out about fifty percent faster than industrial technology, but it is not cl

One interpretation is that delays in application and processing are lo

 agrees with the notion that technology contains more sensitive information rather than science.  A 

second interpretation is that the shorter lag for papers reflects the efficiency of the priority publication 

system in science.  Yet another interpretation is that technology relies on older information than science.

Only time will distinguish among these explanations.       

VI. Explaining Industry Diffusion Differences        

The findings so far fall into two classes.   Easily interp

larities. Diffusion speed does not fall with geographic distance.  Science diffuses more

s than others and the ranking of fields stays constant.  The diffusion speed of industrial scien

slightly slower than academic science and science diffuses more rapidly than technology. 

This simplicity is spoiled by hard to explain differences in diffusion across industries.  In this secti

we try to interpret these differences using two factors.  Frictional lags slow down diffusion

stries.  The size of R&D and science speeds up diffusion in particular industries. The simple model that

follows organizes these ideas.  Let tp  be patents that are produced according to a Cobb-Douglas 

production function, 

t

η 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛= ∑ ∫=

− j
jtN

j j

Lt

tPt

Ptl tα , and on its R&D 

stock , with exponenttR β .   These terms are multiplied by a science term in square brackets that consists 

of the sum over stocks o entific knowledgef sci j , whose exponents are jη .  These are shown as integrals 
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under e summation sign Each science stockth . j  dates from at least jtLt −  periods ago, reflecting the 

vintage of knowledge available to the firm. We assume that this lag is to me extent controllable by the 

decreasing or constant returns prevail, then the exponents obey the inequality 1
1

≤++ ∑ =j jηβα .    

We indicate by means of an example how firms could set the lags on each science stock, there

determining how current they are in a science

 so

firm.  Notice that we treat the science stocks parable across fields.  This is approximately right for 

recent science, where cross-field citations are (Adams, Clemmons, and Stephan, forthcoming).  If 

by 

field  depen n 

a catch-u

 as se

rare 

N

15.   We assume that the lag in each ds ojtLt −

p function: 

(10)   
j

Ajtj

j
jjt

C
FL φ+= , 

B l+1

which determines the upper limits on the integrals or science stocks in (9).  The constant  is like the 

frictional publication lags that we have discussed whil  determine the ease of cutting the lag, 

0>jF

e 0, >jj CB

and 0>jφ  the response of the lag to catch-up resources Ajtl .  As catch-up resourcesl  infinity 

the lag goes to jjt FL = , while as resources go to zero  to jjjt CFL

Ajt  go to

goesthe lag += .  Notice that the lag

cann elow the frictional lag jF .  Differentiating (9) d (10) with respect to catch-up resources we 

find that 
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The marginal product of catch-up resources increases with scientists and inventor  and the stock of 

R&D  which provide the firm with an incentive to be more current.  The incentive decreases as the 

s Ptl

tR

frictional lag kF  increases, since by (10) that reduces ktLt −  the upper limit on th tegral in (11) and the in e 

                                                 
15Nelson and Phelps (1966) present models that are precursors to this point of view. 
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stock of scien ic knowledge in field k .  Thus, there c  negative repercussions from increases in the 

frictional lag .     

This gives us a

tif ould be

16

 story as to why ional lags and size in R&D and science matter for incentives to stay 

curr

 

17

e in R&D and science.  The average R&D stock per 

firm

y 

ing modal citation lags as the dependent variable. The regressions are at 
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ck 

nt 

18

hmetic form 

estimates gradients while the logarithmic form estimates elasticities.  In 10.1 and 10.4 the frictional lag 

                                                

 frict

ent, but the task of finding empirical counterparts still lies ahead.   This turns out to be tractable. One 

measure of the frictional lag in a field is the difference between same-university and other-university lags,

which appear in the final column of Table 3 under “Difference in Modal Lags”.  We shall instrument the 

frictional lag in industry using the difference in modal lags in university science in the same field.  The 

difference in university lags derives from a different set of data than industrial science .  It is therefore 

exogenous for a study of modal lags in industry. 

We also have measures of industry and firm scal

 speeds up diffusion by increasing the marginal benefit of searching the literature.  Average papers in 

an industry and field are a similar variable, but they offer an advantage over R&D stock in that they vary b

field as well as industry. We are unable to identify a third factor in the data, the amount of recent science 

that attracts effort to stay current.  

Table 10 reports regressions us

ndustry and field level.  The estimated lags are taken from Table 6, where firms cite universities and 

there are 59 such lags; and from Table 8, where firms cite other firms and there are 50 lags.  Equations 

10.1-10.3 concern diffusion from universities to firms.  Equations 10.4-10.6 concern diffusion between 

firms.  The independent variables include the instrumented frictional lag.  Also they include the mean sto

of R&D per firm and primary industry as reported in Compustat.  The stock is expressed in millions of 

1992 dollars, depreciated at 15 percent over the previous eight years, and summed . The final independe

variable is an alternative to the R&D stock .  This is the mean number of papers in an industry and field.  

The data form a cross section rather than a panel, so that fixed effects estimation is infeasible. 

Equations 10.1 and 10.4 are arithmetic regressions, while the rest are logarithmic.  The arit

 
16 Increases in and  have more uncertain effects on the marginal product in (11).  kB kC
17 The overlap between the two sets of papers is two percent: 50 thousand of the 2.43 million university 
papers are written jointly with firms.  The estimates for universities in Table 3 stay the same whether the 50 
thousand jointly authored papers are included or left out.  
18 The simple correlation between mean R&D stock and mean number of papers is 0.63.  
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sign
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t variables.  Equation 10.2 

con at 

e 

he 

 exhibit 

 this.  Owing to 

trun

rement 

 

t is the same and the format of the regressions almost the same as in Table 10, 

exce

ler 

tional lag 

ificantly lengthens the modal lag.  Point estimates are 0.99 and 0.69 implying that an extra frictional 

lag of a year increases the lag by 1.0 and 0.7 years.  Firm R&D shortens the modal lag and sometimes 

significantly. The gradients are -0.65×10-4 in 10.1 and -1.38×10-4 in 11.4.  An increase in the R&D stock b

one billion (104, given its scaling in millions) cuts the lag by 0.7 to 1.4 years. 

Equations 10.2 and 10.4 report specifications where the logarithm of the modal lag is the dependent 

variable and logarithms of the frictional lag and R&D stock are the independen

tains results for firms citing universities.  The elasticity of the frictional lag is 0.37. This exceeds zero 

the one percent level.  The elasticity with respect to R&D stock is -0.06; the estimate is not very precise.  

Results are qualitatively similar in 10.4.  In this case elasticities of the frictional lag and R&D stock are 

0.27 and -0.15.  Both estimates are significant at the one percent level.  Equations 10.3 and 10.6 replace th

logarithm of mean R&D stock with mean papers.  The elasticity of the frictional lag stays the same, but t

elasticities of papers are -0.04 and -0.10.  This is a decline in absolute value, but the estimates are 

statistically significant. Friction slows down science diffusion, but firm size speeds it up.  Industries with 

large firms and fields with little friction exhibit rapid diffusion.  Industries where the reverse is true

slow diffusion.  Mixtures of the two elements produce intermediate results.             

Table 11 revisits Table 10 using data at the firm and field level.  Again the data form a cross section, 

so that fixed effects estimation is infeasible.  Apart from comparability the reason is

cation the average citation lag in a panel automatically increases with year and duration.  To avoid 

ambiguity we simply compute mean lags over years for the entire period.  To reduce errors in measu

we require at least 10 observations per year.  Firm R&D stock is required to have an R&D history of eight

years in Compustat. 

The first half of the table concerns firms citing universities, while the second concerns firms citing 

other firms. The table layou

pt that we include industry dummies (with petrochemicals omitted).  We do not report the industry 

effects but simply note that in drugs, instruments, communications, and software they are negative and 

often significant.  Diffusion of science appears to be faster in these industries than in others. 

Equations 11.1 and 11.4 contain arithmetic regressions; the rest are logarithmic.  Gradients are smal

in absolute value than before but all are significant and all carry the expected signs.   The fric
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these differences are due to 
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eases the mean lag with a gradient of 0.6.  This implies an increase in the mean lag of 0.6 years for each 

additional year of the frictional lag.  Firm R&D stock shortens the lag: its gradient is -0.46×10-4 in 11.1 

-0.34×10-4 in 11.4.  The results suggest that an increase in the stock of firm of one billion (104, given its 

scaling in millions) reduces the mean lag by 0.5 or 0.3 years. 

Equations 11.2 and 11.5 express all variables in logarithms and use firms’ R&D stock as a measure o

size.  The equations imply that doubling the frictional lag incr

 R&D decreases the mean lag by one to two percent.  Equations 11.3 and 11.6 replace R&D stock with 

firm papers.  The results imply that a doubling of firm papers in a field cuts the mean lag by four percent.  

These results agree with the earlier findings at the industry and field level.  Of course, the data sets are 

cross-sections and we cannot control for fixed effects.  But the direction of the effects agrees with 

expectations and in this sense the findings are helpful in understanding industry variation in diffusion.      

VII. Conclusion   
In this paper we have provided new evidence on the diffusion of science, not only between universities 

between universities and firms, 

ion is 3.0 years between universities and from universities to firms.  The modal lag in science citations 

between firms is 3.3 years, about three months longer than the lag involving universities.  This result 

suggests that publication and diffusion are delayed only slightly in industry.  The modal lag of 3.3 years on 

the diffusion of science between firms compares with 4.8 years based on patents for the same firms us

the same estimation procedure.  Thus science diffusion appears to take place about fifty per cent more 

rapidly than technology diffusion.  This is consistent with the view that Open Science leads to more rapid 

diffusion than the patent system, although other explanations are possible.  

Certain fields stand out for the rapidity with which their research disperses.  Most rapid of all is 

physics.  Certain others diffuse slowly, such as computer science.  Some of 

lication lags as the results on self-citation demonstrate.  In some fields papers are long and intrica

costs of refereeing are greater in such disciplines. This is clearly helpful in understanding the structure of

frictional lags in science.  Still other differences are due to collaboration, which is common in rapidly 

diffusing fields such as physics (Adams, Black, Clemmons and Stephan, 2005).  More work is needed to 

fully understand the sources of variation in science diffusion across fields. 
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Industry and firm variation in the diffusion of science, as we have seen, is partly driven by the 

frictional lags and by the size of enterprise in R&D and science, but also it is driven by differences in the 

valu  to 

s 

ty 

science, once it arrives at a firm, 

to a ack 

e of new knowledge over old, and differences in this knowledge across sectors that are difficult

measure.  It seems that this too is a fruitful area for additional research.  And finally, to the extent that firm

absorb knowledge from other scientific institutions that is already old at the source, there is an externali

involved in diffusion lags that has not been studied, to our knowledge.       

 It is important to see that all of this evidence provides a lower bound on the speed of diffusion 

between science and technology.  Additional time is required for industrial 

ffect industrial invention as well as conversely, and the determinants of these long lags and feedb

effects have yet to be fully investigated.  More elusive still is the nature of the connection between 

technology and science within R&D firms that we have already alluded to in this paper.   
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Table 1 
Scientific Papers by Field, Top 110 Universities 

And Top 200 U.S. R&D Firms, 1981-1999 
 

Field University 
Papers a

Firm 
Papers b

 
Agriculture 

189,740 
(7.8%) 

6,025 
(2.5%) 

 
Astronomy 

35,795 
(1.5%) __ c

 
Biology 

639,195 
(26.3%) 

44,082 
(18.5%) 

 
Chemistry 

195,437 
(8.0%) 

39,346 
(16.5%) 

 
Computer Science 

28,184 
(1.2%) 

12,367 
(5.2%) 

 
Earth Sciences 

73,126 
(3.0%) 

3,616 
(1.5%) 

 
Economics 

43,892 
(1.8%) __ c

 
Engineering 

170,569 
(7.0%) 

50,203 
(21.1%) 

Mathematics and Statistics 61,061 
(2.5%) 

2,665 
(1.1%) 

 
Medicine 

659,000 
(27.1%) 

26,739 
(11.2%) 

 
Physics 

217,026 
(8.9%) 

50,346 
(21.1%) 

 
Psychology 

116,976 
(4.8%) __ c

Source: Institute for Scientific Information and Computer Horizons, Inc. a Sum of university 
articles is 2,430,001.  b Sum of firm articles is 235,389.  c Astronomy, economics, and psychology 
contribute less than one percent of firm papers and are dropped from this table.  Papers are 
assigned to the unique field of each journal according to the Journal-Field Assignment Method 
discussed in the text.  Percentages noted are percents of column totals. 
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Table 2 

Mean Science Citations, Papers Cited and Citing, and Citation Probabilities 
Top 110 Universities and Top 200 U.S. R&D Firms 

 
 

Classification 
 

Citations Potential 
Papers Cited 

Potential 
Papers Citing 

Mean Citation 
Probability 

 
Panel A. Citations between Top 110 Universities 
Citing Field     
  Biology 4,158 16,840 51,541 0.21×10-4

  Chemistry 660 14,095 14,486 0.40×10-4

  Computer Science 55 12,262 2,462 1.37×10-4

  Engineering 230 12,543 13,369 0.13×10-4

  Medicine 3,614 19,355 54,570 0.14×10-4

  Physics 1,333 13,731 19,270 0.51×10-4

 
Panel B. Citations from Top 200 R&D Firms to Top 110 Universities 
Citing Field     
  Biology 120 26,348 579 0.87×10-5

  Chemistry 33 17,689 301 1.21×10-5

  Computer Science 13 4,564 180 5.81×10-5

  Engineering 16 10,690 333 0.83×10-5

  Medicine 106 30,467 556 0.85×10-5

  Physics 35 12,727 367 0.98×10-5

 
Citing Primary Industry of Firm (SIC Code) 

    

  Petrochemicals (13, 28 except 283, 29-30) 37 20,037 323 1.20×10-5

  Pharmaceuticals & Biotechnology (283) 182 22,816 994 1.49×10-5

  Primary and Fabricated Metals (33,34) 7 18,781 37 1.60×10-5

  Machinery, Except Computers (35, except 357)  6 10,009 44 1.63×10-5

  Computers (357) 14 13,990 124 1.95×10-5

  Electrical Equipment (36) 22 12,539 319 5.17×10-5

  Transportation Equipment (37) 21 14,964 214 5.12×10-5

  Instruments (38)  20 22,717 119 2.88×10-5

  Communications Services (48) 28 11,097 265 7.39×10-5

  Computer Software & Services (737) 25 13,298 268 4.64×10-5

  All Other 10 23,119 41 1.49×10-5

 
Panel C. Citations between Top 200 R&D Firms 
Citing Field     
  Biology 20 568 1172 0.81×10-4

  Chemistry 5 415 346 0.63×10-4

  Computer Science 3 232 215 1.40×10-4

  Engineering 3 429 466 0.25×10-4

  Medicine 13 654 867 0.46×10-4

  Physics 7 398 410 0.59×10-4

 
Citing Primary Industry of Firm (SIC Code) 

    

  Petrochemicals (13, 28 except 283, 29-30) 5 464 400 0.59×10-4

  Pharmaceuticals & Biotechnology (283) 22 511 1,405 0.33×10-4
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Table 2 
Mean Science Citations, Papers Cited and Citing, and Citation Probabilities 

Top 110 Universities and Top 200 U.S. R&D Firms 
 

 
Classification 

 
Citations Potential 

Papers Cited 
Potential 

Papers Citing 
Mean Citation 

Probability 

 
Citing Primary Industry of Firm (SIC Code)  

    

  Machinery, Except Computers (35, except 357)  2 637 37 1.40×10-4

  Computers (357) 4 421 151 0.81×10-4

  Electrical Equipment (36) 5 341 478 0.88×10-4

  Transportation Equipment (37) 4 408 357 0.45×10-4

  Instruments (38)  3 604 126 0.63×10-4

  Communications Services (48) 6 363 469 0.64×10-4

  Computer Software & Services (737) 5 348 374 0.60×10-4

  All Other 
 

2 881 38 0.91×10-4

Notes:  The table entries are means over cells and not sums.  The number of cells that enter into the 
calculations for Panel A is 36,834. Citing and cited fields and citing and cited years classify these 
university-university cells.  For Panel B, which consists of firm-university cells, this number is 30,604.  In 
this case citing industry, citing and cited fields, and cited fields and years classify the cells. The number of 
cells in Panel C is 34,246.  In the firm-firm cells the classifying variables are citing and cited industries, 
fields, and years. 
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Table 3 
Diffusion Estimates: Science Citations Between the Top 110 U.S. Universities 

 
 

Citations to Other 
Universities a

 
Self-Citations to the Same 

University b

 
Parameter, Science Field 

Estimate 
(St. Error) 

 
Modal Lag c

Estimate 
(St. Error) 

 
Modal Lag c

 
 

Difference in 
Modal Lags 

      

Decay Parameters (β1i) 
 

     

  Biology 1.090 
(0.016) 

2.61 0.894 
(0.010) 

1.84 0.77 

  Chemistry 1.000 
(--) 

2.85 1.00 
(--) 

1.65 1.20 

  Computer Science 0.671 
(0.011) 

4.25 0.866 
(0.011) 

1.90 2.35 

  Engineering 0.744 
(0.028) 

3.83 0.907 
(0.017) 

1.82 2.01 

  Medicine 0.922 
(0.019) 

3.09 0.814 
(0.018) 

2.02 1.07 

  Physics 1.632 
(0.022) 

1.75 1.211 
(0.012) 

1.36 0.39 

Baseline Decay Parameter (β1)* 0.351 
(0.004) 

__ 0.607 
(0.003) 

__ __ 

Diffusion Parameter (β2)* 
 

1.08×10-4

(3.23×10-6) 
__ 4.95×10-4

(5.86×10-6) 
__ __ 

Average of the Modal Lags d 

 
 

__ 
3.06  

__ 
1.77 1.29 

Notes:  The equations include intercept terms for citing and cited fields, cited years and citing intervals, 
which are significant.  The functional form is ))](exp(1))[(exp( 211 tTtTp iiTjt −−−−−= βββα , 

where the intercept terms areα  and 211 ,, βββ i  are the exponential parameters reported above. a The 
number of observations is 36,834.  Adjusted R2=0.938. The estimated standard error of the regression (root 
mean squared error) is 0.0010.   b The number of observations is 21,801.  Adjusted R2=0.952. The 
estimated standard error of the regression (root mean squared error) is 0.0006.  c The modal lag equals the 
reciprocal of i11ββ .  See equation (5) in the text. d The average is the simple or un-weighted average of the 
field-specific modal lags. 
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Table 4 
Diffusion Estimates: Science Citations Between the Top 110 U.S. Universities, 

Within and Between Sciences 
 

 
Citations to the Same 

Field a 

 

 
Citations to Other 

Fields a 

 

 
 
 

Parameter, Citing Field of 
Science 

 
 

Estimate 
(St. Error) 

 

Modal 
Lag b

 
Estimate (St. 

Error) 
 

Modal 
Lag b

 
 
 

Difference in 
Modal Lags 

      
Decay Parameters (β1i) 
 

     

Biology 1.090 
(0.016) 

2.61 0.958  
(0.097) 

2.97 0.36 

Chemistry 1.000 
(--) 

2.85 0.908 
 (0.171) 

3.14 0.29 

Computer Science 0.671 
(0.011) 

4.25 0.751 
(0.203) 

3.79R -0.46 R

Engineering 0.749 
(0.029) 

3.80 0.577 
(0.109) 

4.94 1.14 

Medicine 0.921 
(0.019) 

3.09 0.911 
(0.070) 

3.13 0.04 

Physics 1.631 
(0.022) 

1.75 1.135 
(0.216) 

2.51 0.76 

Baseline Decay Parameter (β1)* 0.351 
(0.004) 

__ __ __ __ 

Diffusion Parameter (β2)* 
 

1.08×10-4 
(3.25×10-6) 

__ __ __ __ 

Average of the Modal Lags c 

 
__ 3.06 __ 3.41 0.35 

Notes:  The equations include intercept terms for citing and cited fields, cited years and citing intervals, 
which are significant.  The functional form is ))](exp(1))[(exp( 211 tTtTp iiTjt −−−−−= βββα , 

where the intercept terms areα  and 211 ,, βββ i  are the exponential parameters reported above.   a The 
number of observations is 36,834.  The adjusted R2=0.938. The estimated standard error of the regression 
(root mean squared error) is 0.0010.  R  Citation lag to other fields is shorter than citation lag within a field 
and represents a reversal in the relative speed of within field diffusion.  b The modal lag equals the 
reciprocal of i11ββ .  See equation (5) of the text.  c The average is the simple or un-weighted average of the 
field-specific modal lags. 
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Table 5 

Diffusion Estimates:  Science Citations from Top 200 U.S. R&D Firms 
To Top 110 U.S. Universities 

 
 

Citations to Universities a 

 
 

Parameter, Science Field 
 Estimate 

(St. Error) Modal Lag b

   
Decay Parameters (β1i) 
 

  

  Biology 0.997 
(0.036) 

2.57 

  Chemistry 1.000 
(--) 

2.56 

  Computer Science 0.622 
(0.020) 

4.12 

  Engineering 0.655 
(0.040) 

3.91 

  Medicine 0.886 
(0.043) 

2.89 

  Physics 1.242 
(0.045) 

2.06 

Baseline Decay Parameter (β1)* 0.390 
(0.010) 

__ 

Diffusion Parameter (β2)* 
 

0.69×10-4

(3.75×10-6) 
__ 

Average of the Modal Lags c 

 
__ 3.02 

Notes:  The equation includes intercept terms for citing and cited fields, cited years and citing intervals, 
which are significant.  The functional form is ))](exp(1))[(exp( 211 tTtTp iiTjt −−−−−= βββα ,  

where the intercept terms areα  and 211 ,, βββ i  are the exponential parameters reported above.   a The 
number of observations is 30,604.  The adjusted R2=0.711. The estimated standard error of the regression 
(root mean squared error) is 0.0009.  b The modal lag equals the reciprocal of i11ββ .  See equation (5) in 
the text.  c The average is the simple or un-weighted average of the field-specific modal lags.  
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Table 6 

Diffusion Estimates by Field and Industry: 
Science Citations from Top 200 U.S. R&D Firms to Top 110 U.S. Universities 

 
 

Field of Science 
 

Biology    Chemistry Computer 
Science Engineering Medicine

 
Physics 

 

 
 
 
 

Industry Group 

β 
(s. e.) 

 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

 
 

Average 
Modal Lag 

By 
Industry 

              
Petrochemicals 
 

0.855 
(0.025) 

2.56            

           

            

            

            

            

            

            

           

            

              

1.000
(--) 

2.19 __ __ 0.578
(0.044) 

3.79 0.682
(0.034) 

3.21 1.192
(0.031) 

 

1.83 2.72

Drugs and Biotechnology 
 

0.984 
(0.018) 

2.22 0.759
(0.023) 

2.88 __ __ __ __ 0.854
(0.020) 

2.56 __ __ 2.55

Metals 
 

0.736 
(0.074) 

2.97 0.900
(0.040) 

2.43 __ __ 0.660
(0.042) 

3.31 0.648
(0.069) 

3.37 0.891
(0.057) 

2.45 2.91

Machinery except 
Computers 

0.480 
(0.078) 

4.55 0.609
(0.040) 

3.59 0.487
(0.018) 

4.49 0.698
(0.049) 

3.13 0.692
(0.101) 

3.16 0.852
(0.056) 

2.56 3.58

Computers 
 

0.807 
(0.053) 

2.71 0.860
(0.035) 

2.54 0.564
(0.013) 

3.88 0.645
(0.036) 

3.39 0.848
(0.091) 

2.58 1.265
(0.033) 

1.73 2.81

Electrical Equipment 
 

0.901 
(0.067) 

2.43 1.005
(0.042) 

2.18 0.541
(0.012) 

4.04 0.616
(0.031) 

3.55 1.074
(0.051) 

2.03 1.106
(0.034) 

1.88 2.69

Transportation Equipment 
 

0.855 
(0.053) 

2.56 0.764
(0.029) 

2.86 0.697
(0.019) 

3.14 0.615
(0.030) 

3.56 0.760
(0.076) 

2.88 1.129
(0.036) 

1.94 2.82

Instruments 
 

0.986 
(0.031) 

2.22 0.950
(0.029) 

2.30 0.385
(0.013) 

5.68 0.714
(0.057) 

3.06 0.866
(0.034) 

 

2.52 1.088
(0.058) 

2.01 2.97

Communications 
 

1.131 
(0.042) 

1.93 1.028
(0.030) 

2.13 0.594
(0.012) 

3.68 0.553
(0.035) 

3.95 __ __ 1.270
(0.029) 

1.72 2.68

Software and Business 
Services 
 

1.012 
(0.061) 

2.16 0.877
(0.023) 

2.49 0.548
(0.011) 

3.99 0.473
(0.021) 

4.62 0.896
(0.081) 

2.44 1.245
(0.029) 

1.76 2.91
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Table 6 
Diffusion Estimates by Field and Industry: 

Science Citations from Top 200 U.S. R&D Firms to Top 110 U.S. Universities 
 

 
Field of Science 

 

Biology    Chemistry Computer 
Science Engineering Medicine

 
Physics 

 

 
 
 
 

Industry Group 

β 
(s. e.) 

 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

 
 

Average 
Modal Lag 

By 
Industry 

              
Miscellaneous 
 

0.666 
(0.042) 

3.28            

              

1.018
(0.033) 

2.15 __ __ 0.679
(0.061) 

3.22 0.666
(0.058) 

3.28 1.189
(0.066) 

1.84 3.44

Notes:  The equation includes intercept terms for citing and cited fields, cited years, and citing intervals, which are significant.  The functional form is 
))](exp(1))[(exp( 211 tTtTp iiTjt −−−−−= βββα , where the intercept terms areα  and 211 ,, βββ i  are the exponential parameters reported above.   a 

The number of observations is 22,855.  The adjusted R2=0.800. The estimated standard error of the regression (root mean squared error) is 0.000274.  b The 
identity of the industry for which diffusion is the slowest or the fastest of course varies across the six science fields.  c The modal lag equals the reciprocal 
of ij11ββ , where 457.01 =β  is the estimate of the rate of decay within petrochemicals in the field of chemistry, and subscripts ij  stand for citing industry and 
field.  See equation (5) in the text.
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Table 7 

Diffusion Estimates: Science Citations 
Within and Between Top 200 U.S. R&D Firms 

 
 

Citations to Other Firms a 

 

 
Self-Citations to the Same Firm b 

Parameter, Science Field 
 Estimate 

(St. Error) Modal Lag c Estimate 
(St. Error) 

 
Modal Lag c 

 
     
Decay Parameters (β1i) 
 

    

  Biology 1.050 
(0.018) 

2.95 0.948 
(0.038) 

1.60 

  Chemistry 1.000 
(--) 

3.10 1.000 
(--) 

1.52 

  Computer Science 0.800 
(0.020) 

3.87 0.700 
(0.118) 

2.17 

  Engineering 1.019 
(0.030) 

3.83 0.888 
(0.089) 

1.71 

  Medicine 0.820 
(0.027) 

3.78 1.024 
(0.040) 

1.48 

  Physics 1.371 
(0.023) 

2.26 0.884 
(0.032) 

1.72 

Baseline Decay Parameter (β1)* 0.323 
(0.005) 

__ 0.658 
(0.019) 

__ 

Diffusion Parameter (β2)* 
 

0.93×10-4

(5.89×10-6) 
__ 13.46×10-4

(2.28×10-4) 
__ 

Average of the Modal Lags d 

 
__ 3.30 __ 1.70 

Notes:  Both equations include intercept terms for citing and cited fields, cited years and citing intervals, 
which are significant.  The functional form is ))](exp(1))[(exp( 211 tTtTp iiTjt −−−−−= βββα , 

where the intercept terms areα  and 211 ,, βββ i  are the exponential parameters reported above.   a The 
number of cells is 34,246.  The adjusted R2=0.580. The estimated standard error of the regression (root 
mean squared error) is 0.0010.   b The number of observations is 10,687.  The adjusted R2=0.805. The 
estimated standard error of the regression (root mean squared error) is 0.0124.  c The modal lag equals the 
reciprocal of i11ββ .  See equation (5) in the text.  d The average is the simple or un-weighted average of the 
field-specific modal lags. 
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Table 8 

Diffusion Estimates by Field and Industry: 
Science Citations Among the Top 200 U.S. R&D Firms 

 
 

Field of Science 
 

Biology    Chemistry Computer 
Science Engineering Medicine

 
Physics 

 

 
 
 

Industry Group 
 
 
 
 

β 
(s. e.) 

 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

 
 

Average 
Modal Lag 

By 
Industry 

              
Petrochemicals 
 

0.835 
(0.051) 

2.83            

           

            

            

            

            

           

            

           

            

              

1.000
(--) 

2.36 __ __ 0.617
(0.151) 

3.82 0.601
(0.038) 

3.93 1.241
(0.064) 

 

1.90 2.97

Drugs and Biotechnology 
 

1.052 
(0.046) 

2.24 1.002
(0.052) 

2.35 __ __ __ __ 0.957
(0.064) 

2.47 __ __ 2.35

Metals 
 

0.610 
(0.023) 

3.87 0.575
(0.036) 

4.10 __ __ 0.543
(0.098) 

4.34 0.386
(0.029) 

 

6.10 0.842
(0.061) 

2.80 4.24

Machinery except 
Computers 

__ __ 0.627
(0.031) 

3.76 __ __ 1.119
(0.058) 

2.11 __ __ 0.841
(0.040) 

2.80 2.89

Computers 
 

0.638 
(0.091) 

3.70 0.626
(0.038) 

3.77 0.488
(0.029) 

4.83 0.657
(0.060) 

3.59 __ __ 1.086
(0.046) 

2.17 3.61

Electrical Equipment 
 

0.889 
(0.032) 

2.65 1.013
(0.050) 

2.33 0.684
(0.031) 

 

3.45 0.664
(0.049) 

3.55 __ __ 1.110
(0.044) 

2.12 2.82

Transportation Equipment 
 

0.727 
(0.043) 

3.24 0.691
(0.049) 

3.41 __ __ 0.608
(0.076) 

3.88 __ __ 1.071
(0.061) 

2.20 3.18

Instruments 
 

0.799 
(0.083) 

2.95 0.782
(0.042) 

3.02 __ __ 0.763
(0.106) 

3.09 0.557
(0.060) 

 

4.23 0.711
(0.035) 

3.32 3.32

Communications 
 

1.024 
(0.190) 

2.30 0.911
(0.053) 

2.59 0.624
(0.044) 

3.78 0.904
(0.101) 

2.61 __ __ 1.303
(0.058) 

1.81 2.61

Software and Business 
Services 
 

0.748 
(0.152) 

3.16 0.838
(0.040) 

2.81 0.573
(0.031) 

4.11 0.768
(0.057) 

3.07 __ __ 1.318
(0.057) 

1.79 2.99
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Table 8 
Diffusion Estimates by Field and Industry: 

Science Citations Among the Top 200 U.S. R&D Firms 
 

 
Field of Science 

 

Biology    Chemistry Computer 
Science Engineering Medicine

 
Physics 

 

 
 
 

Industry Group 
 
 
 
 

β 
(s. e.) 

 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

β 
(s. e.) 

Modal 
Lag 

 
 

Average 
Modal Lag 

By 
Industry 

              
Miscellaneous 
 

0.632 
(0.076) 

3.73            

              

0.491
(0.028) 

4.81 __ __ 0.551
(0.070) 

4.28 0.574
(0.049) 

4.11 0.784
(0.038) 

3.01 3.99

Notes:  The equation includes intercept terms for citing and cited fields, cited years, and citing intervals, which are significant.  The functional form 
is ))](exp(1))[(exp( 211 tTtTp iiTjt −−−−−= βββα , where the intercept terms areα  and 211 ,, βββ i  are the exponential parameters reported above.   a 
The number of observations is 31,770.  The adjusted R2=0.545. The estimated standard error of the regression (root mean squared error) is 0.00103.  b The 
identity of the industry for which diffusion is the slowest or the fastest of course varies across the six science fields.  c The modal lag equals the reciprocal of 

ij11ββ , where 424.01 =β  is the estimate of the rate of decay within petrochemicals in the field of chemistry, and subscripts and ij  stands for citing industry and 
field.  See equation (5) in the text. 
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Table 9 
Diffusion Estimates: Patent Citations 

Within and Between Top 200 U.S. R&D Firms 
 

 
Citations to Other Firms a 

 

 
Self-Citations to the Same Firm b 

Parameter, Technological Group 
 Estimate 

(St. Error) Modal Lag c Estimate 
(St. Error) 

 
Modal Lag c 

 
     
Decay Parameters (β1i) 
 

    

  Chemical Technologies (1) 0.894 
(0.018) 

5.83 1.053 
(0.014) 

3.05 

  Computers and Communication 
      Technologies (2) 

1.374 
(0.021) 

3.79 1.087 
(0.014) 

2.96 

  Drugs and Medical Technologies (3) 0.965 
(0.015) 

5.40 1.055 
(0.012) 

3.05 

  Electrical and Electronic 
      Technologies (4) 

1.382 
(0.023) 

3.77 1.217 
(0.020) 

2.64 

  Mechanical Technologies (5) 
 

1.114 
(0.024) 

4.67 1.112 
(0.016) 

2.89 

  All Other Technologies (6) 1.000 
(--) 

5.21 1.000 
(--) 

3.21 

Baseline Decay Parameter (β1)* 0.192 
(0.003) 

__ 0.311 
(0.003) 

__ 

Diffusion Parameter (β2)* 
 

0.24×10-4

(0.62×10-6) 
__ 0.58×10-4

(1.39×10-6) 
__ 

Average of the Modal Lags d 

 
__ 4.78 __ 2.97 

Notes:  The equation includes intercept terms for citing and cited fields, cited years and citing intervals, 
which are significant.  The functional form is ))](exp(1))[(exp( 211 tTtTp iiTjt −−−−−= βββα , 

where the intercept terms areα  and 211 ,, βββ i  are the exponential parameters reported above.   a The 
number of cells is 9,658.  The adjusted R2=0.935. The estimated standard error of the regression (root mean 
squared error) is 0.00022.   b The number of observations is 10,687.  The adjusted R2=0.805. The estimated 
standard error of the regression (root mean squared error) is 0.0124.  c The modal lag equals the reciprocal 
of i11ββ .  See equation (5) in the text.  d The average is the simple or un-weighted average of the field-
specific modal lags.
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Table 10 
Sources of Variation in Modal Science Citation Lags 

By Industry and Field of Science 
(Standard Errors in Parentheses) 

 
 

Firms Citing Universities, 
Dependent Variable a 

 

 
Firms Citing Other Firms, 

Dependent Variable b

Modal 
Lag 

Log (Modal 
Lag) 

Log (Modal 
Lag) 

Modal 
Lag 

Log (Modal 
Lag) 

Log (Modal 
Lag) 

 
Variable or Statistic 

 
10.1 

 

 
10.2 

 
10.3 

 
10.4 

 
10.5 

 
10.6 

       
Frictional Citation Lag in 
University Science 

0.987*** 
(0.112) 

  0.685*** 
(0.175) 

  

Mean R&D per Firm in an 
Industry 

-0.654 ×10-4* 
(0.389 ×10-4) 

  -1.379 ×10-4** 
(0.582 ×10-4) 

  

Log (Frictional Citation Lag in 
University Science) 

 0.369*** 
(0.040) 

0.360*** 
(0.039) 

 0.265*** 
(0.053) 

0.274*** 
(0.050) 

Log (Mean R&D per Firm in 
an Industry) 

 -0.064** 
(0.031) 

  -0.146*** 
(0.042) 

 

Log (Mean Papers per Firm in 
an Industry and Field) 

  -0.037*** 
(0.014) 

  -0.101*** 
(0.023) 

         
Number of Observations 59 59 59 50 50 50 
Root Mean Squared Error 0.551 0.180 0.176 0.787 0.223 0.210 
Adjusted R2 0.572 0.593 0.610 0.269 0.407 0.480 
F-Statistic 39.8+++ 43.2+++ 46.3+++ 10.0+++ 17.8+++ 23.6+++ 
       

Notes: Method is Ordinary Least Squares. a Dependent variable is the arithmetic or logarithmic modal lag 
as shown in Table 6.  b Dependent variable is the arithmetic or logarithmic modal lag as shown in Table 8. 
*** Regression coefficient is significant at greater than the one percent level.  ** Regression coefficient is 
significant at greater than the five percent level.  +++ F-statistic is significant at more than the 0.1 percent 
level. 
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Table 11 

Sources of Variation in Mean Science Citation Lags 
By Firm and Field of Science 

(Standard Errors in Parentheses) 
 

 
Firms Citing Universities, 

Dependent Variable a 

 

 
Firms Citing Other Firms, 

Dependent Variable b

Mean 
Lag 

Log (Mean 
Lag) 

Log (Mean 
Lag) 

Mean 
Lag 

Log (Mean 
Lag) 

Log (Mean 
Lag) 

 
Variable or Statistic 

 
11.1 

 

 
11.2 

 
11.3 

 
11.4 

 
11.5 

 
11.6 

       
Industry Dummies 
 

Yes Yes Yes Yes Yes Yes 

Frictional Citation Lag in 
University Science 

0.598*** 
(0.079) 

  0.587*** 
(0.084) 

  

Mean R&D per Firm in an 
Industry 

-0.456×10-4*** 
(0.135×10-4) 

  -0.337 ×10-4** 
(0.125 ×10-4) 

  

Log (Frictional Citation Lag in 
University Science) 

 0.124*** 
(0.016) 

0.129*** 
(0.016) 

 0.115*** 
(0.017) 

0.118*** 
(0.017) 

Log (Mean R&D per Firm)  -0.032*** 
(0.008) 

  -0.021** 
(0.008) 

 

Log (Mean Papers per Firm 
and field) 

  -0.040*** 
(0.007) 

  -0.037*** 
(0.008) 

       
Number of Observations 559 559 559 356 356 356 
Root Mean Squared Error 1.189 0.223 0.220 0.974 0.190 0.186 
Adjusted R2 0.161 0.169 0.193 0.253 0.243 0.270 
F-Statistic 9.9+++ 10.5+++ 12.1+++ 11.0+++ 10.5+++ 12.0+++ 
       

Notes: Method is Ordinary Least Squares. a Dependent variable is the arithmetic or logarithmic mean lag, 
where the mean is the average by firm and field.  The number of observations used to calculate the mean 
is .  10≥n b Dependent variable is the arithmetic or logarithmic mean lag, where the mean is the average 
by firm and field.  The number of observations used to calculate the mean is . *** Regression 
coefficient is significant at greater than the one percent level.  ** Regression coefficient is significant at 
greater than the five percent level.  +++ F-statistic is significant at more than the 0.1 percent level.

10≥n
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Figure 1--Mean Probability of Citation,
By Citing and Cited Sector
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Figure 2--Normalized Mean Probability of Citation,
By Citing and Cited Sector, Lag 1=1.0
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Figure 3--Normalized Mean Probability of Citation,
By Rank of University-Science Field, Lag 1=1.0
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Figure 4--Mean Citation Lag by Rank of University-Field, 
Distance from 0 to 500 Miles
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Figure 5--Mean Citation Lag, by Rank of Universty Science-
Fields, Distance from 500 to 3000 Miles
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Figure 6--Mean Citation Lags, Firms Citing Universities and Other 
Firms, Distance from 0 to 500 Miles
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Figure 7--Mean Citation Lags, Firms Citing Universities and Other 
Firms, Distance from 500 to 300 Miles
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