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stocks are those with higher cash-flow risk; (b) the size of the value premium is larger in “bad

times,” due to time variation in risk preferences; (c) the unconditional CAPM fails, because of

general equilibrium restrictions on the market portfolio. The dynamic nature of the value premium

rationalizes why the conditional CAPM and a Fama and French (1993) HML factor outperform the

unconditional CAPM.
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I. INTRODUCTION

Historically, stocks with high book-to-market ratios, value stocks, have yielded higher

average returns than stocks with low book-to-market ratios, growth stocks. The CAPM’s

major failure is its inability to price book-to-market sorted portfolios. A large collection of ex-

planations – both rational and behavioral – have been proposed to address this value premium

puzzle.1 These explanations though are surprisingly detached from the voluminous literature

that focuses on the properties of the aggregate market portfolio, such as the large equity pre-

mium and the high volatility and predictability of aggregate returns. In this paper we argue

that the time series behavior of the market portfolio imposes general equilibrium restrictions

on the behavior of the cross-section of average returns of price sorted portfolios. These restric-

tions are important as they provide tight implications about the cash-flow characteristics of

value and growth stocks as well as about the variation over time of the value premium itself.

Our predictions are broadly consistent with empirical evidence.

Specifically, ours is a representative agent economy where preferences are of the external

habit persistence type introduced by Campbell and Cochrane (1999). This model generates

plausible quantitative implications for the market portfolio through the time variation of the

market price of consumption risk. We follow Menzly, Santos and Veronesi (2004, MSV hence-

forth), and embed these preferences in a general equilibrium setting with multiple risky assets.

These assets have time varying expected dividend growth and differ from each other in their

cash-flow risk, that is, in the covariance of their cash-flow with the aggregate economy. By

generalizing the model of MSV, we are able to obtain numerous predictions about the cross-

section of stock returns. In particular, we show that (a) value stocks are those with higher

cash-flow risk and that cross-sectional differences in fundamentals cash-flow risk generate a

value premium; (b) the time variation in risk preferences, due to habits, induces fluctuations

in the value premium, which is high whenever the market premium is also high; (c) because

of general equilibrium restrictions on the total wealth portfolio, the unconditional CAPM fails

and thus a value premium puzzle obtains; and (d) an HML factor lines up returns as it captures

aggregate differences in cash-flow risk in the economy. In addition, our model sheds light on

the performance of the recently proposed conditional CAPM models.
1For the value premium see Rosenberg, Reid, and Lanstein (1985) and Fama and French (1992) and Fama

and French (1998) for the international evidence. For behavioral explanations see for example Rosenberg, Reid,

and Lanstein (1985), DeBondt and Thaler (1987) and Lakonishok, Shleifer, and Vishny (1994). For the rational

ones see Fama and French (1993), Lettau and Ludvigson (2001), Gomes, Kogan and Zhang (2003) among others.
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To understand the intuition of our results consider first the case where all assets have

identical cash-flow risk and cross-sectional differences in expected returns arise only because of

differences in the timing of their cash-flows, that is, in their “durations.” We show that assets

with high expected cash-flow growth are relatively more sensitive to shocks in risk preferences

than otherwise identical assets with low expected cash-flow growth.2 Can these discount effects

alone generate the value premium? No, rather they generate a “growth premium.” Indeed,

assets with strong expected cash-flow growth have high price-dividend ratios and, as just

mentioned, a high sensitivity to changes in the aggregate discount. As a consequence they

command a higher premium and a counterfactual positive relation obtains between price-

dividend ratios and average excess returns.

Suppose now that instead an asset has low duration and cash-flows that are positively

correlated with aggregate consumption. In this case, and due to its low expected dividend

growth, the total value of this asset is mainly determined by the current level of cash-flows,

rather than by those in the future. The price of the asset is then mostly driven by cash-flow

shocks and the fundamental risk embedded in these cash-flows drives also the risk of the asset.

Thus, when cash-flows display substantial fundamental risk, the asset’s premium is higher

when the duration is lower. Can these cash-flow effects generate the value premium? Yes.

Assets with high cash-flow risk and low duration have low price-dividend ratios. This is due to

both the fact that they are risky, and thus prices have to be low to compensate agents for the

risk they take, and because they have low expected dividend growth. Thus, potentially, the

value premium can now arise, and whether it does or not depends on how the tension between

“discount effects” (high risk when the asset has a high duration) and “cash-flow effects” (high

risk when the asset has low duration) resolves quantitatively. An important objective of this

paper is to analyze and assess this tension.

A second important contribution of our paper is to obtain predictions for the dynamics

of the value premium. In particular, variation in risk preferences interacts with the cross-

sectional dispersion in cash-flow risk to make value stocks particularly risky during “bad”

times: Agents demand a relatively higher compensation for holding assets with cash-flows that

covary positively with consumption growth when faced with adverse consumption shocks.

To evaluate the model’s ability to yield quantitatively plausible implications we perform
2This point, which is standard in the fixed income literature, has been emphasized by Cornell (1999) who

builds on Campbell and Mei (1993) to note that “pure technology bets that produce cash flows that are

uncorrelated with the market, but which have long durations, will have high systematic risk.”

2



an extensive simulation exercise. We choose preferences and cash-flow parameters to match

the time series properties of the aggregate market portfolio and the return moments in the

cross-section respectively. Throughout we mimic the procedure employed in the literature of

sorting assets into decile portfolios formed on the basis of price-dividend ratios.3

Our simulations show that our consumption based general equilibrium model not only

captures the properties of the aggregate market portfolio, as in Campbell and Cochrane (1999),

but also many stylized facts observed in the cross-section of stock returns. First, a substantial

value premium obtains, with value stocks earning about 5.16% more than growth stocks. This

compares well with the 5.5% premium observed in the data. Second, the model produces a value

premium that is higher in “bad times” than in “good times.” In particular, in the model, the

value premium increases to about 10% whenever the price dividend ratio of the market portfolio

is in the lowest quintile of its distribution. This compares well with the 11% value premium

that obtains when we perform the same exercise in the empirical data. Finally, the variation

over time of the value premium rationalizes also why the conditional CAPM and a Fama and

French (1993) HML factor perform much better than the unconditional CAPM, as observed in

the data as well as in our simulations. Intuitively, conditioning information variables that are

related to risk preferences, such as the consumption-to-wealth ratio of Lettau and Ludvigson

(2001), capture the increase in the relative riskiness of value stocks in “bad times.” Similarly,

the loadings on the HML factor capture cross-sectional differences in cash flow risk across

portfolios, while the variation over time of the premium on HML captures the dynamics of the

relative riskiness of value versus growth stocks. Indeed, in our simulations the Fama-French

model matches to a remarkable degree its empirical counterpart.

One important prediction of our model is that the sorting procedure naturally selects as

value stocks those with high cash-flow risk, an implication empirically supported by a recent

collection of papers.4 These papers put forward some empirical measure of cash-flow risk and,

invariably, show that value stocks have more cash-flow risk than growth stocks. Our paper

differs markedly from most of the previous literature in that by proposing a theoretical model
3In our model, a notion of “book value” is not well defined and so we use price-dividend ratios in lieu of

market-to-book ratios throughout (see Santos and Veronesi (2005) and Lettau and Wachter (2005)). Fama

and French (1996, Table II) and Lettau and Wachter (2005, Table I) show that sorting by earnings-to-price or

cash-flow to price generates as sizable a “‘value” premium as sorting by book-to-market.
4See Cohen, Polk and Vuolteenaho (2003), Campbell, Polk and Vuolteenaho (2005), Bansal, Dittmar and

Lundblad (2005), Parker and Julliard (2005), and Hansen, Heaton and Li (2005). Also Liew and Vassalou (2000)

and Vassalou (2003) show that news about forecasts of GDP growth correlate with value stock returns.
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we can address whether value stocks have “enough” cash flow risk to explain the magnitude

of the value premium.5 We perform an extensive sensitivity analysis on the parameters of

the cash-flow model and show that “too large” a cross-sectional dispersion in cash-flow risk

is needed to match cross-sectional properties of stock returns. We argue that this result is

partially due to some restrictive assumptions in our model and discuss possible extensions to

obtain more plausible magnitudes for the cross sectional dispersion in cash-flow risk.

The present paper is obviously related to MSV but there are several differences with that

paper. First, our model is more general than the one in MSV and the additional flexibility is

instrumental in the empirical performance of the model. Second, and most importantly, we

focus on entirely different issues. In particular, whereas MSV are concerned with the time

series predictability of industry portfolios, the present paper focuses on the cross sectional

predictability of value sorted portfolio. The focus on the value premium allows us also to shed

light on the vast literature on cross sectional predictability, something MSV did not touch

upon. Finally, as already noted, the present paper is after a quantitative assessment of the

cash-flow risk effects needed to generate a plausible value premium.

Our work is also related to three recent articles. A first paper is Campbell and Vuolteenaho

(2004) who decompose shocks to market returns into shocks to expected discount rates and

shocks to expected dividend growth rates. They show that value and growth load on these

shocks differently and this, combined with the market price of risk associated with these shocks,

generates a value premium and its corresponding puzzle. Santos and Veronesi (2005) put for-

ward a general equilibrium model with labor income and multiple financial assets and show

that the variation in the labor income-financial income mix affects the cross-section of stock

returns. Financial assets have identical cash-flow risk and differ solely in the timing of their

cash flows but a growth premium does not arise because they assume constant risk preferences.

The value premium arises in their model because low duration assets (value stocks) are also

those that contribute more to total dividends and therefore are riskier, thus having lower (nor-

malized) prices and commanding a higher premium relative to growth. Their model, however,

misses the time series properties of the aggregate market portfolio. Lettau and Wachter (2005)

solve this shortcoming by adding to a cash-flow model similar to that of Santos and Veronesi

(2005) an exogenous stochastic discount factor. They assume that the variation in the discount
5A notable exception is Hansen, Heaton and Li (2005). These authors propose a theoretical characterization

of the long run trade-off between risk and return. They model the cash-flow processes of book-to-market sorted

portfolios and estimate the parameters governing the long-run cash-flow covariation with consumption. They

find that growth has low long-run covariation relative to value.
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rate is subject to investor sentiment shocks that are uncorrelated to shocks to the aggregate

economy. As a consequence, although growth stocks, which pay far in the future, are more

sensitive to shocks in investor sentiment, they do not command a premium because discount

risk is unpriced. The value premium in Lettau and Wachter (2005) arises through the same

mechanism as in Santos and Veronesi (2005).6 Our approach in this paper is very different. In

our framework, the value premium arises because of differences in cash-flow risk across individ-

ual firms. We show that value stocks are, endogenously, those with high cash-flow risk and we

measure the amount of cash-flow risk needed to generate a quantitatively plausible value pre-

mium. We also show that the variation in risk preferences and the cross-sectional dispersion in

cash-flow risk interact to generate rich dynamics in the value premium. Finally, in our general

equilibrium model the CAPM fails precisely because of general equilibrium restrictions, rather

than from the variation of labor income or from exogenously specified sentiment shocks.

The paper proceeds as follows. Section II introduces the model and III the results.

Section IV evaluates the model’s ability to match basic moments of the returns data, both

in the time series and the cross section. Section V analyzes existing asset pricing models

through the lens of our model. Section VI contains the sensitivity analysis and quantifies the

magnitudes of the cash-flow risk effects that are needed to generate the value premium. Section

VII concludes. All proofs are in the Appendix.

II. THE MODEL

II.A Preferences

There is a representative investor who maximizes

E

[∫ ∞

0
u (Ct, Xt, t)dt

]
, (1)

where the instantaneous utility function is give by

u (Ct, Xt, t) =

{
e−ρt (Ct−Xt)

1−γ

1−γ if γ > 1

e−ρt log (Ct − Xt) if γ = 1
(2)

6See also Brennan, Wang, and Xia (2004) and Brennan and Xia (2005) for a partial equilibrium model that

ties the time series to the cross-section of stock returns. An investment-based general equilibrium model of

the cross-section is also put forward by Gomes, Kogan, and Zhang (2003) who build on the partial equilibrium

model of Berk, Green and Naik (1999). See also Zhang (2005).
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In (2), the variable Xt denotes an external habit level and ρ denotes the subjective discount

rate.7 The exact specification of the external habit Xt is described below.

II.B Cash-flows

We consider an endowment economy with n financial assets. Each asset has an instan-

taneous dividend stream denoted by Di
t, for i = 1, .., n. The aggregate endowment available

for consumption at any time t is then equal to the sum of dividends.8 The consumption good

is immediately perishable and non-storable, which yields the equilibrium restriction

Ct =
n∑

i=1

Di
t (3)

and thus specific assumptions made on the dividend processes immediately translate into par-

ticular dynamics for aggregate consumption. Unfortunately, even relatively simple processes

for Di
t imply aggregate consumption processes that are difficult to work with and restrictive

assumptions need to be made for tractability.9 To better understand these restrictions and the

nature of our assumptions below10 define Dt =
(
D1

t , ..., D
n
t

)′ and assume that

dDi
t

Di
t

= µi
D (Dt) dt + ν ′

idBt (4)

for some drifts µi
D (Dt), νi is a n × 1 constant vector, and dBt is a n × 1 vector of Brownian

motions. From equation (3) and Ito’s lemma, the process for aggregate consumption is

dCt

Ct
= µc (st) dt + σc (st)

′ dBt (5)

where st =
(
s1
t , ..., s

n
t

)′ =
(
D1

t /Ct, , ..., D
n
t /Ct

)
are shares of consumption produced by divi-

dends, and

µc (st) =
n∑

i=1

si
tµ

i
D and σc (st) =

n∑
i=1

si
tν i (6)

7On habit persistence and asset pricing see Sundaresan (1989), Constantinides (1990), Abel (1990), Ferson

and Constantinides (1991), Detemple and Zapatero (1991), Daniel and Marshall (1997), Campbell and Cochrane

(1999), Heaton (1993 and 1995) Li (2001), and Wachter (2000). These papers only deal with the time series

properties of the market portfolio and have no implications for the risk and return properties of individual

securities. For recent supportive empirical evidence on external habit preferences see Luttmer (2005).
8For consistency with the data, we should consider also other forms of income such as labor income. Doing

so, however, introduces an additional state variable and thus makes the results less transparent. See Santos and

Veronesi (2005) for a discussion of the role of labor income in asset pricing.
9Recently, Cochrane, Longstaff and Santa Clara (2004) managed to solve in closed form the case where n = 2,

dividends are log-normally distributed, and agents are endowed with log utility.
10See also Santos and Veronesi (2005).
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The main difficulty in obtaining tractable expressions for asset prices lies in the depen-

dence of µc (st) and σc (st) on the shares st. Still, analytical formulas for asset prices can be

obtained by making economically plausible assumptions on the joint processes of consumption

Ct and shares st, as advanced in MSV and Santos and Veronesi (2005). Here we follow Santos

and Veronesi (2005) and assume:

Assumption 1: Aggregate consumption is given by

dCt

Ct
= µc (st) dt + σ′

c dBt

where

µc (st) = µc + µc,1 (st) and µc,1 (st) = s′t θCF . (7)

Above, θCF =
(
θ1

CF , ..., θn
CF

)′, and σc = (σc, 0, ..., 0)′ . The specification of θi
CF is

explained below.

Assumption 2: For each i, the share si
t follows the mean reverting process

dsi
t = φ

(
si − si

t

)
dt + si

tσ
i (st) · dBt (8)

where

σi (st) = ν ′
i −

n∑
j=1

sj
tν

′
j (9)

The cash-flow model (8) imposes a structure on the relative size of firms, where “size”

is measured as the fraction of total output produced by a given firm. In particular, it imposes

the economically plausible assumption that no firm will take over the economy, as si
t > 0 for

all i. In addition, the volatility σi (st) in (9) ensures that
∑n

i=1 si
t = 1 for all t. It is worth

noting that although the form of the volatility σi (st) in (9) seems ad-hoc, it actually stems

from the model (4) - (5), as it is possible to verify by Ito’s lemma.

II.C Cash-flow risk

Given Assumptions 1 and 2, we can apply Ito’s Lemma to Di
t = si

tCt and obtain:

dDi
t

Di
t

= µi
D,tdt + σi

D (st) dBt (10)

where

µi
D,t = µc + θi

CF + φ

(
si

si
t

− 1
)

(11)

σi
D (st) = σc + σi (st) (12)
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In these formulas,

θi
CF = ν′

i · σc

First, note that when the asset’s relative share, si/si
t, is low the asset’s relative contribu-

tion to total consumption is below its long term average and the asset has a higher expected

dividend growth.11 Also, the long term dividend growth of this asset is given by µc, the un-

conditional expected return of consumption growth, as well as a parameter θi
CF , which is asset

specific and it depends on the correlation of the stock shares with consumption growth.

Second, the stochastic discount factor is only driven by shocks to consumption growth.

Thus, cash-flow risk is measured by the covariance of dividends with consumption growth

σi
CF,t ≡ Covt

(
dDi

t

Di
t

,
dCt

Ct

)
= σcσ

′
c + θi

CF − s′t θCF (13)

The conditional cash-flow risk of asset i, σi
CF,t, will play a prominent role in this paper. The

term θi
CF −s′t ·θCF is parametrically indeterminate, that is, adding a constant to all θi

CF leaves

this term unaffected, as
∑n

i=1 si
t = 1. Thus we are free to impose the identifiability restriction

n∑
j=1

sjθj
CF = 0, (14)

and the expected covariance between asset i’s cash-flow growth and consumption growth is

σi
CF = E

[
σi

CF,t

]
= E

[
Covt

(
dDi

t

Di
t

,
dCt

Ct

)]
= σcσ

′
c + θi

CF . (15)

The parameter θi
CF then regulates the relative cash-flow risk of individual assets. Notice that

the benchmark level of risk of an asset is the riskiness of aggregate consumption: An asset

is risky (safe) if its cash-flows are more (less) risky than aggregate consumption. This is a

general equilibrium restriction as, by definition, the variance of consumption growth must be

a weighted average of its covariances with individual dividend growth. Throughout we refer

to either σi
CF or θi

CF as “cash-flow risk” as there is a one to one mapping between them.

Finally note that the model is internally consistent: If we apply the general equilibrium

restriction on the drift of the consumption process, (6), to the dividend process (10)

Et

[
dCt

Ct

]
=

n∑
i=1

si
tµ

i
D,t = µc + s′t θCF , (16)

which equals (7) in Assumption 1. Consumption growth then is not i.i.d. but rather has some

predictable components which are linked to variation in the vector of shares, st. Still, as we

show below there is little predictability in practice as the parameters θi
CF are small.

11MSV test this prediction in a set of industry portfolios and find strong support for it.
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II.D Habit Dynamics

In Campbell and Cochrane’s (1999) habit model the fundamental state variable driving

the attitudes towards risk is the surplus consumption ratio, St = (Ct − Xt)C−1
t . To obtain

closed form solutions for prices when there are multiple securities MSV use a log habit model

and specify instead the inverse surplus S−1
t as a mean reverting process. MSV’s modelling

device though cannot be applied when γ > 1 and, moreover, they only obtain approximate

formulas for the case θi
CF �= 0. Thus here we opt for a different strategy and model the process

Gt =
(

Ct

Ct − Xt

)γ

= S
−γ
t . (17)

To obtain a plausible, yet tractable, model for the dynamics of Gt, consider first the

implications for Gt under the standard assumption that Xt is an exponentially weighted average

of past consumption levels, as in Constantinides (1990) and Detemple and Zapatero (1991),

Xt = λ

∫ t

−∞
e−λ(t−τ )Cτdτ.

An application of Ito’s Lemma to (17) yields the process

dGt =
[
µG (Gt) − σG (Gt) µc,1 (st)

]
dt − σG (Gt) σcdB1

t , (18)

where µG (Gt) and σG (Gt) > 0 are complicated functions of Gt, provided in equations (29)

and (30) in the Appendix. Equation (18) shows that a higher expected consumption growth

µc,1 (st) implies a lower drift rate of Gt. Intuitively, an increase in the expected growth rate of

consumption implies a high future level of consumption relative to the current habit Xt and

thus a higher surplus consumption ratio St and, given (17), a lower expected Gt. As in MSV

and Campbell and Cochrane (1999), we make specific assumptions on µG (Gt) and σG (Gt) in

(18) to obtain a more manageable process. In particular, we assume

µG (Gt) = k
(
G − Gt

)
and σG (Gt) = α (Gt − λ) . (19)

The first component of the drift of Gt is a mean reversion component and captures the

basic idea of habit persistence models, namely that the habit Xt eventually “catches up” with

Ct. The second component, as discussed above, links the drift rate of Gt to µc,1 (st). As for the

diffusion component, and as in MSV, λ ≥ 1 bounds Gt from below at λ and α > 0 transmits

the innovations in consumption growth, dB1
t , to the convexity of the utility function. Note

that MSV’s model is a special case of (18) and (19) and obtains when γ = 1 and consumption

growth is i.i.d., which is achieved by setting µc,1 (st) = 0.

9



III. EQUILIBRIUM ASSET PRICES AND RETURNS

III.A The total wealth portfolio

We start by characterizing some basic properties of the total wealth portfolio as the

intuition for some of these results becomes useful later.

Proposition 1: The price-consumption ratio, the expected excess return and dif-

fusion terms of the total wealth portfolio are, respectively:

PTW
t

Ct
= αTW

0 (st) + αTW
1 (st)S

γ
t (20)

Et

[
dRTW

t

]
= (γ + α (1 − λSγ

t ))

⎧⎨⎩Sγ
t α (1 − λSγ

t )
fTW
1 (st) + Sγ

t

σ2
c +

n∑
j=1

wTW
jt σj

CF,t

⎫⎬⎭ (21)

σTW
R,t =

Sγ
t α (1− λSγ

t )
fTW
1 (st) + Sγ

t

σc +
n∑

j=1

wTW
jt σj

D (st) , (22)

where αTW
0 (st), αTW

1 (st), fTW
1 (st) and

{
wTW

jt

}
are given in the Appendix.

As in Campbell and Cochrane (1999) and MSV the price-consumption ratio of the total

wealth portfolio is increasing in the surplus consumption ratio St: A high St implies a low

local curvature of the utility function, a “less risk averse” attitude of the representative agent,

and thus a higher price-consumption ratio. Unlike Campbell and Cochrane (1999) and MSV,

the price-consumption ratio now depends on the entire vector of shares st. The reason is that

the general equilibrium restriction (5) generates a mild predictability in consumption growth

(see equation (6)). The functions αTW
0 (st) and αTW

1 (st) are typically decreasing in expected

consumption growth, because in our set up the elasticity of intertemporal substitution is less

than one. Thus, this component implies that an increase in µc (st) results in lower prices.12

As for the expected excess returns, (21), the term in parenthesis captures the fact that,

intuitively, a high curvature parameter, γ, or a low surplus, St, imply high expected returns.

The first term of the expression in brackets is linked to discount effects: As shown in the pricing

function, changes in St induce a volatility of stock returns which is perfectly correlated with

the stochastic discount factor, and thus it is priced. MSV discuss this effect more thoroughly.
12To review the economic reasoning, a low elasticity of intertemporal substitution implies a desire for con-

sumption smoothing. Thus, an increase in expected consumption growth yields a higher desire of current

consumption, and thus lower savings. The consumer then sell stocks and bonds, resulting in a decrease of the

price-consumption ratio of the total wealth portfolio.
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The second term in the bracket is the premium investors require because of changes in ex-

pected consumption growth. This term is typically negative. The reason is that our modelling

device induces a mild positive correlation between shocks to consumption growth and shocks

to expected consumption growth. Thus, a negative shock to consumption growth decreases the

expected consumption growth which, as explained earlier, induces a positive impulse to the

price. As a result, this component carries a negative premium.

III.B. Prices and returns for individual securities

Proposition 2: The price of asset i is given by

P i
t

Di
t

= αi
0 + αi

1S
γ
t + αi

2 (st)
(

si

si
t

)
+ αi

3 (st)Sγ
t

(
si

si
t

)
(23)

where αi
0, αi

1 are positive constants and αi
2 (st) and αi

3 (st) are positive linear func-

tions of the share vector st given in the Appendix.

As before, a higher surplus consumption ratio St, which implies lower “risk aversion,” or

a higher expected dividend growth, as measured by the relative share si/si
t (see (11)), result

naturally in higher price-dividend ratios. The last term in (23) shows that shocks to the

surplus consumption ratio have a stronger effect on the price-dividend ratio the higher the

asset’s expected dividend growth. This is linked to the duration effect that so prominent a role

plays in what follows. Finally, as it was true for the total wealth portfolio, the price of each

individual asset also depends on functions of the vectors of shares αi
2 (st) and αi

3 (st) and the

intuition for the effect of changes in st on prices is identical to the one discussed above.

Proposition 3: The expected excess return of asset i is given by

Et

[
dRi

t

]
= µDISC

i,t + µCF
i,t

where

µDISC
i,t = (γ + α (1 − λSγ

t ))

⎛⎝ Sγ
t

f i
1

(
si

si
t
, st

)
+ Sγ

t

⎞⎠α (1 − λSγ
t ) σ2

c (24)

µCF
i,t = (γ + α (1 − λSγ

t ))

⎡⎣⎛⎝ 1

1 + f i
2 (St, st)

(
si

si
t

) + ηi
it

⎞⎠σi
CF,t +

∑
j �=i

ηi
jtσ

j
CF,t

⎤⎦ (25)

with

f i
1

(
si/si

t, st

)
=

αi
0 + αi

2 (st)
(
si/si

t

)
αi

1 + αi
3 (st)

(
si/si

t

) > 0 and f i
2 (St, st) =

αi
2 (st) + αi

3 (st) Sγ
t

αi
0 + αi

1S
γ
t

> 0,
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and ηi
jt are given in Appendix.

Proposition 3 shows that the expected excess return of individual stocks can be divided

in two components. These two terms correspond to the two sources of shocks to returns:

discount shocks and cash-flow shocks. We elaborate on them in detail next.

III.B.1 Discount risk effects

The source of this component of the risk premium, µDISC
i,t , is the variation of the aggre-

gate discount – proxied by S
γ
t . To interpret further this term notice first that

∂P i
t /P i

t

∂Sγ
t /Sγ

t

=
Sγ

t

f1

(
si/si

t, st

)
+ Sγ

t

. (26)

is the elasticity of prices to shocks in the variable driving the aggregate discount, which is Sγ
t .

The volatility of these discount shocks is

α (1 − λSγ
t )σc,

which is the diffusion component of dSγ
t /Sγ

t , the inverse of our state variable Gt, as it follows

from a basic application of Ito’s Lemma to (18) . Clearly, only the component of these shocks

that covaries with the shocks to the stochastic discount factor is priced which, given (31) in

the Appendix, is

[γ + α (1 − λSγ
t )]α (1 − λSγ

t ) σ2
c . (27)

The component of the asset’s premium that is linked to discount effects is then the product of

(26) and (27) .

Cross-sectional variation in the discount effects can only be driven by differences in the

price elasticity (26), which is in turn driven by the behavior of the function f1

(
si/si

t, st

)
. We

have been unable to obtain a general characterization of this function, but for parameter values

that are empirically relevant we find that

∂f1

(
si/si

t, st

)
∂
(
si/si

t

) < 0,

and thus assets with a higher expected dividend growth, as measured by the relative share si/si
t,

display stronger discount effects. The intuition is straightforward: stocks with a high expected

dividend growth pay the bulk of their proceeds far in the future. Thus, minor variations in

the aggregate discount rate – through the risk aversion of the representative investor – result

12



in large percentage variations of the price of the asset. This variation is naturally priced and

thus the higher required premium of assets with high relative shares.

III.B.2 Cash-flow risk effects

The source of premia related to cash-flow shocks, µCF
i,t , has two components to it, see

equation (25). The first is related to shocks in the asset’s dividends and the second is related to

shocks in the dividends of the rest of the assets in the economy, which, as shown in (23) , affect

the price of asset i as well. The logic for the sources of the premia linked to cash-flow shocks

is the same as in the discount effects case. First it can be easily shown that the elasticity of

the price with respect to shocks to its own dividends is,

∂P i
t /P i

t

∂Di
t/Di

t

=
1

1 + f i
2 (St, st)

(
si

si
t

) + ηi
it.

Recall also that we denote σi
CF,t = covt

(
dDi

t/Di
t, dCt/Ct

)
(see equation (13)). The first term of

µCF
i,t is then the component of the dividend shocks that covaries with shocks to the stochastic

discount factor multiplied by the effect that these shocks have on the price of asset i, as

measured by the price elasticity. A similar logic applies to the second term in µCF
i,t . Indeed it

can be shown that
∂P i

t /P i
t

∂Dj
t/Dj

t

= ηi
jt for j �= i.

As before this component of the premium results from the product of this (cross) elasticity

and the priced component of the shock to asset j’s dividends, σ
j
CF,t.

How does the current level expected dividend growth, as measured by si/si
t, affect the

cash-flow risk component of expected stock returns? Given the conditional covariance of the

dividend of asset i with aggregate consumption, σi
CF,t, the first term of (25) is unambiguous:

Since f i
2 (St, st) > 0, if the asset is “risky”, that is, if σi

CF,t > 0, then a high expected dividend

growth translates in a lower premium stemming from current dividend volatility. The intuition

is also clear: a stock that pays more in the future than today has a relatively low dividend

compared to the future. Thus, the risk embedded in current dividends, σi
CF,t, has a relatively

low impact on the total risk of stock. In the limit, if the stocks does not pay any dividend

today, it cannot have any “cash-flow risk”, as there is zero current covariance of dividends

with consumption. If instead the asset’s dividends covary negatively with consumption growth

(σi
CF,t < 0), then a high expected dividend growth increases the risk premium. The argument,

of course, is the converse of the previous one.
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The effect that the current expected dividend growth of asset i has on the second term

of the cash-flow risk component of stock return (25) is more difficult to tell. To quantify these

effects, the top panel of Figure 1 plots the quantity µCF
i,t as a function of the unconditional

cash-flow risk σi
CF = E

[
σi

CF,t

]
at the steady state, that is, for the case where St = S and

st = s. As it can be seen, the cash-flow component of expected return is increasing in σi
CF . Note

however, that there is a negative “bias” in this component of expected excess return. Indeed

the case σi
CF = 0 still implies a negative expected excess return stemming from cash-flow risk

effects. This is due to the second component in (25), which is related to the time variation in

the aggregate expected consumption growth. As we discussed in the case of the total wealth

portfolio, this component carries typically a negative risk premium. Finally, the bottom panel

of Figure 1 plots µCF
i,t as a function of σi

CF for the case where St = S but for a random draw of

shares st. Although an increasing pattern in σi
CF can be easily seen, cross-sectional differences

in si/si
t may make the component µCF

i,t of an asset with high unconditional cash-flow risk σi
CF

temporarily lower than that of an asset with lower cash-flow risk σi
CF .

III.C The value premium

In order to gauge the source of the value premium in our model it is convenient to turn

to Figure 2. Panels A, B, and C plot µDISC
i,t , µCF

i,t , and the total Et

[
dRi

t

]
respectively against

the relative share si/si
t for various levels of the asset’s unconditional cash-flow risk σi

CF , which

correspond to different values of θi
CF (see expression (15)). In all cases, the level of surplus St

is set to its steady state value S. The parameters used are those of the calibration exercise

discussed in detail in the next section.

Start with Panel A. As discussed in Section III.B.2, the discount risk component of

expected return is increasing in the relative share si/si
t, that is, with expected dividend growth

(see (11)). The reason is that assets with high relative shares are more sensitive to shocks in

the stochastic discount factor. These shocks are naturally priced and thus the higher required

premia of assets with high relative shares. In addition, the discount risk component of expected

returns does depend as well on the asset’s unconditional cash-flow risk σi
CF : Stocks with higher

cash-flow risk σi
CF have a larger discount risk component in expected returns. The intuition

is that stocks with a higher σi
CF are riskier and as a consequence have lower prices. It follows

that changes in the stochastic discount factor have a larger impact, in percentages, on the

prices of assets with higher levels of cash-flow risk. Notice though that the higher the level

of the cash-flow risk the lower the effect of a change in the relative share on the discount risk

component of expected returns.
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Panel B of Figure 2 plots the cash-flow risk component of expected returns which, as

discussed in Section III.B.2, is decreasing in expected dividend growth for stocks with high

cash-flow risk. Finally, Panel C reports the total expected return for each asset that is obtained

by adding to the discount risk component the cash-flow risk component of stock returns.

III.C.1 Discount risk effects and the “growth premium”

In our framework, and given expression (23), sorting assets according to their price-

dividend ratio is akin to sorting them on both cash-flow risk, σi
CF , and expected dividend

growth, si/si
t. In particular, value stocks (assets with low P/D ratios) are, on average, asso-

ciated with high σi
CF and low expected dividend growth si/si

t. Consider now the case where

cross-sectional differences in cash-flow risk are “small” (e.g. θi
CF ≈ 0 for all i). Then, σi

CF

are roughly the same across all assets and the sorting procedure selects assets according to

expected dividend growth. In this case, discount effects dominate and the total expected excess

return are as in the lower line of Panel A. Since low price-dividend ratio stocks are those with

low relative shares si/si
t, value stocks are found on the left-hand side of the panel and thus have

low expected excess returns. Similarly, high price-dividend ratio stocks are those with high

si/si
t and growth stocks are on the right-hand side of the panel and have high expected excess

returns. Thus, if cross-sectional differences in cash-flow risk are “small,”then growth stocks

have higher expected excess returns than value stocks and a “growth premium” obtains.13

III.C.2 Cash-flow risk effects

It follows from the discussion above that for a value premium to obtain there must be

sufficiently large cross-sectional differences in cash-flow risk. Indeed, consider now Panel C,

which reports the total expected return when both discount effects (Panel A) and cash-flow

effects (Panel B) are present. Value stocks (assets with low P/D ratio) have on average high

risk (σi
CF ) and low expected dividend growth (si/si

t). This combination corresponds to the

area around the top-left corner of the plot, that is, to high expected excess return. Conversely,

growth stocks (assets with high P/D ratios) must have a combination of low σi
CF and high

si/si
t. This combination can be found on the bottom-right corner of the plot. As it can be seen

then value stocks will command a high premium and growth stocks a low (and even negative)

premium. Thus, if cross-sectional differences in cash-flow risk are “large”, then value stocks

have higher expected excess returns than growth stocks and a “value premium” obtains.
13This result is in contrast with Lettau and Wachter (2005) who find a value premium with homogeneous cash

flow risk. In their partial equilibrium setting, variation in the market price of risk is due to “investor sentiment”

and it is not priced. Thus differences in expected future cash flows do not yield differences in expected returns.
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III.C.3 The dynamics of the value premium

The presence of discount risk effects which are associated with the time series variation in

risk preferences have implications for the dynamics of the value premium. Essentially, discount

risk effects interact with the cross-sectional dispersion in cash-flow risk to induce fluctuations

in the value premium, as shown in Figure 3. This figure plots the expected excess returns of

three assets against the surplus consumption ratio, St. The dotted line shows the expected

excess return of the market portfolio; the solid line corresponds to the expected excess return of

a representative value stock with high cash-flow risk and low expected dividend growth; finally

the dash line corresponds to the premium of a representative growth stock with low cash-flow

risk and high expected dividend growth. As it can be seen, when the surplus consumption ratio

is low (high), the value premium is high (low): Assets with a high value of θi
CF are particularly

riskier when the representative agent’s is highly risk averse which occurs whenever adverse

consumption growth shocks depress the surplus consumption ratio, increasing in turn the

market premium and its dividend yield. Thus in our model the value premium has a strong

predictable component, being high (low) when the market premium is high (low).

IV. EMPIRICAL PREDICTIONS

In this section we conduct a simulation study to evaluate the extent to which the model

can match the standard return moments both in the time series and the cross-section, which

can be found in Table I. The data set is standard and it is very briefly described in the Notes to

Table I. Panel A shows mean and standard deviation for the returns on the market portfolio and

the risk free rate. Panel B shows the predictability regressions of Fama and French (1988) and

Campbell and Shiller (1988) for two different sample periods, which are meant to emphasize

the sensitivity of these results to the particular period under consideration. Panel C shows the

value premium and its corresponding puzzle, the failure of the CAPM to generate the large

cross-sectional dispersion in average returns across book-to-market sorted portfolios.

IV.A Details of the simulation

We simulate the model presented in Section II.B with 10,000 years of quarterly data for

200 firms. We sort these assets into ten portfolios according to their price-dividend ratio14 in

an effort to mimic the standard procedure used in the cross-sectional literature and focus our
14Our model does not have “book” so we normalize prices by our theoretical cash-flow measure. The “value

premium” obtains when either earnings or cash-flows are used to normalize prices. See, for instance, Fama and

French (1996, Table II) and Fama and French (1998, Table III), which also includes international evidence.
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analysis on these ten portfolios. Table II contains the parameter values that are going to be

used throughout and which were chosen to generate moments in simulated data close to their

empirical counterparts in Table I. We set the average and standard deviation of consumption

growth at 2% and 1.5% respectively. This latter value should be measured against the value

in the postwar sample of 1.22% and the one for the longer sample starting in 1889, which is

3.32%.15 We choose γ = 1.5, which is between the values used by MSV, γ = 1, and Campbell

and Cochrane (1999), γ = 2. This choice implies a steady state value of the local curvature

of the utility function of γS
−1 = 48, higher than the already high value of Campbell and

Cochrane (1999) which is 35. The minimum value of this local curvature is 27.75. Finally the

parameter k and α are similar to the values chosen by MSV.

As for the share process, we assume that all of the 200 simulated assets have the same

steady state contribution to overall consumption, si = 1/200 = .005. Also the speed of mean

reversion is set at φ = .07, which is the value estimated by MSV for the market portfolio. The

key parameter of interest in our model is the one that controls differences in cash-flow risk,

θi
CF . Our general equilibrium setting requires that this parameter is symmetrically distributed

around zero (see (14)). Then we assume

θi
CF ∈ [−θCF , θCF

]
,

where θCF > 0. Throughout, and with some abuse of terminology, we refer to θCF as the cash-

flow risk parameter but the reader should keep in mind that it is the support of the cash-flow

risk parameters of individual assets.

Finally we choose the vector ν i in (9) so that for each i it only has two non-zero entries:

νi = (νi,0, 0, ..., 0, νi,i, 0, ..). Given θi
CF , the first entry by definition must be νi,0 = θi

CF /σc. To

avoid parameter proliferation, the second entry – the idiosyncratic part – is chosen constant

across all assets according to the formula, ν2
i,i = ν2−max(ν2

i,0), where ν is a chosen parameter.

In words, ν is the maximum share volatility across assets.

We start by discussing a baseline case with θCF = .00345 and ν = .55 for it generates a

quantitatively plausible value premium. We investigate this case in detail and then, in Section

VI, we study the behavior of the model under different values for θCF and ν. We also postpone

a discussion of the size of the cash-flow risk effects until that section.

15See Campbell and Cochrane (1999) Table 2.
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IV.B The time series properties of the market and the value premium

Table III is the analog to Table I but in simulated data. As shown in Panel A, the model

generates a sizable, if slightly low, equity premium and volatility of stock returns, and the risk

free rate moments are reasonable. Panel B of Table III shows the predictability regressions

for all the standard horizons. As already mentioned the model does well in this dimension:

The coefficients all have positive signs and increase with the forecasting horizon as do the

t− statistics. The R2s are relatively lower than their empirical counterparts but not far off

the mark for the case of the 1948-2001 sample. These results simply reproduce the good

performance of Campbell and Cochrane (1999) and MSV for the market portfolio.

Panel C of Table III contains the average excess returns for the ten sorted portfolios.

The value premium obtains nicely in our setup. Indeed the value premium is a healthy 5.16%,

only slightly below the empirically observed one of 5.50%. Notice though that the average

excess returns for each portfolio are below their empirical counterparts. The reason is that, as

mentioned above, the model misses the equity premium by about 3%. This low premium also

affects the Sharpe ratio, which is low relative to its empirical counterpart but, importantly,

they decrease with the price-dividend ratio, an important feature of the data (see Table I.)

The line denoted Avge
(
θi
CF

)×100 reports the average cash-flow risk parameter for each

of the ten portfolios. As discussed in Section III.C, the sorting procedure picks cross-sectional

variation in the cash-flow risk parameter, θi
CF : Stocks in the value portfolio, portfolio 10,

have, on average, a high cash-flow risk parameter whereas the opposite is true for the growth

portfolio, portfolio 1. In our framework, and in line with much of the recent empirical research

on this issue (see Section VI.A), value stocks are indeed riskier in the cash-flow sense and the

strength of this effect is enough to undo the natural “discount riskiness” of growth stocks.

IV.C The dynamics of the value premium

To ascertain the time series variation of the value premium, Table IV Panel A shows

the average excess return of the first and tenth decile portfolio as a function of whether the

market-to-book ratio of the market portfolio is above or below a certain percentile, denoted

by c. For instance, the first line shows that the average excess rate of return of the first

decile (growth) portfolio is 13.18% if the market-to-book of the market portfolio is below the

15th percentile of its empirical distribution and that of the tenth decile (value) portfolio is

23.57%. The value premium is then 10.38%. Instead when the market-to-book is above the

15th percentile the first decile portfolio has an average excess return of 5.73% and the tenth
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portfolio has one of 10.35% for a total value premium of 4.62%, which is considerably lower

than the previous one. This pattern holds for any cut-off point: The value premium is higher

whenever the market-to-book of the market portfolio is low which are also periods where the

average excess return of the market is high, as shown in the columns headed by R
M .

Panel B of Table IV reports the same calculations as in Panel A but in simulated data.

The only difference is that, naturally, instead of using the market-to-book we use the price-

dividend ratio of the market portfolio to identify the state. The pattern is indeed very similar

with the only exception of the level of the premia which is, as already discussed, lower than in

the data. The value premium is higher when the price-dividend ratio of the market portfolio is

low than when it is high. For instance, when the price-dividend ratio of the market portfolio

is below the 15th percentile the value premium is 10.90% whereas when it is above is only

4.15%, very close to their empirical counterparts. In summary then, the discount risk effects

needed to replicate the time series properties of the market portfolio interact with the cross-

sectional dispersion in cash-flow risk to generate variation in the value premium. Value stocks

are particularly risky during bad times, periods when the aggregate market premium and its

dividend yield are high relative to their unconditional mean, an effect that is present both in

the data and the model.

V. THE CAPM AND OTHER ASSET PRICING MODELS

A central finding of the empirical asset pricing literature is the inability of CAPM of

Sharpe (1964) and Lintner (1965) to explain the value premium. In our setup the CAPM

does not hold but the question remains as to whether it performs well in simulated data. We

address this issue in Section V.A. In Sections V.B and V.C we investigate the extent to which

our framework is consistent with two popular and successful models designed to address the

value premium puzzle: The Fama and French (1993) model and the conditional asset pricing

models proposed of late of which Lettau and Ludvigson (2001) is the foremost example. In

particular, given that in our set up all these models are misspecified, what is the feature of

the data that these models capture that generates the “good fit” relative to the CAPM?

V.A The CAPM

V.A.1 The CAPM and the value premium puzzle

The value premium puzzle can be seen in the last line of Table I Panel C (CAPM β).

The beta of the sorted portfolios is flat if not slightly decreasing in the market-to-book, at
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odds with the strong increasing pattern in average returns.16 The CAPM produces no cross-

sectional dispersion in its measure of risk when confronted with substantial variation in average

returns. To do this more formally we turn to Table V Panel A where we report the results of

time series regressions of the excess returns on each of the ten portfolios on the excess returns

on the market portfolio,

R
p
t = α + βMRM

t + ε
p
t for p = 1, 2, · · · , 10.

We do this for both empirical (Panel A-1) and simulated data (Panel A-2). The panel shows

the intercepts in the time series, α, and its corresponding t−statistic, t (α) . It also reports the

beta on the market portfolio, βM and its t−statistic, t
(
βM

)
. We have omitted the t−statistic

on the loading for the case of simulated data because, as in the empirical data, they are all

strongly significant (well above 100).

Start with the case of the empirical data, Panel A-1. The intercepts, “alphas” of the

CAPM time series regressions are large and statistically significant. Growth stocks have large

negative intercepts whereas value stocks have large positive ones. The poor performance of

the CAPM can also be seen in line 1 of Panel A in Table VI, where we report the standard

Fama-MacBeth cross-sectional regressions. The coefficient is not statistically significant, enters

with the wrong sign and the R2 is just 11%.

Turn next to the time series regressions in simulated data, Panel A-2 of Table V. Unlike

the case in the empirical data, the betas cross-sectionally correlate positively with average

excess returns, an important issue on which more below. Still the cross-sectional dispersion

in betas is not enough to match the cross-sectional dispersion in average returns generated by

the model. Indeed the pattern and statistical significance of the intercepts in simulated data is

similar to its counterpart in empirical data. A visual impression of this result can be obtained

by looking at the bottom panel of Figure 4, which shows the average excess returns for the ten

decile simulated portfolios plotted against the CAPM fitted returns. As it can be seen, while

average returns range between 3.07% for high price-dividend ratio stocks and 8.23% for low

price-dividend ratio stocks, the “fitted” returns only range between 3.67% and 5.50%. That

is, the model not only generates the value premium but also the value premium puzzle.
16The inability of the CAPM to explain the cross section of average returns is pronounced in the postwar

sample used in this paper. Recently though Ang and Chen (2005) and Fama and French (2005) show that the

behavior of the CAPM in the earlier sample covering 1927-1963 is much better. Still Daniel and Titman (2005,

Table 3) and Fama and French (2005) perform triple sorts, on ME, BE/ME and (preformation) market beta to

find variation in average returns unrelated to beta thus rejecting the CAPM also in the long sample.
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V.A.2 Fama-MacBeth regressions in simulated data

In our simulated data, the CAPM betas correlate positively with average excess returns.

Thus cross-sectional regressions that impose no constraints on the level of estimated market

premium may immediately induce a good fit as measured by the R2. This can be seen in line 5 of

Panel B in Table VI, where we run the Fama-MacBeth regression in artificial data: The CAPM

produces a good fit with an R2 of 91%. Moreover the market enters significantly and with the

right sign. The estimated quarterly market premium though is 2.56%, which corresponds to

an annualized value above 10%. This number should be compared to the market premium in

our model which is 4.35% (see Table III Panel A.) Thus the CAPM “works” in our model at

the expense of an unreasonable level in the market premium.17

V.B The Fama and French (1993) model

V.B.1 Cash-flow risk effects, discount risk effects, and HML

The Fama and French (1993) model has become a standard benchmark in asset pricing

tests. How well does it work in our set up? To answer this question we construct an HML

factor in artificial data that is long the three top decile portfolios and short the bottom three

shown in Table III Panel C. This panel also reports the average cash-flow risk parameter θi
CF

for each of the decile portfolios. There is a clear ordering of the average cash-flow risk across

decile portfolios: Value stocks have a much larger value of θi
CF than growth stocks. HML then

captures cross-sectional variation in θi
CF across price-dividend sorted portfolios. In addition, as

shown in Figure 3, it is important to emphasize that differences in cash-flow risk θi
CF also yield

differences in the impact that discount effects have on expected returns. HML then captures

both cash-flow risk and, partly, discount risk.

V.B.2. Time series and cross-sectional regressions evidence

Table V Panel B presents the results of time series regressions,

Rp
t = α + βMRM

t + βHMLRHML
t + εp

t for p = 1, 2, · · · , 10.

Panel B-1 shows the results in the case of the empirical data. The results are well known.

The intercepts go down considerably and only one of them is statistically significant; value
17This message has recently been emphasized by Lewellen and Nagel (2005) and Daniel and Titman (2005):

A small but slightly positive cross-sectional covariation between betas and average returns can result in the

unwarranted support of asset pricing models that fail to impose economically based restrictions on the size of

the premia of the proposed factors.
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(growth) stocks have a large (small) loading on HML and the inclusion of HML in the time

series regression collapses the betas on the market portfolio around 1 (see Fama and French

(1993, page 21-26)).

Panel B-2 shows the time series regression in simulated data. Again we do not report

the t−statistic on the loadings on the market and HML as they are all above 100. Turning

first to the loadings on the market portfolio, notice that, as it was the case in the empirical

sample, adding HML to the time series regressions has the effect of reducing the spread in the

estimates of βi
M and collapse them around 1. As Fama and French (1993) note this pattern is

related to the negative correlation between the market and the returns on HML.

As for the loading on the HML portfolio notice that it has a strong cross-sectional

variation which reflects the cross-sectional variation in the underlying cash-flow risk of the

different portfolios. Indeed the loading on HML of the growth portfolio is −.28 whereas that

of the value portfolio is 1.07. Also the size of the intercepts of the time series regressions drop

considerably relative to the size of the intercepts when only the market portfolio is present.18

Moreover there is no longer any pattern in the variation of the intercept across decile portfolios,

and their t-stats are much lower than in Panel A, which shows that HML is capturing the

systematic pattern of misspricing documented in Panel A.

The evidence in the Fama-MacBeth regression confirms the time series evidence. Line 2

of Table VI Panel A shows that HML enters significantly and the estimated size of the premium

on HML is very close to the average excess return of the HML portfolio. This is also the case in

our simulated regression, which is shown in line 6 of Panel B in Table VI. The coefficient on the

loading on HML is very similar to its empirical counterpart and, once annualized, close to our

estimated average excess return on the HML portfolio, which is 3.21%. The only caveat is that

the market portfolio is significant in our simulated Fama-MacBeth regressions whereas it is not

in the empirical data. Yet, this table shows that the inclusion of HML in the cross-sectional

regression aligns the portfolios correctly, as the intercept is now close to zero (with t−statistics

equal to −1.64 even with 40,000 observations) and the (quarterly) market premium equals

1.31%, which annualized is 5.24%, still higher than the average market return in simulation

(4.35%), but much smaller than the one obtained for the CAPM case.

18Notice that the value-weighted sum of the alphas should be equal to zero. Given that the only negative

alpha is that of the growth portfolio, it must be the case that some of the assets in the growth portfolio must

have extreme prices. We thank Gene Fama for pointing out this to us.
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V.C Conditional asset pricing models

Conditional asset pricing models have been proposed recently to address the inability

of the CAPM to explain the value premium. The idea, as advanced by Hansen and Richard

(1987), is that the CAPM may fail unconditionally but may hold conditionally and thus tests

of the CAPM that ignore conditioning information are misspecified. Researchers have reacted

to this observations by using as a proxy for investors’ information set variables that are known

to forecast returns in the time series.19 Typically this has led to tests of multifactor model

where the additional factor, other than the market, is the market itself interacted with the

proposed conditioning variables.

Lines 3 and 4 in Panel A of Table VI shows that conditioning by the dividend yield of

the market portfolio and the cay variable of Lettau and Ludvigson (2001) results also in a

coefficient for the instrumented market that is strongly significant. In addition the R2 is an

impressive 83% and 81% respectively. Panel B, line 7 shows that our model does also well in this

dimension. When we interact the returns of the market portfolio with the simulated dividend

yield of the market portfolio we obtain a strongly significant coefficient and, once again, of

similar magnitude to its empirical counterpart.20 The intuition behind these conditional asset

pricing models is that they capture the fact that value stocks become relatively riskier in bad

times, as shown in Table IV and Figure 3. In our setup the conditional CAPM does not

hold but is mechanically bound to do better than its unconditional counterpart because it

captures the conditional effects that arise out of the interaction of discount effects with the

cross-sectional dispersion in θi
CF .

VI. DISCUSSION

VI.A Do value stocks have larger cash-flow risk?

An important prediction of our model is that value stocks have larger cash-flow risk

than growth stocks. Is this the case? A flurry of recent papers argues that this is indeed the

case. For instance, Cohen, Polk and Vuolteenaho (2003) obtain cash-flow betas by regressing

different measures of firms’ cash-flows on the corresponding measures of market cash-flows,

such as
R−1∑
j=0

ρ
j
CPV ∆d

p
t+j,j+1 = β

p
CF,0 + β

p
CF,1

R−1∑
j=0

ρ
j
CPV ∆dmkt

t+j + ε
p
t+R−1 (28)

19See, among others, the conditional asset pricing models of Jagannathan and Wang (1996), Ferson and

Harvey (1999), Lettau and Ludvigson (2001), and Santos and Veronesi (2005).
20We do not report the results for cay as in our setting, cay is perfectly correlated with log(D/P ).
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for each time t and each portfolio p = 1, ..., 10. Here, ∆dp
t+j,j+1 is the dividend growth at time

t + j of the portfolio p which was formed j + 1 years earlier, that is, at t− 1. Similarly, ∆dmkt
t+j

is the dividend growth of the market at time t + j. Finally, ρ
j
CPV = .95 is a discount, and R is

the number of years over which the average growth rate is computed. They call the regression

coefficient βp
CF,1 the cash-flow beta. Their results are in Table VII.

Notice first that, irrespective of the cash-flow measure used, value stocks have higher

cash-flow betas than growth stocks, though magnitudes differ across measures. If either (ac-

cumulated) return on equity,
∑4

j=0 ρjROEp
t+j,j+1, or (accumulated) dividend growth is used

as a measure of cash-flow growth, the regression coefficients roughly double when we go from

growth to value stocks. If instead we use (accumulated) earnings growth relative to market

value,
(
Xp

t+4,4 − Xp
t−1,0

)
/MEp

t−1,0, the coefficients increase by a factor of 10. Finally if (ac-

cumulated) earnings relative to market,
∑4

j=0 ρj
(
Xp

t+j,j+1/MEp
t+j−1,j

)
, is used they increase

almost by a factor of 20.

In a recent study, Campbell, Polk and Vuolteenaho (2005) confirm these findings and

extend them to different sample periods. These authors show that value stocks’s profitability

covaries with the aggregate market cash-flow news more than growth stocks (see their Tables 6

and 7). A similar exercise is performed by Bansal, Dittmar, and Lundblad (2005) who regress

market-to-book sorted portfolios’ dividend growth on a moving average of consumption growth

rates, and find that indeed cash-flow betas are larger for value sorted portfolios (see Table 1,

Panel A). Finally, Hansen, Heaton and Li (2005) show that growth stocks have low long-run

cash-flow covariation with consumption relative to value.

In summary, there is substantial empirical evidence that indeed value stocks have “more”

cash-flow risk than growth stocks. We turn next to the question of whether they have “enough

of it” to generate a quantitatively plausible value premium.

VI.B Sensitivity analysis: Asset Pricing

The simulations performed in Section IV and V are based on the particular set of pa-

rameters for the share process reported in Table II. We study next the impact that different

values for ν and θCF have on the time series and the cross-section of stock returns. In Section

VI.C we analyze what these different values imply for the properties of individual dividends.

Table VIII reports results in simulations under three values of the share volatility, ν,

and five values of the cash-flow parameter, θCF . Recall that the latter parameter defines the

interval [−θCF , θCF ] in which individual firms’ cash-flow risk are uniformly distributed.
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VI.B.1 Sensitivity analysis: The market portfolio

For each level of ν, the average market premium and volatility decline as we move from

low to high values of θCF . Instead the properties of the market portfolio are largely unaffected

as we vary ν. For instance, when ν = .25, the average market premium and the volatility decline

from 9.90% and 24.16% to 3.97% and 10.23% respectively as we increase the cross sectional

dispersion in cash-flow risk from θCF = 0 to θCF = .00345. Similarly, the level of interest rate

and its volatility also decline, although the difference is much less striking and, in all cases,

rather reasonable (see Table I for comparison). Finally, the predictability of aggregate excess

returns weakens as we increase θCF . For instance, the R2 of the three year return regression

declines from 23% when θCF = 0 to 4.4% when θCF = .00345.

To understand why changes in θCF affect market returns in our model, recall first that

our framework implies a mild predictability of consumption growth.21 Moreover, it can be

shown that consumption growth and expected consumption growth are positively correlated.

Since in our model the representative agent has a low elasticity of intertemporal substitution

and thus a preference for consumption smoothing, we obtain an effect on prices that is absent

from the habit persistence models of Campbell and Cochrane (1999) and MSV, which assume

that consumption growth is i.i.d. Assume for instance that a negative shock to consumption

growth occurs. The intuition of habit persistence models is that this negative shock induces an

increase in the representative agent risk aversion and thus a decline in the stock price that is

sharper than in the case without habit. This effect is mitigated in our present model, however,

because a negative consumption shock is associated, on average, with a drop in expected

consumption growth as well. Preferences for intertemporal consumption smoothing imply

that the representative agent will attempt to save more when expected consumption growth

decreases, increasing his demand for stocks and bonds. This additional demand for assets thus

reduces the initial drop in prices, its corresponding volatility and effectively reduces both the

equity premium and the predictability. In our model, the size of this counterbalancing effect

depends on the “size” of the term µc,1 (st) = s′t θCF , which governs the variation in expected

consumption growth, see Assumption 1 and the general equilibrium restrictions (6) and (16).

If all θi
CF are close to zero, as it is the case when θCF is low, then this effect is negligible,

but if they are large – as it is necessary to obtain substantial cash-flow effects – then the

intertemporal substitution effect will be large.

21The predictability is indeed mild: Regressing the log(D/P ) on future consumption growth in artificial data,

we obtain R2 between 0.4% and 0.6%. No other predictor improves upon this one in our model.

25



VI.B.2 Sensitivity analysis: The value premium and the performance of the CAPM

The last two columns of Table VIII report the implications of various levels of ν and

θCF for the value premium and the corresponding CAPM fit. For any value of ν, a low level

of θCF tends to generate a growth premium, rather than a value premium. For instance,

when ν = .25 and θCF = 0, the column 10 − 1 shows a value premium of −2.44%, that is, a

growth premium. This effect can also be seen in Panel A of Figure 5, which plots the average

log of the price-dividend ratio of the ten sorted portfolios versus their corresponding average

excess returns.22 As discussed in earlier sections, an increase in the dispersion of cash-flow risk

generates a value premium: For ν = .25 the value premium goes from −2.44% for θCF = 0 to

7.10% for θCF = .00345.

We saw above that the properties of the market portfolio are largely unaffected by

changes in ν. The most striking effect of a higher level of volatility is in the inability of the

CAPM to price our set of test portfolios. To understand why is this the case, notice that in

our model the CAPM with respect to the total wealth portfolio holds neither conditionally

nor unconditionally as the total wealth portfolio is not perfectly correlated with the stochastic

discount factor. Indeed, the time variation in expected consumption growth induces a variation

in prices of the total wealth portfolio that is uncorrelated with consumption shocks. Assump-

tion 1, which follows the general equilibrium restriction (6), implies that a higher idiosyncratic

volatility of shares would generate a higher volatility of expected consumption growth that

is not correlated with consumption shocks and thus a worse CAPM performance.23 This is

exactly what the last panel of Table VIII shows: When ν = .55 the model can replicate the bad

performance of the CAPM when the value premium is quantitatively plausible (θCF = .00345).

The value premium puzzle though is not a robust feature of the data. For instance Ang

and Chen (2005) and Fama and French (2005) show that the CAPM performs much better

in a similar set of test portfolios when using a long sample that starts in 1927.24 We chose

ν = .55 and θCF = .00345 to illustrate the model’s ability to replicate both the value premium

and its corresponding puzzle. But if the CAPM’s performance is not an issue, the volatility
22This figure corresponds to the parameter choice ν = .55, to make it comparable with Figure 4.
23More generally, the CAPM is violated in our setting whenever expected consumption growth is (mildly)

time varying, and this variation is uncorrelated with consumption shocks. It is possible to extend the model in

this direction by simply assuming that µc in Assumption 1 is time varying. We do not pursue this extension

here, as the model becomes significantly more complicated but the intuition of the results would be the same

in this case.
24See also footnote 16.
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parameter can be lowered to ν = .25 and the cash-flow risk parameter, θCF can now be between

.002 and .003. Notice also that this would also improve notably the model’s performance in

what refers to the market portfolio. The reason is that lower values of the cash-flow risk

parameter attenuate the intertemporal substitution effects discussed above. Thus lower values

of ν, which are feasible if the value premium puzzle is not a concern, improve considerable

the overall performance of the model and lower, if only slightly, the cash-flow risk parameters

needed to generate the value premium.

VI.C Sensitivity analysis: Dividend Growth

As shown in Table VIII, the model can generate plausible quantitative properties for

both the market portfolio and the cross-section of stock returns. But what do the specific

parameter choices mean for the properties of the individual dividend processes?

To answer this question Table IX reports the range of correlation coefficients between

the dividend growth of individual assets and consumption growth and the average dividend

growth volatility across the simulated assets for each value of ν and θCF . The next two columns

report the cash-flow betas of Cohen, Polk and Vuolteenaho (2003), described in equation (28)

in Section VI.A, for the growth portfolio (portfolio 1) and the value portfolio (portfolio 10);

the remaining coefficients simply grow linearly from the minimum to the maximum. Finally,

the last column in Table VIII reports the average volatility of individual firms’ stock returns.

Consider first the case where ν = .25 and θCF = 0. In this case the range of correlation

coefficients between individual dividend and consumption growth is very low, between .04

and .07. Recall that in this case all assets have, by construction, the same cash-flow risk as

consumption itself. This is also apparent in the next two columns: The cash-flow betas are,

naturally, very close to 1. Finally, the volatility of dividend growth is reasonable, about 24%,

while the volatility of returns for individual stocks is about 27.6%. But, as shown in Table

VIII, the case θCF = 0 is one that generates a growth premium rather than a value premium.

As we increase θCF in order to obtain the value premium, the range of correlation coefficients

between dividend growth and consumption growth widens substantially, to reach the range

[−.89, .91] for the case ν = .25 and θCF = .00345. In addition, the volatility of both dividend

growth and stock returns decline to about 16% for both and the cash-flow betas range from

−9.6 for growth stocks to 7.94 for value stocks.

As we increase the volatility of shares ν, as one would need to do if the value premium

puzzle is to obtain, some features of the cash-flow dividend growth improve but at the expense

of others. For instance, the range of correlations of dividend growth and consumption growth
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when ν = .55 and θCF = .00345 is now [ −.37, .42], still large, but better than for the case

where ν = .25. The cash-flow betas marginally improve as well, although their spread is still

too large compared to the results obtained by Cohen et al (2003). The most salient effect

of increasing the volatility of shares from ν = .25 to .55, however, is the large increase in

the volatility of dividend growth, which now reaches 52.60%. Instead the average volatility

of individual stock returns increases slightly, from 16.68% to 22.96%. These last results are

obviously hard to reconcile with the empirical evidence.

VI.D But is it all bad news? Some intuition on the magnitude of θCF

The previous section suggests that in order to generate a quantitatively plausible value

premium and the observed poor performance of the CAPM (see Table VIII), we have to assume

a large cross-sectional dispersion of cash-flow risk (see the last row of Table IX). We discuss

next some intuition on why does our model need these extreme parameters as well as some

potential extensions to address these problems.

First notice that the sign of the cash-flow betas is negative for growth stocks and positive

for value stocks in simulated data whereas Cohen et al. (2003) obtained positive numbers

throughout. This is due to our counterfactual assumption that all the sources of consumption

are financial, and assumption that it is easy to relax. Indeed dividends make up only about

10% of total consumption in the data. In Santos and Veronesi (2005) we explored the role of

labor income in asset pricing tests and argued that it is less risky than consumption so that

it has a negative θCF . In that model then all financial assets can have a positive θCF , and,

as consequence, the cash-flow betas would be positive across the ten sorted portfolios. Here

we abstract from adding labor income to the model as it would introduce one additional state

variable, and the analysis and the intuition of the model would become substantially more

complicated.

Focusing next on the the magnitude of the cash-flow risk dispersion, part of the difference

between simulated and empirical data may be due to measurement error, which is of course

absent in our simulations. This measurement error in the cash-flow properties of the market

portfolio biases towards zero the cash-flow beta as defined by the regression in Cohen et al.

(2003). For instance, in our simulations for the case θCF = .00345 and ν = .55, if we add

a level of noise to the market dividend growth that is of the same magnitude as its actual

volatility (=.03), we find that, in Table IX, the cash-flow betas are given by β1
CF,1 = −3.79

and β10
CF,1 = 2.39, that is, the spread between value and growth is cut by about half. If the

noise is twice the value of its actual volatility then β1
CF,1 = −1.48 and β10

CF,1 = 0.92, which are
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much closer to their empirical counterparts.25

Relevant as they are, alternative sources of income and measurement problems are not

likely to fully address the large magnitudes of cash-flow risk needed to generate a sizable value

premium. Indeed these large magnitudes are required to “undo” the discount risk effects that

are in turn important to generate quantitatively plausible properties for the market portfolio.

To elaborate further, in Santos and Veronesi (2005) we used a similar cash-flow model as the

one described in Section II, but the representative agent is assumed to have the standard

CRRA preferences. Moreover, the agent receives income from both financial and non financial

assets. As mentioned, in that model, labor income (in average, about 90% of total income) has

a negative θj
CF , while all of the financial assets have identical positive cash-flow risk θi

CF . Thus,

a value premium obtains even with identical cash-flow risk parameters across financial assets.

The drawback of that model, though, is that it is unable to generate reasonable properties

of the aggregate market portfolio: the predictability of stock returns – which is induced by

the variation over time of the labor income-to-consumption ratio – is small compared to the

data, and the volatility of stock returns is just 6.2%. That is, in Santos and Veronesi (2005)

a sizable value premium obtains but the assumption of a standard CRRA utility function for

the representative agent makes it impossible to generate enough predictability or volatility of

the aggregate market.

Campbell and Cochrane’s (1999) key contribution is precisely to show how a strong

variation in risk preferences is able to generate the main time series properties of the market

portfolio. But an unexpected drawback of this modelling device is to induce a growth premium

in the cross-section, unless cross-sectional differences in cash-flow risk are “large enough.” The

“size” of these cash-flow risk effects then can only be assessed in a model where the strong

discount risk effects required to generate the time series properties of the market portfolio are

present, otherwise one would underestimate the magnitudes of the cash-flow risk effects that

are in turn needed to obtain the value premium.

It follows from the previous discussion that one possible direction to generate more

plausible magnitudes of the cash-flow risk parameter is to generate variation in the discount

that is unpriced in the cross section. Thus growth stocks would comove more with the discount

than value stocks but this does not result in a growth premium. This is exactly the route chosen

by Lettau and Wachter (2005). The problem, of course, is the interpretation of this source of
25This is a “rough” calculation: To properly perform this exercise, we should keep the volatility of aggregate

dividend (= consumption) constant across noise levels.
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variation in the discount. They refer to this exogenous source of variation in the discount as

“investor sentiment” though it is hard to assess quantitatively this effect.

Alternatively, the duration of the growth assets may not be as long as suggested by the

model. Indeed, an important limiting feature of the model is that assets are infinitely lived.

But growth stocks though can have shorter duration if they are more likely to disappear than

value stocks, which, on average correspond to more established firms. In this case then the

differences in duration between growth and value are less pronounced than implied by the model

and thus there will less of a value premium. These two last alternatives offer fruitful venues

for future research and can potentially relax the pressure on the cash-flow risk parameters.

VII. CONCLUSIONS

Two sources of risk combine to determine the time series properties of the market portfo-

lio and the cross-sectional properties of stock returns: discount risk and cash-flow risk. Camp-

bell and Cochrane (1999) argue that time variation of the market price of risk - i.e. discount

risk - is important to reconcile many empirical facts about the aggregate market portfolio.

We show that this channel though imposes tight restrictions on the cash-flow properties of

value versus growth stocks. Specifically, value stocks are (endogenously) those with high cash

flow risk relative to growth, that is, their dividends covary more with the aggregate economy

than the dividends of growth stocks, a prediction consistent with recent empirical evidence.

Our model is able not only to match the time series properties of the aggregate portfolio, as

in Campbell and Cochrane (1999), but it also generates a large value premium and its cor-

responding value premium puzzle, that is, the documented inability of the CAPM to price

value-sorted portfolios.

In addition, our model also generates a time variation of the value premium over the

business cycle that lines up well with the data. This variation of the value premium stems

from the fact that the discount risk effects that drive the time series properties of the market

portfolio interact with the cross sectional dispersion of cash-flow risk to make value stock

particularly riskier than growth stocks in bad times, that is, when the market premium is

high. This dynamic aspect of the value premium allow us to explain the source of recent

empirical “successes” in explaining the value premium puzzle, such as the multi factor model

of Fama French (1993) and the conditional CAPM model of Lettau and Ludvigson (2001).

Although these models are misspecified in our general equilibrium setting, they pick up this

dynamic variation in cross-sectional risk due to the interaction of discount risk effects and the
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cross-sectional dispersion in cash flow risk.

We have shown that the model seems to require a large cross sectional dispersion of

cash-flow risk to explain the value premium, one that seems at odds with the data. We have

argued for possible extensions of the model to address this excessive magnitude. We view our

model as a first step into understanding the sources of risk that explain both the time-series

and the cross-section of stock returns. Indeed, an important message of this paper is that we

cannot study one set of empirical facts independently of the other: any story that attempts

to quantitatively explain the cross-section of stock returns must also be consistent with the

time series properties of the market portfolios. Otherwise, the parametrization that is used to

obtain quantitative predictions at the cross-sectional level may be quite misleading.
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APPENDIX

The habit dynamics: If Xt = λ
∫ t

−∞ e−λ(τ−t)Cτ dτ we have dXt = λ (Ct − Xt) dt. Define then Gt =
f (Ct, Xt) = (Ct/ (Ct − Xt))

γ . We then have

fC = −γGt

(
G

1
γ
t − 1

)
C−1

t

fCC =

{
γ (γ − 1)G

(
G

1
γ

t − 1

)2

+ 2γ

(
G

1
γ

t − 1

)
G

1
γ

+1

t

}
C−2

t

fX = γGt
1

(Ct − Xt)

where we used G
1
γ
t = Ct/ (Ct − Xt) and G

1
γ
t − 1 = Xt/ (Ct − Xt). Ito’s Lemma then yields

dGt =
{
µG (Gt) − σG (Gt) µc,1 (st)

}
dt − σG (Gt)σcdB1

t

where

µG (Gt) = γλGt +
1

2
γ (γ − 1) G

(
G

1
γ

t − 1

)2

σ2
c + γ

(
G

1
γ

t − 1

)
G

1
γ +1

t σ2
c − σG (Gt) µc (29)

σG (Gt) = γGt

(
G

1
γ
t − 1

)
(30)

Proof of Propositions
Our strategy to obtain prices and returns in our economy is standard. Given (2) , the stochastic discount

factor is given by
mt = e−ρt (Ct − Xt)

−γ = e−ρtC−γ
t Gt.

We use Ito’s Lemma and our assumptions on the dynamics of Ct and Gt = S−γ
t to obtain

dmt

mt
= −rf

t dt + σ′
mdBt,

where the first, and only non-zero, entry in the diffusion component vector, σm, is given by

σ1
m = − [γ + α (1 − λSγ

t )] σc. (31)

Then we exploit our assumptions on the dynamics of Ct, Gt = S−γ
t and si

t to solve for

P i
t = Et

[∫ ∞

t

(
mτ

mt

)
Di

τdτ

]
= Et

[∫ ∞

t

(
mτ

mt

)
si

τCτ dτ

]
(32)

in closed form. We then use (32) to compute returns and calculate the expected excess returns

Et

[
dRi

t

]
= −cov

(
dmt

mt
, dRi

)
= −σ′

mσi
R, (33)

where σi
R is the diffusion component associated with the returns of asset i.

Proof of Proposition 1. This is a corrollary to Proposition 2, and it is proved below.

Proof of Proposition 2. Part (a). Pricing Formula. The pricing formula is

P i
t = Et

[∫ ∞

t

e−ρ(τ−t) uc (Cτ , Xτ )

uc (Ct, Xt)
Di

τdτ

]
= Cγ

t G−1
t Et

[∫ ∞

t

e−ρ(τ−t)C1−γ
τ Gτsi

τ dτ

]
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We divide the proof in two parts: First, we obtain a general pricing formula which depends on the state variables.

Second, we obtain analytical solutions for the coefficients of these state variables.
Part a.1: A pricing formula. For this proof, it is convenient to rewrite the share processes in its general

form as

dsi
t =

n∑
j=1

sj
tλjidt + si

t

(
ν i−s′tν

)
dBt

where λji = φsi, for i �= j, and λii = −∑
j �=i λij = −φ

∑
j �=i sj = −φ

(
1 − si

)
= φsi − φ. Define the two

quantities
qi

t = C1−γ
t Gts

i
t and pi

t = C1−γ
t si

t

and the 2n × 1 vector yt = [qt,pt]. An application of Ito’s Lemma and tedious algebra shows

dyt = Λ̂yytdt + Σy,tdBt

where

Λ̂y =

[
Λ′ + Θ̂q Θ̂qp

0 Λ′ + Θ̂p

]
,

Λ =φ (s × 1′
n) , Θ̂i for i = q, p, qp are diagonal matrices with ii element given by

θ̂
i

q = (1 − γ) µc −
1

2
γ (1 − γ) σ2

c − k − (1 − γ)σ2
cα + (1 − γ) θi − αθi

θ̂
i

qp = kG + (1 − γ) σ2
cαλ + αλθi

θ̂
i

p = (1 − γ) µc −
1

2
γ (1 − γ) σ2

c + (1 − γ) θi

and Σy,t is an appropriate matrix. Assuming existence of the expectation in the pricing function, we can apply
Fubini’s theorem

P i
t = Cγ

t G−1
t Et

[∫ ∞

t

e−ρ(τ−t)yi
τdτ

]
= Cγ

t G−1
t

∫ ∞

t

Et

[
e−ρ(τ−t)yi

τ

]
dτ

The expectation in the integral can be computed as follows: Let ω be the vector of eigenvalues of Λ̂y,
[
eω(τ−t)

]
the diagonal matrix with ii element given by eωi(τ−t) and U the matrix of associated eigenvectors. Then, we
can write

Et

[
e−ρ(τ−t)yi

τ

]
= ιi · U·

[
eω(τ−t)

]
· U−1 · yte

−ρ(τ−t) =

2n∑
k=1

2n∑
j=1

uike(ωk−ρ)(τ−t) [u−1
jk

]
yjt

where
[
u−1

jk

]
is the jk element of U−1. Substituting into the expectation, and taking the integral, we find

∫ ∞

t

Et

[
e−ρ(τ−t)yi

τ

]
dτ =

2n∑
k=1

2n∑
j=1

uik

[
u−1

jk

]
ρ − ωk

yjt =
2n∑

j=1

bi
jyjt

where

bi
j =

2n∑
k=1

uik

[
u−1

kj

]
ρ − ωk

Below, we obtain these coefficients in closed form. Note, however, that by substituting yjt = qjt for j = 1, ..., n
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and yjt = pj−n,t for j = n + 1, .., n we obtain

P i
t = Cγ

t G−1
t Et

[∫ ∞

t

e−ρ(τ−t)yi
τdτ

]
= Cγ

t G−1
t

(
n∑

j=1

bi
1jqj,t +

n∑
j=1

bi
2jpj,t

)

= Cγ
t G−1

t

(
C1−γ

t Gt

n∑
j=1

bi
1js

j
t + C1−γ

t

n∑
j=1

bi
2js

j
t

)

= Ct

n∑
j=1

(
bi
1j + bi

2jS
γ
t

)
sj

t

Part a.2: Analytical formulas for bi
1,j and bi

2,j . We finally obtain a closed form formula for bi
j ’s, and

thus, of bi
1j and bi

2j . First, note that we can write

bi
j = ιi · U· (Ω−1) · U−1ιj

where Ω is the matrix with the eigevalues of Iρ−Λ̂y on the principal diagonal. But then, since U· (Ω−1
) ·U−1 =(

Iρ − Λ̂y

)−1

we have that for i = 1, ..., n and j = 1, ...,2n

bi
j = ιi ·

(
Iρ − Λ̂y

)−1 · ιj

We now explicitly compute these quantities. Define B =
(
Iρ − Λ̂y

)−1

, so that

B
(
Iρ−Λ̂y

)
= I

Making this explicit, for every i = 1, .., n (row) we have

2n∑
j=1

bi
j

(
Iρ−Λ̂y

)
j

= ιi

where
(
Iρ−Λ̂y

)
j

is the jth row of
(
Iρ−Λ̂y

)
and ιi is a (1 × 2n) row vector with 1 in ith position, and zero

elsewhere. For every i, we have a system of equations that pins down bi
j for all j = 1, ..,2n. We now solve

this system of equation. To limit the number of indices involved, we do this exercise for i = 1. Of course, the
methodology works for every i. For i = 1 we have then the following two systems of equations. The first holds
for j = 1, .., n and the second for the remaining n rows:

b11

(
ρ − φs1 + φ − θ̂

1

q

)
−

n∑
j=2

b1jφsj = 1 (row 1)

−b11φs1 + b12

(
ρ − φs2 + φ − θ̂

2

q

)
−

n∑
j=3

b1jφsj = 0 (row 2)

...

−
n−1∑
j=1

b1j φsj + b1n

(
ρ − φsn + φ − θ̂

n

q

)
= 0 (row n)
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−b11θ
1
qp + b1n+1

(
ρ − φs1 + φ − θ̂

1

p

)
−

n∑
j=2

b1n+jφsj = 0 (row n + 1)

−b12θ
2
qp − b1n+1φs1 + b1n+2

(
ρ − φs2 + φ − θ̂

2

p

)
−

n∑
j=3

b1n+jφsj = 0 (row n + 2)

...

−b1nθn
qp −

n−1∑
j=1

b1n+jφsj + b12n

(
ρ − φsn + φ − θ̂

n

p

)
= 0 (row 2n)

The first set of equation is readily solved. In fact, we can write

b11 = α1
q + α1

q × φ
n∑

j=1

b1js
j

b1k = αk
q × φ

n∑
j=1

b1j sj for k = 2, .., n

where

αi
q =

1(
ρ + φ − θ̂

i

q

)
Multiply both sides of each row k = 1, ..., n by sk and sum across rows to obtain

n∑
j=1

b1j sj = s1α1
q +

n∑
j=1

sj
tα

j
q

(
φ

n∑
j=1

b1j sj

)

Define the constants

Hq =
n∑

j=1

sjαj
q and Kq =

1

1 − φHq

Solving for
∑n

j=1 b1j sj we obtain the quantity

n∑
j=1

b1j sj = s1α1
qKq

Thus

b11 = α1
q + α1

q × φs1α1
qKq (34)

b1k = αk
q × φs1α1

qKq for k = 2, .., n (35)

Hence, the first term in the P/C ratio obtained earlier, i.e.

P 1
t

Ct
=

n∑
j=1

b11js
j
t +

n∑
j=1

b12js
j
tS

γ
t

is given by
n∑

j=1

b11js
j
t = α1

qs1
t + φs1α1

qKq

n∑
j=1

αk
qsj

t

where recall that for j = 1, ..., n we defined earlier b11j = b1j .
We now turn to the second system of equations, which for k = 1, ..., n can be rewritten as

b1n+k = αk
pφ

n∑
j=1

b1n+js
j + b1kαk

p θ̂
k

qp
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with

αk
p =

1(
ρ + φ − θ̂

k

p

)
and b1k given in (34) - (35). Substitute b1k first, to obtain

b1n+1 = α1
pφ

n∑
j=1

b1n+js
j + α1

pq + α1
pq × φs1α1

qKq

b1n+k = αk
pφ

n∑
j=1

b1n+js
j + αk

pqφs1α1
qKq

where
αk

pq = αk
p θ̂

k

qpαk
q

As before, for k = 1, .., n multiply both sides by sk and sum across k’s to obtain

n∑
k=1

skb1n+k = α1
pqs1 +

(
n∑

k=1

skαk
p

)
φ

n∑
j=1

b1n+j sj +

(
n∑

k=1

skαk
pq

)
φs1α1

qKq

Let

Hp =

(
n∑

k=1

skαk
p

)
and solve for

∑n
k=1 skb1n+k to find

n∑
k=1

skb1n+k = α1
pqs

1Kp +

(
n∑

k=1

skαk
pq

)
φs1α1

qKqKp

where

Kp =
1

(1 − φHp)

Substitute back into b1n+1 and b1n+k and find

b1n+1 = α1
pq + s1g1

1

b1n+k = s1g1
k

where for k = 1, ..., n

g1
k = α1

qφ

{
αk

p

(
α1

pθ1
pqKp +

(
n∑

j=1

sjαj
pq

)
φKqKp

)
+ αk

pqKq

}

Thus, the second part in the price-consumption ratio is given by

n∑
j=1

b12js
j
t = α1

pqs1
t + s1

n∑
k=1

g1
ksk

t

Generalizing the above derivations for every i = 1, ...,n, we can finally write

P i
t

Di
t

= αi
0 + αi

1S
γ
t + αi

2 (st)

(
si

si
t

)
+ αi

3 (st)

(
si

si
t

)
Sγ

t
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where

αi
0 = αi

q =
1(

ρ + φ − θ̂
i

q

)
αi

1 = αi
pq =

θ̂
i

pq(
ρ + φ − θ̂

i

q

)(
ρ + φ − θ̂

i

p

)
αi

2 (st) = φαi
qKq

(
s′t αq

)
αi

3 (st) = s′t gi

where
gi

k = αi
qφ

{
αk

p

(
αi

pθ̂
i

pqKp +
(
s′ αpq

)
φKqKp

)
+ αk

pqKq

}
and

θ̂
i

q = (1 − γ)µc − (1 − γ)

(
1

2
γ + α

)
σ2

c − k + (1 − γ − α) θi

θ̂
i

qp = kG + (1− γ)σ2
cαλ + αλθi

θ̂
i

p = (1 − γ)µc −
1

2
γ (1 − γ) σ2

c + (1 − γ) θi

Proposition 3: The diffusion component of stock returns is given by

σi
R,t =

Sγ
t α (1 − λSγ

t )

f i
1

(
si

si
t
, st

)
+ Sγ

t

σc +

⎛⎝ 1

1 + f i
2 (St, st)

(
si

si
t

) + ηi
it

⎞⎠σi
D (st) +

∑
j �=i

ηi
jtσ

j
D (st) (36)

In fact, we can write

P i
t = Ct

(
αi

0s
i
t + αi

2 (st) si +
(
αi

1s
i
t + αi

3 (st) si
)

Sγ
t

)
Define by S̃t = Sγ

t = G−1
t . Using Ito’s Lemma, it is immediate to see that the diffusion of dS̃ is given by

σS (Sγ) = Sγ
t α (1− λSγ

t )σc

Thus, an application of Ito’s Lemma shows that the diffusion term of P i
t is given by

σi
R,t = σc +

(
αi

1s
i
t + αi

3 (st) si
)
Sγ

t α (1 − λSγ
t )(

αi
0s

i
t + αi

2 (st) si +
(
αi

1s
i
t + αi

3 (st) si
)
Sγ

t

)σc

+
n∑

k=1

{ (
αi

0 + αi
1S

γ
t

)
1{i} + φαi

qKqα
k
q + gi

k(
αi

0s
i
t + αi

2 (st) si +
(
αi

1s
i
t + αi

3 (st) si
)
Sγ

t

)} sk
t σk (st)

where 1{i} is the indicator function for k = i. Since σi
D (st) = σc + σi (st), and since by construction

n∑
k=1

{ (
αi

0 + αi
1S

γ
t

)
1{k=i} + φαi

qKqα
k
q + gi

k(
αi

0s
i
t + αi

2 (st) si +
(
αi

1s
i
t + αi

3 (st) si
)
Sγ

t

)} sk
t = 1

we can rewrite

σi
R,t =

Sγ
t α (1 − λSγ

t )

f i
1

(
si/si

t; st

)
+ Sγ

t

σc +

n∑
k=1

{ (
αi

0 + αi
1S

γ
t

)
1{k=1} + φαi

qKqα
k
q + gi

k(
αi

0s
i
t + αi

2 (st) si +
(
αi

1s
i
t + αi

3 (st) si
)
Sγ

t

)} sk
t σk

D (st)

=
Sγ

t α (1 − λSγ
t )

f i
1

(
si/si

t; st

)
+ Sγ

t

σc +

⎧⎨⎩ 1

1 + f2 (S; st)
(

si

si
t

) + ηi
i,t

⎫⎬⎭ σi
D (st) +

∑
k �=i

ηi
k,tσ

k
D (st)
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where

f i
1

(
si/si

t; st

)
=

αi
0 + αi

2 (st)
(
si/si

t

)
αi

1 + αi
3 (st)

(
si/si

t

)
f2 (S; st) =

αi
2 (st) + αi

3 (st)Sγ
t

αi
0 + αi

1S
γ
t

and

ηi
k,t =

(
φαi

qKqα
k
q + gi

k

)
sk

t(
αi

0s
i
t + αi

2 (st) si +
(
αi

1s
i
t + αi

3 (st) si
)
Sγ

t

)
Note that also that

f ′
1 < 0 if and only if

αi
2 (s)

αi
3 (s)

<
αi

0

αi
1

=
1

αi
pθ̂pq

Q.E.D.

Part (b) of Proposition 3: The Expected Return
The expected return is obtained immediately from σR,t by using the formula

Et

[
dRi

t

]
= −Covt

(
dRi

t,
dm

mt

)

Q.E.D.

Proof of Proposition 1: (a) The price consumption ratio of the total wealth portfolio can be obtained
by simply adding the prices of individual securities. In particular, we find

αTW
0 (st) =

n∑
i=1

αi
qs

i
t +

n∑
i=1

φsiαi
qKq

n∑
j=1

αk
qsj

t =
(
1 + φKqs

′ αq

)
α′

q st

αTW
1 (st) =

n∑
i=1

αi
pqs

i
t +

n∑
i=1

φsi
n∑

k=1

{
αk

p

(
αi

pqKp + sαpqφαi
qKqKp

)
+ αk

pqα
i
qKq

}
sk

t

Algebra shows

αTW
0 (st) =

1

1 − φHq
α′

q st

αTW
1 (st) =

1

1 − φHq
((αpst) Kpφsαpq + αpqst)

Part (b). An application of Ito’s Lemma to P TW
t = Ct

(
αTW

0 (st) + αTW
1 (st) Sγ

t

)
implies that the diffusion part

of the TW portfolios is given by

σTW
P,t = σc +

αTW
1 (st)

αTW
0 (st) + Sγ

t × αTW
1 (st)

Sγ
t α (1 − λSγ

t )σc

+
αq + Sγ

t (Kpφsαpqαp + αpq)

α′
q st + Sγ

t × ((αpst) Kpφsαpq + αpqst)
I (st) σ (st)

= σc +
Sγ

t α (1 − λSγ
t )

fTW
1 (st) + Sγ

t

σc +

n∑
j=1

{
αj

q + Sγ
t

(
Kpφsαpqα

j
p + αj

pq

)}
sj

t∑n
k=1

{
αk

q + Sγ
t × (

Kpφsαpqαk
p + αk

pq

)}
sk

t

(
νj − s′ · ν

)
=

Sγ
t α (1 − λSγ

t )

fTW
1 (st) + Sγ

t

σc +
n∑

j=1

wTW
jt σD (st)

with

fTW
1 (st) =

αTW
0 (st)

αTW
1 (st)
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and where

wTW
jt =

{
αj

q + Sγ
t

(
Kpφsαpqα

j
p + αj

pq

)}
sj

t∑n
k=1

{
αk

q + Sγ
t × (

Kpφsαpqαk
p + αk

pq

)}
sk

t

are weights such that
∑

j wTW
jt = 1. Given the form of the stochastic discount factor, we obtain

Et

[
dRTW

t

]
= −Covt

(
dRTW

t ,
dmt

mt

)
= (γ + α (1 − λSγ))

{
Sγ

t α (1 − λSγ
t )

fTW
1 (st) + Sγ

t

σc +

n∑
j=1

wTW
jt σjc

CF,t

}

Q.E.D.
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Table I
Basic moments in empirical data: 1948-2001

Panel A: Summary statistics for the market portfolio

R
M

vol(RM ) rf vol(rf )

7.71% 16.25% 1.44% 3.08%

Panel B: Predictability regressions

Panel B-1: Sample 1948-2001

Horizon 4 8 12 16
ln

(
D
P

)
.13 .2 .26 .35

t−stat. (2.13) (1.65) (1.34) (1.29)
R2 .09 .10 .11 .14

Panel B-2: Sample 1948-1995

4 8 12 16
.28 .48 .63 .78

(4.04) (4.00) (4.49) (5.41)
.19 .32 .43 .54

Panel C: The value premium
Growth Value

Portf. 1 2 3 4 5 6 7 8 9 10

R (%) 6.86 7.77 7.67 7.63 8.53 9.96 8.39 11.00 11.39 12.36

ME/BE 5.05 2.68 2.00 1.63 1.38 1.18 1.01 .86 .70 .45

P/D 43.47 31.38 26.87 24.65 22.65 21.62 20.64 19.95 20.00 21.77
Sharpe Ratio .352 .450 .452 .461 .555 .640 .522 .657 .644 .600

CAPM β 1.13 1.02 1.01 .95 .88 .89 .88 .91 .92 .98

Notes to Table I. Panel A: Summary statistics for the market portfolio. R
M

is the annualized
average excess returns of the market portfolio over the three month Treasury Bill. vol

(
RM

)
is

the annualized standard deviation of the returns on the market portfolio. rf is the average risk
free rate, as measured by three-month Treasury Bill rate, and vol(rf ) is its annualized standard
deviation. Panel B: Predictability quarterly regressions of excess returns at the 1, 2, 3, and
4 year horizon on the log of the price dividend ratio of the market portfolio. t−stat denotes
the Newey-West t− statistic where the number of lags is the double of the forecasting horizon.
Panel C: R is the annualized average excess returns of each of the decile portfolios, ME/BE
is the average market-to-book and P/D the average price dividend ratio. CAPM β is obtined
by running time series regressions of excess return on each of the ten decile portfolios sorted
on ME/BE on the market excess return, where ME is the market equity and BE is the book
value. Quarterly dividends, returns, market equity and other financial series are obtained from
the CRSP-COMPUSTAT database. The sample period is 1948-2001. The construction of the
BE/ME sorted portfolios follows the standard procedure of Fama and French (1992): Each year t
portfolios are sorted into 10 BE/ME sorted portfolios using book-to-market ratios for year t − 1.
Returns on each of these portfolios are calculated from July of year t to June of year t + 1.
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Table II
Model parameters used in the simulation

Panel A: Consumption and preference parameters

µc σc γ ρ γ/S min{γ/St} α k

.02 .015 1.5 .072 48 27.75 77 .13

Panel B: Share process parameter in the base line model

n θCF si φ ν

200 .00345 .005 .07 0.55

Notes to Table II. Panel A: µc is the annual average growth rate of the consumption process, σc

is the standard deviation of consumption growth, γ is the coefficient controlling the local curvature
of the utility function, ρ is the subjective discount rate, G, λ, α and k are the parameters controlling
the dynamics of the process Gt = S−γ

t , where St = (Ct −Xt)C
−1
t is the surplus consumption ratio

and the process for Gt is given by

dGt =
[
k
(
G − Gt

) − α (Gt − λ) µc,1 (st)
]
dt − α (Gt − λ) σcdB1

t . (37)

Panel B: The share process for i = 1, 2 · · · , n is

dsi
t = φ

(
si − si

t

)
+ si

tσ
i(st)dB

′
t

n = 200 is the number of assets in our artificial economy. θi
CF is the parameter controlling the

cash-flow risk. Each assets is assigned a value of θi
CF , which are distributed uniformly in the range

above. si is the fraction that each assets constributes to consumption in the steady state and φ is
the speed of mean reversion of the share process. Finally, σi(st) = ν i − s′tν where νi are vectors

with νi,0 = θi
CF /σc, νi,i =

√
ν2 − ν2

0,i, and the remaining entries equal to zero. The simulation

consists of 10,000 years of daily data.
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Table III
Basic moments in simulated data

Panel A: Summary statistics for the aggregate portfolio

R
M

vol(RM ) rf vol(rf )

4.35% 13.03% .69% 4.36%

Panel B: Predictability regressions

Horizon 4 8 12 16
ln

(
D
P

)
.25 .38 .43 .47

t−stat. (29.11) (34.68) (37.58) (39.46)
R2 (%) 5.74 7.82 7.57 7.06

Panel C: The value premium
Growth Value

Portf. 1 2 3 4 5 6 7 8 9 10

R (%) 3.07 3.58 4.37 4.77 5.27 5.45 5.84 6.00 6.43 8.23

ln (P/D) 6.38 5.07 4.613 4.35 4.12 3.90 3.68 3.44 3.15 2.68
Avge(θi

CF ) × 100 −.2858 −.1589 −.0665 −.0083 .0295 .0568 .0787 .0958 .1128 .1431
Sharpe Ratio .260 .271 .307 .313 .331 .328 .336 .330 .334 .366

CAPM β .84 .91 .98 1.05 1.10 1.13 1.16 1.20 1.22 1.26
CAPM fitt. ret. (%) 3.67 3.94 4.28 4.55 4.78 4.91 5.05 5.21 5.29 5.50

Notes to Table III. Panel A: Summary statistics for the market portfolio. R
M

is the annualized
average excess returns of the market portfolio over the three month Treasury Bill. vol

(
RM

)
is the

annualized standard deviation of the returns on the market portfolio. rf is the average risk free rate
and vol(rf ) is its annualized standard deviation. Panel B: Predictability quarterly regressions of
excess returns at the 1, 2, 3, and 4 year horizon on the log of the price dividend ratio of the market
portfolio. t−stat denotes the Newey-West t−statistic where the number of lags is the double of
the forecasting horizon. Panel C: Annualized average returns R, average log price-dividend ratio,
ln (P/D), and CAPM β. CAPM fitted returns are the returns resulting from multiplying the
CAPM betas from the previous line by the average excess return of the market portfolio reported
in Panel A. Avge(θi

CF ) × 100 refers to the average θi
CF (multiplied by 100) for the assets in the

corresponding decile portfolio.

46



.

Table IV
The dynamics of the value premium

Panel A: Annualized average excess returns (%) in empirical data

Market-to-book of market portfolio < c

c 1 10 10-1 R
M

15% 13.18 23.57 10.38 15.40
20% 10.57 21.70 11.14 13.41
25% 5.51 19.16 13.64 9.89
30% 6.97 19.49 12.51 10.50
35% 8.19 18.65 10.45 11.14

Market-to-book of market portfolio > c

c 1 10 10-1 R
M

15% 5.73 10.35 4.62 6.34
20% 5.95 10.06 4.11 6.31
25% 7.31 10.11 2.80 6.99
30% 6.82 9.32 2.50 6.62
35% 6.15 8.98 2.83 5.87

Panel B: Annualized average excess returns (%) in simulated data

Price-dividend of market portfolio < c

c 1 10 10-1 R
M

15% 7.37 18.27 10.90 10.43
20% 6.56 16.07 9.51 9.22
25% 5.96 14.60 8.64 8.36
30% 5.50 13.46 7.96 7.67
35% 5.13 12.60 7.47 7.18

Price-dividend of market portfolio > c

c 1 10 10-1 R
M

15% 2.30 6.46 4.15 3.27
20% 2.19 6.26 4.07 3.13
25% 2.10 6.10 4.00 3.01
30% 2.02 5.98 3.96 2.92
35% 1.95 5.87 3.92 2.82

Notes to Table IV. Panel A: Annualized average excess returns in empirical data of the growth
(portfolio 1) and value (portfolio 10) portfolios depending on whether the market-to-book of the
market portfolio is below or above the c percentile of its empirical distribution. Panel B: Annu-
alized average excess returns in simulated data of the growth (portfolio 1) and value (portfolio
10) portfolios depending on whether the simulated price-dividend ratio of the market portfolio is

below or above the c percentile of its distribution in simulated data. R
M

is the average excess
return on the market portfolio in empirical data (Panel A) and simulated data (Panel B).
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Table V
Asset pricing models: Time series regressions (quarterly)

Panel A: Time series regression Rp
t = α + βMRM

t + εp
t for p = 1, 2, · · · , 10

Panel A-2: Empirical data
Growth Value

Portf. 1 2 3 4 5 6 7 8 9 10
α −.46 −.03 −.02 .07 .44 .78 .40 .99 1.07 1.20

t(α) (−2.00) (−.18) (−.14) (.32) (2.07) (3.73) (1.51) (3.73) (3.32) (2.65)

βM 1.13 1.02 1.01 .95 .88 .89 .88 .91 .92 .98

t
(
βM

)
(39.80) (43.68) (42.56) (30.32) (27.24) (27.27) (21.38) (21.33) (17.56) (14.16)

Panel A-2: Simulated data
Growth Value

Portf. 1 2 3 4 5 6 7 8 9 10
α −.15 −.09 .02 .06 .12 .13 .20 .20 .29 .68

t(α) (−14.25) (−5.95) (1.52) (3.27) (6.99) (6.87) (9.12) (8.35) (10.32) (17.56 )

βM .84 .91 .98 1.05 1.10 1.13 1.16 1.20 1.22 1.26

Panel B: Time series regression Rp
t = α + βMRM

t + βHMLRHML
t + εp

t for p = 1, 2, · · · , 10

Panel B-1: Empirical data
Growth Value

Portf. 1 2 3 4 5 6 7 8 9 10
α .20 .17 .02 −.12 .19 .28 −.40 .01 −.08 −.36

t(α) (1.13) (1.05) (.14) (−.61) (.87) (1.58) (−2.15) (.09) (−.43) (−1.23)

βM 1.04 .99 1.00 .98 .91 .96 .99 1.05 1.09 1.20

t
(
βM

)
(43.68) (51.25) (46.13) (35.28) (30.25) (38.66) (39.90) (48.04) (39.61) (29.85)

βHML −.42 −.12 −.03 .12 .16 .31 .50 .61 .72 .97

t
(
βHML

)
(−12.13) (−2.37) (−.68) (1.88) (3.62) (8.85) (10.35) (15.52) (21.04) (14.14)

Panel B-2: Simulated data
Growth Value

Portf. 1 2 3 4 5 6 7 8 9 10
α −.01 .02 .07 .06 .09 .10 .11 .03 .07 .13

t(α) (−1.15) (1.24) (4.50) (3.44) (5.26) (4.85) (5.38) (1.57) (2.97) (5.38)

βM .93 .97 1.01 1.05 1.08 1.11 1.11 1.10 1.09 .93

βHML −.28 −.21 −.09 −.01 .06 .08 .16 .31 .41 1.07

Notes to Table V. Panel A: Time series regressions in empirical (Panel A-1) and simulated
(Panel A-2) data of returns on each of the book-to-market sorted portfolios on the market excess
return. Simulation parameters are contained in Table II. α denotes the intercept of the time
series regression and βM the regression coefficient. t(α) and t(βM) denote the heteroskedasticity
corrected t−statistic. Panel B: Time series regressions in empirical (Panel B-1) and simulated
(Panel B-2) data of returns on each of the book-to-market sorted portfolios on the market excess
return and the returns on HML, where βHML is the regression coeffcient on HML. The t−statistics
in simulated data have been omitted as they are all well above 100 for the case of the regression
coefficients, βM and βHML.

48



Table VI
Asset pricing models: Fama-MacBeth regressions (quarterly)

Panel A: Empirical data

Const. Mkt. SMB HML Mkt×log(D/P) Mkt×cay Adj. R2

1. 4.69 −2.52 11%
(3.21) (−1.65)

2. .36 1.63 −.31 1.05 80%
(.23) (.99) (−.31) (2.16)

3. 2.72 −.87 1.71 83%
(2.24) (−.65) (2.46)

4. 3.06 −1.37 .06 81%
(2.48) (−1.01) (2.34)

Panel B: Simulated data

Const. Mkt. HML Mkt×log(D/P) Adj. R2

5. −1.45 2.56 91%
(−19.93) (32.45)

6. −.17 1.31 .94 99%
(−1.64) (11.85) (28.69)

7. .63 .38 1.16 98%
(3.56) (2.00) (10.11)

Notes to Table VI. Panel A: Fama-MacBeth regressions in empirical data. Line 1, CAPM
regressions where Mkt. represents the average excess return of the market portfolio. Line 2, Fama
and French (1993) model, where SMB is the return on “small minus big” and HML is the return
on “high minus low”. Line 3, conditional CAPM regression where the dividend yield, log(D/P),
of the market portfolio is used as a conditioning variable. Line 4 conditional CAPM regression
where the variable cay of Lettau and Ludvigson (2001) is used as a conditioning variable. Panel
B: Fama-MacBeth regressions in simulated data. t−statistic in parenthesis and Adj. R2 is the
adjusted R2.
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Table VII
Cash-flow betas: Cohen, Polk, and Vuolteenaho (2003)

Cash-flow definition Growth Value
1 2 3 4 5 6 7 8 9 10∑4

j=0 ρjROEp
t+j,j+1 .72 .91 .94 .95 .96 .97 .98 1.12 1.28 1.51

std. err. (.52) (.31) (.12) (.25) (.14) (.12) (.14) (.25) (.32) (.29)

∑4
j=0 ρj Xp

t+j,j+1
ME

p
t+j−1,j

.35 .65 .92 1.17 1.26 1.63 1.93 2.97 4.15 11.26

std. err. (.31) (.31) (.17) (.16) (.28) (.69) (1.01) (2.26) (3.26) (10.76)

X
p
t+4,j+4−X

p
t−1,0

MEp
t−1,0

.21 .66 1.46 1.61 .24 1.83 2.74 5.50 2.38 2.64

std. err. (.19) (.08) (.52) (.28) (.61) (.60) (1.24) (2.69) (.60) (1.65)∑4
j=0 ρj∆dp

t+j,j+1 .79 .90 .96 1.03 1.34 1.44 1.14 1.44 1.39 1.28

std. err. (.19) (.13) (.10) (.13) (.28) (.46) (.31) (.88) (.77) (.91)

Notes to Table VII. This table reports the results of Cohen, Polk, and Vuolteenaho (2003, Table
II Panel B) for the following regressions with annual data for each of the ten decile portfolios sorted
on market-to-book,

4∑
j=0

ρjROEp
t+j,j+1 = βp

CF,0 + βp
CF,1

4∑
j=0

ρjROEM
t+j + εp

4

4∑
j=0

ρj Xp
t+j,j+1

MEp
t+j−1,j

= βp
CF,0 + βp

CF,1

4∑
j=0

ρj XM
t+j,j+1

MEM
t+j−1

+ εp
4

Xp
t+4,j+4 − Xp

t−1,0

MEp
t−1,0

= βp
CF,0 + βp

CF,1

(
XM

t+4 − XM
t−1

MEM
t−1

)
+ εp

4

4∑
j=0

ρj∆dp
t+j,j+1 = βp

CF,0 + βp
CF,1

4∑
j=0

ρj∆dM
t+j + εp

4. (38)

ROE denotes the ratio of clean surplus earning (Xt = BEt − BEt−1 + Dt where BEt−1 is the
beginning of the period book equity and Dt are the dividends from CRSP) to BEt−1. MEt−1

denotes the market value at the beginning of the period and ∆dp
t+j,j+1 is the log of dividend

growth of decile portfolio p. The first subscript refers to the year of observation and the second to
the number of years after the portfolio formation in the sorting procedure. Similar quantities are
defined for the market portfolio. GMM standard errors computed using the Newey-West formula
with four lags and leads are reported in parenthesis. ρ is a constant, linked to one minus the
dividend yield, set at .95.
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Table VIII
Cash-flow risk, the market portfolio and the value premium

Cash-flow risk Market portfolio Predictability Value premium

ν θCF × 100 R
M

vol(RM ) rf vol
(
rf

)
b12 R2

12 b16 R2
16 10 − 1 CAPM 10 − 1

.25 .0 9.90 24.16 1.16 5.44 .76 23.1 .78 22.4 −2.44 −2.53
.1 9.69 23.62 1.12 5.32 .75 22.2 .77 21.6 −1.27 −1.42
.2 8.95 21.79 1.00 4.97 .72 18.9 .74 18.1 2.40 2.34
.3 7.02 17.22 .79 4.46 .58 9.6 .58 8.2 7.51 7.45

.345 3.97 10.23 .67 4.20 .38 4.4 .43 4.1 7.10 6.70

.40 .0 9.90 24.16 1.16 5.44 .76 23.1 .78 22.4 −3.22 −3.37
.1 9.69 23.63 1.12 5.33 .75 22.1 .77 21.4 −2.56 −2.77
.2 8.96 21.83 1.00 4.99 .71 18.6 .73 17.9 −.07 −.25
.3 7.06 17.37 .80 4.49 .58 9.8 .59 8.6 4.91 4.62

.345 4.09 11.14 .68 4.23 .46 7.0 .51 6.5 6.29 4.57

.55 .0 9.90 24.16 1.16 5.44 .76 23.1 .78 22.4 −3.67 −3.86
.1 9.70 23.66 1.13 5.34 .74 21.9 .76 21.2 −3.27 −3.48
.2 8.99 21.95 1.01 5.05 .70 18.2 .72 17.3 −1.49 −1.70
.3 7.15 17.85 .81 4.60 .58 10.1 .59 9.0 2.83 2.19

.345 4.35 13.03 .69 4.36 .43 7.6 .47 7.1 5.16 1.83

Notes to Table VIII. This table reports basic moments of the returns for three different values
of ν, which determines the maximum volatility of share process across assets, and the measure
of cash-flow risk, θCF ≥ 0, which determines the support on which the cash-flow risk parameters

of individual firms are uniformly distributed, θi
CF ∈ [−θCF , θCF ]. R

M
is the annualized average

excess returns of the market portfolio over the three month Treasury Bill. vol
(
RM

)
is the annual-

ized standard deviation of the returns on the market portfolio. rf is the average risk free rate and
vol(rf ) is its annualized standard deviation. All these numbers are in percentages. b12 and b16
are the regressions coefficients of the quarterly predictability regressions of excess returns on the
log of the price dividend ratio of the market portfolio for the three and four year horizons. R2

12

and R2
16 are the corresponding R2s. The t−stats are omitted but they are all well above standard

significance levels. 10-1 denotes the value premium, in percentages, defined as the difference be-
tween the average return on the value portfolio, portfolio 10, and the growth portfolio, portfolio
1. CAPM 10-1 is the fitted CAPM value premium, where the betas are calculated the standard

way in simulated data and the market premium is the corresponding R
M

in each line.
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Table IX
The properties of the cash-flow process

ν θCF × 100 [ρ, ρ] Avge
(
σi

D

)
β1

CF,1 β10
CF,1 Avge

(
σi

R

)
.25 0 [.04, .07] 24.88 1.04 .96 27.67

.1 [−.21, .32] 24.29 .04 1.89 27.33

.2 [−.48, .57] 22.44 −3.30 4.15 26.11

.3 [−.76, .81] 18.92 −8.14 6.70 22.88
.345 [−.89, .91] 16.39 −9.62 7.94 16.68

.40 0 [.02, .05] 40.04 1.09 .96 31.33
.1 [−.13, .20] 39.65 .43 1.49 31.02
.2 [−.29, .36] 38.50 −1.80 3.10 29.88
.3 [−.46, .52] 36.55 −6.37 5.22 26.66

.345 [−.53, .59] 35.40 −8.63 5.73 19.83

.55 0 [.01, .04] 56.20 1.17 .99 34.86
.1 [−.10, .15] 55.87 .69 1.28 34.55
.2 [−.21, .26] 54.96 −1.01 2.40 33.41
.3 [−.32, .37] 53.47 −4.79 4.28 30.10

.345 [−.37, .42] 52.60 −7.40 4.73 22.96

Notes to Table IX. For each value of ν and θCF the table reports several moments of the cash-
flow process in simulated data. [ρ, ρ] stands for the range of the correlation coefficients between

individual dividend growth and consumption growth; Avge
(
σi

D

)
stands for the average standard

deviation of dividend growth across the 200 individual assets in percentages. β1
CF,1 and β10

CF,1

correspond to the regression coefficients of the time series regression in simulated data

4∑
j=0

ρj∆dp
t+j,j+1 = βp

CF,0 + βp
CF,1

4∑
j=0

ρj∆dM
t+j + εp

4 for p = 1, 10

for the Growth (p = 1) and Value (p = 10) portfolios and should be compared to the coefficients
in the corresponding regression run by Cohen, Polk, and Vuolteenaho (2003) in empirical data
(see equation (38) in the Notes to Table V.) Avge

(
σi

R

)
stands for the average standard deviation

of returns across the 200 individual assets in percentages.
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Figure 1: The Cash Flow Component of Expected Return
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The top panel plots the steady-state cash flow component of individual assets’ expected
return against the unconditional cash flow risk parameter σi

CF = E
[
cov

(
dDi/Di, dC/C

)]
. For

each asset, relative share is assumed equal to one, si/si
t = 1, and suplus consumption ratio is

assumed equal to its steady state value St = S. The bottom panel reports the same quantities,
but under a random selecetion for relative shares si/si

t.



Figure 2: Expected Returns and Expected Dividend Growth

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055
(A) The discount risk component of expected returns

Expected dividend growth (sbar
i
 / s 

i
)

μDIS
C

High cash flow risk 

Low cash flow risk 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
(B) The cash flow risk component of expected returns

Expected dividend growth (sbar
i
 / s 

i
)

μCF

High cash flow risk 

Low cash flow risk 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
(C) Expected returns

Expected dividend growth (sbar
i
 / s 

i
)

E[ R
 ]

High cash flow risk 

Low cash flow risk 

The top panel plots the theoretical discount component of individual stock returns
plotted against the relative share si/si

t, which proxies for expected dividend growth. This
quantity is computed for various levels of the asset unconditional cash flow risk σi

CF =
E
[
cov

(
dDi/Di, dC/C

)]
. The middle panel plots the cash flow risk component of stock re-

turns, plotted against the relative share si/si
t, again for various levels of unconditional cash

flow risk. The bottom panel reports the total conditional expected return for individual assets.



Figure 3: Expected Returns and Surplus Consumption Ratio
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This figure shows the theoretical expected return for the market portfolio (dotted line),
a representative value stock (solid line), and a representative growth stock (dash dotted line),
plotted against values of the surplus consumption ration St. The vertical dotted line is the
median value of the surplus consumption ratio St. The representative value (growth) stock is
chosen with low (high) expected dividend growth and high (low) cash flow risk θCF .



Figure 4: The Cross-Section of Stock Returns in Simulated Data
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The top panel plots the average log price-dividend ratio (y-axis) of P/D sorted portfolios
versus their unconditional average return (x-axis) in artificial data, under the assumption
that assets differ cross-sectionally in their cash flow risk parameter θi

CF . Under the same
assumptions, the bottom left panel plots the “fitted” average return according to the CAPM,
i.e. E[ Returni ] = βi

CAPM E[ Returnmkt ], on the y-axis against the average return on the
x-axis.



Figure 5: The Cross-Section of Stock Returns with only Discount Risk Effects
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The top panel plots the average log price-dividend ratio (y-axis) of P/D sorted portfolios
versus their unconditional average return (x-axis) in artificial data, under the assumption that
assets have no cross-sectional differences in cash flow risk, σi

CF = σ
j
CF = σ2

c . Under the same
assumptions, the bottom panel plots the “fitted” average return according to the CAPM, i.e.
E[ Returni ] = βi

CAPM E[ Returnmkt ], on the y-axis against the average return on the x-axis.




