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ABSTRACT

This paper presents a new data set on the diffusion of about 115 technologies in over 150 countries

over the last 200 years. We use this comprehensive data set to uncover general patterns of technology

diffusion. Our main 5 findings are as follows: (i) Once the intensive margin is measured,

technologies do not diffuse in a logistic way. (ii) Within a typical technology, the dispersion in the

adoption levels across countries is about 5 times larger than the cross-country dispersion in income

per capita. (iii) The rankings of countries by level of technology adoption are very highly correlated

across technologies. (iv) Within a typical technology, there has been convergence at an average rate

of 4 percent per year. (v) The speed of convergence for technologies developed since 1925 has been

three times higher than the speed of convergence for technologies developed before 1925.
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Technology plays a central role in macroeconomics and in economic development. Real business cycle 

theory places technology at the root of economic fluctuations (Kydland and Prescott [1982]). Growth 

theory has long postulated that improvements in technology are the source of long-run growth (Solow 

[1956], Romer [1990] and Aghion and Howitt [1992]) and that differences in technology are the main 

determinant of income per capita differences across countries (Klenow and Rodriguez-Clare [1997] and 

Hsieh and Klenow [2003]).  

To test these and other assertions of macro theory it is quite important to have direct measures of 

technology; however, current measures of technology are not completely satisfactory.  

The Solow residual, the most commonly applied measure of technology, has been criticized 

because, in addition to technology, it also captures the variation in capacity utilization (Basu [1995]), 

labor hoarding (Burnside et al. [1995]), and the inefficiencies of the economy (Weil [2005] ch.10).  

A more direct way of measuring technology involves measuring the share of potential adopters that 

have adopted a given technology at a point in time (Griliches [1957], Mansfield [1961], Gort and 

Klepper [1982], and Skinner and Staiger [2005]). This approach has two drawbacks. First, while this 

measure captures the extensive margin of technology adoption, it neglects the intensive margin (i.e. 

how intensively each potential adopter uses the technology). Second, it is complicated to measure the 

number of potential adopters. As a result, the diffusion of only a limited number of technologies can be 

documented using such measures.  

This paper has two goals. First, it presents a new data set on direct measures of technology 

adoption. Since technology is often embodied in capital goods, many of our measures correspond to 

the number of specific capital goods per capita. We measure computers and telephones in this way. 

Other technologies take the form of new production techniques. In these cases we can measure the 

diffusion of the technology either by the share of output produced with the technique (i.e. share of steel 
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produced with blast oxygen furnaces) or directly by the technique’s level of diffusion (i.e. number of 

credit and debit card transactions or cheques issued, both on per capita basis).  

Our Cross-Country Historical Adoption of Technology (CHAT) data set covers the diffusion of 

about 115 technologies in over 150 countries during the last 200 years. These technologies cover most 

sectors of economic activity.  

Since we measure technology directly, our measures are not subject to the type of criticisms raised 

against the Solow residual. Furthermore, as in Comin and Hobijn [2004], our measures of technology 

capture both the extensive and the intensive margins of diffusion.  

Besides presenting the data set, the second goal of this paper is to uncover general characteristics of 

technology adoption patterns both across countries and over time. We start this search by providing a 

number of illustrative examples taken from the CHAT data set. However, because of the large number 

of technologies and countries in the dataset, merely presenting the data does not allow us to extract 

common patterns more formally. We overcome this complication by using simple summary statistics to 

document a set of general patterns in the international diffusion of technology.  

Five facts emerge from this exploration.  

First, once the intensive margin is taken into account, the evolution of the level of the technology in 

the country does not typically follow an S-shaped pattern.    

Second, the cross-country dispersion of the level of technology is much larger than the dispersion 

of income per capita. On average, the dispersion of technology per capita is between 3 and 5 times 

larger than the dispersion of income per capita, and for 68 percent of the technologies the cross-

country dispersion of the technology level is larger than the dispersion of income per capita.  

Third, there are universal leaders and universal followers in technology among the countries in the 

world. That is, the rankings of countries according to the technology adoption level in a given year are 
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highly correlated across technologies.  The median correlation is 0.78. Among OECD countries, the 

universality of technological leadership is weaker. The median correlation of country rankings across 

technologies within the OECD is 0.54.   

Fourth, there is absolute convergence in 91 percent of the technologies of our CHAT data set. The 

average speed of convergence is 3.7 percent per year. Thus, half of the distance to the steady state is 

covered in 19 years.  

Fifth, the speed of convergence of technology across countries has accelerated over time. The 

median speed of convergence for technologies invented before 1925 has been about 2 percent per year. 

The median speed of convergence for technologies invented between 1925 and 1950 has been 5.5 

percent per year, and, for the technologies invented since 1950, the median speed of convergence has 

been about 6 percent per year.  

The rest of the paper is structured as follows. The next section discusses the various conceptual and 

practical issues of measuring technology. Section 2 presents the illustrative examples of several 

diffusion curves that we use to point out the general patterns documented in the subsequent sections. 

Section 3 explores the shape of diffusion curves for each country-technology pair and shows that S-

shaped diffusion is only applicable for a limited set of technologies. Section 4 studies the cross-country 

dispersion of technology levels and compares it to the cross-country dispersion of income per capita. 

Section 5 examines the rankings of countries by level of adoption to see whether some countries tend 

to lead in all technologies or lead in some and trail in others. Section 6 looks at the cross-country 

convergence of technology and the evolution of the speed of convergence over time. Section 7 

concludes. 
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1. Measurement 

According to the Merriam-Webster's Collegiate Dictionary, technology is  

“a manner of accomplishing a task especially using technical processes, methods, or knowledge” 

Next we discuss various conceptual and practical issues that arise when attempting to measure 

technology levels. 

1.a Conceptual issues 

One approach to measuring technology diffusion, used in Griliches [1957] and Mansfield [1961], 

assumes that the adoption of technologies is a binary decision; producers or consumers can either 

adopt a technology or not adopt it. The ratio of the number of users of the technology to the number 

of potential users measures this extensive margin.   

For some technologies, however, the intensive margin may be as relevant as the extensive. For 

example, in transportation technologies, the improvement in productivity is proportional to the 

frequency of use, not to whether the technology is used at all; for computers and cars it is not 

unreasonable to think that, in the long run, each potential adopter may adopt more than one unit of the 

good. Similarly, technological change in cotton spinning has been directed toward increasing the 

number of spindles that each worker can operate simultaneously.  Thus, we consider it necessary to 

incorporate the intensive margin into measurement of technology diffusion. By doing that, we may be 

studying a different phenomenon than what the diffusion literature has previously explored, and some 

new terminology might be necessary. Conversely, one may think that technologies also diffuse along the 

intensive margin and employing the traditional terminology to refer to more comprehensive measures 

of the adoption of technologies may be appropriate. This latter opinion is our view on the matter, and, 
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in the rest of the paper, we continue to talk about technology diffusion as encompassing both the 

intensive and the extensive margins. 

To capture the intensive margin, we use measures of technology for which the numerator depends 

on the intensity with which each producer or consumer adopts the technology. For example, the 

diffusion of credit and debit cards is measured by the number of credit and debit card transactions per 

capita or by the number of points of service per capita, instead of by the share of people that has at 

least one credit card. This latter measure would capture only the extensive margin.  

A second important issue concerns the heterogeneity of units in our multiple measures of 

technology. We remove units from our measures either by taking logs (i.e. log of number of MRI units 

per capita) or by looking at shares (i.e. share of farmland that uses high yield varieties).  

The problem of units, however, does not fully address the larger question of how to measure 

technology, which can enter the economy in many forms and often cannot be separated from other 

inputs to production.  Many new technologies are embodied in new capital. Their degree of adoption is 

therefore proportional to the amount of the existent capital in which they are embodied. Thus, it can be 

difficult to determine if cross-country differences in these technologies are due to cross-country 

variation in aggregate capital per capita or in the degree of adoption of technologies. We answer this 

question by comparing the cross-country dispersion in our measures of embodied technology to the 

cross-country dispersion in aggregate capital per capita. The differential in the dispersion of embodied 

technologies over the dispersion in aggregate capital per capita is due to the dispersion in technology.  

One of the well-known Kaldor facts is that the capital-output ratio is roughly constant across 

countries. This implies that the cross-country dispersion in aggregate capital per capita is similar to the 

cross-country dispersion in income per capita. Based on this, we take the dispersion in income per 

capita as the benchmark for the embodied measures of technologies. 
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Not all of our technologies are measured with capital per capita; some are measured by the capital 

or output share associated to a new technology. These measures capture the diffusion of a particular 

production process or technique. Since the diffusion of these technologies typically involves capital 

substitution, it should not lead to capital deepening. The share of spindles that are ring or the share of 

steel produced with open hearth furnaces should thus be immune to variation in capital per worker. For 

these technological measures, the observed cross-country variation reflect only cross-country 

differences in technology.  

Another potentially interesting distinction is between technologies exclusively used for production 

and those also used by consumers. It may be argued that the latter are less interesting because home 

production output and consumer’s utility are left largely outside national accounting. Many technologies 

described as consumer technologies, however, including cell phones and cars, are important in the 

production of some services. In addition, since we have only about 13 technologies that are used 

primarily by consumers in our data set, the effect of their inclusion in our analysis will be small.  

Finally, after analyzing each individual technology, we need to aggregate the results. One way to 

aggregate over technologies is to use the GDP share of each technology’s sector. However, this 

approach presents two problems. First, we do not have a time series on sectoral shares for all countries 

in the data set. Second, these weights will depend on the level of aggregation used when assigning 

technologies to sectors. To avoid these complications, we restrict our analysis to technologies that have 

a significant effect in the sector and report both means and medians of the distribution of statistics by 

technology. 

1.b Practical issues 

To make cross-country and time-series comparisons of the level of technology, the objects measured 

must be as homogenous as possible. We try to mitigate this problem by measuring precisely defined 
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technologies. In some cases, such as credit and debit card transactions or tons of steel produced with 

Bessemer furnaces, the measure of technology is relatively homogenous both over time and across 

countries. In others, such as cars, there are important differences in the quality of the object measured 

over time and across countries. One factor that moderates in part the differences in quality is the 

positive correlation between demand and the quality of a technology. As a result, our quantity measures 

of technology partially reflect the cross-country and time-series variation in the quality of technologies.  

In order to be useful for inferring general patterns of technology diffusion, the data set must be 

comprehensive in at least three dimensions. First, it must contain information on technologies that 

span the most relevant sectors of economic activity. Second, it is important that the list of technologies 

covers production activities within sectors densely. Given the micro nature of our technologies, 

individual technologies may not be representative of the technological state of the sector; we have thus 

included multiple measures of technology for each sector. Third, the data set must cover both advanced 

and developing countries in significant numbers. This diversity overcomes the sample selection bias 

that may arise when focusing on a sample of developed countries (DeLong [1988]).  

The final practical concern is that the measures of technology sought must be easy to find. One of 

the main drawbacks of the traditional measures of the diffusion literature is that, in the last 50 years, 

researchers have been able to document the diffusion of a relatively small number of technologies in a 

few countries; measuring the number of producers that use a particular technology or the number of 

producers that potentially could requires micro-level data that is difficult to find. It is therefore 

important that we are able to compute our measures of diffusion using aggregate national data instead 

of information at the plant or producer level.  
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1.c The CHAT Data Set 

The Cross-Country Historical Adoption of Technology data set is an unbalanced panel with 

information on the diffusion of about 115 technologies in over 150 countries during the last 200 years. 

Table A1 (in the appendix) describes for each country the number of technologies for which we have 

data that span at least three five-year periods. The average number of technologies per country is about 

34, while the median is 28. Table 1 describes the geographic distribution of the countries in our sample 

and the distribution of the number of technologies (that span at least three consecutive five-year 

periods) for countries in each continent. One interesting feature of the data set is that even in 

continents that have predominantly low income countries, such as Africa, the number of technologies 

in the typical country is fairly large. In this respect, the CHAT data set improves on previous data sets 

on technology diffusion, including the HCCTAD, which was presented in Comin and Hobijn [2004] 

and covered the diffusion of 25 technologies in 23 developed economies.  

In addition to covering the countries in the world evenly, a comprehensive data set on technology 

diffusion must also represent the various sectors in the economy. Table 2 describes the number of 

technologies covered by the CHAT data set in each of 8 major sectors in which the technologies are 

primarily used. These are agriculture, finance, health, steel, telecommunications, textiles, tourism, and 

transportation. Three of our technologies, namely electricity production, the number of computers, and 

the number of internet users, are used across the economy. They represent general purpose 

technologies and thus defy categorization by sector; we place them in a separate group.   

The first observation from Table 2 is that the data set covers eight sectors that represent a majority 

of GDP in most of the countries. In the U.S., for example, the sectors covered by the data set 

represented approximately 55 percent of the value added in the private sector in 2000. 
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In addition, the data set covers a substantial number of technologies in each of the sectors. These 

range from 2 technologies in tourism to 49 in health. Along this dimension, the CHAT data set also 

constitutes a substantial improvement over the HCCTAD, which does not contain information on the 

technologies in agriculture, finance, health, and tourism and has only 25 technologies, instead of about 

115.  

2. Illustrative examples 

Before exploring the general patterns of technology diffusion, it is useful to consider some specific 

examples. This will enable us to illustrate the general patterns uncovered in the sections that follow. 

One of the main conclusions from the empirical literature on technology diffusion has been that S-

shaped curves, such as the logistic, provide a good approximation to the diffusion of technologies. In 

Figure 1 we present one technology, the share of modern varieties in the total area cultivated, that 

diffuses approximately in an S-shaped manner. It reflects the extensive margin with which modern 

variety agricultural technologies are used. 

However, for technologies for which the intensive margin is more relevant, S-shaped curves do not 

appear to provide a good fit for diffusion patterns. This is the case, for example, in Figures 2 and 3, 

which cover the diffusion of planes and cars, respectively. More specifically, Figure 2 plots the (log of 

the) passenger-kilometers traveled by plane per capita, while Figure 3 plots the (log of) cars per capita.  

Another a striking feature of these figures is the large cross-country dispersion present in diffusion. 

The number of per capita aviation passenger-kilometers traveled in the U.S. in 1960 was 400 times 

larger than in China and almost 150 times larger than in India in the same year. The number of cars per 

capita in the U.S. in 1960 was 400 times larger than in India and, as late as 2000, it was about 50 times 

larger than in China or India. These disparities are very big when compared to the large gap in income 
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per capita between the U.S. and China and India (a factor of about 20). Moreover, they do not reflect 

the quality differential between cars in the U.S. and cars in China or India. 

The large disparity in technology diffusion across countries is ubiquitous across sectors. Figure 4 

illustrates this point with the (log of) kilowatts of electricity produced per capita. 

A complementary way to address this issue is to measure how many years it took country B to 

reach the level country A had in year Y. Answering this question is only possible with a long time series. 

Data this extensive is often not available. For the case of telephones, however, we have sufficient data 

to measure the cross-country technological distance in time. As illustrated in Figure 5, the distances are 

fairly large and vary substantially across countries. For example, the level of phones per capita in the 

U.S. had in 1910 was reached by France 45 years later, by South Africa 55 years later, by Brazil 65 years 

later, by China more than 80 years later, and by India 90 years later; Tanzania still has fewer phones per 

capita than the U.S. in 1910. 

Interestingly, this enormous dispersion in technology diffusion is also present within advanced 

economies. Figures 6, 7 and 8 display the diffusion of technologies in the service sector. Figures 6 and 7 

depict the diffusion of magnetic resonance imaging (MRI) and computer-assisted tomography (CAT) 

scanners, respectively, by looking at the log of units per capita. Figure 8 covers the diffusion of a 

technology in the financial sector, namely the log of the number of credit and debit card payments per 

capita. 

The multidimensional nature of technology implies that for the large cross-country differences in 

technology adoption to lead to large cross-country differences in the overall technological level, the 

relative position of countries in technology adoption must be highly correlated across technologies. In 

other words, there must be universal technology leaders and universal followers across technologies. 

Figures 2 through 5 support the consistency in technological leadership from a worldwide perspective. 
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Figures 6 through 8 demonstrate that, within the OECD, country rankings in technology adoption are 

less correlated across technologies.  

After studying the distribution of technology adoption levels in the cross-section, it is interesting to 

explore its dynamics. In particular, we can investigate whether the differences in the speed of 

technology adoption across countries decline over time. Figure 9 presents the diffusion of cell phones. 

The gap between the U.S. and China in the number of cell phones per capita has reduced from a factor 

of about 1100 in 1990 to about 7 in 2000. This convergence in the technology adoption levels is also 

evident in most of the other technologies whose diffusion curves we have presented so far. 

Because of the multidimensional nature of technology, however, we can look for a new notion of 

convergence that does not arise in one-dimensional variables such as income per capita. We can 

examine whether the speed with which followers catch up to the technological leaders has accelerated 

for recent technologies relative to technologies that were invented earlier. Figures 10 and 11 represent 

the diffusion of computers and the internet, respectively. The diffusion of these technologies in the 

U.S. in 1990 was, respectively, 490 and 13,000 times more extensive than in China, while in 2000 the 

gap was reduced by a factor of 14 for computers and to a factor of 480 for the internet. In earlier 

technologies, such as automobiles or electricity, the diffusion of these technologies in the U.S. in 1990 

was 20 and 400 times more extensive than in China. By 2000, this gap was reduced by a factor of 7 and 

8, respectively. These illustrative examples suggest that the convergence within newer technologies is 

faster than within older technologies. 

Next, we go beyond these illustrative examples to show that the basic observations presented in this 

section constitute robust facts about the general diffusion patterns of the CHAT data set. 
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3. Diffusion Curves are not Logistic 

At least since Griliches [1957], economists have acknowledged the good approximation that S-shaped 

curves, such as the logistic, provide to the process of technology diffusion as measured by the extensive 

margin. The logistic curve is defined by 
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where t represents time, in our case measured in years, δ3 reflects the speed of adoption, δ2 is a constant 

of integration that positions the curve on the time scale, and δ1 is the long-run outcome, i.e. the limit of 

Yt for t going to infinity.  

Several features of this curve are relevant. First of all, it asymptotes to 0 when t goes to minus 

infinity and to δ1 when t goes to infinity. Secondly, it is symmetric around the inflection point of 

Yt=0.5δ1 which occurs at t=-δ2/δ3. Finally, the one percent diffusion point (i.e. the time in which 

Yt=0.01δ1) is given by t=(-ln(0.99)-δ2)/δ3. On account of its good fit when the extensive margin of 

adoption is measured, the logistic has often been used to reduce the process of technology diffusion to 

the three parameters that define it, namely δ1, δ2, and δ3. 

The first question that we investigate is whether this approximation of a country’s technology 

diffusion still provides a reasonable approximation once the measure of technology diffusion 

incorporates the intensive margin. To answer this question we fit a logistic curve to each of the 5700 

technology-country pairs and explore the implications of the estimates. Specifically, let Yijt be the level 

of technology i in country j at time t. The curve we fit is as follows: 
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We first find that, for 23 percent of the technology-country combinations, it is not possible to fit 

logistic to the diffusion curves, likely because of the data’s lack of curvature. When the diffusion line 

does not have sufficient curvature, the log-likelihood function is flat for many parameter 

configurations, and it is therefore not possible to determine the parameter configuration that maximizes 

the log-likelihood function. In these circumstances, we cannot identify the parameters that govern the 

curvature of the logistic. We take this as an indication that the logistic provides a poor approximation 

to the diffusion of technology i in country j.  

When the estimation converges, the R2 tends to be very high. In particular, conditional on obtaining 

an estimate, the R2 is above .90 for 92 percent of the technology-country pairs.  

The R2 is not a good measure of fit for logistic curves. It is well known that, since both the fitted 

logistic curves and the data contain trends, the high R2s reflect the fit of this trend and not of the 

fluctuations around it. Therefore, for a better sense of the appropriateness of the logistic 

approximation, we have to go beyond the R2. 

In particular, we explore how the data conforms to three properties of the logistic. First, logistic 

curves increase monotonically from the introduction of the technology to a ceiling. This implies that 

the estimate of δ3ij should be positive. This is the case for a majority of technology-country pairs, but a 

substantial number of pairs (929 out of 4381) have a negative estimate of δ3ij. In some instances, such as 

open hearth steel production or the number of mule spindles, the negative estimate of δ3ij results from 

the partial or complete replacement of the technology by a better technology. The replacement of a 

dominated technology may, of course, be consistent with a logistic diffusion.  

In other cases, however, the negative estimate of δ3ij does not result from the replacement of the 

technology but simply from the fact that the use of technology is growing at a lower rate than the 
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population. The example of cars in Tanzania illustrated in Figure 3 provides a good example of this 

phenomenon.  These cases contradict the hypothesis of logistic diffusion. 

In order to precisely identify cases that violate this property of logistic diffusion, we would have to 

examine each of the 929 pairs individually.  This would involve an, in large part, arbitrary classification 

of our results. However, we can make a conservative estimate of the number of technology-country 

pairs for which the negative estimate of δ3ij does not result from the substitution by a superior 

technology. Since the relative productivity of two competing technologies is likely to be similar across 

countries, the introduction of a superior technology will likely induce the eventual replacement of the 

original technology in all countries and will thus produce negative estimates of δ3ij for a majority of 

countries. Therefore, we can use the fraction of negative estimates of δ3ij to guide our judgments.    

For 17 out of 116 technologies in CHAT, at least 50 percent of the countries have negative 

estimates for δ3ij. As expected, the technologies include measures such as open hearth and Bessemer 

steel production and the number of sail ships, hospital beds, and cheques, all of which have been 

recently dominated by another technology. In addition, only a few technologies with a high prevalence 

of countries with negative estimates of δ3ij., such as pesticide usage and the number of varicose vein 

correction procedures, clearly have no superior technology. Meanwhile, the list of technologies that do 

not have a majority of negative estimates of δ3ij includes a few technologies, such as the number of 

telegrams sent, that have been dominated in some countries. Using the 50 percent cutoff as a general 

guide for selecting non-dominated technologies, we find that 462 of the 929 technology-country pairs 

with a negative estimate of δ3ij violate one of the assumptions of logistic diffusion by not increasing 

monotonically to a ceiling (Table 3, row 4).1 

                                                 
1 From this point forward, we consider only technologies with positive curvature parameters. 
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Next, we explore the predicted initial adoption dates to detect further issues with the logistic 

approach. To determine predicted initial adoption dates, we use our estimates of equation (2) to find 

the predicted time at which 1 percent of the estimated ceiling adoption level was reached. Then, we 

compare these to each technology’s invention date. Figures 12 and 13 plot these predicted adoption 

dates and actual invention dates for every technology-country pair2. Figure 13 zooms in Figure 12 and 

only shows the technologies invented during the last 200 years.  

Two types of red flags emerge from these figures. For 210 of the technology-country pairs for 

which we have a positive estimate of the slope, the predicted initial date of diffusion is prior to the 

invention date of the technology. For some technologies for which we do not have an invention date, 

such as hospital beds or irrigation, it is harder to determine precisely when a predicted initial adoption 

date is too early to be reasonable. Even after taking this fact into consideration, however, the estimated 

initial adoption dates are still implausibly early for some countries. Taking a conservative invention date 

of 1000BC, we find an additional 14 technology-country pairs with implausibly early predicted adoption 

dates.  

These implausible estimates reflect the fact that the diffusion of the technology does not follow a 

logistic pattern in these countries. More precisely, it likely happens because the identified diffusion 

curves are concave.  When fitting a logistic to a curve that is concave, the steeper region of the curve 

will be fit near to inflexion point of the logistic, and, as a result, the predicted 1 percent adoption level 

will occur much earlier than the actual one. This can be seen in Figure 14, which presents the actual 

diffusion of televisions in Sweden (in solid) and the diffusion predicted by fitting a logistic (in dash).  

The opposite situation, an unrealistically late predicted initial adoption date, also suggests the failure 

of the logistic approximation. Technically, this may occur for two different reasons. First, the diffusion 

                                                 
2 For clarity we have not included in the plots the technologies already available in 1500. The invention date of these technologies is more 

difficult to establish. 
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data for the technology may be relatively flat initially with a slight acceleration at the end of the sample. 

The logistic interprets this acceleration as indication that the inflexion point has not yet been reached 

and places the predicted initial adoption date close to the first available observation; in some cases, the 

first observation in our data set may correspond to a date posterior to the invention. Figure 15 

illustrates this argument with the diffusion of cars in Taiwan. Second, the logistic may predict an 

unrealistically late initial adoption date if the first observation in sample is significantly later than the 

invention date and if the slope of the diffusion data’s curve is initially steep before flattening. As 

illustrated with the diffusion of newspapers in Germany in Figure 16, the logistic fits the first 

observation near to the inflexion point. Since the curve is initially very steep, the predicted initial 

adoption date is close to the first observation. In reality, however, diffusion has not occurred 

symmetrically, and it has taken many years to reach the level at which our sample starts. In addition, the 

initial level in sample is substantially higher than one percent of the “estimated ceiling”. As a result, the 

logistic predicts that the one percent adoption level is reached close to the beginning of sample, while, 

in reality, that level was reached long before.  

The identification of these cases is a bit arbitrary since, as we have seen in Figure 5, some countries 

tend to lag the technological leaders for as long as a century. Given that the existence of data for a 

technology implies that diffusion has begun, we assume that the 1 percent level must be reached soon 

after our initial observation. We will assume that the initial adoption date predicted by the logistic is 

unreasonably late if either it is at least 150 years after the invention date or at least 20 years after the 

first observation we have in sample for the pair.3 We find 294 additional technology-country pairs are 

poorly approximated by the logistic in this respect (Table 3, row 5).  

                                                 
3 We omit the technologies without precise invention dates when identifying cases in which initial adoption falls more than 150 years after 

the invention date. 
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One final, critical property of S-shaped diffusion curves is that their convergence to a fixed ceiling. 

Once the intensive margin is included, this condition no longer necessarily holds. Indeed, based on the 

plots in Figures 2, 4, 5, 8, and 9, we can see that technological measures such as aviation passenger-

kilometers, electricity, telephones, credit and debit card payments, and cell phones violate this property. 

However, as with the share of negative estimates of δ3ij, it is not trivial to determine exactly how many 

of our technology-country pairs have a moving ceiling. However, it seems reasonable to attempt to 

identify technologies that clearly fit this profile. To the list above we can conservatively add steam and 

motor ship tonnage; rail passengers-kilometers; railway freight tonnage; tons of blast-oxygen furnace, 

electric-arc furnace, and stainless steel produced; cars; trucks; aviation freight ton-kilometers; TVs; PCs; 

credit and debit card points of service; ATMs; and cheques, all in per capita terms. The variable ceiling 

that characterizes a priori the diffusion of these technologies generates 1171 additional deviations from 

the logistic pattern (row 6 in Table 3). This brings the total number of technology-country pairs for 

which the diffusion is not well characterized by the logistic to 3507 out of the 5700 technology-country 

pairs in our sample. Hence, we conclude with the first finding of our analysis. 

Fact 1:  Once the intensive margin is included in the measure of technology diffusion, the S-shaped 

curves, and in particular the logistic, provide a poor description of the diffusion process. 

4. Cross-country Dispersion in Technology 

One important rationale for looking directly at technology is to assess the role of technological 

differences as a determinant of the cross-country dispersion in income per capita. If technology is an 

important driving force of differences in standards of living, observed cross-country disparities in 

technology must be large. To explore whether this is the case, for each technology and year, we 
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compute the dispersion of the technology levels across countries and compare it to the dispersion of 

income per capita for the same groups of countries. 

 This analysis requires that our dispersion statistics are unaffected by the units of the technology 

measures. We achieve this in two ways. First, we express the differences in technology adoption levels 

in log per capita terms, which do not depend on units of measurement; therefore, we measure their 

dispersion with the cross-country variance. For the technologies measured as shares, we compute 

dispersion with the coefficient of variation. Then we compare the cross-country dispersion of each 

technology with the cross-country dispersion of either the log of income per capita (for log per capita 

technologies) or income per capita (for shares) across the same set of countries. This results in one ratio 

of dispersion measure for each technology for each five-year period. We aggregate all this information 

across technologies both weighted by the length of our time series (measured by the number of five-

year periods for which we have data) and un-weighted.  

Table 4 reports the average ratio of cross-country dispersion of technology over the cross-country 

dispersion of income per capita. To have a better sense of the distribution of these ratios, Table 4 also 

reports the percentage of cases in which the cross-country dispersion in technology is larger than the 

cross-country dispersion in income per capita. 

 The main conclusion from this analysis is that cross-country differences in the adoption of 

technologies are much larger than income per capita differences. The ratio of the variances is on 

average 5 when we weight technologies by the length of their time series and 3 when we do not weight. 

It is not merely a few outliers driving this large dispersion; for 76 percent of the technology-periods the 

cross-country dispersion in technology adoption is larger than the dispersion in income per capita. 

When giving equal weights to the technologies, we still find that the cross-country dispersion is larger 

than the dispersion in income per capita in 68 percent of the technologies.  
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We do observe that the cross-country dispersion in the 13 consumer technologies in CHAT is 

larger than for the rest of log-per capita technologies. In particular, the un-weighted average of the ratio 

of the dispersion of consumer technologies to the dispersion in log income per capita is slightly below 

7; when weighted by the length of series, the ratio is 9.8.  

 

Finally, the cross-country dispersion of technology relative to income per capita seems to be smaller 

for technologies measured as shares than for technologies measured in log per capita terms. However, 

even in the former, cross-country dispersion in technology adoption is comparable to the cross-country 

dispersion in income per capita. 

Based on these facts, we summarize the main conclusion from our exploration of the cross-country 

variation in technology adoption and income.  

Fact 2:  The cross-country dispersion in technology adoption for individual technologies is 3 to 5 times 

larger than cross-country dispersion in income per capita. 

5. Universal Technology Leaders 

The multidimensional nature of technology makes it possible to understand the correlation of relative 

positions of countries across technologies. This is relevant for two reasons. First, given the large 

observed cross-country dispersion in individual technology adoption (Fact 2), a high correlation of 

rankings across technologies implies that there are big cross-country differences in aggregate 

technology levels. Second, as we shall see in the next section, the persistence of country rankings across 

technologies in the initial stages of adoption may have important consequences for the dynamics of the 

cross-country distribution of overall technology levels.  
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One practical problem with considering a country’s percentile at a point in time stems from the way 

that relative position depends on the country coverage of the data set for that technology and period; 

variation in the country coverage may significantly distort the rankings of countries. We mitigate this 

potential problem in two ways. First, we conduct two separate analyses, one using only OECD 

countries and the other using only technologies that cover both OECD and non-OECD countries.. 

With this strategy, we lessen the effect of variation in the mix of rich and poor countries in the sample 

when assigning rankings. In addition, we also remove from our analysis the technology-periods for 

which we have very few countries in sample. This reduces the volatility of rankings of countries in the 

initial stages of diffusion when the data set includes only a few countries.4  

To compute the correlations between country rankings in a technology and country rankings across 

technologies we proceed as follows: First, we assign each country (j) to a percentile for each technology 

(i) and 5-year period (t). Let’s denote this percentile by rijt. Then, we compute the average ranking across 

technologies for each country and year, rjt. Formally,  
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where Njt denotes the number of technologies for country j in period t. Finally, we compute the cross-

country correlation between the vector of rankings in the technology (rijt) and the vector of average 

country rankings across technologies (rjt) for year t. This generates a correlation for each technology and 

(5-year) time period. To aggregate this information we compute the average and median of these cross-

country correlations. These are reported in Table 5 both for the sub-sample of technologies that have 

an even coverage of the countries in the world and for the OECD sub-sample.  

                                                 
4 For OECD technologies we require at least 3 countries in sample to consider the correlation. For technologies that cover both OECD 

and non-OECD countries we require a minimum of 6 countries. 



- 22 - 

The correlations of rankings across technologies are fairly high. For the technologies that cover 

both OECD and non-OECD countries the average correlation is 67 percent, while the median is 

78 percent. When we restrict attention to the OECD, the correlations remain high but are significantly 

lower than when all the countries are included. Within the OECD sample, the average correlation of 

technology rankings is 45 percent, while the median is 54 percent. Therefore, we conclude that, from a 

global perspective, there are universal technological leaders and universal followers. 

Fact 3: The relative position of countries according to the degree of technology adoption is very highly 

correlated across technologies. This correlation declines significantly within the OECD. 

6. Convergence 

After exploring the properties of the cross-sectional distribution of technologies, we turn our attention 

to the dynamics of the distribution. More specifically, we address the issue of convergence in 

technology levels across countries. The convergence of income per capita levels across countries has 

attracted much attention (Baumol [1986], DeLong [1988], Mankiw et al. [1992], Barro and Sala-i-Martin 

[1992]).5  Because technology is an important determinant of income per capita differences, the issue of 

technological convergence is of equal interest. 

One important difference from the literature on the convergence of income per capita stems from 

the multidimensional nature of technology. This introduces the distinction between convergence within 

a technology and convergence across technologies. That is, even if countries that start behind catch up 

with leaders within each technology, the overall technology level of less advanced countries may not be 

converging if less advanced countries similarly start behind in the new technologies. We proceed next 

to explore the convergence first within and then across technologies.  
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6.a Within Technologies 

We follow the example of the convergence of income per capita literature and estimate both measures 

of absolute β-convergence and σ-convergence. We estimate the speed of β-convergence of technology i 

by running the following regression for technologies measured in log-per-capita terms: 

 tijtijtijtij uYeYY j
,1,1,, )ln()1()ln()ln( +−−=− −

−
−

βα  (4) 

while for technologies measured as shares we estimate β-convergence from: 
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−

βα   (5)  

Figures 17 and 18 display the distributions of β separately for the technologies measured in logs per 

capita and those measured as shares. Table 6 reports the mean and median speed of convergence for 

each type of technology. For both types of technologies combined, the average speed of convergence 

has been 3.8 percent per year, while the median has been 2.6 percent per year. We observe β-

convergence in 93 percent of the log-per-capita measures and 83 percent of the technologies measured 

as shares. The distributions of speeds of convergence are fairly similar for each type of measure. The 

average speed of convergence is slightly higher for log-per-capita than for share variables, but the way 

the technology adoption level is measured does not seem to be relevant when studying the convergence 

properties of technology. For the small subset of consumer technologies, meanwhile, the average speed 

of convergence is slightly smaller than for the overall group of log-per-capita technologies (2.7 vs. 4.1 

percent per year). 

The absolute convergence within technologies contrasts with the established lack of convergence in 

income per capita on the global level. Within the OECD, however, it is well established that income per 

capita levels converge.  The dichotomy in income per capita level convergence makes one wonder if the 

                                                                                                                                                                  
5 Furthermore, in principle, one can explore the convergence of any variable. Comin [1997] and Hobijn and Franses [2001], for example, 

explore whether there is convergence in alternative indicators of standards of living, like life expectancy and mortality. 
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within-technology convergence comes only from OECD countries converging to the technological 

leader. To answer this question we analyze the technologies for which we have data for both OECD 

and non-OECD countries. For these technologies we estimate the speed of convergence within the 

OECD and compare it to the speed of convergence worldwide. In Table 7 we observe that, for these 

technologies, the worldwide speed of convergence is on average 2.9 percent per year while within the 

OECD the average speed of convergence for these technologies is 1.9 percent per year. Hence, 

contrary to what we observe in income per capita, non-OECD countries converge to the adoption level 

of technological leaders faster than the technological laggards within the OECD. 

σ-convergence provides an alternative way to describe the evolution of the cross-country 

distribution of technology over time. We estimate the speed of σ-convergence in technology i, βσi,  by 

running the following regression:  

 tjtjtj ue j
,

2
1,

22
, ++= −

− σασ β  (6) 

where σ2
jt is the cross-country standard deviation of technology j at year t. To avoid the bias produced 

by the gradual inclusion of countries to the sample, we make sure that every year the cross-country 

measures of technology used as left and right-hand-side variables in regression (3) are computed over 

the same sample of countries. Columns 4 through 6 of Table 6 report the mean and median speeds of 

σ-convergence. The average of the technology speeds of convergence estimated from equation (3) is 

7 percent per year, and the median speed of convergence is 4.1 percent per year. These estimates are 80 

and 60 percent higher than the estimates obtained from the β speeds of convergence regression (2). 

Qualitatively, the β and σ estimates of the speed of convergence within a technology are consistent. Not 

only is the fraction of convergent technologies similar (89 percent for β vs. 80 percent for σ), but also 

the β and σ-speeds of convergence are positively correlated across technologies (42 percent for the 109 

technologies for which β is smaller than .5).  



- 25 - 

The disparity in the average speed of β and σ convergence may be an indication that the system that 

governs the dynamics of technology diffusion has multiple state variables. In this case, the dynamics of 

the system would not be well approximated by only the current state of the specific technology. Our 

goal here, however, is to provide a statistical description of the dynamics of technology diffusion and 

not to interpret these estimates in a structural way.  

Based on these results we reach the following conclusion. 

Fact 4:  There is convergence within technologies. The average speed of convergence is between 4 and 7 

percent per year. 

6.b Across Technologies 

The presence of cross-country convergence within technologies may not be sufficient to guarantee the 

convergence of overall technology levels. If new technologies arrive continuously and laggard countries 

tend to start behind in most new technologies, that effect will counterbalance the catch up that takes 

place within existing technologies. As a result, follower countries will not catch up in the overall 

technological level unless the speed of convergence within technologies accelerates over time. This 

situation is represented in Figures 19 and 20 in which we see the trajectories for a continuum of 

technologies in two countries (A, the leader, and B, the laggard). In Figure 19, the speed of convergence 

within each technology is constant, and, in this stationary world, the overall technological gap between 

A and B is also constant (see bottom panel). In Figure 20, the speed of diffusion of technologies in 

country B accelerates over time, which increases the speed of convergence within technologies and 

reduces the technological gap between A and B (see bottom panel).   

To consider which of these situations provides a better characterization of global technology 

diffusion, we order the technologies in the CHAT data set by their date of invention and explore how 

the speed of convergence has evolved over time. For the purposes of brevity, we only report the results 
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from this exercise using the β speed of convergence. The results for σ convergence are qualitatively very 

similar. Figure 21 presents the scatter plot of the speeds of convergence of our technologies and the 

evolution of the median speed of convergence for the technologies invented in each 25 year period. 

Table 8 reports the evolution of the average and median speed of convergence.  

The first striking observation is that there has been a significant increase in the speed of 

convergence for technologies developed after 1925.6 The average speed of convergence for 

technologies developed before 1925 is 2.4 percent per year, and the median speed of convergence is 

2 percent. For the technologies developed after 1925 the mean and median speeds of convergence are, 

respectively, 6.7 and 5.9 percent per year. The average speed of convergence within technologies 

developed after 1925 has almost tripled in comparison to those developed before 1925. 

By looking at the evolution of the average and median speed of convergence within technologies, it 

is also evident that the increase in the speed of convergence of post-1925 technologies resembles more 

a structural break than a smooth transition.7 The average speed of convergence of technologies 

developed in the period 1900-1925 is approximately 1.5 percent per year, while the average speeds of 

convergence for technologies developed in the periods 1925-1950 and 1950-1975 are 5.8 and 7.8 

percent per year, respectively.  

However, before concluding that cross-country technology levels have converged faster for new 

than for old technologies, we must determine whether the acceleration of the speed of convergence is 

uniform across technologies or whether it is driven by the technologies that cover only OECD 

countries. Figure 22 answers this question by plotting the evolution of the median speed of 

                                                 
6 Table A3 in the appendix details the speed of convergence for each technology together with the technology invention dates.  
7 The high average speed of convergence during the period 1850-1875 is driven entirely by acid Bessemer steel. If that 
technology is removed from the sample, the average speed of convergence for the technologies developed between 1850 
and 1875 becomes 2.6 percent per year. 
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convergence for each 25-year period separating the technologies that cover only OECD economies 

from the rest. The increase in the median speed of convergence is evident for both groups of 

technologies; therefore, this suggests that the increase in the speed of convergence is present across 

OECD and non-OECD countries. 

Thus, we conclude our analysis by stating the last finding. 

Fact 5: The cross-country speed of convergence within technologies developed after 1925 is about three 

times higher than for the technologies developed before 1925.  

A corollary of Fact 4 and Fact 5 is that there seems to be evidence of absolute convergence in the 

overall technology levels across countries. This finding may seem to be at odds with the observed lack 

of absolute convergence in income per capita. However, it is consistent with the evolution of existing 

aggregate measures of technology. In particular, we have estimated a standard convergence regression 

(with no controls) on the productivity residuals that emerge from the development accounting exercise 

conducted by Klenow and Rodriguez-Clare [1997]. Using this very different measure of aggregate 

technology we also estimate a rapid speed of convergence (7 percent per year).  

 7. Conclusion 

This paper has presented and begun to analyze a new data set that provides the most comprehensive 

coverage to date of technology diffusion over the last 200 years. Five facts emerge from this analysis. 

First, once the intensive margin is measured, technologies do not diffuse in a logistic way. Second, 

within a typical technology, the dispersion in the adoption levels across countries is about 5 times larger 

than the cross-country dispersion in income per capita. Third, there is a high correlation across 

technologies in the rankings of countries by technology adoption. Fourth, within a typical technology, 

there has been convergence at an average rate of 4 percent per year. Fifth, the speed of convergence for 
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technologies developed since 1925 has been almost three times higher than the speed of convergence 

for technologies developed before 1925.  

These facts are important in themselves. Our CHAT data set allows us to uncover direct evidence 

on relevant patterns in technology adoption that could not be explored using other data sets. In 

addition, these stylized facts provide guidance for the development of future theories on determinants 

of technology adoption.  

We leave for future research the search for correlates of our technology measures that should 

provide a second set of binding constraints in the effort to uncover the determinants of the large cross-

country differences in technology adoption. Candidate correlates are not only variables that have been 

suggested as determinants of income per capita, but also the intensity of other technologies that may 

complement or substitute the relevant technology. 
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A. Underlying details 

This appendix contains more detailed information about the CHAT data set and about the estimated 

rates of convergence presented in the main text. Tables A1, A2 and Figure A1 provide detailed 

information about the coverage of the data that we use, while table A3 contains details about the 

estimated rates of convergence. 

Table A1 lists the number of technologies we have for each of the countries in the data set. In our 

analysis we have to deal both with country fragmentations and reunification processes. When a majority 

of the territory remains after the fragmentation or a majority of the unified territory corresponds to just 

one of the pre-unification countries we identify the unified country with the big part. In cases of 

country fragmentation, we have identified a successor country in cases where a large portion of the 

territory remains as a single country; in cases of unification, we have identified a precursor country in a 

similar manner.  Thus, Russia and the U.S.S.R have been treated as one national entity, as have 

Germany and West Germany. In cases where a country divides into or merges from a number of more 

equal pieces, we have chosen to treat the whole and the parts as different countries. Examples of this 

approach include Yugoslavia, Czechoslovakia, and Korea.  

Table A2 describes for each technology the number of countries, the type of economies, and the 

time period covered. 

Table A3 presents the annual speed of β-convergence for each technology together with its 

invention date. Technologies invented prior to 1500 are usually difficult to date precisely, and we list 

them as pre-1500 technologies. 

 

 



- 32 - 

 

Table 1: Geographic Distribution of Sample Countries and Technologies 

Region 
Mean 

Technologies 
Per Country

Median 
Technologies 
Per Country 

Standard Deviation 
of Technologies Per 

Country 
 Number of 

Countries 

Total 34.2 28.0 20.37  159 
Africa 24.9 26.0 9.00  48 

Asia 28.9 26.5 12.51  44 

Europe 49.3 41.5 28.23  38 

North America 34.0 27.5 22.64  12 

Oceania 43.3 44.0 21.09  4 

South America 40.0 44.0 20.94  13 

 

Table 2: Technology Sector Coverage 

 Technologies Per Sector 

Agriculture 8 

Finance 5 

General Purpose 3 

Health 49 

Steel 14 

Telecommunications 8 

Textiles 6 

Tourism 2 

Transportation 21 
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Table 3: Deviations from Logistic Diffusion 

  Number of Technology-Country Pairs  Cumulative Failure of Logistic

Total Country -Technology Pairs  5700   

Flatness of Likelihood Surface  1319  1319 

Negative Estimate of δ3 462  1781 

Too Early Predicted Adoption  224  2005 

Too Late Predicted Adoption  331  2336 

Growing Ceiling  1171  3507 

Table 4: Dispersion in Technology Adoption Relative to Dispersion in Income per Capita 

 Average Dispersion  Percentage of Instances with Ratios>1 

 Log Per Capita  Share All Log Per Capita  Share All 

Weighted by # of 5-
Year Intervals 6.02  1.03 5.2 84  33 76 

Un-Weighted 3.68  0.95 3.17 75  42 68 

Table 5: Correlations Between Country Rankings in a Technology  
and Average Country Rankings across Technologies 

  Technologies Covering All Countries Technologies Covering OECD countries

Average Correlation  0.67 0.45 

Median Correlation  0.78 0.54 

Number of Technologies  51 115 
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Table 6: Speed of Convergence Within Technologies. 

  β-convergence σ-convergence 

  
Log Per 
Capita Shares All 

Log Per 
Capita  Shares  All 

Average  0.041 0.027 0.038 0.071  0.068  0.07 

Median  0.03 0.015 0.026 0.043  0.019  0.041 

Number of 
technologies 89 23 112 91  24  115 

 

 

Table 7: Speed of Convergence Worldwide and Within the OECD. 

  β-convergence 

  All Countries  OECD 

Average  0.029  0.019 

Median  0.02  0.01 
Note: Average and median speed of convergence over 55 technologies  

that cover both OECD and non-OECD countries 
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Table 8: Evolution of Speed of Convergence by Invention Date. 

Inverval Median Mean 

Up to 1800 0.020 0.025 
  (0.015, 0.034) 
   

1801-1825 0.004 0.011 
  (-0.004, 0.026) 
   

1826-1850 0.020 0.018 
  (0.005, 0.03) 
   

1851-1875 0.025 0.061 
  (0.005, 0.118) 
   

1876-1900 0.030 0.024 
  (-0.005, 0.052) 
   

1901-1925 0.015 0.002 
  (-0.039, 0.042) 
   

1926-1950 0.055 0.055 
  (0.03, 0.079) 
   

1951-1975 0.087 0.087 
  (0.059, 0.115) 
   

1976-2000 0.037 0.038 
  (0.017, 0.06) 
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Table A1: Technologies Per Country 

Afghanistan 16  Egypt 43  Lebanon 39  Saudi Arabia 34 
Albania 21  El Salvador 34  Lesotho 16  Senegal 28 
Algeria 44  Equatorial Guinea 9  Liberia 17  Serbia and Montenegro 18 
Angola 26  Eritrea 3  Libya 28  Sierra Leone 21 
Argentina 48  Estonia 20  Lithuania 19  Singapore 27 
Armenia 14  Ethiopia 29  Luxembourg 10  Slovak Republic 39 
Australia 68  Finland 95  Macedonia 16  Slovenia 22 
Austria 70  France 82  Madagascar 29  Somalia 20 
Azerbaijan 15  Gabon 20  Malawi 5  South Africa 44 
Bangladesh 32  Gambia 18  Malaysia 37  South Korea 44 
Belarus 16  Georgia 15  Mali 26  Spain 77 
Belgium 78  Germany 87  Mauritania 22  Sri Lanka 37 
Belize 4  Ghana 36  Mauritius 26  Sudan 29 
Benin 26  Greece 61  Mexico 78  Suriname 4 
Bolivia 29  Guatemala 27  Moldova 21  Swaziland 17 
Bosnia-Herzegovina 17  Guinea 26  Mongolia 20  Sweden 83 
Botswana 21  Guinea-Bissau 13  Morocco 36  Switzerland 59 
Brazil 49  Guyana 20  Mozambique 24  Syria 33 
Bulgaria 34  Haiti 17  Namibia 16  Taiwan 28 
Burkina Faso 18  Honduras 29  Nepal 18  Tajikistan 13 
Burma 34  Hong Kong 19  Netherlands 77  Tanzania 27 
Burundi 20  Hungary 66  New Zealand 48  Thailand 40 
Cambodia 27  Iceland 5  Nicaragua 28  Togo 27 
Cameroon 29  India 50  Niger 19  Tunisia 34 
Canada 77  Indonesia 39  Nigeria 37  Turkey 57 
Central African Republic 20  Iran 41  North Korea 23  Turkmenistan 12 
Chad 21  Iraq 34  Norway 65  Uganda 27 
Chile 50  Ireland 81  Oman 21  Ukraine 24 
China 49  Israel 38  Pakistan 42  United Arab Emirates 24 
Colombia 45  Italy 75  Panama 27  United Kingdom 94 
Costa Rica 26  Ivory Coast 31  Papua New Guinea 17  United States 80 
Croatia 20  Japan 59  Paraguay 27  Uruguay 44 
Cuba 40  Jordan 26  Peru 44  Uzbekistan 17 
Czech Republic 39  Kazakhstan 17  Philippines 40  Venezuela 41 
Czechoslovakia 36  Kenya 33  Poland 62  Vietnam 22 
Dem. Rep. of the Congo 35  Korea 18  Portugal 82  Yemen 21 
Denmark 84  Kuwait 25  Republic of the Congo 26  Yugoslavia 44 
Dominican Republic 19  Kyrgyzstan 14  Romania 39  Zambia 28 
East Germany 30  Laos 19  Russia 44  Zimbabwe 31 
Ecuador 41  Latvia 22  Rwanda 16    
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Table A2: Description of Technologies and their Coverage 

Category Variable Description Number of Countries Country Coverage Date Range 

Agriculture Fertilizer consumed, total 149 all 1965 - 2005 

 Harvesters 116 all 1965 - 2005 

 Irrigated area 144 all 1965 - 2005 

 Milking machines 53 all 1965 - 2005 

 Percent of cultivated land using modern variety crops 85 developing 1960 - 2000 

 Percent of irigated land out of cultivated land 148 all 1965 - 2005 

 Pesticide consumed, total 120 all 1990 - 2000 

 Tractors 149 all 1965 - 2005 

Financial ATMs 33 mostly OECD 1990 - 2005 

 Cheques issued 39 mostly OECD 1990 - 2005 

 Debit and credit card transactions 37 mostly OECD 1990 - 2005 

 Electronic funds transfers 34 mostly OECD 1990 - 2005 

 Points of service for debit/credit cards 35 mostly OECD 1990 - 2005 

General Electricity production 149 all 1895 - 2005 

 Internet users 146 all 1990 - 2005 

 Personal computers 129 all 1980 - 2005 

Health Appendectomies 19 OECD 1990 - 2005 

 Beds: in-patient acute care 26 OECD 1960 - 2005 

 Beds: in-patient long-term care 20 OECD 1960 - 2005 

 Beds: total hospital 145 all 1960 - 2005 

 Bone marrow transplants 25 OECD 1975 - 2005 

 Breast conservation surgeries 13 OECD 1995 - 2005 

 Caesarean sections 19 OECD 1990 - 2005 

 Cardiac catheterisations 17 OECD 1990 - 2005 

 Cataract surgeries 17 OECD 1980 - 2005 

 Cholecystectomies 16 OECD 1980 - 2005 

 Cholecystectomies, laparoscopic  10 OECD 1995 - 2005 

 Computed tomography (CAT) scanners 27 OECD 1980 - 2005 

 Coronary bypass procedures, in-patient 20 OECD 1980 - 2005 

 Coronary bypasses 23 OECD 1990 - 2005 

 
Coronary interventions, percutaneous (PTCA and 
stenting) 24 OECD 1990 - 2005 
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Table A2 (continued): Description of Technologies and their Coverage 

Category Variable Description Number of Countries Country Coverage Date Range 

Health (ctd.) Coronary stenting procedures 10 OECD 1995 - 2005 

 Dialysis patients 27 OECD 1970 - 2005 

 Dialysis patients, home 24 OECD 1970 - 2005 

 Heart transplants 25 OECD 1980 - 2005 

 Hernia procedures, inguinal and femoral 17 OECD 1980 - 2005 

 Hip replacement surgeries 20 OECD 1990 - 2005 

 Hysterectomies (vaginal only) 20 OECD 1990 - 2005 

 Kidney transplants 27 OECD 1965 - 2005 

 Kidney transplants, functioning 25 OECD 1970 - 2005 

 Knee replacement surgeries 15 OECD 1990 - 2005 

 Lithotriptors 23 OECD 1985 - 2005 

 Liver transplants 27 OECD 1980 - 2005 

 Lung transplants 22 OECD 1985 - 2005 

 Mammographs 15 OECD 1970 - 2005 

 Mastectomies 18 OECD 1990 - 2005 

 MRI units 26 OECD 1985 - 2005 

 Pacemaker surgical procedures 11 OECD 1990 - 2005 

 
Percent immunized for DPT, children 12-23 
months 153 all 1980 - 2005 

 
Percent immunized for measles, children 12-23 
months 153 all 1980 - 2005 

 Percent of beds for acute care 21 OECD 1960 - 2005 

 Percent of cataract surgeries done as day cases 14 OECD 1990 - 2005 

 
Percent of cholecystectomies (laparoscopic) 
done as day cases 9 OECD 1995 - 2005 

 Percent of cholecystectomies done as day cases 11 OECD 1995 - 2005 

 Percent of dialysis patients at home 25 OECD 1970 - 2005 

 
Percent of hernia procedures (inguinal and 
femoral) done as day cases 14 OECD 1995 - 2005 

 Percent of renal failure patients, end stage 28 OECD 1970 - 2005 

 Percent of tonsillectomies done as day cases 12 OECD 1995 - 2005 

 
Percent of varicose veins procedures done as day 
cases 14 OECD 1995 - 2005 

 Prostatectomies (excluding transurethral) 14 OECD 1990 - 2005 
 

Prostatectomies (transurethral) 17 OECD 1990 - 2005 
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Table A2 (continued): Description of Technologies and their Coverage 

Category Variable Description Number of 
Countries 

Country 
Coverage Date Range 

Health (ctd.) Radiation therapy equipment 24 OECD 1960 - 2005 

 Renal failure patients, end stage 25 OECD 1970 - 2005 

 Tonsillectomies 13 OECD 1980 - 2005 

 Varicose vein procedures 12 OECD 1995 - 2005 

Steel Percent of steel production by other methods 23 all 1930 - 2005 

 Percent of steel production by the acid bessemer method 11 all 1930 - 1975 

 
Percent of steel production by the basic bessemer 
method 9 all 1930 - 1980 

 Percent of steel production in BOFs 58 all 1960 - 2005 

 Percent of steel production in EAFs 95 all 1930 - 2005 

 Percent of steel production in OHFs 53 all 1930 - 2005 

 Percent of steel production that is stainless 24 all 1985 - 1990 

 Stainless steel production 24 all 1985 - 1990 

 Steel production by other methods 23 all 1930 - 2005 

 Steel production by the acid bessemer method 11 all 1930 - 1975 

 Steel production by the basic bessemer method 8 all 1930 - 1980 

 Steel production in blast oxygen furnaces 56 all 1960 - 2005 

 Steel production in electric arc furnaces 93 all 1930 - 2005 

 Steel production in open hearth furnances 51 all 1930 - 2005 

Telecommunications Cable television subscribers 95 all 1975 - 2005 

 Cell phones 146 all 1980 - 2005 

 Mail items 79 all 1830 - 1995 

 Newspaper circulation (daily) 153 all 1950 - 2000 

 Radios 149 all 1925 - 2000 

 Telegrams 78 all 1850 - 1995 

 Telephones 152 all 1880 - 2005 

 TVs 152 all 1950 - 2005 

Textiles Automatic looms 96 all 1965 - 1980 

 Percent of automatic textile looms 98 all 1965 - 1980 
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Table A2 (continued): Description of Technologies and their Coverage 

Category Variable Description Number of 
Countries 

Country 
Coverage Date Range 

Textiles (ctd.) Percent of spindles that are ring spindles 31 all 1905 - 1955 

 Percent of textile raw materials that are unnatural 79 all 1965 - 1980 

 Spindles: mule 31 all 1905 - 1955 

 Spindles: ring 52 all 1905 - 1955 

Tourism Hotel and other visitor beds 144 all 1980 - 2005 

 Hotel and other visitor rooms 145 all 1980 - 2005 

Transportation Aviation passenger kilometers 109 all 1920 - 1995 

 Aviation ton-km of cargo 103 all 1930 - 1995 

 Percent of ships that are steam and motor 71 all 1790 - 1995 

 Percent of the tonnage of ships that are steam and motor 71 all 1790 - 1995 

 Railroads: freight ton-kilometers 100 all 1850 - 1995 

 Railroads: freight tons 116 all 1850 - 1995 

 Railroads: length of line open 126 all 1830 - 1995 

 Railroads: passenger journeys 112 all 1835 - 1995 

 Railroads: passenger-journey kilometers 94 all 1840 - 1995 

 Ships: motor 8 all 1910 - 1995 

 Ships: sail 31 all 1820 - 1995 

 Ships: steam 20 all 1820 - 1995 

 Ships: steam and motor 57 all 1870 - 1995 

 Ships: total 13 all 1830 - 1995 

 Tonnage of motor ships 8 all 1910 - 1995 

 Tonnage of sail ships 32 all 1790 - 1995 

 Tonnage of steam and motor ships 59 all 1870 - 1995 

 Tonnage of steam ships 21 all 1810 - 1995 

 Tonnage of total ships 13 all 1830 - 1995 

 Vehicles: commercial 121 all 1905 - 1995 

 Vehicles: passenger cars 149 all 1895 - 2005 
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Table A3: Annual speed of β Convergence by Variable  

Variable Description Invention 
Date 

Speed of 
Convergence 

 
Variable Description Invention 

Date 
Speed of 

Convergence 

Beds: in-patient acute care pre-1500 0.035  Ships: steam 1788 -0.002 

Beds: in-patient long-term care pre-1500 0.011  Ships: steam and motor 1788 0.002 

Beds: total hospital pre-1500 0.082  Tonnage of steam and motor ships 1788 0.020 

Breast conservation surgeries pre-1500 0.022  Tonnage of steam ships 1788 0.001 

Caesarean sections pre-1500 0.030  Automatic looms 1801 0.001 

Cheques issued pre-1500 0.059  Percent of automatic textile looms 1801 0.063 

Hernia procedures, inguinal and femoral pre-1500 0.122  Fertilizer consumed, total 1815 0.004 

Hotel and other visitor beds pre-1500 0.011  Railroads: freight ton-kilometers 1825 0.008 

Hotel and other visitor rooms pre-1500 0.035  Railroads: freight tons 1825 -0.001 

Irrigated area pre-1500 0.012  Railroads: length of line open 1825 0.004 

Mail items pre-1500 0.020  Railroads: passenger journeys 1825 0.013 

Mastectomies pre-1500 -0.002  Railroads: passenger-journey kilometers 1825 -0.002 

Percent of beds for acute care pre-1500 0.007  Percent of spindles that are ring spindles 1828 0.025 

Percent of hernia procedures done as day cases pre-1500 0.009  Spindles: ring 1828 0.015 

Percent of irigated land out of cultivated land pre-1500 -0.005  Telegrams 1835 0.001 

Percent of tonsillectomies done as day cases pre-1500 0.001  Hysterectomies (vaginal only) 1843 0.028 

Percent of varicose veins procedures done as day cases pre-1500 0.007  Harvesters 1850 0.008 

Ships: sail pre-1500 0.020  Percent of steel production by the acid bessemer method 1855 0.276 

Ships: total pre-1500 0.033  Percent of steel production by the basic bessemer method 1855 0.023 

Tonnage of sail ships pre-1500 0.027  Percent of steel production in OHFs 1855 0.014 

Tonnage of total ships pre-1500 0.009  Steel production by other methods 1855 0.040 

Tonsillectomies pre-1500 0.023  Steel production by the acid bessemer method 1855 0.080 

Varicose vein procedures pre-1500 0.033  Steel production by the basic bessemer method 1855 0.082 

Newspaper circulation (daily) 1606 0.041  Steel production in open hearth furnances 1867 0.025 

Cataract surgeries 1748 0.072  Tractors 1868 0.007 

Percent of cataract surgeries done as day cases 1748 0.039  Milking machines 1870 0.006 

Percent of ships that are steam and motor 1788 0.004  Telephones 1876 0.041 

Percent of the tonnage of ships that are steam and motor 1788 0.007  Cholecystectomies 1882 0.002 

Note: Speed of convergence estimated using equation (4) or (5). 
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Table A3 (continued): Annual speed of β Convergence by Variable 

Variable Description Invention 
Date 

Speed of 
Convergence 

 
Variable Description Invention 

Date 
Speed of 

Convergence 

Electricity production 1882 0.010  Percent of dialysis patients at home 1943 0.021 

Percent of cholecystectomies done as day cases 1882 -0.145  Percent of renal failure patients, end stage 1943 0.063 

Prostatectomies (excluding transurethral) 1883 0.024  Cell phones 1947 0.033 

Percent of textile raw materials that are unnatural 1884 0.073  Cable television subscribers 1949 0.015 

Appendectomies 1885 0.037  Debit and credit card transactions 1950 -0.002 

Vehicles: commercial 1885 0.024  Percent of steel production in BOFs 1950 0.061 

Vehicles: passenger cars 1885 0.055  Points of service for debit/credit cards 1950 0.148 

Ships: motor 1897 0.024  Steel production in blast oxygen furnaces 1950 -0.027 

Tonnage of motor ships 1897 0.039  Kidney transplants, functioning 1951 0.115 

Percent of steel production in EAFs 1900 0.015  Kidney transplants 1951 0.229 

Radiation therapy equipment 1900 0.083  Pacemaker surgical procedures 1952 0.028 

Steel production in electric arc furnaces 1900 0.048  Coronary bypasses 1953 0.036 

Cholecystectomies, laparoscopic  1901 0.039  Coronary bypass procedures, in-patient 1953 0.033 

Percent of cholecystectomies done as day cases 1901 -0.133  Bone marrow transplants 1956 0.043 

Radios 1901 0.004  Lung transplants 1963 0.118 

Aviation passenger kilometers 1903 0.047  Percent immunized for measles, children 12-23 months 1964 0.119 

Aviation ton-km of cargo 1903 0.033  Mammographs 1966 0.104 

Percent of steel production that is stainless 1913 -0.005  ATMs 1967 0.148 

Stainless steel production 1913 0.022  Heart transplants 1967 0.093 

TVs 1924 0.009  Liver transplants 1967 0.112 

Percent immunized for DPT, children 12-23 months 1927 0.086  Knee replacement surgeries 1970 0.016 

Prostatectomies (transurethral) 1931 0.051  Computed tomography (CAT) scanners 1972 0.037 

Hip replacement surgeries 1938 0.025  Internet users 1973 0.078 

Pesticide consumed, total 1939 0.164  Personal computers 1973 0.082 

Cardiac catheterisations 1941 0.044  Electronic funds transfers 1979 0.020 

Dialysis patients 1943 0.065  Coronary stenting procedures 1980 0.059 

Renal failure patients, end stage 1943 0.060  Lithotriptors 1980 0.020 

Dialysis patients, home 1943 0.069  MRI units 1981 0.054 

Note: Speed of convergence estimated using equation (4) or (5). 
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Figure 1: Percent of agricultural area using modern varieties in various developing countries. 
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Figure 2: Log of per capita aviation passenger-kilometers. 
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Figure 3: Log of cars per capita. 
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Figure 4: Log of kilowatts of electricity produced per capita. 
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Figure 5: Log of telephones per capita. 
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Figure 6: Log of MRI scanner units per capita. 



- 46 - 

-8

-7

-6

-5

-4

-3

-2

1980 1984 1988 1992 1996 2000

USA France Japan Canada Australia

Germany Italy Sweden
 

Figure 7: Log of CAT scanner units per capita. 
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Figure 8: Log of credit and debit card payments per capita. 
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Figure 9: Log of cell phones per capita. 
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Figure 10: Log of personal computers per capita. 
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Figure 11: Log of internet users per capita. 
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Figure 12: Predicted initial adoption under logistic vs. invention dates for technology-country pairs 
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Figure 13: Predicted initial adoption under logistic vs. invention dates (1800-2000). 
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Figure 14: Actual adoption curve of TVs in Sweden and fitted logistic function. 
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Figure 15: Actual adoption curve of cars in Taiwan and fitted logistic function. 
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Figure 16: Actual adoption curve of newspapers in Germany and fitted logistic function. 
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Figure 17: Distribution of estimates of β-speed of convergence: log-per capita technologies. 
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Figure 18: Distribution of estimates of β-speed of convergence: share technologies. 
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Figure 19: Convergence within technologies does not imply convergence across technologies. 
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Figure 20: Convergence within technologies could imply convergence across technologies. 
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Figure 21: Evolution of the speed of technology by invention date. 
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Figure 22: Evolution of median speed of convergence for technologies according to country coverage. 




