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ABSTRACT

This paper models how the evolving field of pharmacogenomics (PG), which is the science of using

genomic markers to predict drug response, may impact drug development times, attrition rates, costs,

and the future returns to research and development (R&D). While there still remains an abundance

of uncertainty around how PG will impact the future landscape of pharmaceutical and biological

R&D, we identify several likely outcomes. We conclude PG has the potential to significantly reduce

both expected drug development costs (via higher probabilities of technical success, shorter clinical

development times, and smaller clinical trials) and returns. The impact PG has on expected returns

is partially mitigated by higher equilibrium prices, expedited product launches, and longer effective

patent lives. Our conclusions are, of course, accompanied by numerous caveats.
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The Future of Drug Development: The Economics of Pharmacogenomics 
 
 
I. Introduction 
 
 

The pace at which science is learning about human genetics and DNA and their 

influence on the evolution and treatment of human diseases is astounding.  One of the 

most promising avenues of this research is pharmacogenomics (PG), which is the science 

of using genomic markers to predict drug response and safety.  PG has the potential to 

identify patients at high risk for adverse drug events (ADEs) or to predict, prior to 

treatment, the efficacy of a drug for a particular patient or group of patients (based on the 

expression various genotypes).  To date, the most well-known and successful application 

of pharmacogenomics is the Her-2/neu diagnostic test for use with the biologic Herceptin 

(trastuzumab), which is a treatment for breast cancer.  Her-2/neu is an oncogene that is 

amplified and results in an over expression of the her-2/neu protein in a certain subset 

(25-30 percent) of advanced breast cancer patients.  The pharmacogenomic test for this 

oncogene identifies those women who over express her-2/neu and appear to respond to 

Herceptin, and for whom treatment is highly efficacious.  In contrast, patients without 

this genetic marker respond poorly to Herceptin.  While other examples of 

pharmacogenomic applications also exist (e.g., Gleevec), this science is still relatively 

new and its potential applications are evolving rapidly.  To facilitate, and indeed keep up 

with, the advances in this new science, the U.S. Food and Drug Administration (FDA) 

recently (in late 2003) issued draft guidelines for the industry to simultaneously 

encourage the use of pharmacogenomics and clarify how the FDA will evaluate these 

new types of data.   
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Former FDA Commissioner, Mark McClellan, remarked at the release of these 

guidelines,  

 
“Pharmacogenomics holds great promise to shed scientific light on the often risky and 

costly process of drug development…we intend to do all we can to use it to promote the 

development of medicines. By providing practical guidance on how to turn the explosion 

of pharmacogenomic information into real evidence on new drugs, we are taking an 

important step toward that goal." (FDA News PO3-89, 2003) 

 
 
While the science behind this field has captured the imagination and attention of both the 

public and scientific community, the economic implications of pharmacogenomics are 

equally interesting; they will likely change the drug research and development (R&D) 

landscape dramatically.  The costs, risks, and returns to pharmaceutical and biological 

R&D may be greatly influenced by pharmacogenomics and this will have a direct impact 

on public health in the United States. This paper will carefully explore these issues and 

discuss their implications for the future of drug development. 

 Our paper is structured around three inter-related economic perspectives of 

pharmacogenomics: its impact on costs, returns (net revenues), and social welfare.  

Specifically, we will first consider how pharmacogenomics is likely to impact drug 

development costs, times, and attrition rates (all of which are related).  Second, we will 

consider the financial risks and returns associated with the use of pharmacogenomics in 

drug development. Third, we will discuss the potential welfare implications of 

pharmacogenomics in terms of its likely impact on patient access to new and existing 

drugs, firm incentives for R&D, and public health.  We will proceed as follows.   
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Section II will describe the primary ways in which pharmacogenomics is likely to 

influence the cost of drug development.  For example, relative to traditional drug 

development, pharmacogenomics has the potential to reduce clinical trial costs (through 

smaller and possibly fewer clinical trials), drug attrition rates, and clinical developmental 

times.  We consider and discuss these and several other related issues in this section.  

Section III will analyze the market environment for products developed using this 

technology.  Specifically, we will consider how product revenues may be affected when 

markets are segmented using pharmacogenomics.  For products developed using 

pharmacogenomics there is likely to be a substantially different post-launch cash flow 

profile.  This section will build upon our previous work, which examined the market-

demand side issues of PG segmentation and product pricing, and consider the impact PG 

may have on present value net revenues.  More specifically, we will describe how 

expedited product launches and longer effective patent lives, via shorter clinical 

development times, may, in certain circumstances, increase present value product cash 

flows despite a smaller, segmented patient population.  This section will also consider the 

net present value (NPV) profile of a pharmacogenomically-developed product versus a 

traditionally developed one.  This will be based, as will all our qualitative remarks in this 

paper, on a formal mathematical model we present in the appendix.  While generalized 

conclusions will not be drawn, the principle factors affecting a product’s NPV within 

both environments (a traditional development paradigm versus a pharmacogenomics one) 

will be discussed and some predictions will be offered with caution.  Section IV will 

conclude the paper with a brief discussion on the potential welfare implications of 

pharmacogenomics. 
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Section II: Pharmacogenomics and the Cost of Drug Development 

 
There are several ways in which pharmacogenomics may have a significant 

impact on the cost of developing new drugs, the most important of which are likely to be 

out-of-pocket clinical trials costs, clinical development times, and the attrition rate for 

developmental products.  The latter two categories impact the cost of drug development 

because of the opportunity cost of R&D capital and the cost of product failures, 

respectively. As DiMasi, Hansen, and Grabowski (2003) have shown, these two cost 

categories account for the vast majority of the average cost of developing a new drug.  To 

be certain, there are other important ways the widespread utilization of 

pharmacogenomics might affect drug development costs. These include the additional 

costs associated with developing and using the pharmacogenomic diagnostic tests, issues 

relating to scale and scope economies in development and manufacturing, and the impact 

this technology may have on the growth and evolution of the industry, which could 

impact financial risk and thus a firm’s cost of capital (Golec and Vernon, 2005). 

However, our focus will be upon the aforementioned three areas of clinical trials 

costs, development times, and attrition rates, where we think costs will be most affected.  

Much of the discussion in this section is based upon a formal economic model, which is 

presented in the appendix to this paper.   

 

Clinical Trial Sizes and the Out-of-Pocket Costs of Drug Development  

 
To frame our discussion around how the cost structure of a pharmacogenomic clinical 

program will differ from a traditional one, we must consider several key factors.  First, 
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for simplicity, we assume that a diseased population has two types of patients: patients 

with a genetic marker for higher therapeutic efficacy and patients without this genetic 

marker. This binary assumption could easily be relaxed, but this would not affect our 

qualitative conclusions.  We let λ represent the fraction of this population that carries the 

polymorphisms.  Furthermore, we assume that patients without the marker have an 

efficacy rate of ε and patients with the marker have the efficacy rate of ε+δ.  It is 

straightforward to show that the efficacy rate in the pooled population (i.e., the entire 

population that includes individuals with and without the genetic marker) is simply 

ε+λδ, or the weighted average efficacy in the entire diseased population.  For a clinical 

trial to demonstrate efficacy from a statistical perspective, a sufficient number of patients 

must be enrolled in the trial; a trial must be powered to detect the differential efficacy 

between the experimental treatment (new drug or biologic) and control (i.e., placebo).   In 

the appendix we derive the formula for N, which is the number of patients needed in the 

trial for a given level of statistical power.  We show that N is a decreasing function of 

efficacy; fewer patients need to be enrolled to statistically detect a greater efficacy level.  

This is of course intuitive.  The number N is also a function of α and β, the well-known 

statistical parameters used in powering clinical trials; these are, respectively, the 

probabilities of incorrectly rejecting the Null Hypothesis of no treatment effect (Type I 

error) and of failing to reject the Null Hypothesis when it is indeed false (Type II error).  

For a developmental compound with a known (or hypothesized) treatment effect (the 

Alternate Hypothesis), the quantity 1-β is the power of the trial, and it represents the 

probability that the Null Hypothesis will be correctly rejected.  Figure 1 below illustrates 
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this relationship with the treatment effect being the horizontal distance between the 

population means of the Null and Alternate Hypothesis sample distributions. 

 

Figure 1: Powering Clinical Trials: A Simple Illustration 

HAH0

α−level H0β−level HA

Power = 1-β Treatment effect

 

 
 
All things held constant, as the sample size used in the clinical trial is increased, the two 

distributions in Figure 1 converge to spikes centered above their population means, and 

the power of the clinical trial (1-β) approaches 100 percent.  Of course, it is economically 

inefficient (infeasible) to power clinical trials at such high levels (near 100 percent) 

because of the extremely large sample sizes required.  

 The obvious benefit of a clinical development program that enrolls only high-

response-rate individuals is that fewer patients will need to be enrolled in the clinical 

trials to demonstrate a statistically significant treatment effect. Because the variable cost 

of a clinical trial is driven largely by the number of patients enrolled in that trial (personal 

correspondence, Pfizer Clinical Development), we approximate the percentage reduction 
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in variable, out-of-pocket clinical trial costs1 (when following a pharmacogenomic 

development program instead of a traditional one) by the ratio TNN /∆ , where N∆  is the 

difference between TN , the of patients needed to detect the effect ε+λδ, and GN , the 

number of patients needed to detect the effect ε+δ: 

 
),,,,( βαδλεfNNN GT =∆=−            (1) 

 
Because clinical trials, and especially Phase III clinical trials, represent the vast majority 

of variable out-of-pocket clinical development costs (DiMasi et al. 2003), the ratio 

TNN /∆  serves as a rough first approximation of the reduction in these costs associated 

with following a pharmacogenomic development approach (relative to the same product 

developed following the traditional drug development approach)2.  In the following 

section and in the appendix we consider how the length of the clinical development 

program will impact the out-of-pocket costs by assuming costs can be modeled on a per-

patient, per-unit-of-time basis.  Finally, it should be noted that there are also fixed costs 

associated with clinical trials and clinical development, but data on the distribution across 

these two cost categories are not publicly available.  The larger the proportion of clinical 

development costs that are variable costs, the greater the impact a pharmacogenomic 

development program will have on the out-of-pocket cost of drug development.  We 

focus our analyses on variable costs exclusively. 

                                                 
1 This analysis applies primarily to Phase III clinical trials because the smaller Phase I and II trials are 
focused largely on issues of drug metabolism and dosing.  However, because Phase III is by far the largest 
and most costly phase (DiMasi et al., 2003 estimate that Phase III clinical costs are approximately 70 
percent of out-of-pocket clinical development costs) it seems reasonable to focus on these trials. 
2 We are not presently modeling the possibility that in addition to smaller clinical trials fewer clinical trials 
may be required.  This would result in pharmacogenomic development programs having even lower costs 
relative to traditional development programs. 
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 To illustrate this through a simple example, and to demonstrate the 

interrelationship among some of the key model parameters, consider the clinical 

development program for a drug under both a pharmacogenomic development paradigm 

and a traditional one.  We assume that the clinical trials are powered such that α = 0.05 

and β = 0.10.  We further assume that the efficacy rate for patients without the genetic 

marker for a high response rate is 10 percent (i.e. ε =0.10) and the incremental efficacy 

for patients with the genetic marker, δ, are 0.05, 0.10, and 0.15.  

Table 1 reports the percentage reductions in variable, out-of-pocket clinical 

development costs for different values of λ (the proportion of patients with the genetic 

marker) and δ (the incremental efficacy associated with having the genetic marker).  The 

values in Table 1 are conservative approximations for out-of-pocket development costs 

because we are not modeling the temporal aspect of drug development and how PG will 

impact the length of clinical development programs.  The forthcoming sections of this 

paper and the appendix consider these factors in detail. The appendix also discusses the 

issue of running separate trials for high rate responders (patients with the genetic marker) 

and low rate responders (patients without the genetic marker). 

 
Table 1: Clinical Development Cost Reductions Associated with  

PG for Different Values of λλλλ and δδδδ (εεεε = 10 percent) 
 

 δ = 0.05δ = 0.05δ = 0.05δ = 0.05    δ = 0.10δ = 0.10δ = 0.10δ = 0.10    δ = 0.15δ = 0.15δ = 0.15δ = 0.15    
 λ λ λ λ = 0.1 33.5% 50.6% 61.0% 
λλλλ = 0.3 26.4% 40.2% 49.1% 
λλλλ = 0.5 19.0% 29.4% 36.4% 
λλλλ = 0.7 11.6% 18.1% 22.6% 
λ λ λ λ = 0.9 3.9% 6.2% 7.8% 
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The results in Table 1 are striking, and suggest that for clinical trials, and clinical 

development programs to the extent there costs are proportional to clinical trial costs, PG 

has the potential to significantly reduce out-of-pocket costs.  In support of this prediction, 

it is worth noting that a major pharmaceutical firm recently reported redesigning a $10 

million clinical trial in order to utilize genomic markers to predict drug response; the PG 

trial cost the firm only $500,000 to complete (Mattingly, 2004). 

While this simple exercise provides some insight into the impact that 

pharmacogenomics may have on the average out-of-pocket clinical development costs for 

new drugs, there are a number of factors that were not considered.  For example, we do 

not model the possibility that following a pharmacogenomics development approach may 

require fewer numbers of clinical trials.  Nor do we model how out-of-pocket pre-clinical 

costs may be affected.  There are also certain to be costs associated with the development 

and study of pharmacogenomic diagnostic tools.  However, as stated in the beginning of 

this section, the most significant ways pharmacogenomics is likely to impact average 

drug development costs is through its effect on drug development times and attrition 

rates.  This seems plausible because the costs associated with product failures and the 

opportunity cost of investment capital account for over four-fifths of the total average 

cost of developing a new drug (DiMasi et al., 2003).  Nevertheless, some intuition around 

how out-of-pocket clinical developments costs might be affected is necessary to consider; 

hence our preceding analyses. 
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Clinical Development Times and Expedited Product Launches 

 
The Herceptin and Her-2/neu diagnostic example discussed in the introduction may shed 

light on the likely impact pharmacogenomics will have on average drug development 

times.  Because of the compelling evidence in support of Herceptin’s effectiveness in 

patients with an over expressed Her-2/neu oncogene, the FDA gave Herceptin a fast-track 

designation with expedited review for the treatment of metastatic breast cancer; within 

4.5 months of submission (September 1998), Herceptin and HercepTest (the diagnostic 

test used to identify over expressed Her-2/neu oncogenes) were approved for marketing.  

Of course, the fact that Herceptin and HercepTest were being developed for a very 

serious form of cancer also contributed to the fast-track designation, but it seems 

plausible that the expediency with which approval was granted was also influenced by 

the compelling clinical evidence that the her-2/neu diagnostic was able to quickly identify 

patients likely to benefit from treatment.  Most importantly, the high level of therapeutic 

efficacy within patients with over expressed Her-2/neu oncogenes made it possible to 

rapidly demonstrate a clinically and statistically significant survival benefit from 

Herceptin therapy. 

 Theoretically, therefore, it seems reasonable to postulate that smaller (and 

possibly fewer) clinical trials may be undertaken and completed more rapidly than larger 

(and possibly more) clinical trials.  Enrolling a smaller number of patients should, ceteris 

paribus, take less time—especially when smaller numbers of patients per trial are coupled 

with a smaller number of clinical trials.  This may be the case because in a more 

efficacious subpopulation of patients clinically significant treatment effects can be 

demonstrated more rapidly than would be the case in a population comprised of 
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responders and non-responders (or responders and less-efficacious responders).  It is not 

uncommon for clinical trials to be terminated earlier than planned because of 

unexpectedly favorable treatment effects.  This, however, occurs because the treatment 

effect was underestimated in clinical trial design, and as a result the trial was “over 

powered.” Thus, while this consideration is useful in explaining why higher efficacy 

levels (in subpopulations with genetic markers for high-rate responders) may lead to 

shorter clinical development times, our model assumes perfect information on the 

treatment effect a priori, such that the benefit of higher efficacy comes via smaller 

clinical trials (i.e., ∆N from the previous section).  This should be kept in mind 

throughout the forthcoming discussion because it is one possible link between smaller 

clinical trails and shorter development times.   

Other factors that should be considered include whether a clinical program is 

developing a product for high-efficacy responders and low-efficacy responder separately 

(the appendix discusses why this will be uneconomical relative to a program that simply 

pools the two groups and develops a product for the pooled population); the cost and time 

associated with developing a pharmacogenomic test; and the extent to which clinical trial 

enrollment may take longer because of the smaller proportion of the diseased population 

carrying the genetic marker (i.e., λ), all else held constant.  We model the reduced 

clinical development time associated with a pharmacogenomic development program as 

∆Τ, where ∆T = TT – TG   (where TT and TG denote average clinical development times 

under a traditional drug development approach and pharmacogenomic approach, 

respectively); ∆T should, in theory, be a function of the reduced clinical trial sizes, ∆N, 

(and number of clinical trials), the proportion of the disease population carrying the 
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genetic marker for high-response, λ, and the time associated with developing a reliable 

pharmacogenomic test or diagnostic, τ.  Mathematically, we represent this as follows, 

where the new variable,θ , is a proportionality scaling factor designed to capture the fact 

that, in addition to reduced clinical trial sample sizes, there may also be fewer trials 

required: 

 

�
�

�
�
�

� ∆⋅=∆ τλβαδλεθ ,),,,,,(
TN
N

gT           (2)  

  
Unlike equation (1), which (per the appendix) precisely mapped the relationship 

between ∆N/NT and the other model variables, the function g in (2) is only a general 

specification. The appendix employs several proportionality and economies of scale 

assumptions, but these are somewhat speculative in nature. It is probable that ∆T is 

increasing in θ  and ∆N/NT, but decreasing in λ and τ.  While most of these relationships 

are quite intuitive, the link between ∆T and λ deserves some explanation and 

clarification.  Enrolling patients in clinical trails can be a time consuming process 

because patients must be screened for inclusion (exclusion) criteria.  As λ approaches 0 

(i.e., the proportion of patients with the relevant genetic marker gets very small), it may 

be quite time consuming to screen and enroll only those patients with the relevant genetic 

marker because they represent an increasingly small fraction of the diseased population 

the clinical trial seeks to study.  A simple example will illustrate this point.  If 25 percent 

of breast cancer patients carry a particular genetic marker for (i.e., λ=0.25) for high 

efficacy, then on average 4 patients must be screed for every one patient that is eligible 

for the clinical trial.  This number increases to 10 patients per enrollee if only 10 percent 
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of breast cancer patients carry the genetic marker (i.e., λ=0.10), and 100 if only 1 percent 

carry the marker (i.e., λ=0.01)3.  Simply put, the number of potential enrollees that must 

be screened, on average, to obtain an additional clinical trial patient is 1/λ, which grows 

very rapidly for small values of λ.  Thus, the influence λ will have on clinical 

development times via this effect will be strongest when λ is very small.  When λ is not 

very small, say for example 25 percent, as in the Herceptin example, then it seems 

probable that this effect will be dominated by factors that tend to reduce clinical 

development times (i.e.,θ  and ∆N/NT).  The additional time required to study and 

develop pharmacogenomic diagnostic tests, τ, will also influence development times, but 

we suspect the net effect will be a significant reduction in clinical development times.  

Indeed, some recent estimates suggest that pharmacogenomic-based clinical development 

programs will average 3-5 years in length compared to 10-12 years for traditional 

programs (Quintiles Transnational, 2004).    

 Before proceeding to our discussion on how pharmacogenomics, both through 

improved efficacy (via genetic targeting) and reduced adverse events (via screening), will 

likely impact the technical success of drug development (and thus the expected cost of 

drug development), it is worthwhile to illustrate graphically how drug development using 

pharmacogenomics may be different from traditional drug development within the 

context of the analysis presented in this section and the last.  Figure 2 captures these 

fundamental differences.   

                                                 
3 We do not consider this to be a major factor in our model of out-of-pocket development costs because 
screening patients for genetic markers typically involves only taking a blood sample to test the individuals 
DNA.  Of course, as will be discussed later in the paper, there are very significant costs associated with 
clinical development program length (due to the opportunity cost of investment capital), but in the previous 
section we only consider out-of-pocket costs. 



 15 

 
 
 
 

Figure 2: The Principle Ways Pharmacogenomics May Influence 
The Economics of Clinical Development 

 
 

 
 

 

 

 

 

 

 

 

 

 

It is worth emphasizing that Figure 2 depicts only out-of-pocket cash flows and 

not expected cash flows (which incorporate the probabilities of advancing through the 

different stages of clinical development).  If pharmacogenomic development programs 

increase the probability of technical success (over those associated with traditional 

development programs) at each development stage, then expected clinical development 

costs per drug developed will be proportionately even smaller than is illustrated in Figure 

2.  Of course, the total expected cost of developing a new drug must also consider the 

firm’s opportunity cost of investment capital; shorter development times will thus lower 

expected development costs even more.  This is particularly true given the fact that recent 
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estimates of the expected cost of bring a new drug to market find that these opportunity 

costs of investment capital account for approximately half of the total cost (DiMasi et al., 

2003).  We turn to these issues next and develop a more formal model of the impact 

pharmacogenomics will have on drug development costs. 

 
Probabilities of Technical Success in Drug Development and the Cost of Bringing a Drug 
to Market 
 
 
There are important ways pharmacogenomics may affect the probability of a new drug 

advancing through the developmental pipeline and gaining FDA approval.  The two most 

fundamental are related to what are often referred to as the first and second hurdles of 

drug development: safety and efficacy.  The focus of our paper thus far has centered on 

the higher therapeutic efficacy in a genetically identified subpopulation of patients; 

however, an equally promising (if not more so) opportunity for pharmacogenomics lies in 

the safety arena.  Identifying patients at high risk for adverse drug events (ADEs) could 

salvage a developmental product from program termination.  Consider Figure 3 below, 

which depicts a hypothetical population of diseased patients.   

 
Figure 3: The Use of Pharmacogenomics to Salvage Clinical Development Programs 
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If the ADE is a particularly dangerous one, or even fatal one, then without a priori 

information on which patients are at risk for this ADE (i.e., the ADE patient subgroup) 

the product has no hope of ever reaching the market and benefiting those patients who 

could safely take the drug.  However, with the technology of pharmacogenomics, there is 

now a much greater chance that such a product could be brought to market.  Thalidomide, 

the notorious 1950’s drug that was indicated for morning sickness in pregnant women 

and that resulted in birth defects (and which was the impetus to the 1962 Kefauver-Harris 

Amendments) received FDA approval in 1998 for the treatment of a particular skin 

condition and is currently being investigated for several other indications, including use 

in treating certain types of cancer (MayoClinic.com, 2005).   While this example (at least 

currently) does not entail the application of pharmacogenomics, it does clearly illustrate 

the benefits (and high stakes) associated with successfully identifying patients at risk for 

severe ADEs. For years it was unthinkable that Thalidomide might one day be back on 

the market.  Regarding the application of pharmacogenomics in this capacity, current 

research shows there are already a number of actual and potential applications (Phillips et 

al., 2001). 

 To more formally demonstrate how pharmacogenomics is likely to reduce the 

expected cost of drug development through higher probabilities of technical success, 

consider the following expression for the average capitalized cost of bringing a new drug 

to market: 

 

E[Cost]  per Success = 

∏

∏∏
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Equation (3) is based on a discrete, n-period fixed model of drug development where the 

capitalized out-of-pocket drug development cost per period is denoted by Ct, and the 

probability the product will advance from one period to the next is denoted by pt (with p0 

assumed to be equal to unity).  The Ct terms may be thought of as the capitalized discrete-

time counterparts to the continuous-time costs shown in Figure 2.  

Equation (3) depicts the structure of the DiMasi et al. (2003) method of 

calculating the average cost of developing a new drug (with a cost of capital equal to 

zero).   It is straightforward to see from (3) how expected development costs decrease in 

pt.  That is, as the probabilities of technical success increase at each development stage, 

average expected development costs per successful new drug decrease.  A simple 

example will illustrate this important point.  Consider the simple 3-stage development 

model shown below in Figure 4. 

 

Figure 4: Expected Cost of Drug Development 
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If failure or success is determined only after all out-of-pocket costs associated with that 

development stage have been incurred, and if we assume the cost of investment capital is 

zero, then it is easy to show how improved technical success lowers expected drug 

development costs per drug.  To show this assume pre-clinical development costs are $0 

(for simplicity), clinical development programs cost $50 million dollars, and all FDA 

submissions and New Drug Applications (NDAs) cost $10 million.  Under these 

assumptions, and based on the technical success probabilities shown in Figure 4, the 

expected cost of development for a given developmental drug is: 

 
E[Cost] = 000,000,11$000,000,10$5.02.0000,000,50$2.0 =××+×    (4) 

 
To calculate the expected cost per drug successfully developed (because the cost of 

bringing a new drug to market must include the costs associated with failed drug 

development programs), we simply divide this expected cost by the probability that a 

drug will actually make it to market: 

 

E[Cost] per Successful Drug = 000,500,137$
08.0

000,000,11$ =    (5) 

 
Let us now consider the expected cost per drug if the probabilities of technical success 

improve, holding everything else constant.  Specifically, we assume that the probability 

of technical success in pre-clinical development increases from 0.20 to 0.30 and that the 

probability of clinical development success increases from 0.50 to 0.80.  We further 

assume the probability of FDA approval remains the same.  The expected cost per drug 

developed is now the following: 
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E[Cost] per Successful  Drug = 000,625,90$
192.0

000,400,17$ =    (6) 

 
Thus, as the probabilities of technical success increase, the expected development cost 

per drug necessarily declines4.  

 In the preceding example we held constant out-of-pocket development costs and 

clinical development times.  However, as we have already shown, it is likely that 

pharmacogenomics development programs will involve both smaller out-of-pocket costs 

and shorter clinical development times, as shown previously in Figure 2.  These two 

factors, when combined with higher probabilities of technical success, reduce the 

expected cost per new drug even further, relative to a traditional drug development.   

In sum, the preponderance of evidence from our analyses suggests that 

pharmacogenomics will likely reduce the average cost of drug development in a very 

significant manner in the future.  But what will pharmacogenomics mean for drugs once 

they reach the market?  The general sentiment expressed among industry experts and 

insiders is that this technology will segment markets, and all but do away with the 

blockbuster model of drug development that has been the driving force behind the 

incentives for R&D investment in the pharmaceutical industry (Grabowski and Vernon, 

2000, Vernon, 2003; 2005, Giaccotto, Santerre, and Vernon, 2005).  We will turn to this 

and other related issues next. 

 
                                                 
4 It is worth noting that the expected development costs associated with any given program, all else held 
constant, will increase because it increases the likelihood that later-stage development costs will be 
incurred.  For example, if the probabilities of technical success in our current example were all raised to 
unity, such that there was a 100 percent chance of advancing all the way through development and gaining 
FDA approval, then the expected cost (which is not really an expectation given this perfect certainty) would 
be $60,000,000.  This would also be the cost per drug because of the aforementioned perfect certainty of 
success.  The key point is that the expected cost per successful drug will always decrease in these technical 
probabilities. 
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Section III: Pharmacogenomics, Market Segmentation, and Drug Revenues 

 
 

In this section of the paper we undertake a fundamental review of the post-launch 

economics behind pharmacogenomics.  We will base some of our analyses on our 

previously work in this area (Vernon, Hughen, Johnson, and Trujillo, 2005).  Danzon and 

Towse (2002) also provide an excellent overview of these and other related issues.  

Because the pharmaceutical industry’s core business is the innovation, development, and 

marketing of new drugs, pharmacogenomic diagnostic testing will be attractive to drug 

makers if it can support this business.  We will explore this issue within the context of a 

simple economic analysis of increased pharmaceutical market segmentation through 

pharmacogenomic test development (following our approach in the last section, we will 

continue to model pharmacogenomics markers in a binary manner).  Specifically, we 

address the sub-segmenting issue by reviewing how pharmaceutical drug revenues may 

be affected in both responder and non-responder segments.  We illustrate this first in a 

simple, single-period model, and then consider several dynamic extensions.   

The impact of pharmacogenomic-driven market segmentation on price, market 

size, and present value net revenues will be shown to depend on such factors as 

consumers’ (e.g., individuals, managed care plans, or national governments) willingness-

to-pay for new products, the proportions of responders and non-responders, and the costs 

of treating the underlying disease for which the new drug is indicated.  Underpinning our 

analysis is the cost-effectiveness framework widely used by payers for determining 

whether a product will be covered and reimbursed for use by its enrollees or citizens for 

national health insurance systems. Cost-effectiveness analysis (CEA) has come to 
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predominate in determining the value of new technology as it entails an acceptable 

combination of economic theory, medical information, and empirical flexibility  

(Eisenberg, 1989; Sloan, 1995; Drummond et al., 1997). Most of Western Europe, 

Canada, Australia, and New Zealand use explicit or implicit forms of CEA (Jommi, 2001; 

Gosling, 2000). The United Kingdom has the most stringent and formal CEA review 

embodied in their National Institute for Clinical Excellence (NICE), which was 

introduced in 1999 to ensure that healthcare funding is used efficiently and that policies 

on treatment choice are consistent across the country, and to evaluate the cost-

effectiveness of pharmaceutical products deemed to significantly increase health system 

expenditures (Atkinson, 2002).  NICE issues criteria by which it will use CEA to conduct 

these evaluations for public review, and uses a £30,000 per quality-adjusted-life-year 

(QALY) threshold, or the maximum the payer is willing-to-pay per QALY. 

While CEA allows payers to have a formal method for determining value for new 

technology, it also allows firms to determine their customer’s maximum willingness-to-

pay.  By decomposing a new drug’s price from the total costs of the intervention, firms 

may gauge the potential future price of their developmental products.  In this section of 

the paper we will consider how pharmacogenomic tests will divide a market into two 

segments, responders and non-responders, based on the efficacies in each, and how this 

segmentation will impact future drug price and market size.  We then consider how 

pharmacogenomics will impact present value net revenues by extending this model into a 

dynamic setting.   
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While our approach will be primarily based on this simple framework, we 

acknowledge that pharmacogenomics may increase a drug’s value in numerous other 

important ways.  We will discuss these at the end of this section.  

 
Cost-Effectiveness, Pharmacogenomics, and Drug Prices 

 
If one assumes that payers use cost-effectiveness standards (explicitly or 

implicitly) when evaluating new therapeutic technologies, insofar as pricing is concerned, 

then it is quite easy to develop a simple model capable of illuminating the key 

deterministic relationships that influence both price and total revenues under traditional 

and pharmacogenomic development programs.  In recent years there has been 

considerable growth in the use of cost-effectiveness analyses to make decisions about 

covering and reimbursing new pharmaceutical and biotechnology products.  The future 

appears to hold an even larger role for these analyses, even in the U.S. market, which has 

traditionally not relied on these methods.  The passage of the 2003 Medicare 

Modernization Act (MMA), and the Medicare Drug Benefit contained therein (which 

goes into effect in January 2006), will likely exert significant pressure to expand the use 

of these methods to ensure good value for money and to contain costs.   

To begin, we consider a static population of q patients with disease x , for which 

there is currently no treatment.  As in the last section, we assume that the fraction, 

λ, represents the proportion of patients with a genetic marker for high therapeutic 

efficacy, i.e., ε + δ compared to ε for patients without the marker (and ε+λδ for the entire, 

or pooled, population). We assume there are two cost components to disease x: fc , which 

is the cost of the disease independent of treatment success (fixed costs), and vc , which is 
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a cost that is not incurred if treatment is successful (variable costs).  Both costs are 

strictly positive. Finally, we assume pharmaceuticals are priced such that they satisfy the 

following cost-effectiveness criterion with equality: ∆(Costs)/∆(Efficacy) Ω≤ , where Ω  

is the payers’ (consumers’) maximum willingness to pay per unit efficacy (e.g., £30,000 

per QALY).  The costs considered in most cost-effectiveness analyses include direct 

costs such as drug acquisition costs, doctor visits, hospitalizations costs, among others; 

indirect costs such as time lost from work and family caregiver help are also typically 

incorporated.  After differencing the costs associated with treatment using the new 

technology (drug) from the costs associated with the current (standard of care) treatment, 

this marginal cost is compared (divided by) the incremental efficacy of the new 

technology over the current technology; this generates a measure of the cost per unit of 

effectiveness, which is the cost effectiveness ratio.  

Given these assumptions it is straightforward, if somewhat algebraically 

cumbersome, to evaluate the total revenues under a traditional development program and 

a segmented, pharmacogenomic development program (the appendix does this in a step-

by-step fashion).  Under a traditional development program there is no segmentation, and 

thus a larger market to serve; however, under a pharmacogenomic development paradigm 

there is a higher level of therapeutic efficacy, and thus from a cost-effectiveness (or value 

for money) perspective, a higher equilibrium price.5  It can be shown that the latter effect 

                                                 
5 We do not explicitly consider the possibility that a firm will develop the product separately for responders 
(the fraction λ of the population) and non-responders (or more precisely low-rate responders). The 
appendix considers this possibility and shows how if firms could price discriminate based of the cost-
effectiveness of the drug in each market segment, then revenues under a segmenting/pharmacogenomics 
development approach would yield equivalent revenues to that of a non-segmenting/traditional 
development approach.  However, the challenges to preventing inter-market arbitrage would be 
considerable (Vernon et. al., 2005); thus, we focus our analyses on a pharmacogenomic development 
program that develops a product exclusively for the proportion of the population carrying the genetic 
marker for a high response rate.   
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(higher prices) will never offset the former effect (a smaller market), and specifically that 

the ratio, Φ, of the revenues under the two development programs, RG and RT, for the 

traditional and pharmacogenomic programs, respectively, collapses to a function of only 

the clinical parameters, λ, ε, and δ:   

 

1
)( ≤

+
+==Φ
λδ

δλ
e

e
R
R

T

G         (7) 

 
 

This relationship is shown in Figure 5 where Φ  is on the vertical (or z-) axis with 

range on the interval Φ ]1,0[∈ , λ is on the x-axis and has the domain ]1,0[∈λ , and δ is 

on the y-axis with domain ]9.0,0[]1,0[ =−∈ εδ .  We arbitrarily set ε equal to a value of 

0.10 to generate this three-dimensional space. 

 
 

Figure 5: The Impact of Pharmacogenomics on Drug Revenues in a  
Static, One-Period Model 
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Obviously, Figure 5 could be reproduced for any non-marker efficacy level, ε.  As 

intuition suggests and as Figure 5 clearly shows, small values of δ  and λ result in less 

favorable revenue outcomes for a pharmacogenomic development approach relative to 

larger values of δ  and λ , all else considered.  We will use our measure of Φ in the next 

section when we consider several dynamic extensions of the current model. 

 

Expedited Product Launches, Effective Patent Lives, and Present Value Net Revenues 

 
While our simple example shows that in a static, one-period model drug revenues are 

likely to be less following a pharmacogenomics approach to drug development, a more 

relevant issue is the impact this technology will have on present value net revenues.  Two 

factors are likely to work together to mitigate the static, one period reduction in revenues 

of 1- Φ percent: the time value of money associated with an expedited product launch of 

∆T years (from the previous section) and a longer effective patent life, which is a direct 

consequence of an expedited product launch (effective patent life is equal to the 

remaining patent period on a new drug or biologic at the time it is launched).  Because 

generic entry post-patent expiration results in a significant cannibalization of brand sales 

(see, for example, Grabowski and Vernon, 2000), the value of an expedited product 

launch does more than simply shift cash flow profile of a product to the left (see Figure 6 

below), it also extends the pre-generic entry revenue segment of this profile. 
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Figure 6: An Economic Model of the Impact of Pharmacogenomics on  
Life-Cycle Product Cash Flows 
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two life-cycle net revenue curves) proportional to 1-Φ.  This is similar in many respects 

to our analyses and argument for why out-of-pocket development costs for a 

pharmacogenomic development program will be less than those of a traditional 
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expedited market launch?  That is, are present value net revenues greater under a 

pharmacogenomic development model or the traditional one?  It seems obvious that the 

answer to this question will depend on the parameters values for ε, δ, λ, and ∆Τ. A 

definitive answer is not readily available, but it seems likely that the larger the values of 

Φ and ∆Τ, the more probable it is that a pharmacogenomic development program will 

generate higher present value net revenues relative to a traditional program of drug 

development.  The appendix considers this question in greater detail.   

Of course, the ultimate question one would like to answer deals not with present 

value net revenues, but with the project’s net present value (NPV) under both 

development paradigms.  To consider this we must also incorporate the probabilities of 

technical success under both drug development approaches.  Because it seems likely from 

our earlier analyses and discussion that pharmacogenomics will reduce the expected costs 

of drug development through smaller and possibly fewer clinical trials, expedited market 

launches, and higher probabilities of technical success, it seems probable that, at least for 

a proportion of products, the NPV associated with a pharmacogenomic development 

program will be higher than that associated with a traditional development program.  This 

will be particularly true, as stated above, for drugs or biologics that are associated with 

large values of Φ and ∆Τ.  Expressed more formally, we may write: 

 
NPVG-NPVT = ∆(NPV) = h[∆Ν, ∆Τ, Φ]      (8) 

 
In our model, ∆(NPV) is increasing in ∆N and ∆T and decreasing in Φ.  For values of 

Φ close to and approaching unity, it seems very likely that ∆(NPV) > 0, and 



 29 

pharmacogenomics will thus lead to more financially attractive R&D investment 

opportunities. 

While our economic models of pharmacogenomics, and their expected impact on 

both clinical development and drug revenues, are quite general, the considerations they 

have identified seem to suggest that, on net, the financial benefits could easily exceed the 

costs.  While this may not be true for all cases, it is certain to be the case in many 

circumstances.  This being said, however, there remain several other commercial 

opportunities not captured in our model that warrant attention prior to concluding this 

paper with a brief discussion on the future welfare implication of pharmacogenomics.   

 
Other Commercial Considerations and Opportunities for Pharmacogenomics 

 
There are a number of ways pharmacogenomics may enhance the commercial 

opportunities for a new or existing pharmaceutical or biologic.  In terms of improving the 

value of marketed drugs, products could be offensively or defensively positioned through 

the strategic inclusion of additional efficacy information on their labels.  

Pharmacogenomic tests associated with a product may also be used or act as a signal of 

quality to physician prescriber-users or regulators by indicating an additional level of 

scientific rigor behind the stated efficacy of a drug, therein reducing related uncertainty 

as to its utility in the provider’s mind.   

Other potential means of improving drug value through pharmacogenomics 

include reducing product liability through developing a more specific, validated label or 

resuscitating a withdrawn drug by developing the ability to identify prospectively adverse 

reactants (as discussed in detail in the previous section of this paper).  Similarly, there is 
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the possibility that pharmacogenomics could prospectively create new or expand existing 

markets at a more rapid rate.  The latter case may hold where a population could be 

screened as being at risk for a disease and thus a candidate for early, preventive therapy.  

Prospective patients with hereditary diseases such as Alzheimer’s or prostate cancer 

could be screened and potentially initiate therapy years earlier than they otherwise would 

have with current screening and diagnostic technology.  It is also possible that additional 

revenues may be earned through off-label prescribing to patients not carrying a genetic 

marker for high efficacy.  While our model does not include these commercial 

opportunities, it seems likely that they will significantly enhance the economic benefits 

(to firms and consumers) associated with pharmacogenomics.   

  
Section IV: Incentives for R&D, Welfare Considerations, and Conclusions 
 
 
To more fully gauge the likely impact of pharmacogenomics on the future of drug 

development, it is necessary to understand how this technology will shape the financial 

incentives of firms in the pharmaceutical industry.  In particular, if this technology has a 

positive impact on the expected financial returns to investment in R&D, as we suspect it 

one day will, then R&D investment in the future with will increase as a result, and so too 

will innovation.  The direct link between R&D investment and innovation is difficult to 

predict, but recent research on the historical mapping between R&D investment and 

innovation suggests that this is a highly productive investment for society, one that 

generates considerable social value in terms of improved life expectancy, quality of life, 

and the eradication of many diseases.  For example, econometric research by Lichtenberg 

(2002) has recently estimated that for every $1,345 invested in pharmaceutical R&D, the 
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U.S. gains approximately one human life year.  Given the fact that recent estimates for 

the value of a U.S. life year range between $100,000 and $160,000 (Cutler and 

McClellan, 2001; Murphy and Topel, 2003), the social returns to increased future levels 

of industry R&D will almost certainly generate benefits greatly in excess of costs.  This is 

consistent with research that suggests the United States is currently under investing in 

medical and pharmaceutical R&D (Murphy and Topel, 2003)6.  As a result, any 

significant change in the pharmaceutical R&D landscape that affects the incentives to 

invest in R&D will have important implications for social welfare in the U.S.  

Pharmacogenomics, it seems, has the potential to increase the future incentives for 

investment in R&D, and this will mean improved access to new pharmaceutical and 

biologic innovations for many Americans.  Moreover, pharmacogenomics offers the very 

real potential for more rapid access to drugs via expedited market launches and higher 

probabilities of technical success (especially in the sense that this technology could result 

in products being brought to market that otherwise would have been terminated in 

development because of severe adverse reactions among a small number of patients).  

While there still remain numerous challenges associated with this technology, our review 

of the basic economics behind pharmacogenomics suggest that once these challenges 

have been surmounted, the future for drug development, both in terms of the financial 

awards associated with it, and in terms of the social benefits it will impart, is very 

promising.    

 
 
 
                                                 
6 The reasons why there may be a socially suboptimal level (too little) of current pharmaceutical and 
medical R&D are beyond the scope of this paper; the interested reader is referred to the edited volume by 
Murphy and Topel, “Measuring the Gains from Medical Research”  
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Appendix: A Mathematical Model of Pharmacogenomic (PG) Technology 

and its Potential Impact on Drug Development 

 

This appendix describes the mathematical model from which much of our inferences and 

conclusions in the paper are derived. We consider, for simplicity, the binary case where a 

fraction of a potential patient population carries a genetic marker that signals a higher 

therapeutic response to drug therapy. The appendix contains four sub-sections: the pre-

launch model, the post-launch model, the NPV model, and a brief analysis of 

pharmacogenomic market segmentation.  

 
A.I:  Impact of PG on the Cost and Expediency of Drug Development 
 
The following notation will be used throughout the appendix: 

 
λ  =   proportion of patients with genetic marker, where λ ]1,0[∈ . 

ε   =   efficacy rate for patients without the genetic marker, where ]1,0[∈ε  

δε +  = efficacy rate for patients with genetic marker, where ]1,0[ εδ −∈ . 

PE = pooled efficacy rate: .)1()( λδεελδελ +=−++=pE  

t∆  = drug development costs in year t, which have the following fixed and variable cost 

         components: V
t

F
tt ∆+∆=∆ . 

 

The pooled efficacy rate is the average efficacy rate over the entire patient 

population; it is the efficacy rate that a traditional developmental program would have7. 

The fixed cost component, F
t∆ , consists of all costs that are the same for traditional and 

                                                 
7 It is important to recognize that we are now using the subscript ‘p’ (for pooled) to denote the traditional 
approach of drug development.  We do this in order to reserve the subscript ‘t’ for ‘time’ (which we used in 
the paper to denote ‘traditional’) because of its expanded use in our analysis in this appendix.  
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PG development, while the variable cost component, V
t∆ , consists of those costs that are 

different for the two developmental programs. The most likely ways the variable drug 

development costs may be affected are through clinical trials size requirements and the 

time required to conduct the trials, the pharmacogenomic diagnostic test/tool 

development costs, and the attrition rate for developmental products.  

The size of the clinical trials will be different for the two developmental 

programs; the number PN  of patients that must be enrolled in the traditional drug 

developmental program will be greater than the number GN  of patients that must be 

enrolled in the PG developmental program. This is because the number of patients 

enrolled in a clinical trial must be sufficient for the trial to demonstrate efficacy from a 

statistical perspective. This number depends on the true efficacy rate and the well-known 

statistical parameters α  and β  that determine Type I and Type II errors, as discussed in 

the paper; as we show below, a higher efficacy rate requires fewer patients to 

demonstrate statistical significance. 

Assume that a trial is designed to measure the proportion of responders to a new 

drug treatment (relative to placebo). Under the Null Hypothesis the difference in the 

proportion of responders in the treatment arm and the placebo arm is zero:  

0: 120 =− PPH  

 
1P  and 2P  are the proportions of responders in the placebo and treatment arms, 

respectively.  For a sufficiently large number N of patients in each arm (N>30), the 

clinical trial results will generate a sample statistic, 12 πππ −=∆ , that is normally 

distributed with mean zero and standard deviation: 
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N
PPPP )1()1( 2211 −+−

=σ          (1) 

 
Under the Alternate Hypothesis the difference in the proportion of responders is: 

 
EPPH A =− 12:  

 
To simplify the analysis, we assume that the placebo response rate is 0, i.e., 01 =P , so 

that the Alternate Hypothesis is that the treatment arm has efficacy rate E.  If the Null 

Hypothesis were true, then the sample statistic distribution of π∆  would be centered at 0; 

if the Alternate Hypothesis were true, then the sample statistic distribution π∆  would be 

centered at E.  In either case, the standard deviation from Equation (1) is: 

N
EE )1( −=σ          (2) 

 
For a given probability α  of committing a Type I error, and a given probability β  of 

committing a Type II error, there is a unique value of N determined by the equation: 

σσ βα zEz −=+0          (3) 
   
Here, αz  is the z-value (for the standard normal distribution) corresponding to areaα , 

i.e.:  

α
π

α

−=�
∞−

−
1

2

1 2
2z

x
dxe  

 
Substituting for σ  in Equation (3), and then solving for N gives the formula for the 

number of patients required in a clinical trial to show statistical significance at the given 

α  and β  levels: 

( )21
1

βα zz
E

N +�
	



�
�


 −=         (4) 
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Note that N is decreasing in the efficacy ,E and in each of the probabilities, α and β, as 

we might expect. In particular,  

( ) ( ) GP NzzzzN =+�
	



�
�


 −
+

>+�
	



�
�


 −
+

= 22 1
1

1
1

βαβα δελδε
 

 
The total clinical trial time, T, under either traditional or PG development, should 

be an increasing function of the trial size N; patients must be screened for inclusion 

criteria, and the clinical trial itself will most likely take longer to run for more patients. 

We assume both the screening time and the trial time are proportional to the square root 

of the number of patients. On average, λ/1  patients must be screened for every patient 

with the genetic marker that is included in the trial, and so the number of patients that 

must be screened to get N patients enrolled in the trial is λ/N . Under PG development, 

there is also the additional time,τ , associated with developing a reliable 

pharmacogenomic test or diagnostic.  With these assumptions, the total time required to 

complete the clinical trials under each developmental programs is: 

PPPP NbaNbNaT )( +=+=       (5) 

τλ ++= GGG NbNaT        (6) 

The use of the square root function captures the idea that there should be economies of 

scale at work, so that doubling the size will not double the time, i.e., the clinical trial time 

required is a concave down function of the size. We also make the assumption that the 

time to screen each patient for inclusion in a trial is much smaller than the time for a 

patient to undergo the actual trial: ba << , so that pp NbT ≈ . 

 For each developmental program, the total cost of conducting the clinical trials 

includes the cost of developing the PG diagnostic test (for the PG program), the screening 
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costs, and the costs of running the actual trials. We assume that the unit cost per patient is 

constant over time for both the screening and trial phases; therefore, the cost of screening 

the patients is proportional to ( ) 2/3λN , while the cost of running the actual trials is 

proportional to 2/3N , and furthermore, we assume the unit screening cost, s, is much 

smaller than the unit cost, c, of running the actual trial. Finally, we assume the cost of 

developing the diagnostic test is also constant over time. With these assumptions, the 

total costs of the clinical trials for the two developmental programs are: 

2/3
P

V
P cN=∆           (7) 

( ) τλ kcNNs GG
V
G ++=∆ 2/32/3        (8) 

For small values of λ , the search cost becomes very significant, and V
G

V
P ∆<∆ . On the 

other hand, for values of λ  near 1, PN  and GN  converge, but if there are positive costs 

associated with screening/searching and diagnostic test development, then once again 

V
G

V
P ∆<∆ .  However, if the screening and diagnostic test development costs are not too 

large, there will be values of λ  for which V
G

V
P ∆>∆ ; the reduction in clinical trial size 

under PG development will be large enough to offset the search and test development 

costs.  

For example, suppose ,05.0=α  ,10.0=β  ,1.0=ε  ,15.0=δ  and ,1=c  

,01.0=s  and 0=k , so that the screening and test development costs are negligible. The 

percentage change for the variable costs under the two development 

strategies, ( ) V
P

V
G

V
P ∆∆−∆ , from Equations (7) and (8), is plotted below in Figure 1 as a 

function of the fraction λ , the percentage of patients with the marker. With these 
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parameter values, V
G

V
P ∆>∆  for 02.0>λ  or so; in fact, for 15.0≈λ  the variable cost 

under PG development is about 70% less than the variable cost under traditional 

development. Figure A.1 also shows the percentage change in clinical trial sizes, 

( ) PGP NNN − , which were presented in Table 1 of the paper, and which represented 

our conservative approximation of the percentage reduction in variable, out-of-pocket 

clinical development costs associated with PG. 

 

Figure A.1 

 

Percentage Out-of-pocket Clinical Development Cost Savings from 
PG ( ε ε ε ε =.10 and δδδδ =0.15) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of Patients with Genetic Marker

Full Model w ith per-unit-time costs, 
time, screening and enrollment costs. 

Conservative cost model based on
clinical trial size.  

 
 

As s  and k  get larger relative to c, the PG variable cost will increase and the 

percentage change in the variable costs will decrease. Indeed, if the screening and 

diagnostic test development costs are large enough, then the PG variable cost will always 

be greater than the traditional variable cost, for all values of λ . However, in this case, it 

may still be possible that the length of time required to bring the drug to market is smaller 
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under PG development.  In addition to Figure A.1, we also illustrate the percentage cost 

savings from PG (under the current model) for a range of values of δ; we do this using 

the three-dimensional surface shown below in Figure A.2. 

 

Figure A.2  
 

Percentage Clinical Development Cost Reduction from PG 
(As a Function of λλλλ and δδδδ when εεεε = 0.10) 

 
 

 

  
 

 

 Per the discussion in the paper, because of the considerable influence that the 

opportunity cost of capital has on drug development costs, this could significantly reduce 

the costs associated with PG development8.  It may also be the case that under PG 

development fewer clinical trials are required; we captured this by scaling the unit 

                                                 
8 Of course, it bears reemphasizing, too, that we are not, at present, considering the impact PG will have via 
the probability of advancing through clinical development, and thus making it to market.   
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screening and trial costs for PG development by a factor 1<θ . This will offset these costs 

and drive down the variable costs under PG development even further. 

The analysis thus far has assumed that all products successfully advance through 

the developmental pipeline.  However, the vast majority of developmental products don’t 

successfully make it to launch because of safety issues or lack of efficacy.  If tp  is the 

probability that a developmental product advances in period t, the fraction of products 

that successfully make it to launch (which occurs at the end of period n) is∏
=

n

t
tp

0

. The 

total cost of successfully bringing a drug to launch includes the cost of the failures and 

the opportunity cost of a firm’s investment capital; the later, while exerting a significant 

influence on costs because of the long development times associated with drug 

development, is, from an analysis perspective, trivial, and we assume the firms cost of 

capital to be equal to zero for now; thus, the average or expected developmental cost for 

each successful product is the following: 

E[Cost] per Success 
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       (9) 

This expected cost decreases as the probability of advancing each period, tp , increases. 

This is perhaps most easily seen by rewriting Equation (9) as follows: 

E[Cost] per Success n
n

n
n

t
t

n

t
t

p
pp

∆+
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+
∆

+
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= −

==
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0
� ,  

and noting that each term in the sum on the right hand side is decreasing in tp .  
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On average, developmental products with higher efficacy or, especially, lower 

adverse event rates, are more likely to advance each period.  An important benefit of PG 

technology is that it may allow for the identification of not only patients who respond 

more efficaciously to drug therapy, but also patients who react adversely to the drug 

treatment. Thus, PG has the potential to greatly reduce adverse drug event risks, and 

thereby increase the number of drugs that make it to market.  This would not only reduce 

the cost of failures and decrease expected development costs per drug, it would also 

benefit patients who react positively to the drug treatment and who without PG would 

have been denied access (an important benefit of PG our analysis does not capture!). 

 

 A.II:   The Impact of PG on the Drug Revenues  
 

Once the drug has reached the market, revenues will be determined by the number 

of patients with the disease, q, and the unit drug price,π , that can be supported in 

equilibrium. We assume this equilibrium price is determined by cost-effectiveness 

analyses; specifically, payers or consumers are willing to pay a higher price for a drug 

treatment that has higher benefits, according to the following relation that was discussed 

at length in the paper: 

Ω=
∆
∆

E
C

          (10) 

 
In (10), C∆  represents the incremental disease treatment costs with a new technology 

(e.g., drug) relative to the standard of care, and E∆ is the incremental efficacy of the new 

technology from some baseline treatment (e.g., the current standard of care if one exists; 
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if not, the baseline could be no treatment at all), and Ω  is a given threshold that 

represents payers’ maximum willingness to pay per unit efficacy.  

We assume that baseline is no treatment at all, and that the cost of care for each 

patient with the disease has two components: a fixed cost, FC , and a variable cost, VC ; 

this variable cost is not incurred if treatment with the drug is successful. Using our 

previous notation for efficacy, the increase in treatment cost with a PG development 

program and a traditional program (as compared to baseline) are, respectively,  

)(

)(

λδεπ
δεπ
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The increase in efficacy for each program is simply: 
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It follows from Equation (10) that the price that can be supported in equilibrium for each 

of the two programs is: 

 

))((

))((

λδεπ
δεπ

++Ω=

++Ω=
V

P

V
G

C

C
 

 
The number of patients receiving treatment is different under the two 

developmental programs. Under a traditional developmental program, the number of 

patients receiving treatment is q; under a PG program, the number is qλ . Thus, the total 

revenues are 
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Note that the ratio of PG revenues to traditional revenues is no greater than 1, and it 

equals unity if and only if the fraction of patients with the genetic marker is itself equal to 

unity: 

1
)( ≤

+
+=≡Φ
λδε

δελ
P

G

R
R

 

 
 Thus, at least within the context of this simple static model, the revenues 

generated under a PG development program will never be greater than those generated 

under a traditional program. However, we have not taken into account the possibility that 

the revenues generated under a PG program may be realized sooner, and would thus have 

a higher present value, than those under a traditional program. We address this issue in 

the next section.   

 

A.III:  NPV Considerations: PG vs. Traditional Drug Development 
 

 To keep the analysis relatively simple, we assume that the fixed development 

costs F∆  are incurred at the same time for the two development programs, and that the 

variable developmental costs V∆ are incurred, and the revenues R  are generated, at the 

time of product launch. This particular timing assumption is made for convenience and 

amounts to the assumption that the variable costs and the revenues are given in terms of 

dollars (capitalized or discounted) as of the time of product launch. This time of product 

launch will generally be different for the two programs because of the different screening 

and clinical trial times, and the time required to develop the PG diagnostic test,τ . Let 

T∆  be the difference in launch times for the two programs: 
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τλ −−−=−=∆ GGPGP NbNaNbTTT      (11) 

 
In (11), PN  and GN  are the numbers of patients required in the clinical trials under the 

two programs.  

 The revenues under the two developmental programs are generated at different 

points in time; to compare the two revenues RP and RG we compute the present value of 

RP relative to the point in time when RG is generated, i.e., relative to the time of launch 

under PG development. For a continuously compounded discount rate r, the discount 

factor is simply the exponential of the product of negative r with the difference in launch 

times. 

Thus, by our timing assumptions, the difference in the net present value at the 

time of launch under PG development is:  

 
V
G

V
P

Tr
P

TrV
PP

TrV
GGPG eReReRNPVNPV ∆−∆+−Φ=∆−−∆−=− ∆−∆−∆− )()(  (12) 

 
This difference is a function of the model parameters ,,,,,,,,,,,,,, baqCksc VΩβατλδε  

and the appropriate discount rate r.  

 

A.IV:  PG Segmentation and Drug Development: What’s Rational? 

 

Suppose the firm could somehow ensure no inter-market arbitrages and sell the 

drug to both segments of the market, those with the genetic marker and those without the 

marker, separately; and that the price at which the drug is sold in each market segment is 

determined by the cost-effectiveness in that segment. The computations in Section A.II of 

this Appendix imply that the price π  in each segment is:  

ECV )( +Ω=π   
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E is the efficacy rate in that segment ( δε +=GE  for the segment with the genetic 

marker, ε=nGE  for the segment without the marker, and λδε +=PE  for the pooled 

population). Because the pooled efficacy rate is the average of the efficacy rates for the 

two segments, it follows that the price under traditional development is the average of the 

prices for the two segments: 

nGGnG
V

G
V

nGG
V

P ECECEEC πλλπλλλλπ )1())(1()())1()(( −+=+Ω−++Ω=−++Ω=
 

Multiplying both sides by the patient population size q, we see that the revenue generated 

under traditional development is the sum of the revenues generated in each segment: 

nGGnGGPP RRqqqR +=−+== πλπλπ )1(  

In other words, the revenues generated under the program in which the firm develops the 

product separately for each market segment and price discriminates based on the cost-

effectiveness in each segment are the same as the revenues under a traditional (non-

segmenting) developmental approach.  

The developmental costs, however, are likely to be very different. In fact, the 

number of patients required to show a statistically significant efficacy among the patients 

without the marker is larger than the number required among the pooled population: 

because PnG EE =+<= λδεε , 
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That is, the clinical trials for the non-marker segment will be larger than for the pooled 

population, and thus the clinical trial costs for the non-marker segment alone will be 

larger than the clinical trial costs for the pooled (traditional) developmental program. 

This is even more so the case if there are positive search or screening costs in finding 
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those patients without the marker. Thus, firms won’t rationally choose to follow this 

program, and will either follow the traditional approach or one in which it develops the 

product only for those patients carrying the genetic marker. 

  

 

 

 

 

 

 

 




