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ABSTRACT

In science as well as technology, the diffusion of new ideas influences innovation and productive
efficiency. With this as motivation we use citations to scientific papers to measure the diffusion of
science through the U.S. economy. To indicate the speed of diffusion we rely primarily on the modal
or most frequent lag. Using this measure we find that diffusion between universities as well as
between firms and universities takes an average of three years. The lag on science diffusion between
firms is 3.3 years, compared with 4.8 years in technology for the same companies using the same
methodology. Industrial science diffuses fifty per cent more rapidly than technology, and academic
science diffuses still faster. Thus the priority publication system in science appears to distribute
information more rapidly than the patent system, although other interpretations are possible. We also
find that the speed of science diffusion in the same field varies by a factor of two across industries.
The industry variation turns out to be driven by frictional publication lags and firm size in R&D and
science. Friction increases the lag, but firm size in R&D and science decrease it. Industries having
alot of R&D or science and composed of fields with little friction exhibit rapid diffusion. Industries

where the reverse is true exhibit slow diffusion.
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I.  Introduction

The speed with which science and technology leak out very likely increases both innovation and
productive efficiency. This is true for the simple reason that firms possess more knowledge when diffusion
is more rapid. But in addition, recent ideas may be more valuable than older ones. Recent ideas could
improve on earlier ones so that their quality is higher. Recent ideas are less likely to have been
commercialized. And ideas could be recombinant, so that new ideas make earlier ideas more valuable.

It follows that the rate of innovation and productive efficiency depend on diffusion, so that a faster rate
of diffusion moves technology-in-use closer to the best-practice technology. These points apply to science
as well as to technology. The diffusion of science is important because it contributes to output through an
increase in the efficiency of research and development'. This line of thought leads to several questions.
How rapidly do science and technology leak out? How does the speed of diffusion vary among firms and
universities? How and why does the speed of diffusion vary across industries?

To answer these questions we begin by measuring the speed of diffusion of science, primarily using
the modal or most frequent lag in citation as a measure of its central tendency. Afterwards we compare
this with the speed of diffusion of patented technology. In this way we establish stylized facts about
diffusion in both science and technology. We rely on lags between citing and cited scientific papers and
industrial patents for this purpose. Our approach to estimating the lags builds on the methodology for
estimating patent citation functions in Jaffe and Trajtenberg (1996, 1999, and 2002). This use of a common
methodology increases comparability of the measurements. Even so, we do not claim that the two
diffusion processes are the same, and indeed we find that they are rather different.

Diffusion is the topic of a large literature, although none of this appears to describe, interpret, and
compare the diffusion of science and technology as this paper does. Griliches (1957) examined the
adoption of hybrid corn by farmers in U.S. states and crop reporting districts. His findings showed that
lags in the adoption of hybrid corn shortened as profits from adoption increased. Mansfield (1963) showed

that adoption of the diesel locomotive by U.S. railroads resulted from growing advantages of diesel over

! Adams (1990, 2005), Adams and Clemmons (2005), and Cohen, Nelson, and Walsh (2002) contain
additional discussions.



steam as influenced by profitability, liquidity, and other characteristics. Mansfield (1991) found that many
industrial innovations would have been impossible or would have been delayed without recent science.

Monetary and other gains should also drive adoption of new scientific approaches. For example, drug
companies adopted biotechnology for the purpose of avoiding mass testing of chemical compounds
(Henderson and Cockburn, 1996). However, scarcity of molecular and cell biologists in industry hindered
adoption, and led to the establishment of firms whose founders were academics. In this way diffusion
entailed entry (Audretsch and Stephan, 1996; Zucker, Darby, and Brewer, 1998; Ruttan, 2001, Ch. 10).

A related literature considers the role of intellectual property in diffusion. Mansfield (1985) showed
that knowledge of a company’s development efforts leaked out to competitors within 12 to 18 months.
Once developed, knowledge of new products leaked out in 12 more months, but imitation costs imposed
additional lags. Indeed Mansfield, Schwartz and Wagner (1981) found that imitation costs were two-thirds
of innovation costs and that patenting increased these costs.

Weak incentives hinder invention and its adoption in planned economies. Berliner (1976) argued that
inadequacies of the bonus system undermined Soviet Russia’s productive efficiency compared with
Western economies. Building on such evidence Dearden, Ickes, and Samuelson (1990), and Hart, Vishny,
and Shleifer (1997) undertook theoretical studies of the limits to public sector innovation.

To a lesser extent imperfect rewards to inventors may deter invention in firms. Scherer (1984, chapter
9) noted that firms’ innovative output rose at a decreasing rate with firm size and suggested that incentive
failures were the cause. Imperfections in patent rights across earlier and later inventors reduce incentives to
improve products (Scotchmer 1991; 2004, Chapters 4, 5). In summary a substantial literature relates
technology diffusion to secrecy, adoption costs and incentives.

Incentives in science often take the form of fame and reputation. However, the priority system in
science, as Robert Merton has shown, encourages individuals to share knowledge quickly, since sharing
establishes property rights in science (Stephan, 2004). For this reason the priority publication system may
accelerate the diffusion of science compared with technology. This hypothesis is strengthened by evidence
on the use of secrecy to protect industrial technology (Levin, Klevorick, Nelson, and Winter, 1987; Cohen,

Nelson, and Walsh, 2002; Furman and Stern, 2004).



Turning to our results we find that the modal lag among U.S. universities averages about three years.
This lag does not increase systematically with geographic distance between researchers. Citation lags vary
strongly among fields, with physics and biology diffusing more rapidly than average and computer science
and engineering diffusing less rapidly. Variations in review times (Ellison, 2002) partly drive these
differences. Perhaps reflecting higher costs of absorption, citation lags between fields exceed within-field
lags by 0.4 years. To an extent same-university citations get around review lags. Accordingly the lag on
same-university citations averages 1.8 years—60 percent of the between-university lag.

Science citation lags in industry are similar. The lag on citations by firms to universities is 3.0 years.
We find a lag that is10 percent longer, or 3.3 years, or in the case of firms citing each other. One
interpretation is that firms impose strategic publication delays, but that the delays are slight. The lag on
same-firm citations is the same as the lag on same-university citations, which again suggests bypassing of
publication lags.

So far the findings apply to science. To provide a benchmark for these results we estimate modal lags
on patents for the same firms using the same methodology. When this is done we find that the lag on firm
citations is 4.8 years. Comparing these findings we find that science diffuses fifty percent faster among
firms than patented technology. In previous research U.S. patents display a lag ranging from 4.6 to 5.3 and
this lag is greater still between countries (Jaffe and Trajtenberg, 1996, 1999; Peri, 2005). Thus results from
several sources indicate that technology diffuses more slowly than science.

Additional results explore variation in science diffusion by industry and field. The range of variation
is large: a given science takes about twice as long to reach the slowest industry as the fastest. Drugs and
biotechnology, electrical equipment, and communications are industries to which science diffuses rapidly
while diffusion occurs slowly in metals and machinery. Section VI seeks to explain this puzzle. The
dependent variable is the citation lag. Independent variables include the instrumented frictional publication
lag, mean firm R&D, and mean scientific papers. We find that the frictional lag, a type of supply dynamic,
increases the lag, but that firm size in R&D and science decrease it. Industries having a lot of R&D and
science and industries that are dominated by fields with little friction exhibit rapid diffusion. Industries
where the reverse is true exhibit slow diffusion. These findings suggest that in science, just as in invention,

dynamics of supply and firm optimization establish the speed of diffusion (Griliches, 1957).



The rest of the paper consists of six sections. Section II discusses the citation function. We use the
modal lag implied by this function, or the lag at which citation peaks, to measure the central tendency of
citation lags. We discuss the modal lag and show that it is a robust statistic for ranking the speed of
diffusion. Section III describes the database of papers and citations on which the findings are based. The
data derive from the Institute for Scientific Information (ISI) and consist of 2.7 million scientific papers and
20.2 million citations to these papers during 1981-1999. The papers are written in 110 top U.S. universities
and 200 top U.S. R&D firms that account for most science publication in the U.S. during this period.
Section IV presents estimates of the speed of diffusion of science among U.S. universities. Section V
reports similar estimates of science’s speed of diffusion from universities to U.S. firms and among the
firms. In addition we report estimates of the speed of science diffusion by industry as well as field. Finally
the section estimates the speed of diffusion of patents for the firms. Section VI studies the sources of

industry variation in science citation lags. Section VII concludes and discusses additional research.

Il. The Citation Function

We use the citation function to estimate the speed of diffusion between scientific papers. Jaffe and
Trajtenberg (1996, 1999) use this function to quantify the use of patents and their diffusion. In this article
we apply the citation function to scientific papers and science citations. The citations are backward
citations from later to earlier researchers because we are interested in how rapidly earlier science reaches
later users. Since the citation function is at the center of the empirical analysis of Sections IV-V, we
provide a brief discussion in this section.

We begin by clarifying the differences between science and patent citations. Both refer to prior
literature but the reasons for doing so are not clear. Motivations include the influence of earlier ideas and
their role in defining the problem and its solution. This motive is apparent in patent citations, which limit
commercial applications of inventions to improvements on prior art, and also in science citations. Science
citations are more likely to refute findings and they could be a strategy to achieve publication. Science
citations are controlled by authors while patent citations are often chosen by patent examiners and
attorneys. While referees of scientific journals suggest references, their inclusion requires author’s assent.
Another difference is that a single patent office controls patent grants, so application dates as well as grant

dates are known. In science, numerous journals control publication, rejections occur, and initial application



dates are typically unknown. We conclude that differences as well as similarities apply to science and
patent citations, though their impact on diffusion is not obvious.

We estimate the citation function on cells defined by the exogenous characteristics of citing and cited
papers. Each cell includes a citation probability which is the dependent variable in the analysis. This is

composed of citations, papers citing, and papers cited as follows:
(1 Pirjt =———

In (1) Pjr;; is the probability that a group i paper published in year T cites a group | paper published in
yeart, T >1. Cirjt is the number of citations or paper-pairs linked by citation. N is the number of
papers that could but might not cite papers in group | at timet whose number is N jt - For this reason N,

is the number of potentially citing papers and N it is the number of potentially cited papers. Their product
My XN is the number of paper-pairs that could be linked by citation. Notice that (1) can be thought of as a

sampling rate by the average paper in groupi attime T applied to papers in group | at timet. In the case
pling y ge pap group pp pap group |

of universities citing universities we use groupi and T to refer to citing field and year, while group | is

the cited field andt the cited year. The fields and years define four-dimensional cells in the data.

The citation function is a parametric representation of the probability of citation based on citing and
cited fields and years that allows for intercepts corresponding to these characteristics. However, we do not
discuss the intercepts in this paper. This is because of the large number of intercept terms (ranging from
several dozen to several hundred) and the variety of citation functions that we estimate. Another reason is
that our chief concern is with transitional diffusion and decay parameters’.

The citation function for universities citing universities is

) piTjt =000 €Xp [_ ﬂlﬂli(T _t)]{ 1 —exp [_ﬂZ (T _t)]}+ uiTjt

2 The intercepts can be thought of as long-run linkages between science fields and institutions. See
Adams, Clemmons and Stephan (forthcoming) for a full description of estimated intercepts based on
science citation functions for universities citing each other.



The @y terms capture the average probability that fieldi cites field j , «; the average probability that a
citation is made in period T , and ¢, , the average probability that a citation is received in periodt. The
probability parameters are defined relative to baseline values. The & jj parameters are normalized by the

value for chemistry, whose value is set equal to 1.0. Likewise, the & and &, parameters are normalized

by the earliest citing and cited periods, whose values are set equal to 1.0.

The exponential form of (2) accounts for the peaking of citations (see Figure 1) and compares closely

to patent citation functions. The ﬂl parameter represents the rate of decay in citation to chemistry
while ,B“ is a vector of decay parameters relative to this baseline. Thus ,B“ in chemistry is fixed at 1.0.
Finally B, governs overall diffusion. Since /3, positions the rate of citation, it is not identified by field
independently of the & j vector. Again we limit reported parameters to ﬂl , :Bli , and ﬁz for concise
presentation of diffusion. The error term is U iTit 5 the equation is estimated by nonlinear least squares.

In addition to citation functions for universities citing universities, we estimate similar functions for
firms citing universities, and we estimate both science and patent citation functions for firms citing firms.

The following explains how these differ from (2). In the case of firms citing universities we include

parameters ¢¢| that capture citing industry and two others, ¢; and @, that capture citing and cited field.

The vector of industry parameters is normalized by the value for one industry (petrochemicals), since /3,

absorbs the overall citation probability The citation function for firms citing universities is

3) pITjt =a,0,a;a;0, exp [_'Blﬂli (T —t)] { 1—exp [—,82 (T —t)]}+ uiTjt

If firms cite firms we include intercept vectors for citing and cited industries, &, and &;, and citing

and cited fields; and o i The citation function is

4) pIiJjTt =a|aia3ajaTatexp[—ﬂlﬂli(T—t)]{l—exp [—ﬁz(T—t)]}+u”JjTt



In some of our analysis we allow for more freedom in the pattern of diffusion. For example, we allow the
rate of decay in citation between universities to differ depending on whether the citing field is the same or

different from the cited field. Where firms cite universities and other firms, we allow the decay parameters
to vary by industry as well as field. In these cases f3,; becomes [, , where K stands for citing industry.
The speed of diffusion is implicit in the estimates. We show that the modal or most frequent lag

in citation is a robust measure of speed given (2)-(4), which differ only in their intercept terms. The modal

lag for science field j, or the lag at which the citation probability peaks, is

1

(5) Lyogal = ——— -
e BB

To prove (5) take the derivative of citation functions (2)-(4), set it equal to zero and solve for Ly, -

The cumulative citation probability for L= is found by integrating (2)-(4). This is given by:

aﬂz
BB B.B, + B,)

©) C(OO):J.:aexp (_ ﬂ1ﬁ1jL)[1_eXp (_ ﬁzL)]dL:

We collapse the intercept terms into a single term & . To compute the average lag in citation, multiply the

probability of citation by the lag L and integrate to a lag of infinity:

a [(ﬁlﬂl] +ﬂz)2 _(ﬂlﬂlj)z]
(8.8,) (BB, +8.)

D Me)=[ alexp (- A, L)1 —exp (- poL)]dL =

The result on the right is proved by applying integration by parts to the middle expression. However, this
average is based on a cumulative “probability” that does not sum to unity, as (6) shows. To obtain the

mean divide (7) by (6) so that the probability mass is normalized to 1.0. After some algebra we reach

1 1 2

(8) L= + ~ =
BBy BB+ B BB

2 b LModal

The approximation is based on 3, / B, B;; ~ 0 , which is true for the estimates in this paper. Since



citations have a positive skew the mean exceeds the mode. The point of discussing the modal and mean
lags is to show that they rank different fields in the same order’. It follows that the modal lag is a robust
way to compare speed of diffusion.

There is another reason for comparing these measures. The econometric estimates of (2)-(4)
provide estimates of modal lags, whereas the figures and some of the regressions use mean lags. According
to (5) and (8), mean lags are about twice as long as modal lags. The derivations in this section show that
there is no inconsistency involved in finding that the mean exceeds the mode. For the rest of this paper the

modal and mean citation lags will measure the speed of diffusion of science and technology.

I11. Database

The data consist of 2.4 million scientific papers written in the top 110 U.S. universities during 1981-
1999 and 18.8 million citations to those papers. Also included are 230 thousand scientific papers written
by the top 200 U.S. R&D firms as well as 640 thousand citations to these papers by other firm papers. In
addition the 200 firms make one million citations to papers by the 110 universities. The universities and
firms account for the majority of academic and industrial research conducted in the U.S. The source of the
data is ISI, the Institute for Scientific Information, in Philadelphia, Pennsylvania.

The papers appear in 7137 scientific journals. Each journal is assigned to a unique science field along
with the papers published in them. The alternative to this journal assignment method is to assign papers
according to sciences of “origin”, as given by author’s departments. But that approach is ruled out by the

lack of standardized information on academic departments®.

A. Distribution of Papers and Citations

Table 1 describes the distribution of university and firm papers by science field. The first column

contains the data for universities. Sixty-one percent of university papers originate in agriculture, biology,

3 The median lag divides the probability mass into 50 percent before and after the median, which is

Livedian ® —In(1/2)/ B, B,; =0.6931/ B, B,; = 0.6931e L, . This is again based on
B/ B.p i = 0. Thus the modal, mean, and median lags rank diffusion speeds in the same order.

* As an experiment we tried to assign all papers of Harvard University to one of the 12 main science fields
in our data using departmental address information. About one-third of the papers could not be assigned to
fields using this information. Given the failure rate we abandoned the effort.



and medicine. Chemistry, engineering, and physics rank second and account for 24 percent. Remaining
fields (astronomy, computer science, earth sciences, economics and business, mathematics and statistics,
and psychology) account for 15 percent of university papers.

The second column shows an even greater concentration among fields in industrial science. Nine
fields are shown: astronomy, economics and business, and psychology account for less than one percent of
industrial papers and are dropped from the table. In the industrial distribution, agriculture, biology, and
medicine account for 32 percent of papers instead of 61 percent as in universities. Conversely chemistry,
engineering and physics account for 59 percent of industrial papers rather than 24 percent. Life science is
simply less important in industry than in academia. Another feature is the much greater importance of
computer science, which accounts for five percent of industrial papers compared with one percent in
academia. While these differences are hardly surprising, they show that industrial citations originate far
less often in life science than do academic citations.

Notice that 223 out of 235 thousand industrial scientific papers, or 95 percent, belong to biology,
chemistry, computer science, engineering, medicine, and physics. Since a major point of this paper is its
comparison of diffusion speeds in different sectors, we restrict our reporting (though not our estimation) to
these six fields.

Recall that the citation function is estimated on cells defined by citing and cited groups and years.
Table 2 reports mean citation probabilities and their components by cell characteristics. For each cell we
calculate numbers of citations, potentially citing and cited papers, and mean probabilities. For firms, the
citing and cited groups include the added dimension of industry.

Consider universities citing other universities, where citing and cited fields and years classify the
cells’. In the case where citing and cited universities are different, the number of cells is 36,834°. In the

case of same-university citations the number of cells is 21,8017,

> For citations within the same university-field, where the majority of citations take place, we also keep
track of citations and papers cited and citing of the top 20%, the middle 40%, and the lowest 40% of
universities in each field. Within a field the cells are six-dimensional. They consist of citing field, rank-
class, and year; and cited field, rank-class, and year. This extra dimension affects the intercept terms.

8 Cross-field citations do not occur in some years. The number of within-field cells (allowing for rank) is
9x12 for each citing and cited year combination. Likewise the number of cross-field combinations is
11x12. The potential number of citing and cited year combinations is (19x18)/2. The potential number of
cells is (9x12 +11x12) x (19x18)/2=41,040. But 4,206 of the cross-field cells do not exist.



Where firms cite universities, the cells are classified by citing industry, field and year, and cited field
and year. The number of citing industry-field-year, cited field-year cells is 30,604. Finally consider firms
citing firms. In this case the cells are classified by citing and cited industry, field and year. They are thus
six-dimensional. There are 34,246 cells consisting of citations where citing and cited firms are different.
The number of cells involving same-firm citations is 10,687.

Table 2 describes the cells for different sets of data, but excluding same-institution citations. The first
three columns present mean citations and potentially cited and citing papers, where means are taken across
cells. The final column presents the mean citation probabilities computed according to equation (1).

The three panels report means for different citing and cited sectors. Panel A. presents means for
universities citing other universities. Mean citations and citing papers vary more than cited papers do,
reflecting differences in size of citing fields. Citations are of course more numerous in this dominant sector
of U.S. science. The probability of citation is on the order of 10™.

Panel B. reports means for firms citing universities by field and industry. Since industrial papers are
one-tenth as many as university papers, numbers of citations and papers citing are far less than in Panel A.*.
The dominant role of chemistry, engineering, and physics in industry shows up in the larger means of
papers in these fields relative to biology and medicine, as compared with Panel A. The industry means
indicate the greater frequency of citations and publications in pharmaceuticals and biotechnology and their
scarcity, say, in metals and machinery. Notice that mean probabilities based on firms citing universities are
on the order of 107, about one-tenth as frequent as citation probabilities within academia and industry.

Means by citing fields and industries are shown in Panel C., in which firms cite other firms. The
number of dimensions exceeds that of other panels since industry is taken into account on both citing and
cited sides. This and the smaller number of firm papers contribute to the low numbers of citations and

papers cited that are shown in panel C.°

7 Same-university and same-firm citations differ from pure self-citation. True self-citations, where the same
investigators reference their own research, are likely to diffuse even more rapidly than same-institution
citations, which are the type that we record here.

¥ The mean number of potential university papers that are cited by firms in agriculture, biology, and
medicine exceeds the numbers cited by universities. This is because firms are latecomers to citation
compare with universities, when article counts in these fields are larger.

? In panel B the cells are classified by citing industry, field and year; and by cited field and year. In panel C
industry, field, and year on both citing and cited sides classify the cells.
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B. Mean Diffusion Lags by Sector

Figure 1 graphs citation curves between universities, firms and universities, and between firms. The
curves illustrate the mean citation probability arrayed by the lag between citing and cited papers. The
curves peak in the second year, though fitted citations peak later (see Sections IV and V). The irregular
shape of the firm-firm citation curve results from smaller sample sizes in these data.

The narrowing of the curves is an artifact of differences in the citation probability. To show this
Figure 2 normalizes the curves in Figure 1 by the citation probability at a lag of one year. This brings out
differences in shape independently of scale. The normalized curve for universities is higher at
intermediate lags but otherwise lies close to the firm citation curves. This suggests a slightly faster speed of
diffusion between universities. Still, from a visual perspective, the diffusion of science proceeds at a very
similar rate across sectors of the U.S. economy.

Figure 3 introduces rank of universities citing other universities. We compute separate curves for
universities ranked in the top 20 percent, middle 40 percent, and bottom 40 percent of their fields according
to National Research Council (1995)'. Figure 3 indicates a modest effect of rank of university-field on the
speed of diffusion. Top 20 percent citations occur slightly more rapidly than middle 40 percent and bottom

40 percent citations.

C. Influence of Geographic Distance

The last four figures examine the influence of geographic distance on the speed of diffusion. Figure 4
graphs mean citation lags by distance between citing and cited universities. For this graph we take a close-
in perspective. We examine the relationship between mean citation lag and distance in intervals of 50
miles up to 500 miles. The thickened line displays mean lags for all observations. The mean increases
slightly, from 4.6 years within 50 miles to 4.9 years at 500 miles''. Much of the increase occurs within

100 miles suggesting temporary localization of scientific information, perhaps due to local collaborations.

' Peer rankings are missing for agriculture and medicine so that university-fields in these two disciplines
are ranked according to size of federal R&D support in 1998. This has the effect of blurring rankings by
quality. For more on this point, see Adams, Clemmons, and Stephan (forthcoming).

" Recall that the mean lag is twice as long as the modal lag hence the lags of four to five years in this
figure. For more, see (5) and (8) in Section II.
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The other line graphs are based on data from top 20, middle 40, and bottom 40 percent university-
fields. These data are subsets of the data yielding the main line graph. The subsets form a nebulous cloud
of points around this graph but the bottom 40 percent curve clearly lies above the mean. Knowledge
diffuses more slowly to the bottom 40 percent, and yet this difference is less than a tenth of the mean lag.

Figure 5 takes a wide-angle perspective. It examines the citation lags for distances ranging from 500
to 3,000 miles. The heavy line covers all the data and begins at a lag of 4.9 years, but declines to 4.7 years
at 3,000 miles, which is the distance between the East and West coasts. Across Figures 4 and 5 the mean
lag follows an inverted-U shape with respect to distance. It does not increase monotonically.

We observe a sharp decline for top 20 percent university-fields at longer distances. The citation lag at
3,000 miles is 4.5 years, about the same as at 50 miles. The lag increases with distance among the middle
40 percent and is unrelated to distance among the bottom 40 percent. Apparently, top departments on both
coasts work together more closely than others.

Figures 6 and 7 re-examine interactions mean lags by distance in the case of firms citing universities
and each other. Figure 6 displays the lags by distances from 0 to 500 miles. A tendency for citation lags to
increase with distance is clear in Figure 6. The increase is 0.5 years over 500 miles, with most of this
occurring within 100 miles, hence the suspicion that collaboration drives it. Figure 7 displays lags for
distances from 500 to 3,000 miles. The lag is flat for firms citing other firms but declines slightly for firms
citing universities. Together Figures 6 and 7 indicate a rough inverted-U in the citation lag structure.

Based on Figures 3-7 we cannot say that science leaks out more slowly with distance.

IVV. Regression Findings: Universities

In this section and the next we present several estimates of diffusion speed. While the findings can
seem repetitive they are essential to getting the facts of diffusion right. One can think of them as
standardized experiments in diffusion that are readily compared. We begin with the university sector. The
speed of diffusion is likely to be fastest in this sector, since being first to publish is a key to success. For
this reason the university estimates provide a benchmark for the estimates of citation lags in industrial
science and technology, which are reported in Section V below.

Tables 3 and 4 contain regressions that result from fitting citation function (2) to the data. In these

tables and others to follow we report the exponential portion of the citation function for the six fields that
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dominate science. Table 3 reports basic findings on the rate of diffusion among universities. The first two
columns concern citations between different universities. The first column reports decay and diffusion

parameters while the second reports estimated modal lags. Towards the bottom are estimates of the

baseline decay and diffusion parameters 3, and f5,. The decay parameter is 3,=0.351. This indicates a
modal lag of 2.85 years for chemistry (1/ ﬂl =1/0.351=2.85). The diffusion parameter is ﬂz =0.000108.

Taken together with ﬂl this indicates a peak citation probability of ﬂz / ﬂl ~(0.00031.
Field decay rates provide estimates of modal lags by field. Using (5), where the modal lag
equals1/ 3, B,;, we find that the shortest lag is 1.75 years in physics while the longest is 4.25 years in

computer science'>. The average of the modal lags across fields is 3.06 years. Variation in the speed of
acceptance and publication across fields plays a part in these differences, while another part reflects
differences in propensities to collaborate. Of course, fields with shorter modal lags exhibit more rapid
decay in citation probabilities given the shape of the citation function.

To see how frictional publication lags affect the diffusion of science, we introduce same-university
citations, where these lags are less important. The third and fourth columns of Table 3 report the parameter
estimates and modal lags. Lags for same-university citations occur 1.29 years sooner than for citations
between universities. In chemistry the modal lag is 1.65 years and lags for other fields are correspondingly
shorter. The average of the estimates is 1.77 years. Citations between universities are 73 percent slower
(3.06/1.77=1.73). Differences by field are shown in the final column. Same-university citations get around
most of the frictional publication lags. This explains why same-university lags differ so little across fields
as the last column shows. The lag shortens most in computer science, where frictional lags are longest, and
least in biology and physics, where these lags are shortest. However, these are same-institution citations,
not true self-citations. Their speed of diffusion understates the speed of self-citation.

Table 4 estimates a more elaborate citation function. This distinguishes within-field from between-
field dimensions for every citing field. This is done by estimating separate parameters when cited fields are
the same or different as each citing field. Within-field decay rates and modal lags appear in columns one

and two. Between-field decay rates and modal lags appear in columns three and four. We expect between-

12 Ellison (2002), Table 2 finds long submission-resubmission times in computer science but much shorter
times in biology and physics.
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field diffusion to proceed more slowly because of the higher cost of assimilating “outside” information.
Computer science is the exception. This reversal, in which outside fields are cited more rapidly, probably
follows from very short publication lags in cited fields such as electrical engineering and physics compared
with computer science itself.

The within-field results in Table 4 are about the same as the total results in Table 3. This shows how
much within-field citation dominates the parameter estimates. In the third and fourth columns, where citing
and cited fields are different, decay parameters are smaller and implied modal lags are larger. The average
between-field lag is 3.41 years, about four months longer than the lag of 3.06 within-fields. Thus, the

additional delay due to the movement of knowledge across fields is a second order effect.

V. Regression Findings: Firms

We turn next to the diffusion of science in firms. While similar to diffusion among universities, we
consider a wider range of evidence for industry. We estimate the speed of diffusion from universities to
firms, between firms, and within firms, and we compare the estimates with the university results.
Afterwards we examine the diffusion of science by industry and field. At the end of the section we use

patent data to estimate the speed of diffusion of technology and we compare this to science.

A. Diffusion from Universities to Firms

We begin with firms citing universities. Tables 5 and 6 contain the findings, in which citation function
(3) is fitted to the data. As before the tables report exponential terms of the citation function (3) for the
dominant fields of biology, chemistry, computer science, engineering, medicine, and physics, although all
fields and all parameters are included in the estimation procedure.

Table 5 reports decay and diffusion parameters along with modal lags. The estimates are quite close to
the university-university results. The equally weighted average of the modal lags is 3.02 years compared
with 3.06 in Table 3. This confirms the intuition of Figures 1 and 2, that there is little difference in the rate
with which university research diffuses among sectors. Another feature is that modal lags rank the fields in
the same order in Tables 3 and 5. Physics remains the fastest field, computer science the slowest, and so on.
Relative diffusion speeds are a feature of fields rather than broad sectors of the economy.

Table 6 allows the rate of decay and thus the speed of diffusion to vary by industry and field.

Industries form rows of the table. Fields form the columns until the last, which reports the average lag by
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industry. The first column for each science reports the estimated decay rate and its standard error, while

the second reports the modal lag. In this case the modal lag is Ly,gy =1/ BB, - Here [, is the baseline

decay rate of citations for chemistry in petrochemicals and f3;, is the decay rate of fieldi in industry K .

There are 66 possible parameters representing six fields and 11 industries, but since certain fields are
negligible in several industries we obtain 59 significant parameters.

Within the same field the speed of diffusion varies by a factor of two across industries. The modal lag
ranges from 1.93 to 4.55 years in biology, from 2.13 to 3.59 in chemistry, from 3.14 to 5.68 in computer
science, from 3.06 to 4.62 in engineering, from 2.03 to 3.37 years in medicine, and from 1.72 to 2.56 in
physics. The average lag in an industry is a mixture of field and industry effects but in spite of this drugs
and biotechnology stand out as a rapidly-diffusing industry while machinery is slowly-diffusing. This

variation by industry is a puzzle to which we return in Section VI.

B. Diffusion of Science in Firms

If firms were to strategically defer publication, then diffusion among firms should be significantly
slower than diffusion elsewhere. The additional strategic lag should drive a wedge between citing and cited
publication years. This is the issue that we explore in Tables 7 and 8, which contain estimates of equation
(4). Table 7 reports a basic set of results. The results suggest that strategic delays are not major in
industrial science. The average lag in column two for firms citing each other is 3.30 years. This is three
months longer than the 3.06 years observed for universities citing each other (Table 3, column two) and the
3.02 years (Table 5, column two) for firms citing universities. Of course the estimates cannot directly
measure publication delays but the observed lags suggest that these delays are not large. If they were, firms
would cite an older literature than universities. The only way to avoid this conclusion is to assume that
firms permanently block publication, in which case the lags would be censored.

Columns three and four contain findings for firms citing themselves. The average of the modal lags is
1.70 years, about the same as the lag on same-university citations (1.77 years). Citations to other firms take
nearly twice as long (3.30/1.70=1.94). Still, same-firm citations occur 1.5 years faster than citations to

other firms and this pattern closely resembles the findings for universities.
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Table 8 explores the interfirm diffusion of science by industry as well as field. We allow the citation
decay parameter to vary in both dimensions to achieve this flexibility. Industries form rows of the table,
and fields form the columns up to the last, which reports averages by industry. Allowing for the fact that
some of the sciences are negligible in several industries, we obtain 50 significant parameters out of 66.

The speed of diffusion varies widely for the same field. The modal lag ranges from 2.24 to 3.87 years
in biology, from 2.33 to 4.81 in chemistry, from 3.45 to 4.83 in computer science, from 2.11 to 4.34 in
engineering, from 2.47 to 6.10 in medicine, and from 1.81 to 3.32 in physics. Also, the average lags in the
final column do not rank the industries in the same way. This suggests that in a given industry and field,

the value of new science available from other firms differs from its value in universities.

C. Comparative Diffusion of Science and Technology

We have established stylized facts concerning the diffusion of science by sector, field and
industry. However, these results lack a benchmark outside of science. In this section we provide a
benchmark by comparing the interfirm speed of diffusion of science with the interfirm diffusion of patented
technology.

We start by reviewing findings on the diffusion of patents. Jaffe and Trajtenberg (1996) estimate
citation functions for patents by U.S. universities and the federal government. Their purpose is to
understand firms’ use of public sector technologies and its diffusion. Using citing and cited grant years to
define the diffusion lag, they find that the modal lag is 4.7 years. Since grant years are analogous to
publication years, the estimate in this sense is comparable to modal lags in science. In a study of
international patent citations, Jaffe and Trajtenberg (1999) find that the modal lag for U.S. patents citing
other U.S patents varies from 4.6 years to 5.3 years, depending on technology field, with an average modal
lag of five years. These estimates again use citing and cited grant years to define the lags.

Popp (2002) uses the citation function to compute stocks of energy-saving knowledge. His goal is
to distinguish the contributions of energy prices and stocks of knowledge to the search for new energy-
saving technologies. His citation function uses the application year of citing patents and grant year of cited
patents. The idea is that application year is a better measure of the date of the citing invention, while grant
year of the cited invention captures the date at which the information goes public. Citing application year

shortens the measured citation lag, and consistent with this, his estimate of the modal lag on energy patents
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is 2.8 years. Since patents require an average of two years from application date to grant date this result is
close to the five year lag reported in Jaffe and Trajtenberg (1996, 1999).

Branstetter and Ogura (2005) estimate the citation function for U.S. patents citing scientific papers
of California’s research universities. Citing year is the grant year while cited year is the publication year.
Thus, the concept of citation lag compares closely with that used in Jaffe and Trajtenberg (1996, 1999),
except that lags run from invention to science rather than from invention to invention. The modal lag
between patents and scientific papers is 8.33 years. This is the time that science takes to move first
between researchers in academic and industrial science, and subsequently from industrial science to
industrial invention'’. This double lag explains why the estimate exceeds others. In fact, Branstetter and
Ogura’s (2005) modal lag comes tantalizingly close to the sum of the 4.8 year modal lag on patents plus the
3.0 year modal lag in science based on publication years that we find in this paper.

These comparisons are in a way wishful. Earlier studies include a different set of firms than the
top 200 R&D firms. To remedy this we calculate a patent citation function for the top 200 firms using data
that span the same period as the science citation data. We begin by drawing all 356,000 patents issued to
the top 200 during 1975-1999, along with their citations'*. This is a 20 percent sample of all U.S. patents.
It demonstrates the weight of the top 200 firms in U.S. technology. Using citing and cited technology
classes and grant years we construct cells that contain patent citation probabilities like equation (1) in
Section II. Using these data we estimate a patent citation function very like the science citation functions
reported in Tables 3-8. Table 9 contains the results.

Columns one and two contain the estimated decay and diffusion parameters. Modal lags are
shown in column two. These range from 3.77 to 5.83 years, with a mean of 4.78 years. This lag is closely
similar to modal lags found in other studies of patents citation that use grant years to construct the lags and
estimates based on them. The average lag on patents is 45 percent greater (4.78/3.30=1.45) than the lag of
3.30 years on scientific papers reported in Table 7. By this measure science diffusion is about 50 percent

faster than technology’s.

13 Adams (1990) finds a mean lag of 20 years for the peak effect of stocks of scientific papers on
productivity growth. Since the mean lag for the citation function is twice the modal lag (see (8)), a modal
lag of 8.33 years corresponds to a mean of 16.67 years, not very different from 20 years.

' The data source is the NBER patent citation data described in Jaffe and Trajtenberg (2002).
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Columns three and four report findings for modal lags on same-firm patent citations. The average lag
drops to 2.97 years, implying that other-firm citations on patents take 61 percent longer (4.78/2.97=1.61).
This compares with 94 percent longer lags on other-firm science citations in Table 7 and suggests that
frictional lags are relatively less important for patents than papers. A possible explanation is that
disclosure may begin with the application year, not the grant year.

Industrial science leaks out about fifty percent faster than industrial technology, but it is not clear why.
One interpretation is that delays in application and processing are longer for patents than scientific papers.
This agrees with the notion that technology contains more sensitive information rather than science. A
second interpretation is that the shorter lag for papers reflects the efficiency of the priority publication
system in science. Yet another interpretation is that technology relies on older information than science.

Only time will distinguish among these explanations.

V1. Explaining Industry Diffusion Differences

The findings so far fall into two classes. Easily interpreted results include all the empirical
regularities. Diffusion speed does not fall with geographic distance. Science diffuses more rapidly in some
fields than others and the ranking of fields stays constant. The diffusion speed of industrial science is
slightly slower than academic science and science diffuses more rapidly than technology.

This simplicity is spoiled by hard to explain differences in diffusion across industries. In this section
we try to interpret these differences using two factors. Frictional lags slow down diffusion of a field in all

industries. The size of R&D and science speeds up diffusion in particular industries. The simple model that
follows organizes these ideas. Let P, be patents that are produced according to a Cobb-Douglas

production function,

t-Lj Ui
) pt:Aﬁ‘;‘,tRf{ZT_IUO S_dz') }

)T

This resembles standard patent production functions (Griliches, 1984; Hall and Hayashi, 1989; Klette,

1996) in that patents depend on the firm’s scientists and inventors £ ,, , with exponent ¢t , and on its R&D
stock R, , with exponent /. These terms are multiplied by a science term in square brackets that consists

of the sum over stocks of scientific knowledge ] , whose exponents are 77 - These are shown as integrals
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under the summation sign. Each science stock | dates from at least t — L jt_periods ago, reflecting the

vintage of knowledge available to the firm. We assume that this lag is to some extent controllable by the
firm. Notice that we treat the science stocks as separable across fields. This is approximately right for

recent science, where cross-field citations are rare (Adams, Clemmons, and Stephan, forthcoming). If
decreasing or constant returns prevail, then the exponents obey the inequality & + f + ZL 1; <.

We indicate by means of an example how firms could set the lags on each science stock, thereby
determining how current they are in a science'”. We assume that the lag in each field t — L jt depends on

a catch-up function:

CJ
(10) L. =F.+—q,,
1+ Bj“jt

which determines the upper limits on the integrals or science stocks in (9). The constant F i > 0 is like the
frictional publication lags that we have discussed while B > C i > 0 determine the ease of cutting the lag,
and ¢ i~ 0 the response of the lag to catch-up resources ¢ ajt - AS catch-up resources £ At 80 to infinity
the lag goes to L, = F;, while as resources go to zero the lag goesto L, = F; + C;. Notice that the lag

cannot fall below the frictional lag F j - Differentiating (9) and (10) with respect to catch-up resources we
find that

¢k BkaE%Ztl

(1+8B,0%, ) 70

apt _ a ﬁ t_th 77k*1
an S IAR UO SdeZ‘j St

The marginal product of catch-up resources increases with scientists and inventors £ p, and the stock of
R&D Rt which provide the firm with an incentive to be more current. The incentive decreases as the

frictional lag F, increases, since by (10) that reduces t — L, the upper limit on the integral in (11) and the

"*Nelson and Phelps (1966) present models that are precursors to this point of view.
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stock of scientific knowledge in field K . Thus, there could be negative repercussions from increases in the
frictional lag'®.

This gives us a story as to why frictional lags and size in R&D and science matter for incentives to stay
current, but the task of finding empirical counterparts still lies ahead. This turns out to be tractable. One
measure of the frictional lag in a field is the difference between same-university and other-university lags,
which appear in the final column of Table 3 under “Difference in Modal Lags”. We shall instrument the
frictional lag in industry using the difference in modal lags in university science in the same field. The
difference in university lags derives from a different set of data than industrial science'’. It is therefore
exogenous for a study of modal lags in industry.

We also have measures of industry and firm scale in R&D and science. The average R&D stock per
firm speeds up diffusion by increasing the marginal benefit of searching the literature. Average papers in
an industry and field are a similar variable, but they offer an advantage over R&D stock in that they vary by
field as well as industry. We are unable to identify a third factor in the data, the amount of recent science
that attracts effort to stay current.

Table 10 reports regressions using modal citation lags as the dependent variable. The regressions are at
the industry and field level. The estimated lags are taken from Table 6, where firms cite universities and
there are 59 such lags; and from Table 8, where firms cite other firms and there are 50 lags. Equations
10.1-10.3 concern diffusion from universities to firms. Equations 10.4-10.6 concern diffusion between
firms. The independent variables include the instrumented frictional lag. Also they include the mean stock
of R&D per firm and primary industry as reported in Compustat. The stock is expressed in millions of
1992 dollars, depreciated at 15 percent over the previous eight years, and summed . The final independent
variable is an alternative to the R&D stock'®. This is the mean number of papers in an industry and field.
The data form a cross section rather than a panel, so that fixed effects estimation is infeasible.

Equations 10.1 and 10.4 are arithmetic regressions, while the rest are logarithmic. The arithmetic form

estimates gradients while the logarithmic form estimates elasticities. In 10.1 and 10.4 the frictional lag

' Increases in B, and Ck have more uncertain effects on the marginal product in (11).

' The overlap between the two sets of papers is two percent: 50 thousand of the 2.43 million university
papers are written jointly with firms. The estimates for universities in Table 3 stay the same whether the 50
thousand jointly authored papers are included or left out.

'® The simple correlation between mean R&D stock and mean number of papers is 0.63.
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significantly lengthens the modal lag. Point estimates are 0.99 and 0.69 implying that an extra frictional
lag of a year increases the lag by 1.0 and 0.7 years. Firm R&D shortens the modal lag and sometimes
significantly. The gradients are -0.65x10 in 10.1 and -1.38x10™ in 11.4. An increase in the R&D stock by
one billion (10*, given its scaling in millions) cuts the lag by 0.7 to 1.4 years.

Equations 10.2 and 10.4 report specifications where the logarithm of the modal lag is the dependent
variable and logarithms of the frictional lag and R&D stock are the independent variables. Equation 10.2
contains results for firms citing universities. The elasticity of the frictional lag is 0.37. This exceeds zero at
the one percent level. The elasticity with respect to R&D stock is -0.06; the estimate is not very precise.
Results are qualitatively similar in 10.4. In this case elasticities of the frictional lag and R&D stock are
0.27 and -0.15. Both estimates are significant at the one percent level. Equations 10.3 and 10.6 replace the
logarithm of mean R&D stock with mean papers. The elasticity of the frictional lag stays the same, but the
elasticities of papers are -0.04 and -0.10. This is a decline in absolute value, but the estimates are
statistically significant. Friction slows down science diffusion, but firm size speeds it up. Industries with
large firms and fields with little friction exhibit rapid diffusion. Industries where the reverse is true exhibit
slow diffusion. Mixtures of the two elements produce intermediate results.

Table 11 revisits Table 10 using data at the firm and field level. Again the data form a cross section,
so that fixed effects estimation is infeasible. Apart from comparability the reason is this. Owing to
truncation the average citation lag in a panel automatically increases with year and duration. To avoid
ambiguity we simply compute mean lags over years for the entire period. To reduce errors in measurement
we require at least 10 observations per year. Firm R&D stock is required to have an R&D history of eight
years in Compustat.

The first half of the table concerns firms citing universities, while the second concerns firms citing
other firms. The table layout is the same and the format of the regressions almost the same as in Table 10,
except that we include industry dummies (with petrochemicals omitted). We do not report the industry
effects but simply note that in drugs, instruments, communications, and software they are negative and
often significant. Diffusion of science appears to be faster in these industries than in others.

Equations 11.1 and 11.4 contain arithmetic regressions; the rest are logarithmic. Gradients are smaller

in absolute value than before but all are significant and all carry the expected signs. The frictional lag
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increases the mean lag with a gradient of 0.6. This implies an increase in the mean lag of 0.6 years for each
additional year of the frictional lag. Firm R&D stock shortens the lag: its gradient is -0.46x10™ in 11.1 and
-0.34x10™ in 11.4. The results suggest that an increase in the stock of firm of one billion (10, given its
scaling in millions) reduces the mean lag by 0.5 or 0.3 years.

Equations 11.2 and 11.5 express all variables in logarithms and use firms” R&D stock as a measure of
size. The equations imply that doubling the frictional lag increases the mean lag by 12 percent. Doubling
firm R&D decreases the mean lag by one to two percent. Equations 11.3 and 11.6 replace R&D stock with
firm papers. The results imply that a doubling of firm papers in a field cuts the mean lag by four percent.
These results agree with the earlier findings at the industry and field level. Of course, the data sets are
cross-sections and we cannot control for fixed effects. But the direction of the effects agrees with

expectations and in this sense the findings are helpful in understanding industry variation in diffusion.

VII. Conclusion

In this paper we have provided new evidence on the diffusion of science, not only between universities
and between universities and firms, but also between firms. The modal or most frequent lag in science
citation is 3.0 years between universities and from universities to firms. The modal lag in science citations
between firms is 3.3 years, about three months longer than the lag involving universities. This result
suggests that publication and diffusion are delayed only slightly in industry. The modal lag of 3.3 years on
the diffusion of science between firms compares with 4.8 years based on patents for the same firms using
the same estimation procedure. Thus science diffusion appears to take place about fifty per cent more
rapidly than technology diffusion. This is consistent with the view that Open Science leads to more rapid
diffusion than the patent system, although other explanations are possible.

Certain fields stand out for the rapidity with which their research disperses. Most rapid of all is
physics. Certain others diffuse slowly, such as computer science. Some of these differences are due to
publication lags as the results on self-citation demonstrate. In some fields papers are long and intricate and
costs of refereeing are greater in such disciplines. This is clearly helpful in understanding the structure of
frictional lags in science. Still other differences are due to collaboration, which is common in rapidly
diffusing fields such as physics (Adams, Black, Clemmons and Stephan, 2005). More work is needed to

fully understand the sources of variation in science diffusion across fields.

22



Industry and firm variation in the diffusion of science, as we have seen, is partly driven by the
frictional lags and by the size of enterprise in R&D and science, but also it is driven by differences in the
value of new knowledge over old, and differences in this knowledge across sectors that are difficult to
measure. It seems that this too is a fruitful area for additional research. And finally, to the extent that firms
absorb knowledge from other scientific institutions that is already old at the source, there is an externality
involved in diffusion lags that has not been studied, to our knowledge.

It is important to see that all of this evidence provides a lower bound on the speed of diffusion
between science and technology. Additional time is required for industrial science, once it arrives at a firm,
to affect industrial invention as well as conversely, and the determinants of these long lags and feedback
effects have yet to be fully investigated. More elusive still is the nature of the connection between

technology and science within R&D firms that we have already alluded to in this paper.
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Table 1

Scientific Papers by Field, Top 110 Universities
And Top 200 U.S. R&D Firms, 1981-1999

Field University Firm
Papers ? Papers °
' 189,740 6,025
Agriculture (7.8%) (2.5%)
35,795 c
Astronomy (1.5%) -
_ 639,195 44,082
Biology (26.3%) (18.5%)
‘ 195,437 39,346
Chemistry (8.0%) (16.5%)
_ 28,184 12,367
Computer Science (1.2%) (5.2%)
_ 73,126 3,616
Earth Sciences (3.0%) (1.5%)
_ 43,892 c
Economics (1.8%) -
o 170,569 50,203
Engineering (7.0%) (21.1%)
. . 61,061 2,665
Mathematics and Statistics (2.5%) (1.1%)
o 659,000 26,739
Medicine (27.1%) (11.2%)
‘ 217,026 50,346
Physics (8.9%) (21.1%)
116,976 c
Psychology (4.8%) -

Source: Institute for Scientific Information and Computer Horizons, Inc. * Sum of university
articles is 2,430,001. ® Sum of firm articles is 235,389. © Astronomy, economics, and psychology
contribute less than one percent of firm papers and are dropped from this table. Papers are
assigned to the unique field of each journal according to the Journal-Field Assignment Method
discussed in the text. Percentages noted are percents of column totals.
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Table 2
Mean Science Citations, Papers Cited and Citing, and Citation Probabilities
Top 110 Universities and Top 200 U.S. R&D Firms

Classification Citations Potentigl Potenti_a_l Mean Cit_a_tion
Papers Cited Papers Citing Probability

Panel A. Citations between Top 110 Universities

Citing Field
Biology 4,158 16,840 51,541 0.21x10™
Chemistry 660 14,095 14,486 0.40x10™
Computer Science 55 12,262 2,462 1.37x10™
Engineering 230 12,543 13,369 0.13x10™
Medicine 3,614 19,355 54,570 0.14x10™
Physics 1,333 13,731 19,270 0.51x10™

Panel B. Citations from Top 200 R&D Firms to Top 110 Universities

Citing Field
Biology 120 26,348 579 0.87x107
Chemistry 33 17,689 301 1.21x10°
Computer Science 13 4,564 180 5.81x107
Engineering 16 10,690 333 0.83x107
Medicine 106 30,467 556 0.85x107
Physics 35 12,727 367 0.98x107

Citing Primary Industry of Firm (SIC Code)
Petrochemicals (13, 28 except 283, 29-30) 37 20,037 323 1.20x10°
Pharmaceuticals & Biotechnology (283) 182 22,816 994 1.49x10°
Primary and Fabricated Metals (33,34) 7 18,781 37 1.60x10°
Machinery, Except Computers (35, except 357) 6 10,009 44 1.63x10°
Computers (357) 14 13,990 124 1.95x10°
Electrical Equipment (36) 22 12,539 319 5.17x10°
Transportation Equipment (37) 21 14,964 214 5.12x10°
Instruments (38) 20 22,717 119 2.88x107
Communications Services (48) 28 11,097 265 7.39x107
Computer Software & Services (737) 25 13,298 268 4.64x10°
All Other 10 23,119 41 1.49x107

Panel C. Citations between Top 200 R&D Firms

Citing Field
Biology 20 568 1172 0.81x10™
Chemistry 5 415 346 0.63x10™
Computer Science 3 232 215 1.40x10™*
Engineering 3 429 466 0.25x10™
Medicine 13 654 867 0.46x10™
Physics 7 398 410 0.59x10™

Citing Primary Industry of Firm (SIC Code)
Petrochemicals (13, 28 except 283, 29-30) 5 464 400 0.59x10™*
Pharmaceuticals & Biotechnology (283) 22 511 1,405 0.33x10™
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Table 2
Mean Science Citations, Papers Cited and Citing, and Citation Probabilities
Top 110 Universities and Top 200 U.S. R&D Firms

Classification Citations Potentigl Potenti.a_l Mean Cit_a_tion
Papers Cited Papers Citing Probability
Citing Primary Industry of Firm (SIC Code)
Machinery, Except Computers (35, except 357) 2 637 37 1.40x10™*
Computers (357) 4 421 151 0.81x10™
Electrical Equipment (36) 5 341 478 0.88x10™
Transportation Equipment (37) 4 408 357 0.45x10™
Instruments (38) 3 604 126 0.63x10™
Communications Services (48) 6 363 469 0.64x10™
Computer Software & Services (737) 5 348 374 0.60x10™*
All Other 2 881 38 0.91x10™

Notes: The table entries are means over cells and not sums. The number of cells that enter into the
calculations for Panel A is 36,834. Citing and cited fields and citing and cited years classify these
university-university cells. For Panel B, which consists of firm-university cells, this number is 30,604. In
this case citing industry, citing and cited fields, and cited fields and years classify the cells. The number of
cells in Panel C is 34,246. In the firm-firm cells the classifying variables are citing and cited industries,
fields, and years.
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Table 3
Diffusion Estimates: Science Citations Between the Top 110 U.S. Universities

Parameter, Science Field Citations to Other Self-Citations to the Same
Universities ® University ° Difference in
Estimate Estimate Modal Lags

(St. Error) Modal Lag © (St. Error) Modal Lag ¢

Decay Parameters (B1;)

Biology 1.090 2.61 0.894 1.84 0.77
(0.016) (0.010)

Chemistry 1.000 2.85 1.00 1.65 1.20

(+-) ()

Computer Science 0.671 4.25 0.866 1.90 2.35
(0.011) (0.011)

Engineering 0.744 3.83 0.907 1.82 2.01
(0.028) (0.017)

Medicine 0.922 3.09 0.814 2.02 1.07
(0.019) (0.018)

Physics 1.632 1.75 1.211 1.36 0.39
(0.022) (0.012)

Baseline Decay Parameter (B1)* 0.351 _ 0.607 o o
(0.004) (0.003)

Diffusion Parameter (B,)* 1.08x10™* o 4.95x10"* o o

(3.23x10°) (5.86x10°)
Average of the Modal Lags ¢ 3.06 1.77 1.29

Notes: The equations include intercept terms for citing and cited fields, cited years and citing intervals,
which are significant. The functional formis Py, = @ exp(—=/, B, (T —t))[1—exp(—f,(T —1))],

where the intercept terms are @ and f3,, f3,;, 3, are the exponential parameters reported above. * The

number of observations is 36,834. Adjusted R>=0.938. The estimated standard error of the regression (root
mean squared error) is 0.0010. ° The number of observations is 21,801. Adjusted R>=0.952. The
estimated standard error of the regression (root mean squared error) is 0.0006. © The modal lag equals the
reciprocal of ;. See equation (5) in the text. 4 The average is the simple or un-weighted average of the

field-specific modal lags.
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Table 4
Diffusion Estimates: Science Citations Between the Top 110 U.S. Universities,
Within and Between Sciences

Citations to the Same Citations to Other
Field ® Fields ®
Parameter, Citing Field of Difference in
Science Modal Lags
Estimate Modal Estimate (St. Modal
(St. Error) Lag® Error) Lag®

Decay Parameters (By;)

Biology 1.090 2.61 0.958 2.97 0.36
(0.016) (0.097)

Chemistry 1.000 2.85 0.908 3.14 0.29

(--) (0.171)

Computer Science 0.671 4.25 0.751 3.79% -0.46"*
(0.011) (0.203)

Engineering 0.749 3.80 0.577 4.94 1.14
(0.029) (0.109)

Medicine 0.921 3.09 0911 3.13 0.04
(0.019) (0.070)

Physics 1.631 1.75 1.135 2.51 0.76
(0.022) (0.216)

Baseline Decay Parameter (B,)* 0.351 o o o o
(0.004)

Diffusion Parameter (,)* 1.08x10™* _ _ _

(3.25%x10°)
Average of the Modal Lags ° L 3.06 o 341 0.35

Notes: The equations include intercept terms for citing and cited fields, cited years and citing intervals,
which are significant. The functional form is P, = @ exp(=2,B,; (T —t))[1 —exp(=4,(T —1))].

where the intercept terms are & and f3,, 3, 3, are the exponential parameters reported above. * The

number of observations is 36,834. The adjusted R*=0.938. The estimated standard error of the regression
(root mean squared error) is 0.0010. ® Citation lag to other fields is shorter than citation lag within a field
and represents a reversal in the relative speed of within field diffusion. ® The modal lag equals the
reciprocal of S 8i. See equation (5) of the text. © The average is the simple or un-weighted average of the

field-specific modal lags.
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Table 5
Diffusion Estimates: Science Citations from Top 200 U.S. R&D Firms
To Top 110 U.S. Universities

Citations to Universities 2
Parameter, Science Field

Estimate b
(St. Error) Modal Lag
Decay Parameters (B1;)
Biology 0.997 2.57
(0.036)
Chemistry 1.000 2.56
(--)
Computer Science 0.622 4.12
(0.020)
Engineering 0.655 391
(0.040)
Medicine 0.886 2.89
(0.043)
Physics 1.242 2.06
(0.045)
Baseline Decay Parameter (B1)* 0.390 _
(0.010)
Diffusion Parameter (B,)* 0.69x10™ .
(3.75%x10°)
Average of the Modal Lags ° o 3.02

Notes: The equation includes intercept terms for citing and cited fields, cited years and citing intervals,
which are significant. The functional form is Py, = @ exp(—f, B, (T —)[1 —exp(-5,(T —1))],

where the intercept terms are @ and f3,, f3,;, 3, are the exponential parameters reported above. * The

number of observations is 30,604. The adjusted R>=0.711. The estimated standard error of the regression
(root mean squared error) is 0.0009. ° The modal lag equals the reciprocal of BB - See equation (5) in

the text. © The average is the simple or un-weighted average of the field-specific modal lags.
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Table 6

Diffusion Estimates by Field and Industry:
Science Citations from Top 200 U.S. R&D Firms to Top 110 U.S. Universities

Field of Science

Average
Computer Modal Lag
Industry Group Biology Chemistry np Engineering Medicine Physics By
Science
Industry
B Modal B Modal B Modal B Modal B Modal B Modal

(s.e) Lag (s.e.) Lag (s.e.) Lag (s.e) Lag (s.e.) Lag (s.e.) Lag

Petrochemicals 0.855 2.56 1.000 2.19 o 0.578 3.79 0.682 3.21 1.192 1.83 2.72
(0.025) () (0.044) (0.034) (0.031)

Drugs and Biotechnology 0.984 2.22 0.759 2.88 L L L L 0.854 2.56 L o 2.55
(0.018) (0.023) (0.020)

Metals 0.736 2.97 0.900 2.43 o o 0.660 3.31 0.648 3.37 0.891 245 291
(0.074) (0.040) (0.042) (0.069) (0.057)

Machinery except 0.480 4.55 0.609 3.59 0.487 4.49 0.698 3.13 0.692 3.16 0.852 2.56 3.58

Computers (0.078) (0.040) (0.018) (0.049) (0.101) (0.056)

Computers 0.807 2.71 0.860 2.54 0.564 3.88 0.645 3.39 0.848 2.58 1.265 1.73 2.81
(0.053) (0.035) (0.013) (0.036) (0.091) (0.033)

Electrical Equipment 0.901 2.43 1.005 2.18 0.541 4.04 0.616 3.55 1.074 2.03 1.106 1.88 2.69
(0.067) (0.042) (0.012) (0.031) (0.051) (0.034)

Transportation Equipment 0.855 2.56 0.764 2.86 0.697 3.14 0.615 3.56 0.760 2.88 1.129 1.94 2.82
(0.053) (0.029) (0.019) (0.030) (0.076) (0.036)

Instruments 0.986 2.22 0.950 2.30 0.385 5.68 0.714 3.06 0.866 2.52 1.088 2.01 2.97
(0.031) (0.029) (0.013) (0.057) (0.034) (0.058)

Communications 1.131 1.93 1.028 2.13 0.594 3.68 0.553 3.95 o o 1.270 1.72 2.68
(0.042) (0.030) (0.012) (0.035) (0.029)

Software and Business 1.012 2.16 0.877 2.49 0.548 3.99 0.473 4.62 0.896 2.44 1.245 1.76 291

Services (0.061) (0.023) (0.011) (0.021) (0.081) (0.029)
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Table 6
Diffusion Estimates by Field and Industry:
Science Citations from Top 200 U.S. R&D Firms to Top 110 U.S. Universities

Field of Science

Average
C ¢ Modal Lag
Industry Group Biology Chemistry omputer Engineering Medicine Physics By
Science
Industry
B Modal B Modal B Modal B Modal B Modal § Modal
(s.e) Lag (s.e.) Lag (s.e.) Lag (s.e) Lag (s.e.) Lag (s.e.) Lag
Miscellaneous 0.666 3.28 1.018 2.15 0.679 3.22 0.666 3.28 1.189 1.84 3.44

(0.042) (0.033) (0.061) (0.058) (0.066)

Notes: The equation includes intercept terms for citing and cited fields, cited years, and citing intervals, which are significant. The functional form is
Pirg = @ exp(=5,B,; (T —)[1 —exp(—B,(T —1))], where the intercept terms are @ and f3,, ;, 3, are the exponential parameters reported above. *

The number of observations is 22,855. The adjusted R>=0.800. The estimated standard error of the regression (root mean squared error) is 0.000274. ° The
identity of the industry for which diffusion is the slowest or the fastest of course varies across the six science fields. © The modal lag equals the reciprocal
of 3 Bjj , where S =0.457 is the estimate of the rate of decay within petrochemicals in the field of chemistry, and subscripts ij stand for citing industry and

field. See equation (5) in the text.
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Table 7
Diffusion Estimates: Science Citations
Within and Between Top 200 U.S. R&D Firms

Citations to Other Firms 2 Self-Citations to the Same Firm °
Parameter, Science Field
Estimate p Estimate c
(St. Error) Modal Lag (St. Error) Modal Lag
Decay Parameters (B1;)
Biology 1.050 2.95 0.948 1.60
(0.018) (0.038)
Chemistry 1.000 3.10 1.000 1.52
(--) (--)
Computer Science 0.800 3.87 0.700 2.17
(0.020) (0.118)
Engineering 1.019 3.83 0.888 1.71
(0.030) (0.089)
Medicine 0.820 3.78 1.024 1.48
(0.027) (0.040)
Physics 1.371 2.26 0.884 1.72
(0.023) (0.032)
Baseline Decay Parameter (B,)* 0.323 _ 0.658 o
(0.005) (0.019)
Diffusion Parameter (B,)* 0.93x10™ _ 13.46x10™ o
(5.89x10) (2.28x10™)
Average of the Modal Lags ¢ o 3.30 . 1.70

Notes: Both equations include intercept terms for citing and cited fields, cited years and citing intervals,
which are significant. The functional form is Py, = @ exp(—f, B, (T —)[1 —exp(-5,(T —1))],

where the intercept terms are @ and f3,, f3,;, 3, are the exponential parameters reported above. * The

number of cells is 34,246. The adjusted R>=0.580. The estimated standard error of the regression (root
mean squared error) is 0.0010. ° The number of observations is 10,687. The adjusted R*=0.805. The
estimated standard error of the regression (root mean squared error) is 0.0124. © The modal lag equals the
reciprocal of f3,/3;;. See equation (5) in the text. ¢ The average is the simple or un-weighted average of the

field-specific modal lags.
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Table 8
Diffusion Estimates by Field and Industry:
Science Citations Among the Top 200 U.S. R&D Firms

Field of Science

Average
Industry Group Modal Lag
Biology Chemistry Corpputer Engineering Medicine Physics By
Science Industry
B Modal B Modal § Modal B Modal B Modal § Modal

(s.e) Lag (s.e) Lag (s.e) Lag (s.e) Lag (s.e) Lag (s.e) Lag

Petrochemicals 0.835 2.83 1.000 2.36 o 0.617 3.82 0.601 3.93 1.241 1.90 2.97
(0.051) (--) (0.151) (0.038) (0.064)

Drugs and Biotechnology 1.052 2.24 1.002 2.35 o . . o 0.957 2.47 o o 2.35
(0.046) (0.052) (0.064)

Metals 0.610 3.87 0.575 4.10 _ _ 0.543 4.34 0.386 6.10 0.842 2.80 4.24
(0.023) (0.036) (0.098) (0.029) (0.061)

Machinery except o o 0.627 3.76 o o 1.119 2.11 o o 0.841 2.80 2.89

Computers (0.031) (0.058) (0.040)

Computers 0.638 3.70 0.626 3.77 0.488 4.83 0.657 3.59 _ _ 1.086 2.17 3.61
(0.091) (0.038) (0.029) (0.060) (0.0406)

Electrical Equipment 0.889 2.65 1.013 233 0.684 3.45 0.664 3.55 o o 1.110 2.12 2.82
(0.032) (0.050) (0.031) (0.049) (0.044)

Transportation Equipment 0.727 3.24 0.691 341 . o 0.608 3.88 o . 1.071 2.20 3.18
(0.043) (0.049) (0.076) (0.061)

Instruments 0.799 2.95 0.782 3.02 o o 0.763 3.09 0.557 423 0.711 3.32 3.32
(0.083) (0.042) (0.1006) (0.060) (0.035)

Communications 1.024 2.30 0.911 2.59 0.624 3.78 0.904 2.61 o o 1.303 1.81 2.61
(0.190) (0.053) (0.044) (0.101) (0.058)

Software and Business 0.748 3.16 0.838 2.81 0.573 4.11 0.768 3.07 _ _ 1.318 1.79 2.99

Services (0.152) (0.040) (0.031) (0.057) (0.057)
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Table 8
Diffusion Estimates by Field and Industry:
Science Citations Among the Top 200 U.S. R&D Firms

Field of Science

Average
Industry Group Modal Lag
Biology Chemistry Cso(f?elillgeer Engineering Medicine Physics By
Industry
B Modal B Modal B Modal B Modal B Modal B Modal
(s.e) Lag (s.e) Lag (s.e.) Lag (s.e) Lag (s.e) Lag (s.e.) Lag
Miscellaneous 0.632 3.73 0.491 4.81 o . 0.551 4.28 0.574 4.11 0.784 3.01 3.99

(0.076) (0.028) (0.070) (0.049) (0.038)

Notes: The equation includes intercept terms for citing and cited fields, cited years, and citing intervals, which are significant. The functional form
is Py = aexp(=,B,; (T —t))[1 —exp(—p, (T —t))], where the intercept terms are @ and f,, B;, B, are the exponential parameters reported above. *

The number of observations is 31,770. The adjusted R>=0.545. The estimated standard error of the regression (root mean squared error) is 0.00103. °® The
identity of the industry for which diffusion is the slowest or the fastest of course varies across the six science fields. © The modal lag equals the reciprocal of
B1Biij » where p; =0.424 is the estimate of the rate of decay within petrochemicals in the field of chemistry, and subscripts and ij stands for citing industry and

field. See equation (5) in the text.
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Table 9
Diffusion Estimates: Patent Citations
Within and Between Top 200 U.S. R&D Firms

Citations to Other Firms 2 Self-Citations to the Same Firm °
Parameter, Technological Group
Estimate ¢ Estimate ¢
(St. Error) Modal Lag (St. Error) Modal Lag
Decay Parameters (B1;)
Chemical Technologies (1) 0.894 5.83 1.053 3.05
(0.018) (0.014)
Computers and Communication 1.374 3.79 1.087 2.96
Technologies (2) (0.021) (0.014)
Drugs and Medical Technologies (3) 0.965 5.40 1.055 3.05
(0.015) (0.012)
Electrical and Electronic 1.382 3.77 1.217 2.64
Technologies (4) (0.023) (0.020)
Mechanical Technologies (5) 1.114 4.67 1.112 2.89
(0.024) (0.016)
All Other Technologies (6) 1.000 5.21 1.000 3.21
(--) (--)
Baseline Decay Parameter (B,)* 0.192 _ 0.311 o
(0.003) (0.003)
Diffusion Parameter (B,)* 0.24x10™ o 0.58x10™ .
(0.62x10°) (139x10°)
Average of the Modal Lags ¢ . 4.78 . 2.97

Notes: The equation includes intercept terms for citing and cited fields, cited years and citing intervals,
which are significant. The functional form is Py, = @ exp(—f, B, (T —)[1 —exp(-5,(T —1))],

where the intercept terms are @ and f3,, f3,;, 3, are the exponential parameters reported above. * The

number of cells is 9,658. The adjusted R*=0.935. The estimated standard error of the regression (root mean
squared error) is 0.00022. ° The number of observations is 10,687. The adjusted R*=0.805. The estimated
standard error of the regression (root mean squared error) is 0.0124. © The modal lag equals the reciprocal
of B,f;i. See equation (5) in the text.  The average is the simple or un-weighted average of the field-

specific modal lags.
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Table 10
Sources of Variation in Modal Science Citation Lags
By Industry and Field of Science
(Standard Errors in Parentheses)

Variable or Statistic Firms Citing Universities, Firms Citing Other Firms,
Dependent Variable * Dependent Variable °
Modal Log (Modal  Log (Modal Modal Log (Modal  Log (Modal
Lag Lag) Lag) Lag Lag) Lag)
10.1 10.2 10.3 10.4 10.5 10.6
Frictional Citation Lag in 0.987%** 0.685%**
University Science (0.112) (0.175)
Mean R&D per Firm in an -0.654 x10™* -1.379 x10™***
Industry (0.389 x10 (0.582 x10™
Log (Frictional Citation Lag in 0.369%** 0.360%** 0.265%** 0.274%**
University Science) (0.040) (0.039) (0.053) (0.050)
Log (Mean R&D per Firm in -0.064** -0.146%**
an Industry) (0.031) (0.042)
Log (Mean Papers per Firm in -0.037%** -0.107#**
an Industry and Field) (0.014) (0.023)
Number of Observations 59 59 59 50 50 50
Root Mean Squared Error 0.551 0.180 0.176 0.787 0.223 0.210
Adjusted R? 0.572 0.593 0.610 0.269 0.407 0.480
F-Statistic 39.8+++ 43.2+++ 46.3+++ 10.0+++ 17.8+++ 23.6+++

Notes: Method is Ordinary Least Squares. * Dependent variable is the arithmetic or logarithmic modal lag
as shown in Table 6. ° Dependent variable is the arithmetic or logarithmic modal lag as shown in Table 8.
*** Regression coefficient is significant at greater than the one percent level. ** Regression coefficient is
significant at greater than the five percent level. +++ F-statistic is significant at more than the 0.1 percent
level.
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Table 11

Sources of Variation in Mean Science Citation Lags

(Standard Errors in Parentheses)

By Firm and Field of Science

Variable or Statistic

Firms Citing Universities,

Firms Citing Other Firms,

Dependent Variable * Dependent Variable °
Mean Log (Mean Log (Mean Mean Log (Mean Log (Mean
Lag Lag) Lag) Lag Lag) Lag)
11.1 11.2 11.3 114 11.5 11.6
Industry Dummies Yes Yes Yes Yes Yes Yes
Frictional Citation Lag in 0.598*** 0.587%**
University Science (0.079) (0.084)
Mean R&D per Firm in an -0.456x 10+ -0.337 x10™**
Industry (0.135x10™% (0.125 x10™
Log (Frictional Citation Lag in 0.124%*x* 0.129%** 0.115%** 0.118%**
University Science) (0.016) (0.016) (0.017) (0.017)
Log (Mean R&D per Firm) -0.032%** -0.021**
(0.008) (0.008)
Log (Mean Papers per Firm -0.040%** -0.037%**
and field) (0.007) (0.008)
Number of Observations 559 559 559 356 356 356
Root Mean Squared Error 1.189 0.223 0.220 0.974 0.190 0.186
Adjusted R? 0.161 0.169 0.193 0.253 0.243 0.270
F-Statistic 9.9+++ 10.5+++ 12.1+++ 11.0+++ 10.5+++ 12.0+++

Notes: Method is Ordinary Least Squares. * Dependent variable is the arithmetic or logarithmic mean lag,
where the mean is the average by firm and field. The number of observations used to calculate the mean

isn >10. ® Dependent variable is the arithmetic or logarithmic mean lag, where the mean is the average

by firm and field. The number of observations used to calculate the mean is N > 10. *** Regression

coefficient is significant at greater than the one percent level. ** Regression coefficient is significant at

greater than the five percent level. +++ F-statistic is significant at more than the 0.1 percent level.
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Figure 1--Mean Probability of Citation,
By Citing and Cited Sector
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Normalized Citation Probability
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Figure 3--Normalized Mean Probability of Citation,
By Rank of University-Science Field, Lag 1=1.0
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Figure 4--Mean Citation Lag by Rank of University-Field,

Distance from 0 to 500 Miles
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Figure 6--Mean Citation Lags, Firms Citing Universities and Other

Firms, Distance from 0 to 500 Miles
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