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1.  Introduction 

A somewhat longer version of the following question appeared on the finance field exam 

at Columbia in 1991:  Consider the excess return on a market index mt ftR R− .  How would you 

test the null hypothesis that mt ft t-1E[R R | I ] 0− =  by examining p sample moment conditions 

( )T t t mt ft t-1 t-1 t-1t
1
Tg g ;  g R R z ;  z I= = − ∈∑  for some conditioning information set It–1?  Suppose 

it is certain that mt ft t-1E[R R | I ] 0− = .  How would you interpret large values of the test statistic?1 

The answer is deceptively simple. The null hypothesis can be tested with the generalized 

method of moments (GMM) overidentifying restrictions test statistic 1 2
T T TTg S g (p)χ−′ →  where 

T t tt
1
TS g g′= ∑ ; see Hansen (1982).  Now if the null model t t-1E[g | I ] 0=  is a maintained 

hypothesis, rational expectations becomes the null hypothesis and the alternative is then that 

expectations were not rational. Even if Tg  reliably differed from zero in a statistical sense, there 

might be beliefs implicit in a rejection region that seem plausible given the historical record.  

This possibility of assessing the economic significance of statistical rejections makes the 

distorted beliefs alternative a natural one in rational expectations models.   

The distorted beliefs alternative arises when an econometrician specifies an economic 

model of the relations among a set of observables xt of the form 
0 0P t PE [g(x , )] 0θ = , where 

0Pθ  is 

an unknown parameter vector and P0 is the data generating process if expectations are rational 

and the model is correct.  The econometrician estimates P0 using minimum distance methods via 

P
ˆinf | P P |−  where |•| is a measure of the distance between the empirical distribution P̂  and P, 

which satisfies the a priori moment restrictions.  What is missing is the link between the 

econometrician’s estimate and other ex post beliefs that might seem plausible. 

                                                 
1 Unsurprisingly, nobody ever answers the questions I put on field exams. 
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This gap is closed by supposing the econometrician asks the following question:  what 

beliefs might a hypothetical expected utility maximizer have after looking at the same data?  The 

answer is not entirely straightforward because a semiparametric Bayesian would need to specify 

priors over the space of probability measures that satisfy P t PE [g(x , )] 0θ = .  The circumstances 

in which the archetype’s beliefs would converge to those of the econometrician can be quite 

delicate because a prior that places too little mass in the neighborhood of P0 or too much outside 

of such neighborhoods can lead to inconsistent posteriors.  Fortunately, there are weak sufficient 

conditions under which the archetype’s beliefs will converge to those of the econometrician.   

This paper is related to the extensive literature on empirical likelihood and related 

minimum divergence estimators; see Owen (2001) and Kitamura (2006) for recent surveys.  It is 

most closely related to Back and Brown (1992,1993), who discuss GMM estimation of 

probability distributions, and to Zellner (1994,1997), Kim (2002), Lazar (2003), and Schennach 

(2005), who discuss Bayesian inference in GMM settings.  However, the paper is almost 

orthogonal to the latter, in which probabilities are nuisance parameters and interest centers on 

inference for θ.  Here probability measures are not nuisance parameters to be profiled or 

integrated out but rather are the focus of the analysis.   

The paper is laid out as follows.  The next section describes the a posteriori beliefs of a 

hypothetical semiparametric Bayesian and discusses circumstances in which they will converge 

to the probability measure estimated by a GMM econometrician.  The penultimate section 

suggests some of the ways in which this insight can inform the interpretation of estimates, test 

statistics, and confidence regions in large samples.  A brief conclusion rounds out the paper. 

2.  A Portrait of a Semiparametric Bayesian 

This section constructs a semiparametric Bayesian archetype – one who believes in a 
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model comprised of moment conditions with otherwise general preferences and constraints – 

with a view to finding weak sufficient conditions under which posterior beliefs converge to the 

corresponding probability model estimated by a GMM econometrician.  After setting the stage in 

Section 2A, Section 2B shows that the archetype will want beliefs that converge weakly and why 

convergence can obtain with relatively unrestricted priors in an iid setting.  Section 2C proves 

that convergence still obtains on the subspace of discrete measures and 2D discusses the 

corresponding subspace for the GMM econometrician, which differs only in that each discrete 

approximation satisfies the moment conditions.  This seemingly trivial modification results in a 

very simple structure that provides insight into the distorted beliefs alternative. 

A. Preliminaries 

 To fix the setting, let x be a random variable taking values on a sample space d⊆ \X , let 

XB  be the Borel σ-algebra of X , and let q
jg(x, ) {g : Θ   Θ , j p}θ θ= ∈ × → ∀ ∈ ⊂ ≤\ \F X , 

where F  is the space of all bounded real-valued uniformly continuous functions.  Let θP  be a 

nonempty set of probability measures P on ( , )XX B  that satisfy P PE [g(x, )] 0θ = , where 

( )P Prank E [g (x, )] pθ θ =  and P t PE [g(x , )] 0θ θ θ= ⇒ =  since θ can differ across θP .  Since X  is 

a complete separable metric space, θP  is metrizable and can be equipped with its Borel 

σ-algebra θP
B ; see Theorem 6.2 of Parthasarathy (1967).  Finally, let P0 denote the measure 

governing the realizations of x and 
0Pθ  its associated parameter value.2  To avoid the notational 

clutter associated with atoms and P-continuity sets, each P θ∈P  is taken to be dominated by a 

                                                 
2 Some Bayesians prefer to think of P0 as being drawn randomly from Pθ .  Alternatively, one can view the analysis 
as conditional on P0 being true under the null with the understanding that there can be a separate modeling exercise 
under the alternative hypothesis.  On this interpretation, the semiparametric Bayesian would possess priors over this 
model class and assign the remaining prior probability to all remaining model classes.  This Bayesian would view P0 
as the measure that minimizes the Kullback-Leibler divergence between it and the truth under the alternative. 
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σ-finite measure μ with density given by the Radon-Nikodym derivative p = dP/dμ.  

B.  On the Beliefs of a Semiparametric Bayesian 

 The hypothetical semiparametric Bayesian is taken to maximize expected utility (or to 

minimize expected expenditure or cost for a given level of utility or production) taking account 

of the uncertainty in both the random variables that impinge on this maximum problem and the 

probability law generating them.  Many such problems can be cast in the following form: 

 A1:  The archetype chooses actions ka∈ ⊆ \A  to maximize the conditional expectation 

of a bounded utility function V :  { }× → ∪ −∞\X A , where V is upper semicontinuous for 

almost all x∈X , based on the information in the sub-σ-algebra ⊂ XBF .   

A2:  The archetype formulates a prior Π(P)  which satisfies Π(dP) 1
θ

=∫P  where the 

propriety of the prior ensures that integrals over θP  converge.  

In these circumstances, the Bayesian archetype will solve the maximum problem: 

P
a a
sup E [V(x,a) | ] sup V(x,a)P(dx | ) V(x,a) P(dx | )Π(dP | )

θ
∈ ∈

= =∫ ∫ ∫X X PA A
F F F F  (1) 

where Π(P | )F  is the posterior probability that P = P0 and P(dx | )F  is the predictive 

distribution for the next realization of x.3 

 Something definitive can be said about predictive and posterior distribution asymptotics 

under two additional assumptions, one about the measures in θP  and one about priors over θP . 

A3:  Each iid 0
tx ~ P  and there is a random sample XT = {x1, x2,…, xT} with T

T X=F .4 

Given A3, the predictive distribution given XT is given by: 
                                                 
3 As is readily apparent, additional random variables my∈ ⊆ \Y  can impinge on the stochastic program as long as 
they can be integrated out.  This would be the case if x is taken to be weakly exogenous with respect to y in the 
language of Engle et al. (1983) and if the prior distribution is constructed to insure that the conditional distributions 
P(y|x,F) are conditionally independent of the distributions P(x|F) in θP  both a priori and a posteriori. 
4 T

T X=F  can be replaced with T
TX ∈ F , which would make T T

T 1 T 1 TP(x | X ) E[P(x | ) | X ]+ += F . 
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( )
T

T 1T T
T 1 T 1 T

T 1 tt T

tt T

P(x )P(X )Π(dP)
P x X P(x )Π(P | X )

P(X )Π(dP)
P(x ) p(x )Π(dP)

p(x )Π(dP)

θ

θ

θ

θ

θ

+

+ +

+ ≤

≤

= =

=

∫
∫ ∫

∏∫
∏∫

P

P
P

P

P

�

 (2) 

where independence is only used in the passage from the first line to the second.5 

A4.  (Schwartz (1965)):  The prior of the archetype satisfies 0Π K (P ) 0ε ε⎡ ⎤∀ >⎣ ⎦  where 

{ }K (P) Q :  pln(p / q)dε μ ε= <∫ .6 

Note that the archetype’s prior is defined over θP , not over θ and a nuisance parameter 

that defines the measures compatible with the moment conditions for each θ.  In contrast to most 

semiparametric settings where interest centers on θ and not on nuisance parameters like 

probabilities, the archetype is interested in the model only for forecasting and, hence, would 

naturally form priors over probability measures, not parameter values.7 

A1 – A4 suffice for weak convergence of the posterior and predictive distributions for P. 

Theorem 1 (Theorem 6.1 of Schwartz (1965) and Theorem 4.4.2 of Ghosh and 

Ramamoorthi (2003):  Let U be any weak neighborhood of P0 and let cU \ Uθ= P . Under 

assumptions A1 – A4, c T 0Π(U | X ) 0 a.s. P→ . 

The idea of the proof is as follows.  The posterior probability that P is in Uc is given by: 
                                                 
5 This serves to make it clear that there is nothing in the Bayesian calculus that makes it difficult to accommodate 
heterogeneity and dependence.  The difficulty lies in the curse of dimensionality, the need to replace p(xt) with 
p(xt|Ft-1) throughout.  A formal way to handle heterogeneity and dependence is to rewrite P(XT) as: 

 
T

T T
t tt T t T

tt T

P(X )P(X ) p(x ) Λ(X ) p(x )
p(x ) ≤ ≤

≤

= ≡∏ ∏∏
 

where TΛ(X )  is the likelihood ratio statistic for the hypothesis that iid
tx ~ P .  Heterogeneity and dependence can be 

integrated out if Λ( )•  is distributed independently of p(•) both a priori and a posteriori.  The elucidation of the 
circumstances in which Pθ  has the required structure is beyond the scope of this paper. 
6 Kε(P) is termed a Kullback-Leibler neighborhood of P and A4 is taken to mean that P0 is in the Kullback-Leibler 
support of the prior. 
7In addition, priors over probability measures are invariant with respect to reparameterizations of the form f ( )φ θ= .  
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( ) c tt Tc T U

tt T

p(x )Π(dP)
Π P U X

p(x )Π(dP)
θ

≤

≤

∈ =
∏∫
∏∫P

 (3) 

The denominator can be shown to go to infinity when A4 holds and the numerator can be shown 

to converge to zero at an exponential rate because the likelihood ratio statistic for testing the null 

P = P0 against the alternative hypothesis that P∈Uc is uniformly consistent. 

Theorem 2 (Proposition 4.2.1 of Ghosh and Ramamoorthi (2003)):  Under the conditions 

of Theorem 1, T 0
T 1 T 1P(x | X ) P (x )+ +⇒  a.s. P0, where ⇒  denotes weak convergence. 

The essence of the proof is that ( ) ( )T 0 0 TPΠ P X Π(dP) P P P Π P X Π(dP)
θ θ

− ≤ −∫ ∫P P
 

by Jensen’s inequality and the right hand side converges to zero. 

How is weak convergence of the predictive distribution relevant to the Bayesian 

archetype?  A partial answer is given by the following theorem. 

Theorem 3 (Propositions 2.6–2.14 of Berger and Salinetti (1995); Theorem 1 of Zervos 

(1999)):  Suppose that V satisfies A1 and let PN be any sequence for which 0
NP P⇒ .  Then: 

0
N

a a
sup V(x,a)P (dx) sup V(x,a)P (dx) a.s.
∈ ∈

→∫ ∫X XA A
 (4) 

Theorem 2 of Zervos (1999) obtains this result under less restrictive conditions than A1. 

Theorem 3 suggests that the relevance of the weak convergence criterion depends on the 

use to which the predictive distribution is being put.  If the purpose is to learn P0 with high 

posterior probability, weak convergence is too weak:  distributions in weak neighborhoods of P0 

can look quite different from it.  Dramatic examples can be found in Freedman (1963, 1965), 

Freedman and Diaconis (1983, 1986a,b), and Stinchcombe (2004).8  Measures in θP  that are 

                                                 
8 The fact that posterior convergence can fail even if the prior assigns positive mass to weak neighborhoods of P0 led 
Freedman (1965) to conclude that “for essentially any pair of Bayesians, each thinks the other is crazy” and 
Stinchcombe (2004) to say that such Bayesians engage in “erratic, wildly inconsistent, fickle, or faddish” behavior. 
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close to P0 in the Prohorov, dual bounded Lipshitz, or other weak metric can be far from P0 in a 

Kullback-Leibler sense and relative entropy is what is relevant for likelihood ratios. 

However, this semiparametric Bayesian is using the model to solve a problem like (4).  

By the Portmanteau Theorem (Theorem 6.1 of Parthasarathy (1967) and Theorem 11.1.1 of 

Dudley (1989)), weak convergence implies that NdP dP  f f f→ ∀ ∈∫ ∫ F .  If NgdP gdP 0→ =∫ ∫  

and a N aV dP V dP 0→ =∫ ∫ , where Va is the set of Euler equations from (4), the archetype will 

learn the optimal decision rule asymptotically.  To be sure, the archetype’s prior might reflect a 

priori beliefs about other aspects of the measures in θP , particularly with respect to their 

smoothness, but the archetype would want to ensure that the resultant prior would not interfere 

with weak convergence to the optimal decision rule. Achieving weak convergence when possible 

would appear to be a minimal condition for an inductive learning scheme to be deemed rational. 

Moreover, the proviso that NdP dP  f f f→ ∀ ∈∫ ∫ F  is surely relevant for the 

econometrician as well.  The econometrician is assuming that the semiparametric Bayesian is 

solving an optimization problem based on beliefs codified in the moment conditions but is 

making no assumptions regarding the functional form of the archetype’s preferences.  Consistent 

estimation of the probability measure by the econometrician is asymptotically equivalent to 

learning aspects of the beliefs of this semiparametric Bayesian that are relevant for optimal 

decisions irrespective of the specifics of the utility function in these circumstances.   

C.  Multinomial Approximation of Semiparametric Bayesian Beliefs 

The weak topology is appropriate when interest centers on probability measures or 

distributions, not on probability densities; that is, weak convergence is equivalent to 

NN
lim P ( ) P( )
→∞

=A A  for all Borel sets A that have boundaries with P-measure zero and the natural 
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collection of Borel sets to contemplate is the partition of X  induced by sampling.  The fact that 

the predictive distribution converges weakly to the associated countable cell multinomial links 

the asymptotic beliefs of the semiparametric Bayesian archetype to the probability measures 

estimated by the GMM econometrician.9  The purpose of this subsection is to make some 

connections that will prove useful in the sequel.   

As is well-known, the set of discrete measures is dense in the space of all Borel 

probability measures on X ; see, for example, Theorem 6.3 of Parthasarathy (1967) and Lemma 

11.7.3 of Dudley (1989).  A sequence of multinomial approximations can be constructed in the 

following manner.  For each N, partition X  into a countable collection of Borel sets of the form: 

N
n

N N N
n m nn

y,z

1;  sup y z   n;    m n
N∈

= − ≤ ∀ ∩ =∅ ∀ ≠∪
�

� �
X

X X X X  (5) 

where •  is the usual Euclidean metric.  For each n, choose any N N
n nx ∈� �X  and set 

N N
n nP(x ) P( )=� �X  so that N

n

N
N n xn

P P(x )=∑ δ� , where N
nx

δ  is the Dirac measure at N
nx�, and the 

corresponding probability distribution is N
n

N
N n x xn

F (x) P(x )1
<

= ∑ � .  The error in approximating 

any  f ∈F on N
n�X  by N

n(x )f �  is at most N N N
n n nsup( | ) inf( | )ζ f f= −� �X X .  Weak convergence 

obtains by the Portmanteau Theorem since N
N n

n
dP dP sup 0f f ζ− ≤ →∫ ∫ �  as N→∞. 

The likelihood for each PN is given by Nxt n
1T N

N nt n
P (X ) P( ) ∈=∏ ∏ X�

�X .  If, in addition, 

N T� , each set N
n�X  will contain at most one observation from XT.  Letting N

nt�X  denote the cell 

with N
t nx ∈ �X , T N

N ntt T
P (X ) P( )

≤
=∏ �X .  Thus the posterior and predictive distributions can be 

approximated on (5) by: 

                                                 
9 Chamberlain (1987) used multinomial approximation to study semiparametric efficiency but not on the weak 
topology, forming a neighborhood base for P0 with measurable and integrable, not bounded or continuous, functions. 
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( ) ( )

( ) ( )

N
ntt TT T

N N
ntt T

N T N T 0 N
N T 1 n T 1 n N T 1 n

P( )Π(dP)
Π P X Π P X

P( )Π(dP)
P x X P(x )Π P X Π(dP) P (x )

θ

θ

≤

≤

+ + +

∈ = ⇒ ∈

∈ = ∈ ⇒ ∈

∏∫
∏∫
∫

�Q

�P

� � �P

X
Q Q

X

X X � X

 (6) 

with convergence following from the Portmanteau Theorem and Theorems 1 and 2, respectively.10  

For comparability with the GMM econometrician, it makes sense to consolidate the 

countable partition (5) into a smaller set of partitions centered on the observations in the sample 

XT.  To be concrete, aggregate (5) into an ‘asymptotic’ Voronoi tessellation: 

{ }T T T N N N
t t t t n n t n st n

;  x ;  :  x x x x   n,  s t= ∈ = − ≤ − ∀ ≠∪ ∪ � � �X XX X X  (7) 

for sufficiently large N.11  The associated multinomial probabilities over (7) can be taken to be 

T N
N t ntP ( ) P( )=X �X .  Alternatively, the semiparametric Bayesian can group within cells and set 

( )T N N
N t n nnn

P ( ) P P( )= =∑∪X � �X X  for all N
nX  allocated to T

tX .12  Either way, T
N tt T

P ( )
≤∏ X  is 

an approximate likelihood function for each P θ∈P  and the aggregated multinomial probabilities 

live on the associated standard T-simplex { }N T T
T N t N tt

:  P ( ) 0,  P ( ) 1> =∑S X X .   

The resulting approximate posterior and predictive distributions are given by: 

( ) ( )

( ) ( )

T
N tt TT T

N T
N tt T

T T T T 0
N T 1 t T 1 t N T 1

P ( )Π(dP)
Π P X Π P X

P ( )Π(dP)
P x X P(x )Π P X Π(dP) P (x )

θ

θ

≤

≤

+ + +

∈ = ⇒ ∈

∈ = ∈ ⇒

∏∫
∏∫
∫

Q

P

P

Q Q

X X

X

X  (8) 

which converge weakly as well.  It could be that (6) and (8) approximate their continuous 

analogues.  It could be that the semiparametric Bayesian approximates the “true” posterior in this 

                                                 
10 See also Theorem 4.1 of Diaconis and Freedman (1986b) for a related multinomial approximation in a Bayesian 
context based on discretization of both the sample space and the space of probability measures. 
11 This is not a standard Voronoi tessellation.  The word “asymptotic’ and the large N requirement arise because 
each N

n�X  is allocated to only one T
tX and there will be points in N

nX  closer to some other T
sX  because the diameter 

of N
n�X  is 1/N.  When N is large, any such tie-breaking rule will suffice. 

12 Grouping is a coarse way of smoothing but is consistent with multinomial approximation. 
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fashion.  In either case, the archetype consistently estimates the probability measure of xt. 

D.  Multinomial Approximation and the GMM Econometrician 

Now consider a second set of T-cell multinomial distributions on (7) given by 

{ }G T T T
T t t t tt T t T

:  P ( ) 0,  P ( ) 1,  P ( )g(x , ) 0,  Θθ θ θ θ θ
≤ ≤

> = = ∈∑ ∑S , where the requirement that the 

moment conditions hold for each T makes N
TS  differ from G

TS .  However, N G
T T⇒S S  – that is, 

T T
N t t PP ( ) P ( )  P⇒ ∀ ∈ θθX P  – as the cell diameters shrink to zero.  This is the large sample link 

between probability models of the archetype and the GMM econometrician.13 

 There is a very simple theorem that provides considerable insight into the structure of 

G
TS .  Let T tt T

1
Tg ( ) g(x , )θ θ

≤
= ∑  and T t T t Tt T

1
TV ( ) [g(x , ) g ( )][g(x , ) g ( )]θ θ θ θ θ

≤
′= − −∑ .  Then: 

Theorem 4: Let G
T ( )θS  be the subset of G

TS  for a given Θθ∈ .  Then each 

T T T G
1 2 T T{P ( ),P ( ), ,P ( )} ( )θ θ θ θ∈… S  satisfies: 

( ) T T

T 1
t T T t T t

2T 1 2 2 2
t T T T tt T t T

1 1
T T

1 1 1
T T T

P ( ) g ( ) V ( ) [g(x , ) g ( )] (P)
P ( ) g ( ) V ( ) g ( ) T (P);  (P) (P)ε ε

θ θ θ θ θ ε
θ θ θ θ σ σ ε

−

−
≤ ≤

′= − − +
′− = + =∑ ∑

 (9) 

where the residuals satisfy 1
T T t T t

T 1 1
T Tg ( ) V ( ) [g ( ) g ( )] (P)θ θ θ θ ε−− ′< − − <  so that T

tP ( ) 0θ > .14 

Proof:  Trivial application of the normal equations of multiple regression with an 

intercept. 

This is an arithmetic result:  all multinomial probabilities based on the same value of θ 
                                                 
13 A discrete prior can be formed over the T-simplex G

TS  (or, for that matter, on the N-simplex over (5) constrained 
to satisfy the moment conditions).  G

TDiam( ) 2≤S  but the probabilities are O(T-1) and so G
TDiam( ) =S O(√T), 

bounding G
TS  by the positive orthants of spheres of the form 2 1

tt
p O(T )−=∑ . Letting ( )2

t tt
H x,y ( x y )= √ − √∑  

be the squared Hellinger metric, G
TS  can be covered by ( )N 2 T T

m k m{P :  H P ,P 0  k m,  m 1, ,M}δ≥ > ∀ ≠ = …  and an 

approximate prior is given by T T
T m mm
( ) PδΠ = Π∑  where T

m 0Π >  and T
mm

1Π =∑ . T ( )δΠ  satisfies A4 because the 

Hellinger distance bounds relative entropy.  See Ghosh and Ramamoorthi (2003) for a version of T ( )δΠ  with a 
prior over a random number of cells.  See also Schennach (2005). 
14 The awkward notation t (P)ε  arises because there will generally be many P∈Pθ  for each value of θ. 
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have the same fitted value 1
T T t T

1 1
T T g ( ) V ( ) [g ( ) g ( )]θ θ θ θ−′− − , termed implied probabilities by 

Back and Brown (1993), where the residuals t (P)ε  are identically zero if the implied probabilities 

are all positive.  In large samples, 1
T T t T pg ( ) V ( ) [g ( ) g ( )] o (1)θ θ θ θ−′ − =  for values of θ  in 

shrinking neighborhoods of 0P
θ . For such values of θ  and for P in shrinking neighborhoods of  

P0, nonzero values of t (P)ε  are a small sample event because 0 0tP P
E [g(x , )] 0θ = .  The fact that 

(9) holds for any numbers { }t t t tt t
p :  p 1, p g 0= =∑ ∑  – that is, pt need not be positive – 

suggests that this regression structure can be useful for interpreting their sample analogues.15 

 The regression sum of squares can be interpreted along similar lines.  The sum of squared 

differences between T
tP ( )θ  and 1/T is proportional to what Owen (1991) termed Euclidean 

likelihood.  In large samples, it is proportional to the φ- or f-divergences introduced by Csiszár 

(1967), making for a connection with a rich literature on estimation and testing based on the 

minimization of empirical divergences.  These divergences are defined by the discrepancy 

functions p
q( ) (z) 0φ φ≡ >  where p and q are two densities defined on the same sample space and 

where φ(•) is continuous, convex, and twice differentiable and normalized so that (1) (1) 0φ φ′= =  

and (1) 1φ′′ = .  The term discrepancy serves as a reminder that φ(•) need not possess either the 

symmetry or triangle inequality properties of a metric.16   

The scaled divergence between discrete measures with probabilities pt and qt is measured 

by  T q t tt
D (z) 2E [ (z)] 2 q (z )φ φ φ= = ∑  and a Taylor series expansion yields: 

                                                 
15 The regression structure of multinomial probabilities can also be used in prior construction if the zero covariance 
between tg ( )θ  and t (P)ε  is strengthened to t tE[ (P) | g(x , )] 0=ε θ . 
16 The smoothness assumption rules out weak metrics such as the Kolmogorov, Levy, Prohorov, and dual bounded 
Lipschitz; Donoho and Liu (1988) discuss how such metrics can produce poorly behaved minimum distance 
estimates.  It contains the convex members of the Cressie-Read (1988) power divergence family for which φ(z) is an 
affine function of zα including the likelihood divergence, entropy or Kullback-Leibler information, the Hellinger 
metric, and Pearson’s and Neyman’s modified χ2. 
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2
T t t t t t tt n

2 2
t t t t tt t

1D (z) 2 q (z ) 2 q [ (1) (1)(z 1) ( )(z 1) ]
2

q (z 1) q [ ( ) 1](z 1)

φ φ φ φ φ ξ

φ ξ

′ ′′= = + − + −

′′= − + − −
∑ ∑
∑ ∑

 (10) 

where tξ is between 1 and zt.  When T
t tp P ( )θ=  and t

1
Tq = , (10) takes the form: 

2 2T T
T t t tt t

1 1
T TD (z) T P ( ) T [ ( ) 1] P ( )φ θ φ ξ θ′′⎡ ⎤ ⎡ ⎤= − + − −⎣ ⎦ ⎣ ⎦∑ ∑  (11) 

for all G
T{ , ( )}θ θS .  If T

t t p
1
Tsup P ( ) o (1)θ − =  and if φ″(z) is bounded in the neighborhood of 

unity, the second term in (11) converges to zero uniformly.  The leading term is proportional to 

Pearson’s χ2 divergence, which suggests that the decomposition of the regression sum of squares 

in the second line of (9) can provide insight into sample analogues as well. 

3.  The Distorted Beliefs Interpretation of Hypothesis Tests and Confidence Regions 

Section 2 provided a framework for interpreting estimates of a probability measure that 

satisfies given moment conditions along the lines of Back and Brown (1992).  Confronting 

uncertainty in the form of random variables iid 0
tx ~ P , a generic expected utility maximizer forms a 

prior distribution over θP  because this semiparametric Bayesian believes 0P θ∈P .  In this 

setting, the archetype’s predictive distribution converges weakly to P0 when 0P θ∈P  under the 

sole condition that the prior assigns positive probability to all Kullback-Leibler neighborhoods of 

P0.  Moreover, discrete approximations to the predictive distribution converge weakly as well 

and, as a consequence, converge to the GMM estimate of P0.  The restrictions on the preferences 

and prior beliefs of this hypothetical semiparametric Bayesian would appear to be quite weak. 

However, the archetype is a construct, a hypothetical Bayesian econometrician looking at 

the same data as the GMM econometrician.  It is the large sample connection between the two 

that forms the framework proposed here:  the notion that N
T

θ↑S P  and that N G
T T⇒S S .  One way 

to exploit this insight is to actually do the work of the semiparametric Bayesian and replicate the 



 13

multinomial construction in 2C on (5) or (7) or on some other appropriate partition of the sample 

space. Such an analysis would require much more than the characterizations in 2B and 2C; it 

would necessitate formulating priors that satisfied Assumption A4 (or some analogue of it) 

without placing additional substantive restrictions.  While it is possible to do so along the lines of 

footnotes 13 and 15, this sort of analysis is beyond the scope of the present paper. 

This section is devoted to a discussion of the alternative hypothesis that motivated the 

paper:  that plausible differences between the a posteriori beliefs of a hypothetical 

semiparametric Bayesian and a GMM econometrician can inform estimation and inference in 

GMM settings.  The next subsection provides a distorted beliefs interpretation of confidence 

regions and goodness-of-fit statistics based on the regression sum of squares in (9).  The final 

subsection discusses some of the uses of the corresponding residuals. 

A.  Test Statistics and Confidence Regions 

Let { }
{ }

T
T T t T T

,{P( ),t T}

ˆ ˆˆẑ ,{P ( ), t T} arg min D(z )
≤

= ≤ =φ φ φ φ

θ θ
θ θ  and note that TˆTD(z )φ  is given by: 

( ) { }( )
{ }( )T

2 22 T 2 T
T t T t T t Tt t T

21 3 2 T 2 T
T T T T T T t t T t Tt T

1 2
T T T T T T

1 1
T T

1
T

ˆ ˆˆ ˆˆ ˆTD(z ) T P ( ) T [ (z ) 1 P ( )
ˆ ˆ ˆ ˆˆ ˆˆTg ( ) V ( ) g ( ) T (P ) T [ (z )] 1 P ( )
ˆ ˆ ˆTg ( ) V ( ) g ( ) (p q)

≤

−
≤

−

′′= − + − −

′ ′′= + + − −
′→ −

∑ ∑
∑

∼

φ φ φ φ

φ φ φ φ φ
ε

φ φ φ

θ φ ξ θ

θ θ θ σ φ ξ θ
θ θ θ χ

(12) 

where the second line involves the substitution of (9) into (12) and the convergence to a  χ2(p–q) 

random variable obtains if the moment conditions are valid because t p1 o (1)ξ = +  and 

T

3 2 T
t p

ˆT (P ) o (1)εσ = .  Hence, TˆTD(z )φ  differs from the GMM overidentifying restrictions test 

statistic in the presence of these two op(1) terms and in the choice of estimator and covariance 

matrix – 1
T T Targ min g ( ) S ( ) g ( )

θ
θ θ θ−′ �  instead of T

ˆφθ  and T T t T t Tt T
1
TS ( ) g(x , )g(x , )θ θ θ

≤
′= ∑� � �  in 

place of T T
ˆV ( )φθ , where Tθ�  is any √T consistent estimator of θ. 
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 This large sample χ2 test statistic can be used to test the null hypothesis and to construct 

confidence regions for θ under the null.  Conventional practice is to select a significance level α 

and an associated critical value cα  that solves 2
p qPr( c )αχ α− ≥ = .  The null hypothesis is rejected 

if TˆTD(z ) c>φ α  while the statistic fails to reject the null if TˆTD(z ) c≤φ α .  As is typically the case 

in likelihood-based inference, the rejection region can be viewed as the complement of the 1–α 

per cent confidence region given by { }T
t T,{P ( ), t T}:  TD(z ) c≤ ≤φ αθ θ .17 

 The link between N
TS  and G

TS  provides for an economic interpretation of rejections in 

this inference framework.  The rejection region { }T G
t T Tˆ{P ( ), t T} :  TD(z ) c≤ ∈ >φ αθ S  is a subset 

of the T-cell multinomials in G
TS  and N G

T T⇒S S .  The question at hand is simple:  are there 

beliefs implicit in the rejection region that the econometrician would think that the archetype 

might reasonably possess a posteriori?  Put differently, might the beliefs of such a Bayesian 

make a seemingly sharp rejection appear instead to be compatible with the data?  Might there be 

plausible beliefs outside the associated 1–α per cent confidence region? 

This then is the main point of the paper.  If the answer to these questions is “yes,” the 

econometrician could reasonably declare that the test statistic provided a statistically significant 

rejection at level α that should be thought of as economically insignificant.  A similar statement 

applies to economically plausible beliefs that lie outside the confidence region that is the 

complement of the rejection region.  An econometrician who did not want to draw sharp 

conclusions about economic as opposed to statistical significance could simply report summary 
                                                 
17 The empirical likelihood ratio statistic – that is, TˆTD(z )φ  with φ(z) = ln(z) – is Bartlett correctable; see Chen and 
Cui (2006) for the moment condition version of this result.  Its mean is log 1 2

T cˆE{TD(z )} q(1 B T ) O(T )− −= + +  in large 

samples and the Bartlett correction takes the form log 1 2
T c

ˆˆPr[TD(z ) c (1 B T )] O(T )α α− −≤ + = + , where cB̂  can be 
obtained from the bootstrap.  There is a subtle issue here; the prior also influences second order inference in this 
setting.  Under suitable regularity conditions, the Bartlett-corrected empirical likelihood rejection region would be 
the appropriate object of inference if the prior was sufficiently flat in the neighborhood of the optimum. 
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statistics describing the beliefs that seem to be sufficiently compatible with the data. 

One such summary statistic involves the comparison of the sample relative entropy 

T
t Tt

1 1 1
T T T

ˆˆln P ( ) lnφθ −∑  based on the estimate T
ˆφθ  with that of a distribution that is more easily 

interpreted.  McCulloch (1989) suggested one such calibration:  compare the sample relative 

entropy with that from a hypothetical binomial experiment in which the null success probability 

is ½ and the sample success probability is q with q selected so that:  

T
t Tt

1 1 1
T T T

ˆˆln P ( ) ½[ln½ ln(1 q)] ½[ln½ lnq] ½ln½ ½ln[q(1 q)] lnφθ = − − + − = − − −∑  (13) 

The presumption is that values of q close to ½ suggest that a sample entropy that is statistically 

significant at level α is small in this alternative metric.   

A similar calibration can be based on the multivariate normal distribution for which the 

entropy is d
2 ln 2 e ln | |+ ∑π  where ∑  is the covariance matrix.  Hence: 

T
t Tt T

d1
T 2

ˆˆln P ( ) ln 2 e ln | |
≤

= + ∑∑ φθ π  (14) 

can be solved for | |∑ , which, in turn, can be compared with the restricted estimate ˆ| |∑  from: 

T
t T t tt T

ˆ ˆˆ ˆ ˆP ( )(x )(x )φθ μ μ
≤

′∑ = − −∑  (15) 

where T
t T tt T

ˆˆˆ P ( )xφμ θ
≤

= ∑  is the restricted estimate of the mean.  Here, too, sufficiently small 

differences between | |∑  and ˆ| |∑  suggest that the difference between the two is “reasonably 

small” in this alternative metric.   

B.  Residual Analysis 

Reasonable a posteriori probability beliefs can be assessed via relations (9) and (12).  

The relative contributions of the fitted values 1
T T T T t T T T

1 1
T T

ˆ ˆ ˆ ˆg ( ) V ( ) [g(x , ) g ( )]φ φ φ φθ θ θ θ−′− −  and the 

residuals T
t T

ˆˆ ( )φε θ  are given in (9) and values of either that are large in absolute value have a 
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disproportionate impact on the T
t T

ˆP̂ ( )φθ  estimates and their associated sample entropy.  Large 

residuals may be especially informative since the residuals are identically zero if the implied 

probabilities lie between zero and one.  The incremental impact of alternative divergences can be 

examined via the observed covariance between the excess curvature t Tˆ[ (z )] 1′′ −φφ ξ  and 

T 2
t T

1
T

ˆˆ(P ( ) )−φθ  as codified in (12).18 

The whole probability simplex G
TS  can be investigated in this fashion. Plausible values of 

θ might be suggested by theory or introspection or might be obtained by bootstrapping, which is 

rigorously justifiable under A3. For each θ, G
T ( )θS  can be explored by enumerating sets of 

residuals t (P)ε  that sum to zero, are orthogonal to tg(x , )θ , and satisfy the lower and upper 

bound constraints, which can then be examined with the regression diagnostics. Conditioning on 

θ is the best way to explore G
TS  if t tE[ (P)g(x , )] 0ε θ =  is strengthened to t tE[ (P) | g(x , )] 0ε θ = . 

Implicit in this discussion is a particular concern for the effect of outliers on probabilities, 

which play a special role in models that incorporate expectations.  As Back and Brown (1993) 

emphasized, outliers in this setting represent data that are not representative of the underlying 

population when the moment conditions are true.  In rational expectations models, data that are 

underrepresented – that is, those for which T
t

1
TP ( )θ −  is large – are often thought to represent 

peso problems, events that were expected to happen but that did not eventuate or that did not 
                                                 
18 There is a suggestive interpretation of alternative divergences that is hard to make rigorous without taking a stand 
on priors.  Priors generated via ex ante maximization of the expected distance, such as the Kullback-Leibler or χ2 
divergence, between prior and posterior over the sample space are called reference or default priors; see Bernardo 
(2005) for a survey and Kuboki (1998) for an application to parametric prediction.  Maximizing this distance is 
analogous to minimizing the distance between TP  and the true distribution P0.  The empirical distribution 0P̂ P⇒  

and T T
ˆP̂( ) Pφθ ⇒  even under the alternative.  In this heuristic sense, cells for which tˆ(z )φ  is small are ones for which 

the data dominate the prior in the distance as measured by φ(•) while those for which tˆ(z )φ  is large are ones for 
which the apparent impact of the prior remains sizeable.  It is a considerable leap to go beyond these heuristics to an 
actual reference prior for semiparametric Bayesian prediction and a corresponding assessment of the impact of the 
prior in a given sample.  The ideas in footnotes 13 and 15 are one place to start. 
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occur as frequently as expected.  For example, the Great Depression might represent a recurrent 

rare event or one that will succumb to the law of large numbers.  Accordingly, we might 

reasonably expect the prior predictive probability ( )T T
N T 1 t T 1 tP x P(x )Π(dP)

θ+ +∈ = ∈∫PX X � – that 

is, the predictive distribution for xT+1 in the absence of sample information – for some such 
T
tX  to 

be much larger than the empirical probability 1
T , resulting in a seemingly large value of T

tP ( )θ .  

Note also that ( )NP •  is the posterior predictive probability outside the convex hull of the data. 

4.  Conclusion 

 This paper was based on a simple intuition. What can we learn from probability 

statements about sample moment conditions in rational expectations models under the 

maintained hypothesis that the moment conditions are true?  The answer is straightforward:  

modulo sampling error, sample moments reflect biases in the expectations of the relevant 

economic actors in these circumstances.  This distorted beliefs alternative would appear to be an 

interesting one, if only because it provides one dimension in which to distinguish between 

economic and statistical significance.  All that is needed is a way to measure the attributes of 

expectations compatible with the moment conditions. 

 The attainment of this goal required a detour down the path of Bayesian semiparametrics.  

Models based on moment conditions do not deliver likelihoods and the strict application of the 

Bayesian calculus requires their specification.  Moreover, the formation of prior beliefs is more 

challenging in such settings because the data need not swamp the prior when priors are over 

spaces of probability measures.  Finally, the literature on priors for semiparametric models is thin 

and a broad set of priors would appear to be necessary when seeking to characterize the extent to 

which the expectations compatible with a given set of moment conditions are “nearly rational.”   
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 Two attributes of the archetypical semiparametric Bayesian constructed in Section 2 

eliminated these problems.  The first was the presumption that the archetype was a consumer of 

economic theory who used the model based on moment conditions solely for forecasting.  The 

second was the shift from densities that respect the moment conditions to discrete measures that 

do so. The resulting predictive distribution based on a countable set of multinomial 

approximations proves to be consistent under the weak restriction that the prior assigns positive 

probability to all Kullback-Leibler neighborhoods of the true distribution. While this observation 

is hardly surprising in finite-dimensional parametric settings, it is somewhat more remarkable in 

this semiparametric setting in which the typical requirement is far more stringent. 

 The result is a semiparametric Bayesian interpretation of probability estimates provided 

by empirical likelihood and related minimum divergence methods. From this perspective, 

rejection and confidence regions are comprised of probability beliefs, not parameter values, 

beliefs an econometrician can examine for their plausibility.  This association of plausible beliefs 

with such regions yields a framework for assessing the economic significance of distorted beliefs. 

 Let me conclude by suggesting three ways in which research along these lines can 

proceed.  First, it would be useful to have additional analytical tools beyond those described in 

Section 3.  Second, statistics other than omnibus goodness-of-fit tests can be examined in this 

fashion but the difference between the Bayesian and frequentist treatment of nuisance parameters 

might make it more difficult to equate the beliefs of the archetype and the GMM econometrician.  

Finally, a more interesting archetype might be one with the same objectives but whose decisions 

affect sample outcomes as is the case in rational expectations models with learning or in Kurz’s 

(1997) rational beliefs equilibria.  Here, too, it might well be substantially more challenging to 

equate the beliefs of a semiparametric Bayesian and the GMM econometrician. 
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