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1 Introduction

In this paper, we review Shimer’s (2005a) critique of the equilibrium search
model of unemployment. (See Mortensen and Pissarides (1994,1999a,1999b)
and Pissarides (2000) for an extended development of the model and its
implications.) Our purpose is to clarify and further the debate generated by
Shimer’s paper.1

Shimer documents the fact that volatility in unemployment is induced
primarily by movements in the job-finding rate, the rate of transition from
unemployment to employment, rather than the job-destruction rate. He
then demonstrates that the magnitude of the response of unemployment,
vacancies, and the job-finding rate to labor-productivity shocks predicted by
the model explains less than 10% of the observed volatility in U.S. data when
productivity shocks are assumed to be the sole driving force, given reasonable
specification assumptions and parameter values.2 A principal reason for this
lack of explanatory power, he argues, is that the wage, set as the outcome
of a bilateral wage bargain, responds procyclically to offset almost all the
effects of productivity shocks on job creation.

We argue that a flexible wage per se is not the principal problem with
the model. Rather, Shimer’s results are due to 1) the large difference be-
tween labor productivity and the opportunity cost of a match implied by the
assigned magnitudes of parameters and 2) the excessively strong feedback
from the job-finding rate to the wage. Even if the wage were rigid, its level
must be such that the future flow of quasi-rent attributable to the creation
of a new job is very small, if the model is to account for the volatility of the
job-finding rate observed in the data. As Hagedorn and Manovskii (2005)
demonstrate, the model has no problem explaining vacancy and unemploy-
ment fluctuations if the parameters of the wage outcome function are set to
match observed average profit rates and wage volatility. Unfortunately, the
opportunity cost of employment required to explain the observed volatility
in the job-finding rate is unrealistically high. Consequently, the calibrated
model exhibits excessive sensitivity to small changes in labor-market policy,
as Costain and Reiter (2005) point out. We show that the opportunity cost
of a match is not only influenced by the opportunity cost of employment for
the worker, but also depends on the cost of hiring and training workers. If

1Hornstein, Krusell, and Violante (2005) also provide an analysis with a similar purpose.
2Costain and Reiter (2005) make a similar point in a less well-known, but independently

developed paper.
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these costs are significant, then the worker’s opportunity cost of employment
required to match observed volatility is much lower than that derived by
Hagedorn and Manovskii.

The standard search model of unemployment is designed to account for
the fact that it takes time to match jobs and workers. As a consequence of
this friction, match-specific rents exist when a worker meets a prospective
employer. The designers of the original model assume that these rents are
shared according to Nash’s (1950) axioms with the value of searching for an
alternative job serving as the threat point. Hall (2005a) argues that any wage
in the bargaining set, that is consistent with individual rationality for the
employer-worker pair, should be regarded as a legitimate equilibrium candi-
date. He then proceeds to demonstrate by simulation that a rigid wage, one
not conditioned on aggregate productivity, generally exists with the property
that it is in the bargaining set. His argument, however, relies critically on
the assumption that the only source of variability in the bargaining set is a
small aggregate shock.

Hall and Milgrom (2005) argue that the outcome of a strategic bargain-
ing game in which the disagreement payoff is delay rather than unemployed
search, along the lines suggested by Binmore, Rubinstein and Wolinsky
(1986), is a more realistic specification of a bargaining model. They also
claim that the amended model substantially raises the implied degree of am-
plification because the alternative wage rule is less sensitive to productivity
shocks. Although the solution to this wage-bargaining game is less volatile,
the job-creation response to productivity shocks is not much larger if the
value of delay is roughly equal to Shimer’s value of the unemployment bene-
fit. Alternatively, the Hall-Milgrom model explains the observed volatility of
the job-finding rate only if the worker’s benefit from delay plus the employer’s
cost, which is the opportunity cost of a match in their model, is equal to the
required value derived by Hagedorn and Manovskii (2005) for the standard
model.

The fact that a third of the variation in the unemployment rate is ex-
plained by job-destruction shocks and that job-to-job flows represent at least
half of the flow of new hires are potentially important factors that are ignored
in the simplest equilibrium unemployment model and in Shimer’s analysis.
We find that incorporating both fully accounts for the volatility in the job-
finding rate when reasonable hiring costs are taken into account. As Nagypál
(2005) has argued in detail, the reason for this result is that quits are procyli-
cal and that employers profit more from employed rather than unemployed
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workers when hiring costs are large enough because their average quit rate
is smaller. Because the fraction of employed workers in the application flow
increases on the upswing, employers’ higher profit from hiring them both
amplifies and propagates the effects of a positive productivity shock on job
creation. Furthermore, we find that the same model with identical param-
eter values implies that vacancies and unemployment are almost perfectly
negatively correlated, as Shimer (2005) finds in his data. One reason for this
result is that job-destruction shocks induce negative co-movements between
unemployment and vacancies when employed workers search for better jobs
in sufficient numbers.

2 The Standard Model

In the version of the model Shimer (2005a) considers, all workers and jobs
are respectively identical. Furthermore, all agents are risk-neutral wealth
maximizers. For the sake of comparability, we use Shimer’s notation when
possible. Specifically, every job-worker match produces market output at
flow rate p. Autocorrelated shocks to p occur from time to time. Hence,
the current value of match productivity is an aggregate state variable. The
possible dependency of any endogenous variable on the current value of pro-
ductivity is represented by using p as a subscript. Following Shimer, we
assume that the time sequence {pt} is a jump process characterized by ar-
rival rate λ and a conditional distribution of new values represented by the
c.d.f. F : P × P → [0, 1] where P is the support of the process.

The opportunity cost of employment to the worker and the cost of posting
a vacancy to the firm, measured in terms of output, are non-state-contingent
parameters, denoted by z and c, respectively. Since all matches are identical,
the flow of new matches is determined by a meeting function, denoted as
m(u, v), where u and v represent the number of unemployed workers currently
looking for a job and the number of currently open job vacancies, respectively.
By assumption, the meeting function is non-negative, increasing, concave,
and homogeneous of degree one. As a consequence, the job-finding rate of
workers, f(θ) ≡ m(u, v)/u = m(1, θ), is positive, increasing, and concave
in “market tightness,” defined as the ratio of vacancies to unemployment,
θ ≡ v/u. Analogously, the rate at which vacancies are filled, m(u, v)/v =
f(θ)/θ, is a positive, decreasing, and convex function of market tightness.
Finally, matches are destroyed at the exogenous separation rate s and all
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agents discount future income flows at the common rate r. The matching
function m(·), the productivity process (λ, F ), and the set of parameters
{z, c, s, r} fully characterize the environment of interest.

The wage in each aggregate state, wp, as well as the levels of unemploy-
ment and vacancies are endogenous to the model. They are determined by
the match surplus-sharing rule, free entry, and the law of motion for unem-
ployment. To characterize these conditions, one needs to define the concept
of match surplus.

Match surplus is the difference between the expected present value of
the future incomes that the two parties to a match earn and the expected
present value of income that they forgo by participating in the employment
relationship. Because the value of a vacancy is driven to zero by entry, match
surplus is Vp ≡ Jp + Wp − Up where the value of a match to the employer,
Jp, the value of a match to the worker, Wp, and the value of unemployment,
Up, are recursively defined by the continuous-time Bellman equations

rUp = z + f(θp)(Wp − Up) + λ(EpUp′ − Up) (1)

rWp = wp − s(Wp − Up) + λ(EpWp′ −Wp) (2)

rJp = p− wp − sJp + λ(EpJp′ − Jp), (3)

where Ep represents the expectation operator conditional on the current state
p. In all cases, these equations imply that the return on the value of an agent’s
state is equal to the income flow obtained plus the product of the change
in value attributable to a state transition and the relevant transition rate
summed over all possible transitions. In the case of an unemployed worker,
the possible changes in state include a transition to employment as well as a
transition to another aggregate productivity state. Similarly, changes in the
value of employment and of a filled job occur when the match is destroyed and
when the aggregate state changes. Notice that these equations are consistent
with individual rationality only if Wp −Up ≥ 0 and Jp ≥ 0 for all p. As Hall
(2005a) emphasizes, any reasonable wage rule agreed to by an employer and
a worker engaged in a match must satisfy these inequalities.

By summing Equations (2) and (3) and then subtracting the correspond-
ing sides of (1), one obtains the following functional equation that the surplus
value of a match must satisfy:

rVp = p− z − f(θp)(Wp − Up)− sVp + λ(EpVp′ − Vp). (4)

Given that each agent’s threat point is assumed to be the value of not being
matched, the generalized Nash solution to the bargaining problem that the
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worker and the employer face upon meeting maximizes the so-called Nash
product, the geometric average of their respective shares of the match surplus,
(Wp − Up)

βJ1−β
p , where the parameter β reflects the worker’s “bargaining

power”. The resulting sharing rule is characterized by

Wp − Up

β
= Vp =

Jp

1− β
. (5)

It is usual to suppose that wages are renegotiated in each subsequent aggre-
gate state so as to maintain Equation (5). Finally, the free-entry condition
requires that the expected cost of posting a vacancy is equal to the expected
return. That is, given that the average time to fill a vacancy is θ

f(θ)
,

cθp

f (θp)
= Jp. (6)

An equilibrium solution to the model is a vector of functions (θp, wp, Up,
Wp,Jp, Vp), all defined on the set of possible values of productivity P , that
satisfy Equations (1)-(6). To complete Shimer’s analysis, we prove that a
unique equilibrium exists and that all the functions increase with productiv-
ity, given reasonable technical restrictions on the matching function.

Proposition 1 If (i) p′ is stochastically increasing in p and (ii) θ/f(θ) is
a strictly increasing and concave function of θ such that limθ→0 {θ/f(θ)} =
0, then a unique equilibrium exists with the property that the equilibrium
functions (θp, wp, Up, Wp,Jp, Vp) are all strictly increasing in p.

Proof. See the Appendix.
Note that the conditions of (ii) are all satisfied in the case of a Cobb-

Douglas matching function.
The explicit equilibrium wage rule can be derived by noting that Equa-

tions (1), (2), (3), and (5) imply

(1− β)(r + s + λ)(Wp − Up)

= (1− β) (wp − z − f(θp)(Wp − Up) + λEp(Wp′ − Up′))

= β(r + s + λ)Jp = β (p− wp + λEpJp′) .

Under the assumption that the wage is renegotiated after every aggregate
shock, Equation (5) holds for all p′, so (1 − β)Ep(Wp′ − Up′) = βEpJp′ .
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Together with the free-entry condition (6), this implies that the wage function
takes the form

wp = βp + (1− β)(z + βf(θp)Vp) = β(p + cθp) + (1− β)z. (7)

The wage depends on the current value of aggregate productivity and in-
creases with its realized value through two channels: because current output
is shared and because the value of search while unemployed is increasing in
the job-finding rate, which in turn increases in market tightness.

Under the assumption that all workers desire employment and are either
employed or unemployed, the unemployment rate adjusts according to the
law of motion

u̇ = s(1− u)− f (θp) u,

where the size of the labor force in normalized at unity. Because produc-
tivity per worker is independent of employment and the matching function
has constant return to scale, the unemployment rate is not an information-
relevant state variable. Instead, unemployment simply converges toward the
state-contingent target

up =
s

s + f(θp)
. (8)

Elsewhere, Shimer (2005b) argues that the speed of adjustment, equal to
the sum of the separation and job-finding rate, is large enough in practice
that the negative relationship between vacancies, vp = θpup, and unemploy-
ment that Equation (8) implies can be interpreted as the empirical Beveridge
curve, the downward-sloping relationship between vacancies and unemploy-
ment commonly observed.

3 Volatility Implied by the Standard Model

Shimer’s (2005a) principal claim is that the volatility of the job-finding rate
and its determinant, the vacancy-unemployment ratio, is an order of magni-
tude larger in U.S. data than the value implied by the standard model for
“reasonable” parameter values when fluctuations are induced by shocks to
labor productivity. To show this point, we substitute appropriately from the
free-entry condition in Equation (6) and use the Nash-bargaining outcome
in Equation (5), to get that the Bellman equation in Equation (4) implies

(r + s + λ)
cθp

f(θp)
+ cβθp = (1− β) (p− z + λEpVp′) . (9)
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The job-finding rate f(θp) is determined by the solution to this equation. By
taking logs and differentiating the result with respect to ln p, one obtains

∂ ln f(θp)

∂ ln p
=

η(θp) (r + s + λ + βf(θp))

(1− η(θp))(r + s + λ) + βf(θp)
×

p
(
1 + λ

∂EpVp′

∂p

)
p− z + λEpVp′

,

where η(θ) = θf ′(θ)/f(θ) is the elasticity of the job-finding rate with respect
to market tightness, which is equivalent to the elasticity of the matching
function with respect to vacancies.

At this point, Shimer claims that the value obtained when there are no
aggregate shocks (λ = 0) serves as an adequate approximation for computa-
tional purposes. That is, suppressing the dependence on θ,

∂ ln f

∂ ln p
=

η (r + s + βf)

(1− η)(r + s) + βf
× p

p− z
(10)

holds as an approximation. When evaluated at Shimer’s choice of parameters,
which are median labor productivity normalized to p = 1, quarterly rates
r = 0.012, s = 0.10, and f = 1.355, matching function elasticity η = 0.28,
labor bargaining power β = 1−η = 0.72, and opportunity cost of employment
z = 0.4, the numerical value is

∂ ln f

∂ ln p
=

0.28× (0.112 + 0.72× 1.355)

0.72× 0.112 + 0.72× 1.355
× 1

1− 0.4
= 0.481. (11)

In contrast, Shimer finds that the volatility in the log of the job-finding rate
relative to that of log productivity is over ten times as large in U.S. data.
Namely,

σf

σp

=
0.118

0.02
= 5.9 (12)

given the data moments reported in Table 1 below (reproduced from Shimer
(2005a)), where σx and ρxy represent the standard deviation of ln x and the
correlation between ln x and ln y, respectively, here and in the rest of the
paper.
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Table 1: Shimer’s Summary Statistics, Quarterly U.S. data, 1951-2003.
x u v v/u f s p
Standard Deviation 0.190 0.202 0.382 0.118 0.075 0.020
Autocorrelation 0.936 0.940 0.941 0.908 0.733 0.878
Correlation Matrix u 1 -0894 -0.971 -0.949 0.709 -0.408

v - 1 0.975 0.897 -0.684 0.364
v/u - - 1 0.948 -0.715 0.396
f - - - 1 -0.574 0.396
s - - - - 1 -0.524
p - - - - - 1

Source: Shimer (2005a), Table 1. All variables reported are
log deviations from an HP trend with smoothing parameter 105.

There are two points worth raising regarding the method of calculation
used by Shimer. First, the empirical counterpart of the derivative computed
in Equation (10) is

ρfpσf/σp = 0.396× 5.9 = 2.34. (13)

When Shimer calculates the elasticity of the job-finding rate as the ratio
of standard deviations, σf/σp, he is implicitly assuming that shocks to pro-
ductivity are the only cause of fluctuations in vacancies and unemployment.
Fluctuations in the interest rate and the rate of job destruction could also
be sources of volatility, a point we return to in Section 5. Even with this
qualification, though, the model does not measure up in the sense that it
fails to explain the estimate of the empirical elasticity in Equation (13) as
well. Nonetheless, the goal post for labor-productivity shocks is substantially
lower when one allows for other sources of employment volatility.

Second, Shimer’s assertion that Equation (10) serves as an adequate ap-
proximation would seem to be inconsistent with the fact that the process
that he actually fits to the U.S. productivity series and uses in his simulation
has a very large arrival rate, λ = 4.0 per quarter. Fortunately, the approxi-
mation also holds when the arrival rate is large, if the change in productivity
is small. Formally, Shimer assumes that the change in “net productivity”
defined as p− z is determined by

ln(p′ − z) = ln(p− z)±∆ with probability
1

2

(
1∓ ln(p− z)

n∆

)
. (14)
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At the estimated standard deviation parameter, σ =
√

λ∆ = 0.0165, ∆ =
0.0165/2 = 0.0083 is small. Hence, the following result justifies the use of
the approximation.

Proposition 2 Equation (10) holds in the limit as either λ → 0 or ∆ → 0.

Proof. See the Appendix.
This explains why the results of Shimer (2005a) from the full stochastic

model conform well with the calculations based on the approximation in
Equation (10).

Beyond these methodological points, Shimer’s result is also naturally af-
fected by the values of the parameters he uses. We turn to the discussion of
these values next.

3.1 The Elasticity of the Matching Function

The elasticity of the matching function with respect to vacancies determines
the sensitivity of the number of new matches created to underlying changes
in the number of vacancies, and thus is an important determinant of how
strongly the model economy’s job-finding rate responds to changes in its
driving forces.

Shimer’s value of the elasticity of the matching function with respect to
vacancies, η = 0.28, is obtained by regressing the detrended log of his measure
of the job-finding rate, derived from CPS data, on the detrended log of the
ratio of vacancies, as reflected in the Conference Board Help Wanted index, to
detrended CPS unemployment. The resulting estimate is somewhat outside
the “plausible range” of 0.3 to 0.5 reported by Petrongolo and Pissarides
(2001) in their review of the literature on the matching function.

There are alternative ways to estimate the elasticity of the matching func-
tion. In particular, Shimer’s data on vacancies and unemployment clearly
imply that ln v + ln u is almost constant, and hence the Beveridge curve is
close to a rectangular hyperbola. Specifically, the data moments in Table 1
imply that the OLS regression of (log) vacancies on (log) unemployment yield
the coefficient estimate ρvuσv/σu = −0.894 × 0.202/0.190 = −0.950. Given
the rapid adjustment of unemployment to the state-contingent target value
at rate s+f = 0.485 per month, Equation (8) accurately represents the Bev-
eridge curve relating vacancies and unemployment. Since this equation and
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a Cobb-Douglas specification of the matching function, m(v, u) = µvηu1−η,
can be written as

ln µ + η ln v + (1− η) ln u = ln s + ln(1− u),

the regression coefficient implied by Equation (8) is

∂ ln v

∂ ln u
= −1

η

(
u

1− u
+ 1− η

)
.

Using the unemployment rate, u = 0.0687, implied by Equation (8) and
the estimated regression coefficient ∂ ln v

∂ ln u
= −0.950 gives an estimate of the

elasticity of the matching function of η = 0.551, somewhat above the upper
bound on the “plausible range” of Petrongolo and Pissarides (2001). Since
the approximate elasticity of the job-finding rate in Equation (10) increases
in η, this estimate suggests that Shimer’s measure of the volatility of the
job-finding rate may be biased downward.

Notice, however, that even if one uses our alternative estimate of η and
his parameter values, the elasticity of the job-finding rate with respect to
productivity implied by Equation (10) is

∂ ln f

∂ ln p
=

0.551× (0.112 + 0.449× 1.355)

0.449× 0.112 + 0.449× 1.355
× 1

1− 0.4
= 1.004.

This elasticity is twice as large as that implied by Shimer’s estimate of η, but
it is still only a fraction of that observed in the data. Hence, disagreement
regarding the magnitude of the elasticity of the matching function alone does
not overturn Shimer’s conclusion given his choices of the other parameter
values.

3.2 The Opportunity Cost of Employment

Shimer (2005a) sets z = 0.4 as a “generous estimate” of the unemployment
insurance replacement ratio. Hagedorn and Manovskii (2005) argue that
Shimer’s choice of the opportunity cost of employment is too low because it
does not allow for the “value of leisure” or “home production” forgone when
employed above and beyond the unemployment insurance benefit. Moreover,
they calibrate both the opportunity cost of employment and the bargaining
share parameter to match the cyclical response of wages implied by the Solon,
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Barsky, and Parker (1994) wage data series and the average profit rate com-
puted by Basu and Fernald (1997). Their calibration results give z = 0.943
and β = 0.061. Using these numbers and setting the other values equal
to those of Shimer’s calibration, the elasticity of the job-finding rate with
respect to productivity is

∂ ln f

∂ ln p
=

0.28× (0.112 + 0.061× 1.355)

0.72× 0.112 + 0.061× 1.355
× 1

1− 0.943
= 5.86.

In other words, with this calibration, the model exactly matches the relative
magnitudes of the variability of the job-finding rate and labor productivity
found in the data even when Shimer’s estimate of η is used in the calculation
and shocks to productivity are the only source of labor-market fluctuations.

Although the Hagedorn-Manovskii analysis does obey the letter of the law
of the model’s logic, one could argue that it violates its spirit. That is, they
clearly demonstrate that the estimated elasticity of the wage with respect
to labor productivity, which they report to be 0.47, and an estimated profit
rate of 3%, which they interpret as the average value of (p−wp)/p, require a
small value of β and a large value of z. Hence, they conclude that the model
is consistent with the data for the above values of these two parameters.
While this is formally true, the economic implausibility of their solution is
suggested by two implications.

First, the flow surplus enjoyed by an employed worker in the model for
these parameter values is miniscule. Indeed, the wage at p = 1 is

w = β(p+ cθ)+ (1−β)z = 0.061× (1+0.373)+ (1− 0.061)× 0.943 = 0.969,

given the value of cθ = 0.209 implied by the free-entry condition (9), and the
surplus flow when employed is

w − z

z
=

0.969− 0.943

0.943
= 0.028.

But, do workers work for a 2.8% surplus?
In their paper, Hagedorn and Manovskii respond to this point by arguing

that a value of z near p is reasonable for the marginal worker. While this
argument is correct, it is irrelevant in the context of this model, because job
creation depends on the average value of z, not its value for the marginal
worker.
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To see this point more clearly, notice that, given heterogeneity in z, the
value of unemployment for the marginal worker is equal to the value of non-
participation. Thus the value of z for the marginal participant, denoted by z,
solves z = rU where U represents the marginal worker’s value of unemployed
search. Because

rU(z) = z + f(θ)(W (z)− U(z))

rW (z) = w(z)− s(W (z)− U(z))

hold as steady-state approximations,

0 = rU − z = f(θ)(W − U),

so U = W and z = rU = rW = w. This in turn implies that the surplus from
the relationship is V = W−U

1−β
= 0, which in turn necessitates that p = w = z.

So not only is the marginal worker’s value of leisure close to p, it is exactly
equal to it.3

However, the incentive to create a job depends on the average value of z,
not its marginal value. Indeed, as the value of a match with a worker of type
z is

J(z) =
p− w(z)

r + s
,

but the worker’s type is not known when the employer posts the job, the
free-entry condition is

cf(θ)

θ
= E [J(z)|z ≤ p] =

p− E [w(z)|z ≤ p]

r + s
=

(1− β) (p− E [z|z ≤ p])− βcθ

r + s
,

where the last equality can be derived from the wage equation as before.
In sum, it is the average opportunity cost of unemployed participants that
matters in the determination of market tightness.

A second problem with a high value of opportunity cost of employment is
that the model predicts an implausibly large response to changes in economic
policy variables, as noted by Costain and Reiter (2005). In particular, using
the approximation of the free-entry condition in Equation (9) when λ = 0 to
derive the impact of changes in z, it follows that

∂ ln f

∂ ln z
= − ∂ ln f

∂ ln (p− z)

z

p− z
= −∂ ln f

∂ ln p

z

p
.

3Adding search costs could drive a wedge between the value of leisure for the marginal
worker and match output p.
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Thus if z is close to p, the large response of the job-finding rate to changes in
labor productivity also implies a large response of the job-finding rate (and
consequently of unemployment) to changes in z. Assuming that half of z
represents unemployment benefits, a 1% increase in unemployment benefits
implies a 0.5% increase in z, which, using Hagedorn and Manovskii’s num-
bers, results in a 2.76% decrease in the job-finding rate and a corresponding
2.57% increase in unemployment. This is a very large policy response that
has no counterpart in any of the empirical studies of the response of unem-
ployment to changes in the generosity of unemployment insurance reviewed
by Costain and Reiter (2005).

3.3 Turnover Costs

One potentially important factor that Shimer’s analysis abstracts from is
turnover costs. As has been pointed out by several authors (see Braun (2005),
Nagypál (2005), Silva and Toledo (2005), and Yashiv (2005)), the presence
of fixed turnover costs makes firms’ net payoff (after paying the fixed cost)
more responsive to variation in the level of their gross payoff. In other words,
allowing for hiring and firing costs increases the opportunity cost of the match
without resorting to very high values of opportunity cost of employment for
the worker.

For the sake of illustration, suppose that the cost of hiring and training a
new worker is H and the termination cost is T . In this case, the steady-state
value of filling a job solves

rJ = p− w − s(J + T )

and the free-entry condition is

cθ

f(θ)
= J −H =

p− w − sT

r + s
−H =

p− w − sT − (r + s) H

r + s
.

Taking logs and taking derivatives with respect to ln p gives

∂ ln f(θ)

∂ ln p
=

η

1− η
×

p− w d ln w
d ln p

p− w − sT − (r + s) H
,

so, for a given level and elasticity of wages that determines w d ln w
d ln p

, the model
explains more of the relative volatility of the job-finding rate if the amortized
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costs of hiring and firing are high enough. For example, introducing hiring
costs equal to two quarters’ of flow profits (which is less than a week of wages
if the flow profit rate is 3%, as observed by Hagedorn and Manovskii) raises
the elasticity by a factor of 1.29. Similarly, introducing firing costs equal to
two quarters’ of flow profits raises the elasticity by a factor of 1.25.

For this mechanism to work, however, it is important that these turnover
costs are indeed fixed as the underlying driving force varies and depend nei-
ther on labor productivity nor on the level of wages in the economy. Whether
this is indeed the case is an empirical question that deserves further attention.

It is worthwhile to mention that because of their dependence on the level
of labor productivity, capital costs cannot be introduced as a fixed cost in the
model. Doing so does increase the amount of amplification predicted by the
model for the same reasons that fixed turnover costs do, but the assumption
of fixed capital costs cannot be maintained given a standard neoclassical
production function.4

4 Alternative Wage-Setting Mechanisms

The ingredient of the standard model that has been put to the most scrutiny
in works following Shimer (2005a) has been the wage-setting mechanism.
Several authors have argued that the model can match the empirically ob-
served volatility of labor-market variables if the mechanism generates a less
procyclical wage than implied by the model as usually formulated. However,
a rigid wage is not enough, its level must also be high. Only when the wage
is large and not too procyclical does the per-period profit that motivates job
creation, p−w, respond strongly to changes in p. To understand this point,
note that when β = 0 in the standard model the wage is rigid and equal
to z from Equation (7). However, given the values assigned by Shimer for
the other parameters, the elasticity of the job-finding rate with respect to
productivity would still only be

∂ ln f(θ)

∂ ln p
=

η

1− η
× p

p− z
=

0.28

0.72
× 1

0.6
= 0.648.

4The presence of fixed capital costs goes some way towards explaining why Fujita and
Ramey (2005) get a lot more amplification in their version of the standard model than
Shimer (2005a).
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4.1 Rational Wage Rigidity

Of course, if the wage level is high enough, then a rigid wage can easily
account for the observed volatility. For example, suppose that the wage w is
rigid as in Hall (2005a). In this case, the free-entry condition

cθ

f(θ)
= J =

p− w

r + s

holds as a steady-state approximation. Setting the rigid wage equal to the
Nash solution at the median productivity, w = β(p + cθ) + (1− β)z = 0.983,
as in Hall’s analysis, Shimer’s parameter values imply

∂ ln f(θ)

∂ ln p
=

η

1− η
× p

p− w
=

0.28

1− 0.28
× 1

1− 0.983
= 22.48.

This number is almost four times that needed to explain the observed re-
sponse in the job-finding rate to productivity.

The rigid wage assumption is difficult to swallow, however. Since aggre-
gate shocks are common knowledge, why wouldn’t negotiated wages reflect
the fact that the worker’s outside search option is procyclical as the Nash
bargaining solution implies? Hall (2005a) argues, as many others have done
in the past, that the solution to a bilateral monopoly problem is simply in-
determinate. According to Hall, any solution in the bargaining set should
be regarded as a legitimate equilibrium. Furthermore, under these circum-
stances, it is reasonable to suppose that the wage set in previous bargains
with other workers will serve as either a “norm” or a “focal point” for the
outcome of any current bargain in every state for which this solution is jointly
rational, that is when both Wp − Up ≥ 0 and Jp ≥ 0 hold.5 He then pro-
ceeds to show that the shocks to aggregate productivity required to explain
the volatility of unemployment are so small that this condition is always
satisfied in simulations.

There are two problems with Hall’s argument. First, to maintain that
the rigid wage is jointly rational, only small aggregate shocks can affect
the employment relationship of workers and firms in the economy. This
assumption is greatly at odds with the extent of gross flows in the labor

5Wage norms have not been the only way to rationalize the existence of a rigid wage.
Kennan (2005), Menzio (2005), and Moen and Rosen (2005) all develop contracting models
with asymmetric information that deliver a rigid wage as an equilibrium outcome.
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market that reflect the importance of idiosyncratic variability. Second, the
limited empirical evidence available does not support the claim that wages of
workers in new employment relationships are rigid over the business cycle, in
fact, these wages have been found to be more cyclically sensitive than wages
of workers in continuing relationships.6

4.2 Infrequent Wage Bargaining

Since the work of Taylor (1980) and Calvo (1983), the idea that nominal
prices and wages are revised infrequently has played an important role in
macroeconomics. Gertler and Trigari (2005) have shown that this mecha-
nism also has the power to generate substantial labor-market volatility in
a matching model. Although we abstract from their assumption that wage
negotiations are at the firm level and are staggered, the basic point can be
made within our simple framework. That is, all workers in all matches receive
the same wage which is revised from time to time to refect new information
about aggregate productivity.

By assumption, a new wage bargain is made with all workers, old and
new, infrequently for whatever reason.7 In the Calvo version of the model,
wage renegotiation takes place with Poisson frequency α. Hence, the value
of a new match depends on the currently prevailing wage as well as future
anticipated wages. Indeed, at the moment a new productivity shock p is
realized, the Bellman equation can be approximated as

rJp(w) = p− w − sJp(w) + α(Jp − Jp(w)).

where w is the wage inherited from the last renegotiation. Hence, Jp(w) is
the value of the match when worker and employer meet and Jp is the value
after the wage is renegotiated in the future. That is

rJp = p− wp − sJp =
p− wp

r + s
,

where wp represents the bargained wage given that common match produc-
tivity is p. Equivalently, Jp = Jp(wp) is the value of the match after the wage
has been adjusted to reflect the value of p.

6See Vroman (1977), Bils (1985), and Barlevy (2001).
7For the Gertler and Trigari story to work, it is imperative that the wages of new

employees are negotiated only at the time that all wages of worker in the firm are revised
and not when the new worker is hired.
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When a wage is renegotiated, it reflects prevailing demand conditions as
in the original model. Specifically, Equation (7)

wp = z + β(p− z) + βcθp

holds by virtue of the Nash sharing rule and the free-entry condition at the
renegotiation date as in the original model. Therefore,

Jp =
p− wp

r + s
=

(1− β)(p− z)− βcθp

r + s

as before, but

Jp(w) =
p− w + αJp

r + s + α
=

p− w

r + s + α
+

α

r + s + α

(1− β)(p− z)− βcθp

r + s
.

Note that this formulation nests the standard model in which wages are
continually revised (α = ∞) and the rigid wage model (α = 0).

Finally, the free-entry condition given the current wage w is

cθ

f(θ)
= Jp(w) =

r + s

r + s + α

p− w

r + s
+

α

r + s + α

(1− β)(p− z)− βcθp

r + s
,

where cθp/f(θp) = Jp(wp) = Jp determines market tightness once the wage is
renegotiated. Suppose, as Gertler and Trigari do, that wages are renegotiated
once every three quarters on average, α = 0.33. When evaluated at a wage
equal to that prevailing in the median productivity state w = β(p + cθ) +

(1− β)z = 0.983 and ∂ ln f(θp)
∂ ln p

= 0.481 from Equation (11),

∂ ln f(θ)

∂ ln p
=

ηp

1− η

 r + s + α
(
1− β − βcθp

ηp
∂ ln f(θp)

∂ ln p

)
(r + s)(p− w) + α [(1− β)(p− z)− βcθp]


=

0.28

0.72

 0.112 + 0.33×
(
0.28− 0.72×0.209×0.481

0.28

)
0.112× (1− 0.983) + 0.33× (0.28× (1− 0.4)− 0.72× 0.209)


= 6.05.

In this model, the initial impact of the productivity shock on the job-
finding rate is somewhat larger than the relative volatility of the job-finding
rate observed in the data. However, note that in the future when the wage is
actually renegotiated, the wage will jump up from w to its equilibrium value
wp in response to a positive productivity shock. The effect is a reduction in
market tightness at that point in time to a level below its initial response.
That is, the implied response in the job-finding rate to productivity shocks
is large on impact but then dissipate as wages adjust to the shock with a lag.
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4.3 Strategic Wage Bargaining

The Nash bargaining wage-setting mechanism of the standard model is often
justified by noting that the wage outcome it implies is equivalent to the
outcome of an alternating-offers strategic bargaining game (characterized
by Binmore, Rubinstein and Wolinsky (1986)). Hall and Milgrom (2005)
note that for this equivalence to hold, one needs to assume not only that
the outside option of the worker (the payoff she gets in case negotiations
break down) but also the disagreement payoff of the worker (the payoff she
gets when agreement is delayed) is equal to the value of search. They take
issue with the second assumption and argue that unemployed search is not
the relevant payoff from delay during negotiations. When the disagreement
payoff is fixed rather than tied to the value search, the wage agreed to is
more rigid than that implied by the standard sharing rule.

For the sake of illustration, suppose that the worker receives payoff z
and the employer incurs no cost while bargaining continues and that they
renegotiate the division of the match product p whenever it changes. In this
case, the outcome of an alternating-offers game is

wp = z + β (p− z) . (15)

As
cθ

f (θ)
=

p− wp

r + s
= (1− β)

p− z

r + s
(16)

holds in this case, the value of z required to match the volatility of the
job-finding rate, the solution to

d ln f(θ)

d ln p
=

η

1− η
× p

p− z
=

0.28

1− 0.28
× 1

1− z
= 5.9,

is z = 0.934. In other words, the worker’s delay benefit must be over 93%
of median match output. Just like a very high value of leisure, this possi-
bility also seems implausible. This solution does have the attractive feature,
though, that it allows one to bring in driving forces other than labor produc-
tivity as a plausible source of fluctuations, as we show in Section 5.
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5 Other Sources of Fluctuations

5.1 Discount Rate

Clearly, one important source of fluctuations missing from the above analysis
is variation in the discount rate. Qualitatively, the question is whether vari-
ations in the discount rate amplify or dampen the response of labor-market
variables, which in turn depends on whether the discount rate is pro- or coun-
tercyclical. When Hall (2005b) embeds his version of the matching model in
a DSGE framework, he finds that increases in the discount rate induced by
an increase in productivity dampen labor-market amplification. If the source
of variation in the match output, p, are monetary policy shocks, however, as
in Braun (2005), the discount rate moves countercylically, and labor-market
responses are amplified by variation in the discount rate. Quantitatively,
Yashiv (2005), using observed values of the discount rate in his version of the
matching model, finds that variations in the discount rate have a small role
at best in explaining the volatility of the job-finding rate. This is because
the pure discount rate r makes up a small fraction of the total rate of “dis-
counting” that firms apply to match profits, r + s, both in terms of levels
and in terms of volatility.

5.2 Job-Destruction Rate

Given that the job-destruction rate makes up the bulk of firms’ total dis-
count rate, r + s, it is natural to consider volatility in the job-destruction
rate as a potential driving force. Shimer (2005a) argues that volatility in
the job-destruction rate cannot be an important source of fluctuations in
a matching model, because it induces a counterfactual positive correlation
between vacancies and unemployment and thus does not have a noticeable
effect on market tightness or the job-finding rate. He therefore concludes that
only labor productivity shocks can be plausible sources of fluctuations in the
standard model. His results critically hinge on the fact that any decrease in
the job-finding rate following an upward shock to the destruction rate puts a
very strong downward pressure on wages. This downward pressure on wages
then stimulates vacancy creation through its effect on flow profits, which in
turn reverses the decrease in the job-finding rate.

To see this, notice that the wage derived in Equation (7) implies that, at
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Shimer’s parameter values,

∂ ln (p− w)

∂ ln f

∣∣∣∣∣
p fixed

= −1

η

βcθ

(1− β) (p− z)− βcθ
=

= − 1

0.28

0.72× 0.209

0.28× 0.6− 0.72× 0.209
= −31.1.

Hence, any significant change in the job-finding rate that does not come
from changes in p has a huge impact on the flow profit of firms which is not
sustained in equilibrium.

As is clear from Table 1, however, changes in the job-destruction rate, s,
are present in the data and are negatively correlated with labor productivity.
These changes, which are implied by the Mortensen and Pissarides (1994)
model with endogenous job destruction, serve as an important source of
volatility in unemployment. Moreover, because countercyclical movements
in the job-destruction rate imply that the rate at which firms discount match
profits falls in a boom and rises in a bust, these shocks tend to also amplify
the effects of productivity shocks on vacancy creation and the job-finding
rate if the feedback from the job-finding rate to the wage is weak.

To see these points more clearly, consider the simplified version of the
Hall-Milgrom strategic wage bargain discussed above, where wages do not
directly depend on the job-finding rate, and assume that the model is subject
to two shocks: productivity and job-destruction rate shocks. Given the free-
entry condition as stated in Equation (16) and the fact that η is the elasticity
of the job-finding rate function f(θ),

1− η

η
∆ ln f = a∆ ln p− b∆ ln s (17)

holds as a linear approximation, where ∆ ln x is the difference between ln x
and its mean in the data and

a =
∂ ln(p− z)

∂ ln p
=

p

p− z

b =
∂ ln(r + s)

∂ ln s
=

s

r + s

are the indicated partial derivatives. Since Equation (17) implies

E(∆ ln f)2 = σ2
f =

(
η

1− η

)2 (
a2σ2

p − 2abρspσsσp + b2σ2
s

)
,
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it follows that

σf

σp

=
aη

1− η

1− 2b

a

ρpsσs

σp

+

(
bσs

aσp

)2
1/2

.

Given Shimer’s values of the parameters

σf

σp

=
1.667× 0.28

1− 0.28

(
1 +

2× 0.893

1.667

0.524× .075

.02
+
(

0.893× .075

1.667× .02

)2
)1/2

= 1.732.

(18)

Although the model still fails to account adequately for the observed mag-
nitude of fluctuations in the labor market, taking account of job-destruction
shocks roughly triples the model’s implied volatility of the job-finding rate
relative to that of labor productivity. This result is driven by the fact that
countercyclical changes in the job-destruction rate imply that the expected
length of a newly formed relationship is significantly shorter in a recession,
which discourages firms from creating vacancies. As we’ll see in Section 6,
the conclusion that a higher job-destruction rate in a recession implies a
shorter expected length of employment relationships critically depends on
abstracting from another form of termination of employment relationships:
job-to-job transitions.

6 Search on the Job

Shimer (2005a) and subsequent authors abstract from job-to-job flows. Con-
sidering these flows is important for two reasons. First, employed workers
represent well over half of those hired in any period. Furthermore, because
their fraction among new hires is strongly procyclical (Nagypál (2006)), the
payoff from meeting an employed worker has an important influence on the
incentives to create vacancies. Second, in the presence of job-to-job flows,
the rate that firms use to discount match profits is determined by the total
separation rate (the sum of the quit and the job-destruction rate) and not
the job-destruction rate alone. Since the total separation rate is less volatile
than the job-destruction rate, the calculations of Section 5 are altered in
the presence of job-to-job flows.8 In this section, we extend our analysis to

8The relative acyclicality of the total separation rate does not justify dismissing changes
in the job-destruction rate as irrelevant (as in Hall (2005a)), since, as we mentioned in
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include flows of workers from job to job.

6.1 The Model

The standard explanation for job-to-job flows is search on the job motivated
by match heterogeneity. These models generally imply that the quit rate is
procylical, an effect that offsets that of the countercyclical job-destruction
rate on the firm’s discount rate. However, the matching technology is also
different when workers search on the job. Indeed, if all workers contact jobs
at the same rate, which is the benchmark case considered here, then the
job-finding rate is a function of vacancies alone rather than the vacancy-
unemployment ratio. Because vacancies are less volatile than the vacancy-
unemployment ratio, the implied estimate of the elasticity of the job-finding
rate is larger when search on the job is taken into account.

Suppose for simplicity that all jobs pay the same wage but that each job
match has an idiosyncratic value to the worker which varies across matches.9

Specifically, let the flow value of a job to a specific worker equal w+x where w
is the common wage paid in all jobs and x is a random variable representing
an idiosyncratic taste component characterized by the c.d.f. F : [x, x] →
[0, 1]. By assumption, x is i.i.d. across matches. This form of heterogeneity
will induce worker movements from matches with lower to higher values of
x.

To illustrate simply the differences between the standard model and this
simple perturbation, we assume that workers generate job offers at rates
that are independent of employment status. (For a more general analysis,
see Nagypál (2005).) Because the measure of searching workers is equal to
the labor force in this case, the rate at which workers, employed or not, meet
jobs is simply a function of the number of vacancies. Formally, the aggregate
meeting rate is

f(v) = m(1, v), (19)

and the vacancy filling rate is f(v)/v. Furthermore, because the opportuni-
ties to search are the same whether employed or not, the reservation value of
the idiosyncratic component x is the one that compensates the worker for any

Section 5, changes in the job-destruction rate account for over a third of the variation in
the unemployment rate.

9For a specification of an alternating-offers bargaining game with asymmetric informa-
tion that supports this wage outcome, see Nagypál (2005).
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forgone income or its equivalent when unemployed. That is, the reservation
value, denoted as x̂, solves

x̂ =

{
z − w if z − w > x

x if z − w ≤ x
. (20)

As is well known, in any model with on-the-job search, the distribution of
employed workers over any job characteristic generally differs from the dis-
tribution over vacant jobs as a consequence of selection. Specifically, because
employed workers only move to jobs with higher values of x, and workers
only accept jobs above the reservation value x̂, the measure of workers em-
ployed in jobs with idiosyncratic component less than or equal to x, denoted
as G(x), and the measure of unemployment, represented as u, satisfy the
following steady-state conditions that arise from equating flows into and out
of the relevant pool of workers:

(s + f(v) (1− F (x))) G(x) = f(v) (F (x)− F (x̂)) u

s(1− u) = f(v) (1− F (x̂)) u.

Thus

G(x) =
uf(v) (F (x)− F (x̂))

(s + f(v)(1− F (x))
, (21)

where
u =

s

s + f(v) (1− F (x̂))
. (22)

Bargaining over a match’s value is problematic when workers search on
the job, particularly if the worker’s idiosyncratic component of its value is
not observable.10 One simple alternative is to suppose that commitment is
not possible so that bargaining takes place continuously over the division of
the net match product. Specifically, we continue to assume that Equation
(15) characterizes the wage given the current value of match product p.

As the worker quits a match with idiosyncratic component x at rate f(v)
(1− F (x)), the value of a filled job with idiosyncratic component equal to x
solves

rJ(x) = p− w − (s + f(v) (1− F (x))) J(x).

10For a discussion and analysis of the problem, see Shimer (2005c).
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Given the wage rule of Equation (15),

J(x) =
(1− β)(p− z)

r + s + f(v) (1− F (x))
.

Notice that s in the employer’s discount rate is now replaced with the total
separation rate, s + f(v) (1− F (x)), which includes the quit rate.

As unemployed workers accept any job with a value of x above the reser-
vation value and employed workers accept an alternative job when it yields
a higher value of x, the probability that a job characterized by x will be
accepted is A(x) = 0 if x < x̂ and

A(x) = u + G(x) =
s

s + f(v)(1− F (x))
if x ≥ x̂,

where the second equality is obtained after using Equations (21) and (22)
to eliminate u and G(x). Notice that the acceptance probability is counter-
cyclical, implying that, conditional on meeting a worker, it is harder for a
firm to hire a worker in a boom than in a recession.

Free entry equalizes the expected cost and return to job creation. That
is, given that firms pay hiring costs of H when forming an employment
relationship,

cv

f(v)
=

∫ x

x̂
A(x) [J(x)−H] dF (x) (23)

=
∫ x

x̂

(1− β)(p− z)s− [r + s + f(v)(1− F (x))] sH

[r + s + f(v)(1− F (x))] [s + f(v)(1− F (x))]
dF (x)

=
∫ 1

F (x̂)

(1− β)(p− z)s− [r + s + f(v)(1− y)] sH

[r + s + f(v)(1− y)] [s + f(v)(1− y)]
dy

=
(1− β) (p− z) s

rf(v)

(
ln
(

r + s

s

)
− ln

(
r + s + f(v)(1− F (x̂))

s + f(v)(1− F (x̂))

))

− s

f(v)
ln

(
s + f(v) (1− F (x̂))

s

)
H,

where the third equality follows by changing the variable of integration to
y = F (x). Notice that without hiring costs (H = 0) the expected return
to job creation, the right-hand side, is decreasing in the job-finding rate for
two reasons: the probability of acceptance declines with f and the employer’s
total discount rate increases with f . As pointed out by Nagypál (2005), both
of these effects temper the impact of shocks on the equilibrium number of
vacancies.
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6.2 Job-Finding Rate Volatility: No Hiring Cost

Market tightness is defined as the ratio of vacancies to searching workers.
As employment is procyclical by definition, this ratio is less volatile when
employed workers search on the job. In the case in which employed workers
contact vacancies at the same rate as unemployed workers, market tightness
is simply proportional to vacancies. Given Shimer’s data as reported in Table
1, the elasticity of the job-finding rate with respect to “market tightness” as
measured by vacancies is

η =
ρfvσf

σv

=
0.897× 0.118

0.202
= 0.524,

rather than Shimer’s value of 0.28.11

Because the interest rate r is small relative to both the estimates of the
destruction rate s and the job-finding rate f , the right-hand side of the free-
entry condition (23) can be approximated by its limit as r tends to zero. By
L’Hôpital’s rule

s

f
lim
r→0

 ln
(

r+s
s

)
− ln

(
r+s+f(1−F (x̂))

s+f(1−F (x̂))

)
r

 =
s

f
lim
r→0

 1
r+s

− 1
r+s+f(1−F (x̂)

1


=

1− F (x̂)

s + f (1− F (x̂))
.

Hence, the approximate free-entry condition when x̂ = x12 is

cv

f(v)
=

(1− β)(p− z)

s + f(v)
(24)

when there are no hiring costs (H = 0).

11This alternative specification of market tightness implies that the job-finding rate
is a function of vacancies rather than the vacancy-to-unemployment ratio. Since the
correlations of the job-finding rate with each of the two variables are roughly equal (see
Table 1), the evidence does not distinguish between the two hypotheses.

12This means that unemployed workers accept all matches they encounter. According
to Devine and Keifer (1991), this is a reasonable empirical approximation. Moreover, if x
is not too low, then this is implied by Equation (20). Notice that if x̂ = z−w > x, then x̂
becomes countercyclical, which raises the response of the job-finding rate, f(v) (1− F (x̂)),
to shocks.
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Next, we compute the volatility of the job-finding rate under the assump-
tion that vacancies are determined by two random driving forces, p and s.
As ∆ ln f = η∆ ln v given Equation (19), Equation (24) implies that

1− η

η
∆ ln f = ã∆ ln p− b̃∆ ln s− c̃∆ ln f (25)

holds as a linear approximation, where the coefficients

ã =
∂ ln(p− z)

∂ ln p
=

p

p− z
=

1

0.6
= 1.667 (26)

b̃ =
∂ ln (s + f)

∂ ln s
=

s

s + f
=

0.1

1.455
= .0687

c̃ =
∂ ln (s + f)

∂ ln f
=

f

s + f
=

1.355

1.455
= 0.931

represent the indicated partial derivatives. Equation (25) then implies

E(∆ ln f)2 = σ2
f =

(
η

1− η + c̃η

)2 (
ã2σ2

p − 2ãb̃ρspσsσp + b̃2σ2
s

)
,

so the volatility of the job-finding rate relative to that of productivity implied
by the model is

σf

σp

=
ã× η

1− η + c̃η

1− 2b̃

ã

ρpsσs

σp

+

(
b̃σs

ãσp

)2
1/2

.

Given our estimated value of η = 0.524 and Shimer’s values for the other
parameters, the implied relative volatility of the job-finding rate is

σf

σp

=
1.667× 0.524

1− 0.524 + 0.931× 0.524

 1 + 2×.0687
1.667

0.524×.075
.02

+
(

.0687×.075
1.667×.02

)2

1/2

= 0.986 . (27)

Although the elasticity of the job-finding rate, η, is larger when workers
search on the job, movements in the job-finding rate dampen the incentive to
create vacancies because the discount rate includes the quit rate. The latter
effect induces both a smaller value for the parameter b̃ and a positive value
for the parameter c̃. Overall, the impact of the quit rate dominates, in the
sense that the relative volatility of the job-finding rate is smaller than that
obtained in the case of no search on the job (see Equation (18)).
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6.3 Job-Finding Rate Volatility: Positive Hiring Cost

As Nagypál (2005) emphasizes, the reduction in amplification in the presence
of on-the-job search is due to the fact that employers reap lower benefits from
contacting employed workers than from contacting unemployed workers, be-
cause they have lower acceptance rates. A lower benefit from contacting
employed workers is always present when a standard model of on-the-job
search is embedded into a matching model. Nagypál shows that in this con-
text, there are two channels through which firms can have a higher benefit
from contacting employed workers. First, the presence of hiring costs can
ensure that the payoff from meeting employed workers is higher because the
expected duration of the job created is longer. Second, ex-ante heterogeneity
in worker productivity that is correlated with employment status in equilib-
rium can also give rise to a higher payoff from contacting employed workers.
While the exposition of the second channel is beyond the scope of this paper,
the first channel can be easily demonstrated in our simple framework.

As demonstrated above, in the presence of hiring costs, the free-entry
condition when x̂ = x is approximated by

cv

f(v)
=

(1− β)(p− z)

s + f(v)
− s

f(v)
ln

(
s + f(v)

s

)
H (28)

=
(1− β)(p− z)− (s + f(v)) s

f(v)
ln
(

s+f(v)
s

)
H

s + f(v)
= π(p, s, f).

Note that the first term on the right of the first equality is decreasing in
the job-finding rate, primarily because the quit rate increases with the job-
finding rate, while the absolute value of the second term, the expected cost
of hiring per worker contacted, falls with the job-finding rate, because the
fraction of the applicants who are employed rises with f . Of course, the
second effect dominates if the cost of hiring is large enough.

The second equality of Equation (28) illustrates another view of the same
facts. As pointed out above, the cost of turnover, the product of the sep-
aration rate and the expected cost of hiring, augments the unemployment
benefit to determine the overall opportunity cost of employment. Because
employed workers quit, this cost is much higher for a given value of H than in
the standard model. As already noted, large values of the opportunity cost of
employment imply large responses in vacancy creation to a shock for a given
value of the job-finding rate. For this reason, relatively small positive values
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for the hiring cost parameter can imply large response in the job-finding rate
even if the net effect of an increase in f reduces the expected present value.

Equation (24) can be linearly approximated by

1− η

η
∆ ln f = â∆ ln p− b̂∆ ln s− ĉ∆ ln f (29)

where

â =
∂ ln π

∂ ln p
=

(1− β)p

π (s + f(v))
(30)

b̂ = −∂ ln π
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Equation (29), then, implies

E(∆ ln f)2 = σ2
f =

(
η

1− η + ĉη

)2 (
â2σ2

p − 2âb̂ρspσsσp + b̂2σ2
s

)
,

so the volatility of the job-finding rate relative to that of productivity implied
by the model is

σf

σp

=
â× η

1− η + ĉη

1− 2b̂

â

ρpsσs

σp

+

(
b̂σs

âσp

)2
1/2

.

Note that the coefficient â is larger than its corresponding value ã defined by
the equations of (26) when H is positive because π is smaller. Furthermore,
the ratio b̂/â, which captures the impact of the job-destruction shock, is
larger than b̃/ã. Finally, the coefficient reflecting the dampening effect of the
procyclical quit rate reflected in the ratio ĉ/â is smaller than its counterpart
c̃/ã and can be negative if H is large enough. For all of these reasons, positive
hiring costs imply more volatility of the job-finding rate.

Notice that what matters in the determination of the above coefficients
is the relative magnitude of the hiring costs compared to flow profits, H

p−w
.

Holding this ratio constant, changing the level of wages (by varying β) has
no impact on the coefficients, thus on amplification. The reason for this is
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simple: what the firm cares about is turnover and the length of time it has
to recoup the hiring costs in the form of flow profits.

Although there is a consensus that hiring costs are important, there is no
authoritative estimate of their magnitude. Still, it is reasonable to assume
that in order to recoup hiring costs, the firm needs to employ a worker for at
least two to three quarters. When wages are equal to their median level in
the standard model (w = 0.983), hiring costs of this magnitude correspond
to less than a week of wages. Given the same values of r, s, η, and z that
we used to calculate Equation (27) in Section 6.2, a hiring cost, H, of 2 and
3 times the quarterly profit flow (p− w) yields relative volatilities between

σf

σp

= 3.086 and 7.168,

respectively. Obviously, these number bracket the observed value of 5.9 re-
ported in Shimer (2005) (and a hiring cost of 2.81 quarters of flow profits ex-
actly matches it). In sum, the complementarity between employed searchers
and vacancies can serve as a strong source of amplification in a matching
model, one that matches the data given a conservative estimate of the cost
of hiring.

The effect of hiring costs in these simple calculations depends on the
assumption that employed workers receive offers at the same rate as unem-
ployed workers. Nagypál (2005) studies a general version of the above model
where offer arrival rates vary across workers due to workers making optimal
search-effort decisions. She shows that a hiring cost equaling three quarters of
flow profits also succeeds in generating the observed amount of amplification
in her extended model.

7 The Beveridge Curve

As mentioned above, one of Shimer’s (2005a) criticism of job-destruction rate
shocks is that they induce positive co-moment in vacancies and unemploy-
ment. These movements are inconsistent with the commonly observed nega-
tive association between these two variables captured by the Beveridge curve.
Figure 1 is useful for the purpose of illustrating and evaluating Shimer’s as-
sertion.

Since vacancies are represented on the vertical axis and unemployment
is measured along the horizontal axis, the free-entry condition determines a
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Figure 1: Destruction Shock: Without search on the job

workers search at the same intensity as the unemployed, the job-Þnding rate
depends on the level of vacancies. Since the free-entry condition in this case
can be represented as a horizontal line in Figure 1, an increase in the job
destruction rate always decreases vacancies and increases unemployment.
To assess quantitatively the consequence of the correlation between va-

cancies and unemployment implied by the two-shock model and search on
the job, notice that

∆ lnu =
f

s+ f
(∆ ln s−∆ ln f) = (32)

=
f

s+ f

µ
∆ ln s− η

1− η + ηbc ³ba∆ ln p−bb∆ ln s´
¶

= 1.526∆ ln s− 1.958∆ ln p
∆ ln v =

1

1− η + ηbc(ba∆ ln p−bb∆ ln s) (33)

= 4.012 ln p− 1.219 ln s

hold as linear approximation where the parameter values for ba,bb, and bc are
those derived using the equations of (30) when the hiring cost parameter, H,
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Figure 1: Destruction Shock: Without Search on the Job

ray, the vacancy-unemployment ratio. The two negatively sloped curves are
the graphs of the unemployment steady-state condition

u =
s

s + f(θ)
(31)

for two different values of s. Since productivity is not an argument of this
relationship but θ increases with productivity, shocks to p identify the nega-
tively sloped curve of Equation (31) for fixed s.

Consider a shock to s represented in Figure 1 by an increase in s from
s0 to a larger value s1 > s0. This shock has two effects. First, the curve
representing the steady-state condition shifts up and to the right along any
ray. In Figure 1, let B0C0 represent the curve when s = s0 and B1C1 the
curve when s = s1. Second, the equilibrium vacancy-unemployment ratio
falls because the job-destruction rate is a component of the rate at which
future profits are discounted. Let the ray 0A0 represent the equilibrium
value when s = s0 and let 0A1designate the equilibrium when s = s1. Thus,
a positive job-destruction rate shock induces a movement in the equilibrium
(v, u) pair from (v0, u0) to a point like (v1, u1).

The diagram in Figure 1 illustrates that a positive shock to the destruction
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rate can induce positive comovements in vacancies and unemployment, but
it does so only if the shift in the curve representing the free-entry condition
is small relative to the shift in the steady-state condition. The size of this
shift is determined, in turn, by the magnitude of the wage pressure from
changes in the job-finding rate, as discussed above. Moreover, when a job-
destruction shock is accompanied by a drop in productivity, the shift in
the curve representing free-entry is larger than if a job-destruction shock is
considered in isolation.

However, if the feedback from the job-finding rate to the wage is small
and/or search by employed workers is extensive, then the counterfactual pos-
itive correlation implied by the model is reversed. Given the strategic bar-
gaining solution suggested by Hall and Milgrom, the downward shift in the
OA ray is larger than in the standard model because there is less feedback
on the wage in response to the initial decrease in the vacancy-unemployment
ratio induced by an increase in the job-destruction rate. When employed
workers search, the free-entry condition is no longer represented by a ray.
Instead, it is an increasing relationship with a flatter slope. Indeed, in the
benchmark case considered in which employed workers search at the same
intensity as the unemployed, the job-finding rate depends on the level of
vacancies. Since the free-entry condition in this case can be represented as
a horizontal line in Figure 1, an increase in the job destruction rate always
decreases vacancies and increases unemployment.

To assess quantitatively the consequence of the correlation between va-
cancies and unemployment implied by the two-shock model and search on
the job studied in the previous section, notice that

∆ ln u =
f

s + f
(∆ ln s−∆ ln f) = (32)

=
f

s + f

(
∆ ln s− η

1− η + ηĉ

(
â∆ ln p− b̂∆ ln s

))
= 1.890∆ ln s− 2.682∆ ln p

∆ ln v =
1

1− η + ηĉ
(â∆ ln p− b̂∆ ln s) (33)

= 5.495 ln p− 1.964 ln s

hold as linear approximation where the parameter values for â, b̂, and ĉ are
those derived using the equations of (30) when the hiring cost parameter,
H, is set at the value that generates the observed job-finding rate volatility,
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2.81 × (p − w). Notice that vacancies and unemployment respond in oppo-
site directions to both productivity and job-destruction shocks. Indeed, the
volatility of unemployment and vacancies are and

σu = 0.176

σv = 0.225

while their correlation is
ρvu = −0.986.

In short, the model implies greater correlations than observed in the data.
Furthermore, the slope of the implied Beveridge curve is ρvuσv/σu = −0.986×
0.225/0.176 = −1.263, close to a rectangular hyperbola.

8 Conclusion

Shimer (2005a) argues that the Mortensen-Pissarides equilibrium search model
of unemployment with shocks to productivity explains less than 10% of the
volatility in the job-finding rate. Some of the recent papers inspired by his
critique are reviewed and commented on here and compared within a unified
framework that highlights the importance of parameter choices. Given the
wide range of specifications and parametrizations used in the literature, it is
important to evaluate the claims of different authors within one framework.
Overall, we find that the literature has overemphasized the need to intro-
duce wage rigidity into the model. Indeed, we show that an extended version
of the model that accounts for job-destruction shocks and job-to-job worker
flows can explain both the volatility of vacancies and of unemployment as
well as the quantitative properties of the Beveridge curve inferred from U.S.
data.
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9 Appendix

9.1 Proof to Proposition 1

By substitution from Equation (5) and (6), Equation (4) implies that an
equilibrium surplus value function is a fixed point of the map

(TV )p = Γ−1

(
p− z + λEpVp′

r + s + λ

)

from the set of real-valued functions of p to itself where Γ(V ) is the real-
valued function defined by

Γ(V ) ≡ V +
βcθ(V )

(1− β)(r + s + λ)

and θ(V ) is the function implicitly defined by the free-entry condition

cθ

f(θ)
= (1− β)V.

Because θ(V ) is continuous, increasing, and convex and θ(0) = 0 under
hypothesis (ii), Γ(V ) has these same properties.

To prove uniqueness, we show that the mapping T satisfies Blackwell’s
sufficient conditions for a contraction. Since Γ−1(·) is increasing and Ep (Vp′ + k) ≥
Ep (Vp′) for all k ≥ 0, T is increasing. Hence,

(T (V + k))p = Γ−1

(
p− z + λEp (Vp′ + k)

r + s + λ

)
= Γ−1

(
p− z + λEpVp′ + λk

r + s + λ

)

≤ Γ−1

(
p− z + λEpVp′

r + s + λ

)
+

1

Γ′(V )

(
λk

r + s + λ

)
≤ (TV )p + βk

for any positive constant k and β = λ/ (r + s + λ) < 1 where the first in-
equality follows from the concavity Γ−1(·) (recall that Γ(·) is convex) and the
second is implied by the fact that dΓ−1(x)/dx = 1/Γ′(y) ≤ 1.

If condition (i) holds and p′ is stochastically increasing in p, then T maps
the set of continuous and increasing function of p into itself. Hence, the fact
that T is a contraction implies that its fixed point is increasing in p. All the
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other equilibrium outcomes can be expressed as increasing functions of p and
Vp. Finally, the assertion that Vp is strictly increasing is implied by the fact
that T transforms any increasing functions into the set of strictly increasing
functions.

9.2 Proof to Proposition 2

The claim is an immediate implication of Equation (9) in the case of λ → 0.
As the specification in Equation (14) implies,

p′ − z = (p− z)e∆,

it follows that
lim
∆→0

Epφp′ = φp

for any real-valued integrable function φ of p. The free-entry condition (4)
and Equation (6) imply that the Bellman equation can be written as

Vp =
p− z − βcθp

1−β
+ λEpVp′

r + s + λ
.

It follows that,

lim
∆→0

Vp =
p− z − βc

1−β
lim∆→0 Epθp′ + λ lim∆→0 EpVp′

r + s + λ

=
p− z − βc

1−β
θp + λ lim∆→0 Vp

r + s + λ
=

p− z − βc
1−β

θp

r + s
.

Hence, the free-entry condition can be approximated by

cθp

f(θp)
= (1− β)Vp =

(1− β) (p− z)− βcθp

r + s
.

By differentiating this expression with respect to ln p, one obtains Equation
(10).
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