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ABSTRACT

The paper studies a simple voting system that has the potential to increase the power of minorities

without sacrificing aggregate efficiency. Storable votes grant each voter a stock of votes to spend as

desidered over a series of binary decisions. By cumulating votes on issues that it deems most

important, the minority can win occasionally. But because the majority typically can outvote it, the

minority wins only of its strength of preferences is high and the majority's strength of preferences

is low. The result is that aggregate efficiency either falls little or in fact rises. The theoretical

predictions are confirmed by a series of experiments: the frequency of minority victories, the relative

payoff of the minority versus the majority, and the aggregate payoffs all match the theory.
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1 Introduction
Recent decades have witnessed great efforts at designing democratic institutions,
at many levels. New constitutions were created in much of Eastern Europe and
the former Soviet Republics, international organizations such as the European
Union and the World Trade Organization have been evolving rapidly, and many
developing countries have moved from autocratic regimes to regimes based on
elected representation with majoritarian principles.
While majoritarian principles may provide a solid foundation for democ-

racy, there are imperfections. This paper focuses on one particular imperfec-
tion, which has presented a challenge to designers of democratic institutions for
centuries: the tyranny of the majority, or the risk of excluding minority groups
from representation. At least since Madison, Mill, and Tocqueville, political
thinkers have argued that a necessary condition for the legitimacy of a demo-
cratic system is for no group with acceptable goals to be disenfranchised. The
dangers posed by the tyranny of the majority are not of pure academic interest,
as the threat or reality of civil wars around the world makes painfully clear.
According to a leading constitutional law textbook: "This issue is one of

the most difficult in political and constitutional theory: how to design political
institutions that both reflect the right of "the people" to be self-governing and
that also ensure appropriate integration of and respect for the interests of polit-
ical minorities" (Issacharoff, Karlan and Pildes, 2002, p.673). In the history of
US constitutional law, ensuring fair representation to each group is seen as the
crucial second step in the evolution of democratic institutions, after granting
the franchise: once all individuals are guaranteed the right to participate in the
political process, the question becomes the appropriate weights given to each
group’s political interest. The core of the difficulty is that the two goals seem
inherently contradictory.
One possible remedy is recourse to the judiciary system: it amounts to guar-

anteeing basic rights in the fundamental laws of the country and appealing to
the courts when such rights are imperiled. Although this approach can prevent
abuses, it does not address the subtler problem of ensuring minority represen-
tation when the preferences of the minority, as opposed to its basic rights, are
sytematically neglected. For this, the correct design of the political institutions
is required. In this paper, we approach the problem from the perspective of
voting theory, and propose a simple voting mechanism that, without violating
the basic principle of "one-person one-vote," allows the minority to win occa-
sionally. The mechanism is not based on supermajorities, avoiding the costs of
inertia and inefficiency they can entail, nor on geographical partitions, with the
inevitable arbitrariness and instability of redistricting. But before describing
our solution to the tyranny of the majority problem some clarification is useful.
The topic of minorities is felt so intensely, and the terms are so emotionally

loaded that there is a need to be scrupulously clear in terminology. We define
a minority as a clearly identifiable group characterized by two features: first,
a small numerical size, smaller than the majority; second, preferences that are
systematically different from the preferences of the majority. Thus, a minor-
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ity in this paper is a political minority, which may, but need not, correspond
to a minority according to racial, ethnic, religious or any other type of con-
siderations. In terms of political decisions, what matters are the coherent and
idiosyncratic preferences of the group, as opposed to its sense of identity. Given
our definition of a minority the natural question is why is protection of such a
minority important? A simple example will illustrate why.
Suppose there are just two groups in a polity comprised of 100 citizens.

Group A has 55 members and group B has 45 members. There are 3 issues for
which a policy must be adopted, and for each issue there are only two policy
options, α and β. All citizens in group A have identical preferences and strictly
prefer α to β; all citizens in group B have identical preferences and strictly
prefer β to α. Thus, group B fits our definition of a minority. Table 1 gives
a specific utility function for each member on each issue, and preferences are
assumed to be additive. For each citizen, the utility of the less preferred option
is normalized to 0. Thus, for example, if policy α were chosen for issue 1 and
policy β were chosen for issues 2 and 3, then each A citizen would have utility
equal to 3 and each B citizen would have a utility equal to 5.

Issue UA(α) UA(β) UB(α) UB(β)
1 3 0 0 1
2 2 0 0 2
3 1 0 0 3

Note that the intensity of preferences varies across the issues, and on a given
issue the preference intensity for a group A member may be different from the
intensity of a group B member. That is, some issues are "more important" to
one group than to the other group - issue 1 is important to group A but not to
group B, and issue 3 is important to group B but not to group A.
Now consider what would happen with simple majority rule if issues are

decided independently? In that case, since group A has a majority, policy α
is adopted on all three issues. Indeed, even if there were a million different
issues, group A would always have a majority on all issues, so the B citizens are
effectively disenfranchised - the outcome is exactly the same as it would be in a
political system where only A citizens were allowed to vote.
Why is this outcome undesirable? There are at least two reasons. First,

equity considerations demand that the minority be able to win on at least some
issues. Second, from a purely utilitarian standpoint, there are plausible welfare
criteria according to which the outcome is socially inefficient. In our example,
if each individual is treated equally and decisions are evaluated ex ante, before
membership into the groups is known, β should be chosen on issue 3. Thus, the
tyranny of the majority imposes costs both in terms of equity and in terms of ef-
ficiency. The equity problem stems from the existence of a smaller group whose
preferences are systematically in the opposite direction of the larger group’s
preferences. The efficiency problem stems from differences in the strength of
preferences of the two groups. But nothing fundamental depends on all citizens
in a group having the same intensity of preferences on every issue, a simplifica-
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tion we adopted here to keep the example transparent.1

Can the tyranny of the majority problem be solved? In our example, una-
nimity or any biting supermajority requirement would produce a stalemate and
prevent any decision being made. Any solution must deviate from issue-by-issue
simple majority voting system. An immediate possibility might be vote trading
or some corresponding log-rolling scheme: members of one group could trade
their vote on one issue in exchange for votes on other issues. But, in the simple
example we constructed above, there are no gains across groups, because every
A citizen is already winning on all issues. Any system that allows the minority
group to win on even one issue will make all A citizens worse off, and thus would
not emerge spontaneously through vote trading. With the perfect correlation
of preferences we have posited above, an explicit institution "re-enfranchising"
the minority is necessary.
Consider then, endowing every voter with an initial stock of votes, and rather

than requiring voters to cast exactly one vote on each issue, allowing them to
lump their votes together, casting "heavier" votes on some issues and "lighter"
votes on other issues. It is this voting mechanism, called storable votes, that
we study in this paper. As we prove below, storable votes allow the minority
to win some of the time, and in particular, to win when its preferences are
most intense. And because the majority generally holds more votes, it is in a
position to overrule the minority if it cares to do so: the minority can win only
those issues over which its strength of preferences is high and, at the same time,
the majority’s preference intensity is weak. But these are exactly the issues
where the minority "should" win from an efficiency viewpoint: the equity gains
resulting from the possibility of occasional minority’s victory need not come at
a cost to aggregate efficiency. In fact, in most of the examples we study in this
paper, we find that standard economic measures of aggregate efficiency rise with
storable votes.
Storable votes were initially proposed in Casella (2005) which applied the

mechanism to an environment without systematic minorities. The desirable effi-
ciency properties of storable votes remain true there, because the basic principle
of casting more votes over decisions that matter more continues to apply. The
implication is that the probability of obtaining the desired outcome shifts away
from decisions that matter little and towards decisions that matter more, with
positive welfare effects. Storable votes are a particularly natural application
of the idea that preferences can be elicited by linking independent decisions
through a common budget constraint, an idea that can be exploited quite gen-
erally, as shown by Jackson and Sonnenschein (forthcoming).2 When applied to

1Nothing fundamental depends on the direction of preferences within the group being
perfectly correlated either - there may be some conflicting preferences within groups. We
have maintained the assumption throughout the paper, both to avoid complications and to
capture the focus of minority advocates on cohesive groups.

2 Jackson and Sonnenschein propose a specific mechanism that converges to the first best
allocation as the number of decisions grows large. The mechanism allows individuals to
assign different priority to different actions but constrains their choices in a tighly specified
manner. The design of the correct menu of choices offered to the agents is complex and the
informational requirements on the planner severe, but the mechanism achieves the first best.
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the problem of ensuring representation to systematic minorities, the potential
to increase efficiency is matched by desirable properties on equity grounds.
The observation that storable votes can be useful in increasing minority rep-

resentation is not surprising. One existing voting system similar to storable
votes is cumulative voting, a mechanism used in single multi-candidate elec-
tions. It grants each voter a budget of votes, with the proviso that the votes
can spread or concentrated on as many or few of the candidates as the voter
wishes. Cumulative voting has been advocated for the protection of minority
rights (Guinier, 1994) and has been recommended by the courts to redress vio-
lations of fair representation in local elections (Issacharoff, Karlan and Pildes,
2002). There is evidence, theoretical (Cox, 1990), experimental (Gerber, Mor-
ton and Rietz, 1998), and empirical (Bowler, Donovan and Brockington, 2003)
that cumulative voting does indeed work in the direction intended. The stor-
able votes mechanism is different in that it is applies to a series of independent
binary decisions, but the motivation is similar.
The desirable properties of storable votes are features of the equilibrium

of the resulting voting game — they emerge if every voter chooses the correct
number of votes, given what he rationally expects others to do. But, in practice
there is a need to consider the robustness of the mechanisms. Could the outcome
be much worse if voters made mistakes? This is an appropriate concern here
because the storable votes game is quite complex: to solve it fully, voters need
to trade-off the different probabilities of casting the pivotal vote along the full
logical tree of possible scenarios. If actual voters were confronted with the
problem, what type of decisions would they make?
The second part of the paper presents the results of a set of experiments. In

our experiments, the minority does indeed win with some frequency, and both
the minority payoff and the aggregate efficiency of the mechanism are close
to the theoretical predictions. The result is particularly remarkable because
the same cannot be said of individual strategies: the experimental subjects
deviate frequently from the equilibrium number of votes. What subjects do quite
consistently, though, is to cast more votes when valuations are higher, a behavior
that appears sufficient to take them most of the way towards their equilibrium
payoffs. These conclusions are qualified by the different cost of mistakes faced
by majority members, who are likely to win anyway, and minority members,
whose deviations are particularly costly. This reinforces the robustness findings
reported in a different storable votes experiment (Casella, Gelman and Palfrey,
forthcoming). The introduction of minorities complicates the game significantly,
and we find the replication of these results an encouraging sign of the practical
viability of the mechanism.
The paper proceeds as follows. The next section presents the basic model,

including a description of the storable votes mechanism and our definition of
efficiency. In section 3, we present theoretical results about the possibility of
minority victories and its effect on efficiency under storable votes. Section 4

Storable votes are simple but in general do not achieve the first best. (An exception is the
two-voter two-decision case, studied in Hortala-Vallve, 2004).
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describes the experimental design and section 5 the experimental results. We
conclude in section 6. The Appendix discusses some of the proofs.

2 The Model
A committee with n members meets for T consecutive periods to make a se-
quence of binary decisions, {d1, ...dT }, where dt ∈ {αt, βt}. One can think of
these decisions as being policies for different issues, a collection of referenda that
are voted on over a sequence of elections, a policy decision that must be revis-
ited periodically on a recurring basis by a board of policy makers, a sequence
of judges (or other appointees) to be voted up or down by a legislature, job
candidates that are considered annually by a recruiting committee, or various
other applications. For consistency, we will refer to these as proposals. If the
decision in period t is αt, we say proposal t passes; if the decision is βt, we say
proposal t fails.
Voter i’s preferences over decision dt are summarized by a value vit ∈ R.

A positive value means that the voter is in favor of the proposal (for αt), a
negative value means that the voter is against (or for βt), and voter i’s payoff
from each decision is given by |vit| ≡ vit if the outcome of the vote is as he
desires, and 0 otherwise. Member i has a utility function of the form:

Ui(d1, ...dT ) =
TX
t−1

uit(dt)

where

uit(dt) = vit if
½
vit > 0 and dt ∈ αt
vit < 0 and dt ∈ βt

= 0 otherwise

The magnitude of the value, vit, measures the intensity of preferences of voter
i on proposal t.
The profile of values, v= (v11, ...,v1T , ..,vn1, ...,vnT ) is a random variable

that is distributed according to the commonly known distribution Γ(v). To
keep matters simple, we further assume that the profile of values at time t,
vt, is drawn independently from the values at time t0 and from an identical
distribution, denoted G. We will capture our focus on systematically opposed
groups by specializing the assumptions on G.
The committee is composed of two groups, calledM, with M members and

m, with m members, where m+M = n and m < M . We refer toM as the Ma-
jority group and m as the Minority group. The two groups differ systematically
in their preferences. Members of m strictly prefer αt to βt and members of M
strictly prefer βt to αt, for all t, or, in our terminology, members of m are in
favor of all proposals, and members of M are against: majority members have
positive values for all proposals, while minority members have negative values
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for all proposals:

vit > 0 if i ∈m
< 0 if i ∈M

What matters is that the two groups’ preferences are always opposed. The
direction of the preferences is thus what defines the two groups: always iden-
tical within each group, and always opposed across groups. The direction of
preferences is common knowledge.
All members of the minority have values distributed according to the same

distribution Gm defined over the support [0, 1] while all members of the major-
ity have values distributed according to GM , defined over the support [−1, 0].
Therefore, the set of possible value profiles is V = [0, 1]m× [−1, 0]M . We assume
symmetry in the distribution across groups, so that if we call G0M (v) defined over
the support [0, 1] the distribution of the absolute valuations of the majority, we
set Gm(v) = G0M (v) ≡ F (v). F (v) is common knowledge.

F (v) is thus the distribution of the intensity of preferences, assumed identical
for the two groups. Intensities of preferences are drawn independently across
the two groups. With respect to the correlation of the intensity of preferences
within each group, we consider two polar cases. In the first case (which we call
the base case or B), intensities are drawn independently for each member of a
group; in the second case (the correlated case, or C) intensities are identical for
all members of each group. Thus, in the B case, all minority group members are
always in favor of a proposal but generally feel differently about its importance,
and similarly (with the opposite sign) for all members of the majority. In the
C case, not only do all minority members favor a proposal but all feel equally
strongly about it (and similarly for the majority). The correlation of preference
intensities within each group is common knowledge.
The direction of all voters’ preferences is known; but what is not known -

and is the essence of our model - is the intensity of these preferences v. At
the beginning of period t, i privately observes vit but does not observe vit0 for
t0 > t: intensities are revealed privately and sequentially. Because draws are
independent across times, voter i’s observation of vit does not provide informa-
tion about vit0 , and because draws are independent across groups, observation
of vm does not provide information about vM (and vice versa). Thus, voters
do not know the intensity of their own preferences in future periods and do not
know the intensity of preferences of the other group. In case C, group members
have identical preferences and thus they know the intensity of preferences for
all members of their group. In case B, they do not know the intensity of their
fellow group member’s preferences. This means that in the B case members of
the same group can have conflicting priorities, while they do not in the C case.
Given these assumptions about preferences, we next turn to decision rules.
The model is designed to address the relative performance of alternative decision
rules. A decision rule, D, is a mapping from profiles of values to an outcome in
each period. That is:

D : v 7→ (d1(v), ...dT (v))
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There are several alternative ways to define the efficiency of decision rules. For
this paper, we consider only ex ante efficiency. Given a decision rule D, the
expected utility for player i is given by:

Ui(D) =

Z
V

Ui(D(v))dG(v)

A decision rule D0 is Ex Ante Efficient if and only if there does not exist another
decision rule D such that U i(D) ≥ Ui(D

0) for all i and U i(D) > Ui(D
0) for

some i. Similarly, decision rule D0 is Ex Ante Superior to D if and only if
U i(D

0) ≥ Ui(D) for all i and U i(D
0) > Ui(D) for some i.

From Holmstrom and Myerson (1983), the definition of ex ante efficiency
can be rewritten in terms of welfare functions, using a set of type-independent
welfare weights, one for each individual: a decision rule D0 is ex ante efficient
if and only if there exists a collection of welfare weights, λ = (λ1, ..., λn) with
λi ≥ 0 for all i and

P
i λi = 1, such that D

0 ∈ argmaxD∈∆{
P

i λiUi(D)}, where
∆ is the set of all decision rules.
Notice an immediate implication of this definition. In our model, where the

interests of the two groups are always opposed, a possible candidate decision
rule is one that always favors one side - for example the majority, as with simple
majority voting. But if the distributions of values have full support, such a rule
can be ex ante efficient only if the welfare weights on the losing group equal
zero. If we focus on welfare functions that place positive welfare weights on all
individuals, any optimal decision rule must decide in favor of the minority when
the values of the members of the minority are high enough relative to the values
of the members of the majority. With positive welfare weights, simple majority
voting cannot be ex ante efficient. In what follows, we will focus on neutral
welfare functions - welfare functions such that the welfare weight assigned to
each individual equals 1

n .

2.1 Some observations on the model

The values in our model are cardinal, and since there is no private good in
the model some discussion about their interpretation is warranted. One way to
interpret the values is in terms of willingness to pay relative to an unmodelled
numeraire private good.
That is, in the example in the introduction, a member of group M is will-

ing to give up one unit of the private good to change the outcome profile from
(α, α, α) to (β,α, α), but is willing to give up two units of the private good to
change the outcome profile from (α, α, α) to (α, β, α). A second interpretation
is in terms of von Neumann Morgenstern utility functions, as it applies to pref-
erences over lotteries. In fact, we treat the utilities as such when calculating
expected payoffs to the players. Because players face uncertainty about other
players’ values and their own future values, this is important. Thus, in our
example, a member of group M is indifferent between a 50/50 lottery between
(α, α, β) and (β, α, α) and the certain outcome (α, β, α).
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An important question is whether the cardinal values and our notion of
efficiency force us into comparisons of interpersonal utilities. It is here that our
assumption of symmetrical distributions of (absolute) values across all voters
plays its role: all voters are identical ex ante, and the valuation draws over any
specific decision should be read as normalized by a common numeraire. In our
model with multiple decisions, the natural numeraire is the individual’s mean
valuation over the universe of all decisions that could be brought to a vote. In
fact, by imposing not only the same mean but the same distribution, we are
forcing the voters to adopt an equal scale and to organize the different decisions
according to a fixed ordinal ranking, with the same proportion of decisions in
any given subinterval of the support. To see why the alternative model would
be problematic, suppose for example that the distribution of valuations for all
members of M were uniform on [0, 2] and the distribution of valuations for all
members of m were uniform on [0, 1]. On what basis could we justify assigning
preferences that on average are twice as intense for members of M than for
members of m?
Note that, not only would there be an arbitrary inconsistency in the assign-

ment of preferences, but such an inconsistency would be reflected in our notion
of efficiency. The equal welfare weights we posit reflect the natural focus on
egalitarian decision rules, but the term "egalitarian" is appropriate only if the
distribution of preference intensities is the same for everyone. In this example,
the "egalitarian" welfare function would implicitly give more weight to members
of M! Indeed, an egalitarian decision rule would correspond to the ex ante effi-
cient decision rule for an environment where the weights on members of M are
double the weights for members of m, and both distributions are uniform [0, 1].
The result would be to distort the whole idea of intensity, which is not intended
to reflect interpersonal comparisons, but rather a comparison of strength of pref-
erence across issues for a single voter. When FM = Fm, the normative problem
of whether an egalitarian welfare function is really egalitarian is avoided.

2.2 The Storable Votes Mechanism

Different versions of the storable votes mechanism are described in detail in
Casella (2005) and Casella, Gelman, and Palfrey (forthcoming). We consider
here the version described in the latter paper. At the beginning of period 1,
each voter is endowed with an account of B0 "bonus" votes3; in the first period,
the voter casts his regular vote plus as many bonus votes as he wishes out of
his endowment. This number of votes is deducted from the account, which is
then carried over to the next period. The current endowment of bonus votes for
every voter in period t, denoted Bt = (B1t, ..., Bnt), is common knowledge at
the beginning of period t. Thus each voter i independently decides how many
votes, xit, to cast after observing his private valuation vit and Bt, subject to
xit ≤ 1 +Bit. The proposal passes (i.e. dt = αt) if there are more votes for αt

3An obvious generalization would be to allow different voters to have different initial allo-
cations of bonus votes.
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than for the status quo βt. The status quo prevails (i.e. dt = βt) if there are
more votes for βt than for αt. Ties are resolved randomly. In the next period,
t+1, voters’ valuations over the new proposal are again privately observed, and
voting proceeds as before, now subject to the constraint, xit+1 ≤ 1 + Bit+1 =
2 +Bit − xit. Since xit ≥ 1, this is at least as tight a constraint as in period t.
The voting continues in this fashion until the end of period T .

3 Theoretical results

3.1 Equilibrium

Given F,m,M,B0, T the storable votes mechanism defines a multistage game
of incomplete information. We study the properties of the Perfect Bayesian
Equilibria of this game, where at each period t and for each possible valuation,
vit, individuals choose how many votes to cast so as to maximize the expected
utility of the continuation game, given the strategies of the other players. Be-
cause the sign of each group’s preferences is common knowledge and intensities
are independent over time, voting decisions cannot be used to manipulate other
players’ beliefs about future preferences. Assuming, in addition, that players
do not use weakly dominated strategies, the direction of each individual vote
is always chosen sincerely: all the minority members’ votes are cast in favor of
each proposal (for α), and all majority votes are cast against each proposal (for
β). The state of the game at t is defined to be the profile of bonus votes each
voter has still available, Bt = (B1t, . . . Bnt), and the number of remaining peri-
ods, T − t. We focus on strategies such that the number of votes each individual
chooses to cast each period, xit, depends only on the intensity of preferences
at time t, vit and on the state of the game at t. We denote such strategies by
xit(vi, Bt, t). We will typically think of the initial stock of bonus votes B0 as
an integer number and of each bonus vote as equivalent in value to the regular
vote, but in general neither B0 nor the units in which it can be divided need to
be integers.4

When characterizing the equilibria of our model, the correlation of valuations
within each group in model C can be a source of complications. But matters can
be simplified by a simple observation. Consider the following 2-player storable
votes model, C2. Voter M has M regular votes each period and a stock of
MB0 bonus votes; his valuation over each proposal is MvMt where vMt is
independently drawn from the distribution function FM with support [−1, 0].
Voter m has m regular votes each period and a stock of mB0 bonus votes; his
valuation over each proposal is mvmt where vmt is independently drawn from
the distribution function Fm with support [0, 1]. Then the following result holds:

Lemma 1. If game C2 has an equilibrium, then the game described by model
C also has an equilibrium. In addition, call x∗Mt(vi, Bt, t) and x∗mt(vi, Bt, t) the
equilibrium strategies of voter M and voter m in game C2, and {x∗it(vi, Bt, t)}

4A "unit" of B0 is the relative value of one bonus vote to one regular vote.

9



the equilibrium strategies in C. If C2 has an equilibrium, then there exist
equilibrium strategies of model C such that

P
i∈m x∗it(vi, Bt, t) = x∗mt(vi, Bt, t)

and
P

i∈M x∗it(vi, Bt, t) = x∗Mt(vi, Bt, t).

The proof is in the Appendix, but the point is simply that in model C voters’
interests within each group are perfectly aligned. If there is an equilibrium where
each group coordinates its strategy so as to maximize the group’s payoff, given
the aggregate strategy of the other group, then no individual voter can gain from
deviating.5 In the n-person game described by model C, we will call equilibrium
group strategies the equilibrium individual strategies of the 2-voter game C2.6

We can then borrow from previous results and state:

Lemma 2. Both model B and model C have an equilibrium in pure strate-
gies. In model B individual equilibrium strategies are monotone cutpoint strate-
gies; in model C, group strategies are monotone cutpoint strategies: at any state
(Bt, t) and for any i with ki = Bi + 1 available votes there exists a set of cut-
points {ci1(Bt, t), ci2(Bt, t), . . . , cik(Bt, t)}, 0 ≤ cix ≤ cix+1 ≤ 1, such that i will
cast x votes if and only if vit ∈ [cix, cix+1], where i ∈ {1, .., n} in model B and
i ∈ {M,m} in model C.
The Lemma follows almost immediately from the proofs in Casella (2005)

and Casella, Gelman and Palfrey (2005), with few modifications needed to take
into account the systematically opposite preferences of the two groups. The
details are in the Appendix.
The important point is that storable votes open the possibility of minority

victories. Because the outcome of a vote depends on the number of votes cast,
and this number is now potentially different from the number of voters on ei-
ther side of an issue, a minority using some of its bonus votes occasionally can
outvote the majority. The difference with respect to standard majority rule is
particularly stark in the case of systematic minorities, as in our model, where
by definition the minority would always lose. Indeed we can show:

Theorem 1. For any F , M and m and T > M , there always exists B0
sufficiently large such that in all equilibria of the storable votes mechanism the
minority is expected to win some of the time with strictly positive probability (in
both models B and C).

The proof is in the Appendix, but the intuition is transparent. To guarantee
itself victory all the time, the majority needs to spread the bonus votes at its
disposal over all proposals. If the horizon is sufficiently long and the stock of
bonus votes sufficiently large, at least one proposal must exist over which the
majority can be overruled with positive probability even by a single minority
voter concentrating his bonus votes. The exact valuation of the minority voter
over that one proposal is irrelevant, if the alternative is for the minority to lose
all the time, and thus the difference between models B and C here is immaterial.

5This is the logic exploited by McLennan (1998) to show that "sincere" voting must be a
Nash equilibrium in common value decision problems with information aggregation.

6Other equilibria are possible, where no individual voter can gain from deviating, although
the group’s (and thus each individual’s) payoff could be increased by joint group deviation.
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3.2 Efficiency

The possibility of minority victories is central to the idea of storable votes.
But in fact what matters is not such a possibility per se: it is the fact that
the mechanism induces the minority to win "when it should", from the point
of view of aggregate efficiency, i.e. when preferences are strongly felt by the
minority, and at the same time weakly felt by the majority. The tendency is
implied by the monotonicity of the equilibrium voting choices. Consider model
C. At any given state, the number of votes cast by each group increases with
the group’s intensity of preferences, and because the majority typically has
more available votes than the minority, it can overrule the minority. Thus, the
minority is expected to win when its intensity of preferences is high and the
intensity of preferences of the majority is low. The argument is complicated
by the dynamic nature of the game, the evolving budget constraint, and the
non-stationary strategies. Also, in case of model B the varying intensity of
preferences within each group complicates the game. It is possible, however, to
make it more precise.
As discussed earlier, our efficiency measure assigns equal weight to the ex

ante welfare of all voters, where voters form expectations about their total utility
from the T decisions ignoring their valuation on each of them, but knowing
whether they belong to the minority or the majority group. We call our efficiency
measure EV0 and contrast it with the equivalent measure under simple majority
voting, denoted by EW0.
The intuition described above applies to both models, but the properties of

the voting mechanism appear more robust, and easier to characterize, in model
C. The following theorem is proved in the Appendix:

Theorem 2. In model C, for all F and T , if m > 2 and M < 2m then
there exists a value of B0 and an equilibrium of the storable votes mechanism
such that storable votes are ex ante superior to simple majority voting (i.e.
EV0 > EW0).

The theorem relies on the construction of a specific equilibrium where voting
strategies reflect intensities of preferences. In this equilibrium, the minority
occasionally wins, but only if it feels more strongly about the decision at hand
than the majority. If the minority is not too small, relative to the majority, ex
ante expected welfare must then be higher than with simple majority voting.
The constraints on B0 and on the absolute size of m ensure that the posited
strategies are an equilibrium for arbitrary F and T . The result can be shown
to hold for m = 2 and with less restrictive constraints on B0 if we limit F and
T , in particular if F is Uniform and T = 2.
A similar intuition holds for model B, if the size of the minority is sufficiently

large. However, the construction of the equilibrium is complicated by the lack
of correlation of individual values within each group. In the case of F Uniform,
we have been able to verify it numerically.
Indeed, given that both Theorems 1 and 2 rely on sufficient and rather re-

strictive conditions, analyzing the storable votes mechanism when F is Uniform,
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and in the particularly simple case where T = 2 can help to our intuition. For
this reason, and because the example will guide the parameter choices in our
experimental treatments we discuss it below in some detail.

3.3 An Example: Uniform Valuations and Two Periods

The following scenario is the basis of our experimental treatment. There are two
successive proposals (T = 2); each voter is given two bonus votes, in addition
to his regular votes (B0 = 2), and the total number n of voters is odd. The
distribution F (v) is Uniform: minority and majority members have valuations
of opposite sign, but, given the sign, each absolute valuation in the allowed
support is equally likely. The strategy chosen by each voter is the number of
votes to cast over the first proposal, after having learned his valuation over that
proposal.
This example has simple equilibria. In model B there exists an equilibrium

where all voters, whether in the minority or in the majority, spend all bonus
votes over the first proposal if the intensity of their preferences is higher than
the mean, and none otherwise: xi1 = 1 if vi1 < 0.5 and xi1 = 3 if vi1 > 0.5
for all i. If M > 3m, the majority always wins, but for all M ≤ 3m there
exists an equilibrium where the minority wins each proposal with probabilityPm

s=k

hPm−s
r=0

¡
M
r

¢¡
m
r+s

¢
2−n

i
> 0 where k ≡ (M − m + 1)/2. In model C, if

2M > 3m, the majority can ensure itself victory every time; if 2M ≤ 3m
it cannot, and there exists an equilibrium in which the minority again wins
with positive probability. In this equilibrium, the minority cumulates all bonus
votes on the first proposal if the intensity of preferences is higher than the
mean, and none otherwise; the majority follows the same strategy if M is large
enough, and splits some of its bonus votes otherwise: xm1 = m if vm1 < 0.5
and xm1 = 3m if vm1 > 0.5, while xM1 = max{M,m + 3} if vM1 < 0.5 and
xM1 = min{3M, 4M − (m+3)} if vM1 > 0.5. The minority wins each proposal
with probability 0.25.7

The equilibria and their welfare properties are analyzed in detail in the
Appendix. They capture our intuitive understanding of storable votes, and in
particular of the implied probability of minority victories. Figure 1 illustrates
the main features of equilibrium.

Figure 1 here

The figure is drawn for the specific case M = m + 1, but its qualitative
features hold generally and can easily be interpolated to the generic case M =
m+k with k odd. Figure 1a shows, for both models, the probability of a minority
victory over either of the two proposals in equilibrium - the black dots - and the

7Both models have multiple equilibria. In model B for any n odd there is an equilibrium
where every voters casts 2 votes each period and the majority always wins. In model C, the
equilibrium described in the text can be supported for all 3m − 2 > M (even if 2M > 3m).
However, in both cases these additional equilibria rely on weakly dominated strategies. We
ignore them in the figures below.
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outcome according to our benchmark efficient criterion (when each decision is
solved in favor of the side with highest total valuation) - the grey dots. As the
absolute size of the minority increases, so does its size relative to the majority.
Not surprisingly, in both models this results in an increase in the probability of
minority victories. In model B, the equilibrium probability increases smoothly,
eventually converging to 0.5 as the number of voters becomes large and the
absolute difference negligible. The efficient frequency of minority victories is
slightly higher than the equilibrium frequency, but the difference disappears as
both converge to 0.5. In model C, the change in the equilibrium probability
of minority victories is discontinuous, jumping from 0 to 0.25 as the majority
becomes unable to overrule the minority over both proposals, and remaining
constant at that level. The minority size at which the jump occurs depends
on the absolute difference between the two groups. The efficient frequency
of minority victories on the other hand increases smoothly with the relative
size of the minority and is always higher than the equilibrium frequency, again
converging to 0.5 as the difference between the size of the two groups becomes
negligible.
Figure 1b plots the expected per capita payoff for majority and minority

members. With simple majority rule, the respective values are 1 and 0 in
both models. With storable votes, the expected payoffs of the two groups are
closer to each other, unless the majority can ensure itself victory, although
the minority’s payoff remains lower than under efficiency (light grey dots in
Figure 1b,) eventually converging to efficiency as the number of voters increases
in model B but not in model C. In model C, equilibrium per capita payoffs
remain constant for each group, regardless of m, once the threshold where the
majority always wins has been passed.8 The specific values depend on the shape
of the distribution F (v). Nevertheless, it would be incorrect to conclude that
storable votes are a more valuable mechanism in model B than in model C.
Figure 1c plots a normalized measure of expected surplus for both models

and for both storable votes and simple majority voting. We calculate expected
aggregate payoff as share of the available surplus, defined as expected payoff
in the ex post efficient mechanism (i.e. where each vote is decided in favor of
the group with higher total values). As a plausible lower bound on efficiency,
we normalize both numerator and denominator by the expected payoff in the
random mechanism, i.e. when each proposal is equally likely to pass or to
fail. Thus if we call EV ∗ the expected ex-post efficient aggregate payoff and
R the expected payoff under the random mechanism, we define the normalized
aggregate surplus as (EV − R)/(EV ∗ − R) with storable votes and (EW −
R)/(EV ∗ − R) with simple majority. Over the two proposals, EW = M and
R = (M+m)/2 in both models, while EV and EV ∗ are derived in the Appendix.
As the figure shows, when the number of voters is small and the difference in size
between the two groups relatively important, the possibility of minority victories
in the storable votes mechanism is accompanied by some loss of efficiency in

8 In fact, they remain unchanged for any absolute difference between the two groups, once
the threshold 3m < 2M has been passed. It is the threshold itself that depends on (M −m).
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model B, but not in model C, where efficiency is always at least as high as under
simple majority rule. The loss in model B is not large and disappears rapidly
as the number of voters and the relative size of the minority increases. For
most sizes of the electorate, storable votes allow voters to appropriate a larger
share of the total surplus in both models. The main difference between the two
models emerges in the limit. In model B, the valuation draws are independent,
hence, as the population becomes very large the law of large numbers guarantees
that the empirical average intensity of preferences in both groups converges to
the mean of the F (v) distribution. This means that random choice, simple
majority voting and storable votes all converge to first best efficiency and any
efficiency-based argument for protecting the minority disappears. In model C,
on the other hand, the valuation draws within each group are not independent
(in our model they are perfectly correlated), and the law of large numbers does
not apply. As the number of voters increases, the difference in size between the
two groups becomes negligible and simple majority voting again converges to
random choice, but random choice remains inferior to efficient decision-making
and to storable votes. Referring back to Figure 1c, in model B the storable votes
equilibrium (larger dots curve) converges to the efficient outcome (smaller dots
curve) and both converge to zero in the limit. 9 In model C, the smaller dots
curve again converges to zero, but the larger dots curve converges to 3/8.10 One
can conclude from this analysis that in very large populations, only minorities
whose intensities are correlated should be protected on efficiency grounds.

4 Experimental design
Models B and C
All sessions of the experiment were run either at the Hacker SSEL laboratory

at Caltech, the CASSEL laboratory at UCLA, or the PLESS laboratory at
Princeton with enrolled students who were recruited from the whole campus
through the laboratory web sites. No subject participated in more than one
session. All sessions focussed on the example described above: subjects voted on
two consecutive proposals (T = 2) and were allocated 2 bonus votes (B0 = 2), in
addition to the regular vote they were required to cast over each proposal. With
the exception of one session, committees were composed of 5 voters, divided into
two groups of 3 and 2 voters with systematically opposed preferences.11 The
experiment’s main treatment variable was the correlation of intensities within
each group - the distinction between model B and model C.
After entering the computer laboratory, the subjects were seated randomly in

9This convergence is not apparent from the figure, but as m gets large enough the two
curves approach zero.
10 In model C, a large electorate makes the finite difference between the two groups negligible,

but the statistical properties of the two valuation draws are unaffected. With two consecutive
proposals, expected per capita payoffs are: 1/2 with simple majority voting or with random
choice; 2/3 under first best efficiency; and 9/16 with storable votes. The results follow.
11As discussed below, we ran one session with committees of 9 voters, each divided into two

opposite groups of sizes 5 and 4.
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booths separated by partitions and assigned ID numbers corresponding to their
computer terminal; when everyone was seated, the experimenter read aloud
the instructions, and any questions were answered publicly. The session then
began.12 Subjects were matched randomly into committees and within each
committee were assigned randomly to the majority or the minority group. Each
subject was then shown his valuation for the first proposal and asked to choose
how many votes to cast in the first election. Valuations were restricted to
integer values and were drawn by the computer, with equal probability, from
the support [−100,−1] for majority members, and from [1, 100] for minority
members. In both treatments, the valuations were drawn independently for
majority and minority members.
In treatment B each member of each group was assigned a valuation drawn

independently from the specified support; in treatment C all members of the
same group in the same committee were assigned the same valuation (i.e. all
majority members in a given committee shared the same valuation, as did all
minority members in a committee). The independence of the valuations within
each group in treatment B and their perfect correlation in treatment C were
common knowledge. After everyone in a committee had voted, the computer
screen showed to each subject the number of votes cast by each of the two
groups in the subject’s committee, whether the proposal has passed or not, and
the subject’s own payoff from that election. Valuations over the second proposal
were then drawn, the remaining votes were automatically cast and the outcome
determined.
After the second proposal had been voted upon, subjects were rematched,

each was assigned a new budget of bonus votes and the game was replayed.
Experimental sessions consisted of either 20 or 30 such rounds13 , each round a
sequence of two consecutive proposals. In the rematching, minority members
always remained minority members and majority members always remained
majority members, but the composition of each group and of each committee
was randomly determined. Subjects were paid privately at the end of each
session their cumulative valuations for all proposals resolved in their preferred
direction, multiplied by a pre-determined exchange rate. Average earnings were
about $17 per experiment for minority subjects and about $31 for majority
subjects.
The only choice given our experimental subjects was the number of votes to

cast over the first proposal. With the parameter values used in the experiment,
individual equilibrium strategies in treatment B are not difficult to identify, and
are reported in Table 1. There are two Perfect Bayesian equilibria. In the first
one, every voter uses no bonus votes if his absolute valuation is smaller than
50 and all bonus votes if it is above - this is the equilibrium discussed in the
example of the previous section. If the two opposed groups are of size {3, 2},
12A sample of the instructions from one of the sessions is reproduced in the Ap-

pendix. We used the Multistage Game software package developed jointly between
the SSEL and CASSEL labs. This open-source software can be downloaded from
http://research.cassel.ucla.edu/software.htm
13With the exception of one session of 15 rounds.

15



the minority is expected to win 19 percent of the time; if they are of size {5, 4},
the minority is larger and is expected to win more often, 25 percent of the
time. These figures are reported in row 3 of Table 1. In the second equilibrium,
every subject always uses 1 bonus vote, the equilibrium is identical to simple
majority voting and the majority always wins.14 Because minority members
use weakly dominated strategies and because the equilibrium exactly replicates
simple majority voting, we mention it here but will not discuss it further. We
focus instead on the first equilibrium.
The equilibrium cutpoints - the threshold (absolute) values where individual

voters switch from casting 0 to casting 1 bonus vote, and from casting 1 to
casting 2 - are reported in row 2 of Table 1 and are denoted c1 and c2.15 Rows
3 and 4 in the table report the expected frequency of minority victories in
equilibrium and under ex post efficiency, respectively. Rows 5 and 6 report the
expected share of per capita payoff for a minority voter, relative to a majority
voter, again in equilibrium and under ex post efficiency. So, for example, in
the {3, 2} experiment with storable votes a minority subject the minority is
expected to win on average 26% of what a majority subject earns, if everybody
plays the equilibrium strategy. Finally, the last two rows report the expected
share of normalized aggregate surplus appropriated with storable votes (row 7)
and with simple majority voting (row 8).16

Table 1: Equilibrium strategies and outcomes.
B Treatment

M , m 3, 2 5, 4
c1, c2 50, 50 50, 50

% min wins, sv 19 25
% min wins, eff 22.5 28.5

% (min/maj) payoff, sv 26 36
% (min/maj) payoff, eff 35.5 45

% surplus sv 71 61
% surplus nsv 75 62

The qualitative features of these numbers were discussed in the previous
section. Notice, once again, that although storable votes here are less efficient,
from an aggregate point of view, than simple majority voting, the efficiency
loss is minor, relative to the dramatic effect of storable votes on the welfare of
minorities.
Equilibrium strategies in treatment C pose some interesting problems. Equi-

librium group strategies are not difficult to characterize, and one such equilib-
rium is the following. If the two groups are of size {3, 2}, in equilibrium the

14As remarked in footnote 5, this equilibrium exists for all n odd, if T = 2.
15Because the equilibrium cutpoints are identical for minority and majority voters, we use

the symbols c1 and c2 for both groups.
16As described earlier, the share of available surplus is calculated scaling both expected

equilibrium payoff and expected efficient payoff by the expected payoff with random decision-
making.
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minority uses no bonus votes if its absolute valuation is smaller than 50 and
all its bonus votes if it is above - this is the strategy described in the previous
section. The majority casts 0, 1, or 2 bonus votes with probabilities p0, p1,
p2 if its absolute valuation is smaller than 50, and 4, 5, or 6 bonus votes with
probabilities q0, q1, q2 if its absolute valuation is larger than 50, where p2 ≥
q2 and p1 = q1 - a strategy that encompasses the one described earlier (with
p0 = p1 = 0, and q1 = q2 = 0).
Any individual strategy compatible with these group strategies is an equi-

librium. Hence, each minority voter has a simple symmetrical strategy that
aggregates to the equilibrium group strategy: vote 1 if the valuation is below
50 and 3 if the valuation is 50 or above. But the aggregation problem for ma-
jority voters is more difficult. The group strategy described above cannot be
supported by symmetric individual strategies, and coordination on asymmetric
strategies is hampered by the random rematching in our experimental design. In
fact, for our experimental environment, not only is there no symmetric individ-
ual strategy that aggregates to the group strategy we have described, but there
is no asymmetric strategy that each majority voter can adopt consistently and
that would always aggregate to the equilibrium group strategy, for any possible
rematching.
We know that a symmetrical equilibrium exists (by standard fixed point ar-

guments)17 , but we have not been able to characterize it, and we doubt that our
experimental subjects, confronted with a new game and under time pressure,
would be much more successful. In practice, our basic C treatment is then a test
of the robustness of storable votes’ outcomes to strategic mistakes. In previous
work (Casella, Gelman, and Palfrey, forthcoming), we found that the efficiency
properties of storable votes were preserved in experiments in which individual
strategies deviated from equilibrium but remained monotonic. The experiments
conducted then did not feature systematic minorities, and equilibrium strate-
gies in fact were simpler to calculate and implement than in the present case.
With more complex equilibrium strategies, reevaluating the robustness of the
mechanism seems particularly important.
To this end, we designed two additional treatments, as controls for our basic

C case. In these treatments, the majority’s coordination problems should disap-
pear. A comparison of the behavior of the majority across the three treatments
and of the experimental outcomes will give us information about the importance
of coordination.

4.1 Additional treatments

In these two additional treatments, we focused on groups of size {3, 2}. In treat-
ment C2 ("correlated valuations, coordinated voting") a single subject repre-
sented the whole group. Half of the experimental subjects were randomly as-
signed to represent majority groups, and half minority groups. Each majority
group’s representative had 3 indivisible regular votes to cast on each of the two

17Taking into account that the set of types is finite in our experimental treatment.
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proposals and 6 bonus votes to cast as desired. Each minority group’s represen-
tative had 2 indivisible regular votes to spend on each of the two proposals and 4
bonus votes. A committee was then formed by one pair of experimental subjects,
one subject randomly drawn from all those representing a minority group, and
the other from all those representing a majority group. In each committee, and
for each proposal, valuations were drawn independently with equal probability,
from the support [−100,−1] for the majority representative, and from [1, 100]
for the minority one. The timing of the game proceeded as described earlier.
After each two-proposal round, partners were rematched, but all minority repre-
sentatives remained minority representatives for the whole experimental session,
as did all majority representatives. When we discuss experimental payoffs from
this treatment, we multiply the minority representative’s payoff by 2 and the
majority’s by 3, so as to make them comparable to the theoretical predictions
and to the experimental payoffs for the C case and to the following treatment,
which we call CChat.
In treatment CChat ("correlated valuations, chat option") we replicated the

C treatment, with each group composed of multiple individual subjects, adding
a "chat option". Before the vote on the first proposal, each group member is
allowed to send messages via computer to other members of his own group. Sub-
jects are instructed not to identify themselves, and the messages are anonymous
but otherwise unconstrained. In particular, they allow subjects to coordinate
on their preferred group strategy.18 Everything else in the experiment - the sto-
chastic properties of the valuation draws, the timing, the random re-matching
- follows exactly the C treatment.
Equilibrium group strategies and expected outcomes are identical in the

three C treatments - C, C2, and CChat. They are reported in Table 2. In
equilibrium, the minority votes either 2 or 6, and gL and gH in the table
denote the cutpoints where the minority switches from casting 0 bonus votes
to casting 2, and from casting 2 to casting 4. Similarly GL and GH denote
the cutpoints where the majority switches between randomizing over 0, 1, and
2 bonus votes and randomizing over 4, 5, and 6 bonus votes. Without adding
it to the table, recall that the majority strategy is an equilibrium only if the
probabilities employed in the randomization satisfy p2 ≥ q2 and p1 = q1.

Table 2: Equilibrium group strategies and outcomes.
C Treatments

18The messages are recorded in the experimental output and although their content will not
be used in our analysis - as opposed to the strategies they induce - they are quite interesting
and are available upon request.
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M , m 3, 2
gL, gH 50, 50
GL, GH 50, 50

% min wins, sv 25
% min wins, eff 33

% (min/maj) payoff, sv 38.5
% (min/maj) payoff, eff 52

% surplus sv 60
% surplus nsv 53

As discussed in the previous section, the outcome is more favorable to the
minority in model C than in model B, both in terms of the expected frequency
of minority victories and of its expected payoff, relative to the majority. Notice
also that storable votes outperform simple majority voting in this case.
The experimental design is summarized in Table 3. In all experiments the

majority was formed by 3 subjects and the minority by 2, with the exception of
session b3 where the number of subjects in each group was 5 and 4 respectively.
Session b3 serves us as a control on the sensitivity of the experimental results
to the size of the groups.

Table 3: Experimental Design

Session Groups size Subject pool # Subjects Rounds

b1 3,2 CIT 15 30

b2 3,2 UCLA 20 30

b3 5,4 UCLA 27 30

c1 3,2 UCLA 15 30

c2 3,2 PU 15 20

c3 3,2 PU 10 20

c21 3,2 CIT 12 30

c22 3,2 UCLA 16 30

c23 3,2 PU 12 20

cchat1 3,2 PU 10 20

cchat2 3,2 PU 15 15

5 Experimental Results
We begin describing our experimental results by focusing on the outcomes. Later
we analyze the subjects’ behavior. The main results echo closely the conclu-
sions of our previous set of storable votes experiments (Casella, Gelman and
Palfrey, forthcoming): the experimental outcomes are closer to the theory than
the strategies are. In the current setting, the implication is that storable votes
do indeed favor minorities, and do so either with a small loss of efficiency (if
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the strength of preferences within each group is uncorrelated) or, in fact, with
an improvement in aggregate efficiency (if members of each group share not
only the direction but also the strength of their preferences). More than that,
storable votes appear once again as a rather robust mechanism: as long as
voting choices remain monotonic in the strength of preferences, behavior most
experimental subjects appear to find natural, systematic deviations from the
equilibrium strategies do not impair either the possibility of minority victories
nor the efficiency of the mechanism.

5.1 Outcomes and Efficiency

5.1.1 How often did the minority groups win?

The diagram on the left of Figure 2a summarizes the answer to this question.
The vertical axis is the percentage of times the minority prevailed in the exper-
imental sessions, and the horizontal axis is the percentages of times it would
have prevailed if all subjects had played the equilibrium strategy, given the val-
uations drawn during the experiments. Different treatments are indicated by
different symbols, as described in the figure’s legend.

Figure 2 here

The figure can then be read in several ways. The vertical height tells us that
the minority won between 20 and 25 percent of the time in C, C2, and CChat,
with little dispersion among them; it won less frequently in the B sessions
(around 15 percent of the time) with the exception of the one experiment of size
{5, 4}where the minority won about 23 percent of the time.
In all treatments, the effect of storable votes in increasing the represen-

tation of the minority was not marginal. Qualitatively, the difference across
treatments matches the theoretical predictions, as is evident from the way the
points align along the 45-degree line. The closer to the line a point is, the closer
the experiment’s results are to the equilibrium predictions. If we estimate a
simple regression line, the hypotheses of a unitary slope parameter and a zero
constant term cannot be rejected at standard confidence values.19 On average,
the frequency of minority victories in the experiments differs from the equilib-
rium predictions by 3 percentage points, without clear outliers20 and without
systematic treatment effects. This last remark reflects the fact that the exper-
imental results support the qualitative comparative statics predictions of the
model across treatments. We find this surprising because the complexity of the
individual equilibrium strategies in the basic C treatment (as opposed to C2
and CChat) would suggest a larger discrepancy from equilibrium predictions in
that specific treatment, a discrepancy the data do not show.

19The estimated parameters are: 0.76 for the slope (with a standard error of 0.23), and 3.4
for the constant term (with a standard error of 5.8).
20Both mean and median distance are 3 percentage points.
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5.1.2 Did the experimental payoff to the minority match the theo-
retical predictions?

Storable votes did indeed result in minority victories in the experiments. But
did minorities win when their valuations tended to be high - in other words,
did minorities’ payoffs match the theory? The diagram on the right of figure 2a
plots per capita minority payoff as percentage of per capita majority payoff in
the experiments on the vertical axis, and in equilibrium on the horizontal axis,
using the symbols of the previous figure to identify the different experimental
sessions. In all C, C2 and Cchat treatments the relative minority payoff was
higher than in any B treatments, as predicted by the theory, ranging between 33
and 45 percent of the average majority payoff, versus 16 to 20 percent in the B
treatments of size {3, 2} and 30 percent in the B treatment of size {5, 4}. Again,
the effect of the voting mechanism in raising the minority’s payoff was signifi-
cant. Out of eleven experimental sessions, all but two are below the 45-degree
line, suggesting that the minority was unable to fully exploit the opportunity
presented by the voting mechanism. But the discrepancy is not large - the
average distance from the 45-degree line is 5 percentage points, again without
clear outliers21 or treatment effects, a number that is small in comparison to
the differences across treatments. Again, if we estimate a regression line, we
cannot reject the hypotheses of unitary slope and zero constant.22

5.1.3 At what cost to the majority were the minority’s gains? At
what cost to overall efficiency?

In our experiments storable votes did indeed favor minorities - the majority lost
with some frequency. If the majority’s losses are large, relative to the minority’s
gains, the advantage of storable votes in terms of equity becomes questionable.
The theory suggests that this should not occur, but was the prediction confirmed
in the experiments? The left-hand side of figure 2b plots the normalized total
surplus in each session (recall that this is the share of the available surplus
above what the random mechanism earns) on the vertical axis, against the
equilibrium predictions on the horizontal axis. The equilibrium predictions are
calculated on the basis of each session’s experimental draws. Points on the 45
degree line indicate that storable votes capture the amount of surplus predicted
by the theory. The mean distance from the 45 degree line is 7 percentage
points, again with little evidence of outliers (the median is 6.5) versus a mean
equilibrium surplus share of 60 percent. As in the previous figures, we cannot
reject a regression line with unitary slope and zero constant, although the fit is

21Both mean and median distance are 5.2 percentage points. Note that a plausible range
of values in Figure 2b is between 0 (the outcome with simple majority voting) and 100 (the
expected outcome with random decision-making). In figure 2a, the corresponding range is
between 0 and 50.
22The estimated parameters are: 1.03 for the slope (with a standard error of 0.19), and

−6.2 for the constant term (with a standard error of 7.1).
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poorer.23

Thus, the answer to our question is that the cost to the majority is roughly
as theory had predicted: the minority tends to win when the majority has lower
preference intensity. While the match of the data to the theory is not as tight as
in Casella, Gelman and Palfrey (forthcoming), the game is substantially more
complex. Note that two of the three largest discrepancies from equilibrium
correspond to C2 treatments (the third is a C session), a puzzling result, given
that coordination is built into the C2 design, and one to which we will return
later.
From a practical point of view, the central question is how the efficiency of

storable votes compares to the efficiency of alternative voting systems - in our
case against simple majority voting. In the diagram on the right of figure 2b,
the vertical axis is again the normalized total surplus in each session, now plot-
ted against the equivalent measure with simple majority voting calculated from
the experimental valuation draws. The theory predicts that data points repre-
senting C, C2 and CChat sessions should lie above the 45-degree line, while B
experiments should lie below, with the {5, 4} B experiment only slightly below.
The prediction is confirmed by the C and by the B experiments. Surprisingly
it is the "easier" treatments with coordination, C2 and Cchat, that fall short
of the prediction. Once again, two of the three most significant losses relative
to non-storable votes occur in C2 sessions. Taking all C, C2 and CChat treat-
ments together, the mean difference in normalized surplus was an improvement
of 2 percentage points, versus a theoretical prediction of 7. If we take all B
treatments together, given the small number of experiments, the mean differ-
ence was a loss just below 10 percentage points, versus a theoretical prediction
of 4 (taking into account the difference in group sizes).
The picture emerging from these data can be summarized in two main points.

First, in our experiments storable votes did indeed help minorities. They helped
minorities substantially, both in terms of the frequency with which minorities
won decisions and in terms of the payoffs involved in these decisions. By defi-
nition, minorities could not have done worse than with simple majority voting,
but the outcomes suggest that the improvement was significant. In particular,
the experimental results matched the theoretical predictions in terms of dif-
ferences across treatments: correlation in the strength of preferences helps the
minority gain a larger weight in decision-making and larger returns. Second, the
efficiency costs associated with the increased representation of minority inter-
ests were somewhat larger than the theory predicted, but changed consistently
across the different treatments. In particular, when the strength of preferences
was not correlated within each group, storable votes induced (small) aggregate
welfare losses, as predicted. But when the strength of preferences was perfectly
correlated within the group, on average storable votes led to welfare gains over
simple majority voting.
Over all experimental outcomes discussed so far, there was some evidence of

23The estimated parameters are: 0.7 for the slope (with a standard error of 0.40), and 14.1
for the constant term (with a standard error of 24.1).
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learning - some improvement in the fit of the data to the theory - in the later
rounds, but the evidence remained mostly weak and the substantive features of
our results unchanged.

5.2 Behavior

We begin by studying the behavior of the experimental subjects in the treat-
ments that did not allow group members to coordinate their strategies (B and
C). We thus focus naturally on individual behavior. Later we turn to group
behavior and discuss the role played by explicit coordination (treatments C2
and CChat).

5.2.1 Individual behavior

Storable votes are designed to allow voters to express the intensity of their
preferences. But this can only occur if voters cast more votes, at any given state,
when their preferences are stronger. The monotonicity of voting strategies is at
the core of the mechanism, and it is natural to analyze subject behavior in our
experiments by studying this property first. In our experiments, we can measure
monotonicity easily because there are only two periods. The meaningful decision
is the number of votes cast in the first period, when everybody has all bonus
votes still available, and the state is simply (B01, .., B0n, t = 1) = (2, .., 2, t = 1).
With more than two periods, testing monotonicity is more difficult because the
state then depends on the entire history of previous votes. Each state is then
reached only rarely, inducing small sample problems.
To obtain a measure of monotonicity of individual behavior, we estimate

monotonicity violations and cutpoints for each subject. For each subject we
have K pairs of observations (where K equals either 20 or 30 depending on the
session24), where each pair consists of a first proposal value and the number of
votes cast for (or against) the first proposal. The number of votes cast is always
1, 2, or 3. A perfectly monotone strategy is one for which we can find two
cutpoints, c1 ≤ c2 such that whenever the subject’s first period valuation was
below c1 the subject cast 1 vote, whenever the subject’s first period valuation
was above c2, the subject cast 3 votes, and for intermediate values between c1
and c2 the subject cast 2 votes. We calculate the number of monotonicity viola-
tions as the minimum number of voting choices that would have to be changed,
for each subject, to make the strategy perfectly, if possibly weakly, monotonic.
We then identify the pair of cutpoints that is consistent with such monotonic
strategy. Because there are gaps in the valuations drawn, typically multiple
cutpoints are consistent with the same number of monotonicity violations; and
because our null hypothesis is equilibrium behavior, we select the pair that is
closest to the equilibrium cutpoints.
Figure 3a presents histograms of individual monotonicity violations in treat-

ments B and C. The horizontal axis is divided into deciles representing the

24With the exception of session cchat2, with 15 rounds.
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percentage of violations over the total number of voting decisions, and the ver-
tical axis reports the fraction of subjects that belong to each decile.

Figure 3 here

In the B treatment, 50 percent of the subjects have 3 or fewer violations
out of 30 voting decisions (10 percent). In the C treatment, 57 percent of
subjects had violation rates less than or equal to 10 percent.25 As comparison,
a voter choosing randomly whether to cast 0, 1, or 2 bonus votes would have a
violation rate converging to 2/3 as the number of decisions becomes very large.
To account for the smaller number of violations that would result from the small
sample and the free cutpoints, we have simulated such random behavior with
21 subjects and 30 rounds. We found that no subjects had violation rates less
or equal to 30 percent.26 The comparison makes clear that, although noisy,
individual choices indeed tend to be monotonic for most subjects.
The estimated cutpoints for all individual subjects in the B and C sessions

are displayed in figures 3b. Each point represents one subject’s estimated pair
of cutpoints, with c1 on the horizontal axis and c2 on the vertical axis. All
cutpoints lying on the 45 degree line involve no splitting of bonus votes: casting
either both or neither of the bonus votes over the first decision. Moving to
the upper left corner of the graph are cutpoints that involve more and more
splitting of bonus votes, i.e. using one bonus vote in each period for a range
of values that increases as one approaches the corner. The upper left corner of
the graph, at (0, 100) corresponds to always casting one bonus vote. Cutpoints
for subjects in the minority group are in the left graph and cutpoints for the
subjects in the majority group are in the right graph. The rates of monotonicity
violations are indicated by shading the points. The darkest points have rates
of violations below 10 percent, the next darkest are the next decile, and the
lightest cutpoints have more the 20 percent violation rates.
In the B treatments, the equilibrium cutpoints for both majority and minor-

ity subjects are (50, 50): if everyone played the equilibrium strategies all points
would be on the 45 degree line at 50. In the C treatments, (50, 50) remains an
equilibrium for individual minority subjects, but not for subjects in the major-
ity, whose asymmetrical strategies are contingent on the behavior of the other
members of the group and cannot be identified unambiguously in the figure.
Two features of the distribution of cutpoints are noticeable in both treat-

ments. First, the minority cutpoints do cluster around (50, 50), and on average
minority subjects whose cutpoints are closer to equilibrium have lower violation
rates. Second, bonus votes are much more frequently split by majority voters,
and their cutpoints are more scattered. Intuitively, majority voters have less to
lose from splitting their bonus votes - their larger number implies that they are
guaranteed to always win one of the two decisions, and one single vote more
or less plays a smaller role than in the case of the minority. We can make the

25Recall that only voting choices over the first proposal are relevant (all remaining votes
are cast over the second proposal).
26Precisely: 2 subjects at the fourth decile, 8 at the fifth, and 11 at the sixth.
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intuition more precise. Consider the parameter values used in the experiments
and a committee of size (3, 2). In model B, a minority voter who always split his
bonus votes should expect a loss just below 15 percent, versus an expected loss
just below 4 percent for a majority voter (relative to the expected equilibrium
payoff)27. In model C, the losses from individual deviation depend on the spe-
cific mixture used by the majority, with the maximum loss reaching 50 percent
for a minority voter, and 8 percent for a majority voter.28 The difference in
the cost of splitting one’s bonus votes in the two models may play some role in
the more pronounced clustering of the minority cutpoints around the 45 degree
line, and particularly around (50, 50) in the C treatment, although there is no
visible effect for the majority.

5.2.2 Group behavior

From the perspective of the welfare properties of the mechanism, the monotonic-
ity of the individual strategies provides only a partial picture. Efficiency de-
mands that group strategies be monotonic in the group value. In the B treat-
ment the notion of "group value" is ill defined because different subjects within
a group have different values. But we can check for "group monotonicity" in the
C treatment, that is, we can check whether the sum of the votes by members of
one group is monotone in their (common) value. If there is heterogeneity in be-
havior, monotonicity at the individual level need not imply monotonicity at the
group level because individuals are continuously rematched. But the problem is
particularly severe for the majority whose individual equilibrium strategies are
asymmetric.29

The histograms in the first row of Figure 4a illustrate the difficulty that
groups had in the C treatment. More than 40 percent of the groups had error
rates above 20 percent, compared to only 10 percent of individual subjects in
the same experimental sessions (see Figure 3a). As expected, and as shown by
the histogram on the right, most errors are associated with the majority, where
more than 60 percent of the groups had more than 20 percent error rates.

Figure 4 here

A comparison of these results to monotonicity violations in the C2 and
CChat treatments allows us to study the role of explicit coordination. Accord-
ing to the histograms in the second row of Figure 4, communication, as designed
in CChat, did reasonably well in reducing group violations: all minority groups
and 2 out of 5 of the majority groups had fewer than 10 percent violations. More

27Supposing that all other voters play the equilibrium strategy.
28The loss to a minority voter always splitting his bonus votes is maximal when the ma-

jority’s strategy is to cast 5 votes for values below 50, and 7 votes for values above. For a
majority voter, it is maximal when his deviation moves the majority group’s strategy from 5
votes for values below 50, and 7 votes for values above, to 6 votes always.
29We identify a group by the label in the experiment (group 1, group 2, etc.), but rematching

implies that the composition of each group continues to change. Note that if equilibrium
strategies were symmetrical, the changing composition of the group would not matter.
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surprising is the poor performance of the C2 treatment, where perfect coordi-
nation is imposed by the experimental design, although such poor performance
is due in large part to one single experimental session: session c22 conducted at
UCLA (where 25 percent of the subjects had a rate of violations approaching
50 percent).30

These results leave us with a puzzle: if the aggregate group behavior of the
experimental subjects in sessions C often violates monotonicity, why did the
outcomes of these experiments - in terms of minority victories and efficiency -
still conform to the theory? Why did these sessions outperform, on average,
the C2 sessions with apparently comparable record of monotonicity violations.
The answer comes from the underlying monotonicity of the individual behavior
in treatment C. Intuitively, because individual subjects did cast their vote
monotonically, the violations resulting from the uncoordinated aggregation of
the votes are numerous, but are not large: they tend to be concentrated around
the cutpoints values. We can make this statement more precise. The histograms
in figure 4b summarize the distribution of the average distance of "mistaken"
(i.e. non-monotonic) voting choices from the cutpoints, as percentage of the
expected distance if voting choices were random.31 The CChat experiments
behave best: with the exception of a single outlier, all other groups have error
distances below 20 percent of the random case. But it is the comparison between
the C and the C2 treatments that is particularly revealing in explaining the
differences in experimental outcomes: one fourth of all C2 groups have error
distances that are closer to the purely random case than any of the C groups.
As mentioned, this reflects mostly one outlier session, c22, and how much of
an outlier c22 is is made clear in the diagram on the right, in the bottom row
of figure 4b. Almost half of all groups in this session have error distances that
are closer to the purely random case than any of the C groups, and less than
one fifth have distances that are less than 10 percent of the random case, a
very different result from the other two C2 sessions. This is the reason why in
figure 2b the aggregate experimental payoff of session c22 falls short both of
the theoretical prediction and of the payoff with simple majority. The other C2
sessions are much better behaved, although they too present a few instances of
almost random behavior, something we do not observe in the C sessions. As
shown in figure 2b, in our relatively small experiments, these few cases were
sufficient to exact a cost in terms of efficiency, lowering the overall performance
of the C2 treatment. Why the treatment proved difficult to our subjects is an
open question, although we can speculate that the problem may come from the

30 In both the C2 and CChat treatments, monotonicity violations for the majority are
calculated relative to the three strategies that are payoff-equivalent: low (i.e.either 3, 4 or 5),
6 and high (either 7, 8 or 9). So for example, casting alternatively 3, 4 or 5 votes does not
result in monotonicity violations.
31Cutpoints are now estimated so as to minimize the average distance (both in the experi-

mental data and in the theoretical random case). With a very large number of random voting
choices, the two cutpoints that minimize the expected errors’ distance are (50, 50). The fre-
quency of error is 2/3, with an average distance of 25, yielding an expected distance of 50/3.
The corresponding number in the experimental data is, for a given pair of cutpoints, the sum
of all errors’ distances, divided by K, the number of rounds in the experiment.
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larger size of the individual strategy space: each minority voter had 5 different
choices of how many votes (2, 3, 4, 5, 6) to use in the first period, and each
majority voter had 7 different choices (3, 4, 5, 6, 7, 8, 9).
Our monotonicity analysis generates corresponding cutpoints estimates.32

Group cutpoints are depicted in Figure 5, with minority cutpoints on the left
and majority cutpoints on the right. In line with the equilibrium predictions, we
can summarize the strategies of each group through two cutpoints, represented
by a point in the diagrams. For the minority, the cutpoints are gl (horizontal
axis) and gh (vertical axis). For the minority group cutpoints, below gl no bonus
votes are cast by anyone in the group (i.e., the group votes 2), and above gh all
bonus votes are cast (the group votes 6). In equilibrium, gl and gh are (50, 50).
For the majority, the cutpoints are Gl and Gh, such that below Gl the group
votes 3, 4, or 5, and above Gh the group votes 7, 8, or 9 (all choices that are
payoff-equivalent in equilibrium). In equilibrium, Gl and Gh are (50, 50).

Figure 5 here

The first pair of diagrams in Figure 5 refers to C treatments; the second
row to C2 and the last to CChat. As in Figure 3b, darker points indicate
fewer monotonicity violations. Coordination affects the cutpoints of the minor-
ity groups: none of the estimated cutpoints in treatments C2 and CChat lies
outside the 45 degree line, as opposed to what we observe in treatment C. Thus
in treatments C2 and CChat, in accordance with equilibrium the behavior of
all minority groups is best described as voting either 2 (at lower values) or 6 (at
higher values) - albeit with dispersion around the equilibrium cutpoints (50, 50).
The majority’s behavior, on the other hand, is best described as splitting the
bonus votes for some intermediate range of values, in all sessions. In addition,
the light shading of most points in the majority figures reflects the relatively
large number of monotonicity violations for any estimate of cutpoints. In the
case of the majority, then, coordination did not appear to have significant effect
on the choice of cutpoints. The results is somewhat surprising, but we need to
take into account, once again, the relative low cost of strategic mistakes for the
majority. With a single coordinated strategy, the expected percentage loss to
the majority from always splitting the bonus votes is about 8 percent when the
minority plays the equilibrium strategy. For the minority, on the other hand,
the expected cost of always splitting the bonus votes is between 20 and 100
percent, depending on the equilibrium mixture used by the majority.33

32The cutpoints estimates that minimize the number of monotonicity violations need not be
identical to those that minimize the errors’ distance. In practice, they differ mostly in the case
of those subjects with more random behavior. The substance of the results does not change,
and we report here the cutpoints the minimize the number of violations, for consistency with
the discussion of individual behavior.
33The worst scenario for the minority is when the majority casts 5 votes for values below

50 and 7 votes for values above. The best scenario is when the majority votes either 5 or 9,
again with a threhsold of 50. Both are equilibrium strategies.
As for the majority, it is easy to verify that in the model with full coordination, its maximin

strategy entails splitting the bonus votes. It corresponds to cutpoints (25, 100): cast no bonus
votes for values below 25, but split the bonus votes for all values above 25.
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Taking together the analyses of both individual and group behavior, we
can draw three main conclusions. First, our results confirm the importance of
monotonic voting behavior in realizing the potential efficiency of storable votes.
As in our previous experiments (Casella, Gelman and Palfrey, forthcoming), it
is this more intuitive requirement, relative to the full discipline of equilibrium
behavior, that keeps the experimental outcomes in line with the theoretical
predictions. Once again, storable votes appear robust to deviations from equi-
librium if monotonicity is satisfied. Second, the results on group behavior in
treatment C allow us to propose a stronger conjecture: for the most part, the
efficiency of the mechanism is preserved even in the presence of "some" viola-
tions of monotonicity, as long as these violations are not large. What matters
is that on average more votes are cast at higher values. When this requirement
is not satisfied, as in the outlier session c22 in treatment C2, the efficiency loss
is clear. Third, the deviations from equilibrium are particularly costly to the
minority, whose payoff, relative to the majority, falls short of the equilibrium
prediction in all but two sessions (figure 2a). The advantage of coordination in
inducing the minority towards the equilibrium strategy has a counterpart in fig-
ure 2a, where CChat and C2 treatments almost always have smaller deviations
from the theoretical predictions than treatments B and C.

6 Conclusions
Majoritarian principles are a fundamental ingredient of democratic institutions.
But they carry with them the risk of disenfranchising minority groups and en-
dangering the stability of the system, by violating principles of both equity and
efficiency. In a well-designed democracy, a judicial system protecting the rights
of minority groups needs to be supplemented by political remedies that ensure
the minority a voice through the daily, ordered exercise of political rights. This
paper has analyzed the potential of a simple voting system - storable votes - to
fulfill this function. By granting voters a stock of votes to be divided as desired
over a series of multiple binary decisions, storable votes allow the minority to
cumulate votes on specific issues and to win sometime. Because the minority
wins only if its strength of preferences is high, and the majority’s is low, the
gains in terms of equity have little if any cost in terms of efficiency.
We have studied two related models where two groups of different size have

consistently opposite preferences. In our "correlated" model, C, all members
of a group - whether the majority or the minority - agree not only on on the
direction of their preferences but also on the strength of their preferences. This
is the example presented in the Introduction: all members of group B, for
example, agree that it is more important to win issue 3 than to win issue 1. The
groups are very cohesive. If we think in terms of political parties, these would be
parties with strong discipline; more generally, the model is probably best suited
to represent groups with some level of organization, sufficient to agree on the
set of priorities. In our "basic" model, model B, on the other hand, all members
of a group agree on the direction of their preferences, and the two groups have
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opposite preferences, but within a group the members’ priorities may differ. For
example, some members of group B could have different preferences from those
described in the Introduction, and consider issue 1 a higher priority than issue
3. The groups are not organized.
Although storable votes help in minority in both models, both the theory

and the experiments support the intuition that the minority fares better when
its members agree on priorities. The voting system is decentralized and coor-
dination can be a problem even when preferences are perfectly correlated - and
the minority does better in the experimental treatments with more coordina-
tion - but the larger effect comes from the agreement on priorities. The minority
can only win if a sufficient number of its members all vote heavily on a given
issue. Agreeing on priorities is a very useful first step in achieving that goal.
The literature on cumulative voting had conjectured a similar effect: Guinier
(1994) states that cumulative voting favors well-organized minorities, and in
fact considers only well-organized minorities as deserving of special protection.
For both models, our experimental results confirm the theoretical predic-

tions on voting outcomes: the frequency of minority victories, the payoff to the
minority relative to the majority, the aggregate payoff to all voters and the com-
parison to the aggregate payoff under simple majority. They do not match the
theory in terms of behavior: especially among majority voters, we observe equi-
librium strategies only rarely. However, the monotonicity of voting strategies -
more votes are cast when the strength of preferences is higher - is almost always
respected. Where it cannot be by design (in the aggregate majority group vote
of treatment C), monotonicity still characterizes individual voting choices, with
the result that deviations at the aggregate level, though not infrequent, are not
large. The efficiency costs from these deviation appear small. These findings
replicate our earlier conclusions from a set of storable votes experiments with
identical voters (Casella, Gelman and Palfrey, forthcoming). In the presence
of a systematic minority, the game is more complex and the replication of the
results is an encouraging sign of the robustness of storable votes.
There are many directions for further research. We limit ourselves to men-

tioning two. First, it would be interesting to compare storable votes to a larger
set of alternative mechanisms, both theoretically and experimentally. These al-
ternative mechanisms should include vetoes, serial dictatorship and potentially
first-best mechanisms a la Jackson and Sonnenschein (forthcoming). Storable
votes are more flexible but more complicated than vetoes, and less flexible and
less complicated than the Jackson and Sonnenschein mechanism. Serial dictator-
ship requires a secondary mechanism to allocate decisions to specific individuals
or groups, not arbitrarily but in a somewhat efficient fashion. What can the
theory tell us, and how would all compare experimentally? Second, the sensitiv-
ity of storable votes to agenda manipulation is an open question. The agenda
setting procedure should be part of the overall game, and voters will decide how
many votes to cast knowing how new issues are brought to a vote. A priori it is
not clear whether problems will arise: having multiple votes that can be shifted
across proposals may make the order of the proposals more important, but also
increase the ability to resist possible manipulations of this order. The addi-
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tional consideration of political minorities may exacerbate possible problems,
either because majority losses are particularly expensive in terms of efficiency
or because the minority may end up unable to ever control any outcome.
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8 Appendix
Proof of Lemma 1. Suppose that x∗Mt(vi, Bt, t) and x∗mt(vi, Bt, t) exist.
Consider candidate equilibrium strategies {x0it(vi, Bt, t)} for model C , whereP

i∈m x0it(vi, B, t) = x∗mt(vi, B, t) and
P

i∈M x0it(vi, B, t) = x∗Mt(vi, B, t). Be-
cause preferences between the two groups are always opposed, at any state only
the aggregate voting choice of the opposite group affects voters’ payoffs. In
addition, because in model C preferences within each group are always per-
fectly correlated, by definition {x0it(vi, B, t)}, i ∈ m maximize the expected pay-
off of each individual minority member, given x∗Mt(vi, B, t) (and similarly for
{x0it(vi, B, t)}, i ∈ M , given x∗mt(vi, B, t)). It follows that no individual devia-
tion from the prescribed strategies can be profitable and {x0it(vi, Bt, t)} must be
equilibrium strategies. Note that in general the equilibrium will not be unique:
any permutation of individual strategies that leaves the aggregate vote for the
group unchanged, at given state, is an equilibrium. ¤
Proof of Lemma 2. (i) Existence of equilibrium in pure strategies. Mil-

grom and Weber (1985) discuss conditions for existence of an equilibrium in
distributional strategies. In particular, conditional on a publicly observed vari-
able, individual types are required to be independent. The publicly observed
information in our case is each voter’s membership in one of the two groups,
and hence the support of the distribution from which valuations are drawn.
Conditional on such support, individual valuations are independent in case B.
The arguments in Casella (2005), showing that the game satisfies all conditions
required by Milgrom and Weber remain applicable here. Hence an equilibrium
in pure strategies exists for model B. Conditional on public information on the
support of each distribution, valuations are independent in the two-voter version
of model C. Again, the arguments in Casella (2005) apply, and an equilibrium
in pure strategies exists. But since such an equilibrium must be an equilibrium
of the n-voter C game, it follows that an equilibrium in pure strategies of the
n-voter C game exists. (ii) Monotonicity of the equilibrium strategies. Call a
strategy monotonic if, at a given state, the number of votes cast is monoton-
ically increasing in the intensity of preferences vit. The argument in Casella,
Gelman and Palfrey (forthcoming) shows that at any given state all individual
best response strategies must be monotonic when members of each group do not
play correlated strategies. Thus the argument applies immediately to equilibria
of model B. It also applies to the two-voter version of model C, and hence to
group strategies, as opposed to individual strategies, in the equilibrium we focus
on in the n-voter C game. If, at any given state, all best response strategies
must be monotonic and an equilibrium exists, it follows that equilibrium strate-
gies must be monotonic. Because there is a continuum of types and a finite set
of strategies, then it must be that monotonic equilibrium strategies must take
the form of monotone cutpoint strategies. ¤
Proof of Theorem 1. Consider any candidate equilibrium where the mi-

nority is expected to lose with probability 1 over each decision. A minority
member cannot be worse off by cumulating all his bonus votes on one decision.
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Over all decisions, there must be at least one where with positive probability
the majority casts no more than MB0/T bonus votes, and since the minority
can never cast fewer than m total votes, a deviating minority member can al-
ways find a decision where with positive probability the difference in votes cast
is at most M(1 + B0/T ) −m. Thus with positive probability the outcome of
that decision changes and deviation is profitable if M(1 + B0/T ) ≤ m + B0,
or B0(1 −M/T ) ≥ M −m. This condition requires T > M , and in this case
becomes B0 ≥ T (M −m)/(T −M). Note that the condition is sufficient and
applies to both models B and C. ¤
Proof of Theorem 2. Consider the following strategy for each voter on

either side: cast only the regular vote over the first T−2 decisions; at T−1, cast
all bonus votes if vi > α (i ∈ {m,M}), for a fixed α > 0, and none otherwise;
cast all remaining votes in the last election. We show in step (i) that if m > 2
then there exists a B0 for which such strategies are equilibrium strategies. We
then show in (ii) that in such an equilibrium EV0 > EW0 if m > M/2.
(i). Suppose all other voters are following such a strategy. In the first T − 2

periods, m + B0 < M (or B0 < M −m) is sufficient to rule out deviation by
a minority voter, because he can cast at most all his bonus votes. In period
T −1, B0 < M−m is again sufficient to rule out deviation by a minority voter if
vm < α, because the voter can hope to overturn the decision in minority’s favor
only if the majority is not using its bonus votes. But note that the condition
is also sufficient to rule out deviation when vm > α because in such a case a
minority voter can be tempted to withdraw some or all of his bonus votes only if
by doing so he can overturn a T -period decision against the minority, or, again,
only if m+ B0 < M . Majority voters always win the first T − 2 decisions. At
T − 1, if vM < α, a majority member can be tempted to cast some or all of his
bonus votes only if by doing so he can turn in majority’s favor a decision that
would otherwise be won by the minority. Thus a sufficient condition ruling out
such a deviation is: M +B0 < m(1+B0), or B0 > (M −m)/(m− 1). As in the
case of the minority, the condition is also sufficient to rule out deviation when
vM > α. Thus for all m > 2, there exists B0 ∈ ((M − m)/(m − 1),M − m)
such that the strategies are equilibrium strategies for all voters. Note that
M + B0 < m(1 + B0) implies M < m(1 + B0): the minority wins at T − 1 if
(vmT−1 > α, vMT−1 < α), and wins at T if (vmT−1 < α, vMT−1 > α). The
majority wins at all other times.
(ii). When all voters follow these strategies, EV0 > EW0 iff:
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Note that the left-hand side simplifies toM
R 1
0
vdF (v) when evaluated at either

α = 0 or α = 1, since in both cases the majority always wins (and thus EV0 =
EW0). Taking the derivative of (A1) with respect to α and evaluating it at
α = 0, we obtain:
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vdF (v)(2m−M) > 0⇔ m > M/2

Thus if m > M/2 there exists a threshold α > 0 such that the strategies
described above lead to higher ex ante welfare than simple majority voting. ¤
Example. Model B.
(A) Equilibrium. To verify that the strategy described is an equilibrium,

consider the best response for voter i. If i casts xi1 votes in the vote over
the first proposal, his expected utility over the whole game is: EUi|xi1 =
vi1prob(W1|xi1) + E(v)prob(W2|4 − xi1) where prob(Wt|xit) is i’s probability
of obtaining the desired outcome in period t conditional on casting xit votes,
and E(v) = 0.5. Since (n− 1) is an even number, and every other voter is cast-
ing either 1 or 3 votes, the difference in votes between the two sides, excluding
i, must be even for both proposals. Thus, when i considers the choice between
casting 3, 2 or 1 votes, the only case in which the choice matters is a difference
of 2 votes in his side disfavor, either over proposal 1 or proposal 2:

EUi|3 > EUi|2⇔ vi1[prob(∆x1−i = 2)] > 0.5[prob(∆x2−i = 2)]

EUi|2 > EUi|1⇔ vi1[prob(∆x1−i = 2)] > 0.5[prob(∆x2−i = 2)]

(where ∆x1−i indicates the number of votes by which i’s side is losing, absent i’s
vote). Given the symmetry of F (v), in the candidate equilibrium the probability
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of any other voter casting 1 or 3 votes is identical, implying: prob(∆x1−i = 2) =
prob(∆x2−i = 2). Thus i’s best response is to cast 1 vote if vi1 < 0.5 and 3
votes if vi1 > 0.5; the conclusion holds for all i, and the strategy is indeed an
equilibrium. If M > 3m, prob(∆x1−i = 2) = prob(∆x2−i = 2) = 0 , and the
number of votes cast is irrelevant.
(B) Frequency of minority victories. Write the majority size as M = m +

2k − 1, with k ≥ 1 (recall than n is odd). The minority wins the first vote
if there are at least k more valuations above 0.5 among the minority than the
majority. Given the symmetry of the Uniform, the probability of this event is
given by the formula in the text. The minority wins the second vote if there are
at least k more valuations below 0.5 over the first proposal among the minority
than the majority, an event that again, given the symmetry of the Uniform
distribution, has the probability given in the text. Note that k must be smaller
than m, implying that the majority always wins if M ≥ 3m.
(C) Efficient frequency of minority victories. According to our efficiency cri-

terion, the minority should win whenever the sum of its valuations is larger than
the sum of the majority’s valuations. Call y (z) the sum of m (M) independent
random variables, each distributed Uniformly over [0, 1]. The efficient frequency
of minority victories is then given by

Rm
0

¡Rm
z

Pm(y)dy
¢
PM (z)dz where:

Pm(y) =
1

2(m− 1)!

mX
s=0

(−1)s
µ
m

s

¶
(y − s)m−1sign(y − s) (A2)

(and correspondingly for PM (z)).
(D) Expected payoff. (i) Equilibrium. With n odd and the equilibrium strate-

gies described above, the difference in votes cast by the two groups is always an
even number. In addition, the symmetry of the Uniform distribution guarantees
that the probability of any given difference in votes is equal over the two pro-
posals. If we call prob(WM |x) the probability of obtaining the desired outcome
for i ∈ M , conditional on casting x votes, we can write the ex ante expected
payoff of a majority member as:

EVBi = (3/8)prob(WM |1) + (5/8)prob(WM |3) ∀i ∈M

where prob(WM |1) = prob(xM−i ≥ xm) and prob(WM |3) = prob(xM−i ≥ xm −
2). Recall thatM = m+2k−1. Given the equilibrium strategies, the symmetry
of the Uniform distribution, and the independence of the valuation draws, if we
call "high" a valuation above 0.5, prob(xM−i ≥ xm) equals the probability that
the number of high draws in the minority group is at most k − 1 higher than
for the majority group, excluding voter i:

prob(WM |1) = 1−
mX
s=k

"
m−sX
r=0

µ
M − 1

r

¶µ
m

r + s

¶#
2−(M−1+m)

Similarly, prob(xM−i ≥ xm − 2) equals the probability that the number of high
draws in the minority group is at most k higher than for the majority group,

35



excluding voter i:

prob(WM |3) = 1−
mX

s=k+1

"
m−sX
r=0

µ
M − 1

r

¶µ
m

r + s

¶#
2−(M−1+m)

Analogous calculations yield the ex ante expected payoff of a minority mem-
ber:

EVBj = (3/8)prob(Wm|1) + (5/8)prob(Wm|3) ∀j ∈ m

where:

prob(Wm|1) =
m−1X
s=k

"
m−s−1X
r=0

µ
M

r

¶µ
m− 1
r + s

¶#
2−(M+m−1)

and

prob(Wm|3) =
m−1X
s=k−1

"
m−s−1X
r=0

µ
M

r

¶µ
m− 1
r + s

¶#
2−(M+m−1)

Having derived the ex ante expected payoff of a majority and a minority member,
respectively - payoffs that are reported in Figure 2 - we can write the ex ante
aggregate expected payoff in equilibrium as EVB = M(EVBi) +m(EVBj), i ∈
M , j ∈ m.
(ii) First best efficiency. For each proposal, the ex ante efficient aggregate

payoff EU∗B is easily derived, given (A2):

EU∗B =

Z m

0

µZ m

z

yPm(y)dy

¶
PM (z)dz +

Z m

0

ÃZ M

y

zPM (z)dz

!
Pm(y)dy

(A3)
Over the two proposals, the ex ante efficient payoff is 2EU∗B. The first term
in (A3) corresponds to the efficient expected payoff for the minority group,
and the second for the majority group. The corresponding per capita values
(multiplied by 2) are plotted in Figure 1b. (iii) Simple majority voting. With
simple majority voting, the majority always wins. Its expected payoff equals
the aggregate expected payoff and is given by:

RM
0

zPM (z)dz =M/2 orM over
the 2 proposals. (iv) Random choice. If each group has a fifty percent chance of
winning any vote, the aggregate expected payoff is 1/2(M/2) + 1/2(m/2) over
each proposal, or (M +m)/2 for the 2-proposal game.

Example. Model C.
(A) Equilibrium. The majority can ensure itself victory over all proposals

if 2M > 3m. Suppose then 2M ≤ 3m. When xm = m, the minority always
loses (m < max{M,m + 3} < min{3M, 4M − (m + 3)}). The only possible
deviation for a minority member is to cast 2 or 3 votes when xm−i = m − 1,
but m+ 2 < max{M,m+ 3} < min{3M, 4M − (m+ 3)}: the deviation cannot
be profitable. The majority always wins when casting min{3M, 4M − (m+ 3)}
votes, but loses when xM = max{M,m+ 3} if xm = 3m. A majority member
could deviate and use his bonus votes when xM−i = max{M − 1,m+ 2}. But
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casting 2 votes cannot be profitable: with 2M ≤ 3m, max{M +1,m+4} < 3m.
And neither can casting 3: with 2M ≤ 3m, either max{M+2,m+5} < 3m and
min{3M − 2, 4M − (m+5)} > 3m, in which case the outcomes are unchanged;
or max{M + 2,m+ 5} > 3m and min{3M − 2, 4M − (m+ 5)} < 3m, in which
case the certainty of winning at vM > 0.5 is traded for the certainty of winning
in the future, with E(v) = 0.5 - a net loss in expected utility.
(B) Frequency of minority victories. If 2M ≤ 3m the minority wins the first

vote if (vm1 > 0.5∩ vM1 < 0.5) and the second if (vm1 < 0.5∩ vM1 > 0.5) - given
the symmetry of the Uniform distribution, it wins each vote with probability
0.25.
(C) Efficient frequency of minority victories. Given the perfect correlation

of valuations within each group, the efficient frequency of minority victories is
given by prob(MvM < mvm) =

R 1
0

R (m/M)vm
0

dvMdvm = m/(2M).
(D) Expected payoff. (i) Equilibrium. If 2M > 3m, the majority always wins

and the expected aggregate payoff over the two proposals equals M . If 2M ≤
3m, the expected aggregate payoff equals: (1/4)(M/4 +M/2) + (1/4)(3M/4 +
M/2) + (1/4)(3M/4 +m/2) + (1/4)(3m/4 +M/2) = (13M + 5m)/16 (where
the first term is the expected payoff over the two proposals when (vm1 < 0.5∩
vM1 < 0.5), the second when (vm1 > 0.5∩ vM1 > 0.5), the third when (vM1 >
0.5∩ vm1 < 0.5), and the fourth when (vm1 > 0.5∩ vM1 < 0.5) - all events
with probability 1/4). (ii) First best efficiency. In model C we can represent
the total valuation of the minority (majority) group by a random variable y
(z), Uniformly distributed over [0,m] ([0,M ]). The efficient aggregate expected
payoff, per proposal, is given by:

EU∗C =

Z m

0

µZ m

z

y

m
dy

¶
1

M
dx+

Z m

0

ÃZ M

y

z

M
dz

!
1

m
dy =

m2 + 3M2

6M
(A4)

Over the two proposals, the ex ante efficient payoff is 2EU∗C . The first term
in (A4) corresponds to the efficient expected payoff for the minority group
(m2/(3M)), and the second for the majority group ((3M2 − m2)/6M). The
corresponding per capita values (multiplied by 2) are plotted in Figure 1b. (iii)
Simple majority voting. With simple majority voting, the majority always wins,
and its expected payoff, which equals the aggregate expected payoff, is given by:RM
0

z
M dz =M/2 or M over the 2 proposals. (iv) Random choice. If each group

has a fifty percent chance of winning any vote, the aggregate expected payoff
is 1/2(M/2) + 1/2(m/2) over each proposal, or (M +m)/2 for the 2-proposal
game.
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SAMPLE INSTRUCTIONS (CChat1)

Thank you for agreeing to participate in this decision making experiment,
and for arriving on time. During the experiment we require your complete,
undistracted attention, and ask that you follow instructions carefully. You may
not open other applications on your computer, chat with other students, or
engage in other distracting activities, such as using your phone, reading books,
etc.
You will be paid for your participation in cash, at the end of the experiment.

Different participants may earn different amounts. What you earn depends
partly on your decisions, partly on the decisions of others, and partly on chance.

The entire experiment will take place through computer terminals, and
all interaction between you will take place through the computers. It is impor-
tant that you not talk or in any way try to communicate with other participants
during the experiments.

We will start with a brief instruction period. During the instruction
period, you will be given a complete description of the experiment and will
be shown how to use the computers. If you have any questions during the
instruction period, raise your hand and your question will be answered out loud
so everyone can hear. If you have any questions after the experiment has begun,
raise your hand, and an experimenter will come and assist you.
The experiment you are participating in is a voting experiment, where you

will be asked to allocate a budget of several votes over two different proposals.
We will begin with a practice session. The practice session will be followed
by the paid session, which will consist of 20 matches. Each match will have
elections for two different proposals, and you will receive a new budget of votes
at the beginning of each match.
At the end of the paid session, you will be paid the sum of what you have

earned, plus a show-up fee of $10.00. Everyone will be paid in private and you
are under no obligation to tell others how much you earned. Your earnings
during the experiment are denominated in FRANCS. Your DOLLAR earnings
are determined by multiplying your earnings in FRANCS by a conversion rate.
For this experiment the conversion rate is 0.01, meaning that 100 FRANCS
equal 1 DOLLAR.
DESCRIPTION
At the beginning of the first match, you will be randomly assigned with 4

other persons in the room to form a 5-voter committee, which votes over two
different proposals, in sequence. Of the 5 voters of this committee, 2 voters
belong to the FOR group; the remaining 3 voters belong to the AGAINST
group. Whether you belong to the FOR or to the AGAINST group is decided
randomly by the computer and will be displayed on your computer monitor.
The groups not only differ in size, but also differ in their preference over

proposals. Specifically, all voters in the FOR group are always in favor of all
proposals; all voters in the AGAINST group are always against all proposals.
Each voter is given one “regular” vote to cast in each of the two proposal

elections. You must always use this vote in each proposal election. In addition,
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each voter is given a total of 2 “bonus votes” at the beginning of each match
that you will use in addition to the regular votes.
The first proposal your committee votes on is called Proposal A. You may

cast up to 3 votes in the A election (your regular A vote plus either 0, 1, or
2 of your bonus votes.) Before proceeding to the vote, you are assigned your
personal Proposal A value. If your value is positive, you are in favor of Proposal
A; if your value is negative, you are against Proposal A. Each voter of the FOR
group is in favor of Proposal A and has a positive value for Proposal A which
is equally likely to be any amount between 1 and 100 francs. Every member of
the FOR group is assigned the SAME Proposal A value by the computer. Each
voter of the AGAINST group is against Proposal A and has a negative value
for Proposal A which is equally likely to be any amount between -1 and -100
francs. Every member of the AGAINST group is assigned the same Proposal A
value by the computer.
If you are in the FOR group, you earn your value if A passes. If you are

in the AGAINST group, you earn the absolute value of your value if A does
not pass. For example, if your are in the AGAINST group and your proposal
A value is —55, then you earn 55 francs if A does not pass, and 0 francs if A
passes. A passes if there are more YES votes than NO votes in the A election.
A does not pass if there are more NO votes than YES votes. Ties are broken
randomly. In this example, you also know that the other two members of the
AGAINST group also have Proposal A values of —55.
After being told your proposal A value, you will be allowed two minutes to

exchange messages with the other members of your group. The messages you
send and receive are not seen by members of the other group. They are private
messages within your group. The messages must conform to the following rules.
1. Your messages must be relevant to the experiment. Do not engage in social
chat. 2. You are not permitted to send messages that are intended to reveal
your identity or participant ID number. 3. The use of threatening or offensive
language, including profanity, is not permitted.
At any time during this 2 minute period, you can make your individual

voting decision. You must decide whether to cast 1 vote, 2 votes, or 3 votes in
the proposal A election. If you are in the FOR group, any votes you cast will be
automatically counted as YES votes for A. If you are in the AGAINST group,
any votes you cast will be automatically counted as NO votes.
The experimenter will announce when the two minute period is finished. If

you haven’t yet voted, please vote when the announcement is made, so we can
all proceed to the next proposal. You are not told how the other people have
voted until after you cast your vote, although you are free to say whatever you
wish about your voting decision to the other members of your group during the
two minute message stage.
Whatever bonus votes you do not use in the A election, will be saved for

you to use in the proposal B election. For example, if you cast 1 vote in the
A election, all your bonus votes will be saved for the B election. If you cast 2
votes in the A election, only 1 of your bonus votes will be saved, and if you cast
3 votes in the A election, none of your bonus votes are saved.
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After you and the other voters in your committee have made voting decisions,
you are told the outcome of the proposal A election, and the total number of
votes FOR and AGAINST. You then proceed to the proposal B election. You are
in the same committee for the proposal B election as you were for the proposal
A election. In addition, if you were in the FOR group in the A election, you
remain in the FOR group in the B election (and if you were in the AGAINST
group, you remain in the AGAINST group).
There is no message stage for Proposal B. When you and the voters in your

committee are ready to proceed, you will each be assigned proposal B values
in the same manner that your proposal A values were assigned. Each voter’s
assigned value for proposal B will typically be different than their proposal A
values. All voters in the FOR group still receive positive values, and these values
are the same for all members of the FOR group. All voters in the AGAINST
group receive negative values, and these values are the same for all members of
the AGAINST group. All your remaining votes will automatically be cast as
YES votes for proposal B if you are a FOR voter, and as NO votes if you are
an AGAINST voter. The outcome of the B election is then reported to you.
When everyone has finished this completes the first match, and we will then

go to the next match. You will be rematched with 4 other people to form a new
5-person committee, and repeat the procedure described above. The voters in
your new committee will be selected randomly by the computer, but if you were
a FOR voter in the first committee, you will still be a FOR voter for the rest
of the experiment. And if you were an AGAINST voter in the first match, you
will still be in the AGAINST group for the rest of the experiment. As in the
first match, your new committee has 2 FOR voters and 3 AGAINST voters.
After your new committee has finished voting on both proposals in the second

match, you will again be rematched into a new committee in a similar way, and
this will continue for 30 matches. Remember that each match consists of 2
proposals, every committee has 2 FOR voters and 3 AGAINST voters. Also
remember, if you are a FOR voter, you will always be a FOR voter, and if you
are an AGAINST voter, you will always be an AGAINST voter.
PRACTICE SESSION
We will now give you a chance to get used to the computers with a brief

practice session. Are there any questions before we begin the practice match?
[ANSWER QUESTIONS]
You will not be paid for this practice session; it is just to allow you to get

familiar with the experiment and your computers. During the practice session,
do not press any keys or click with your mouse, unless instructed to. When we
instruct you, please do exactly as we ask. We will now hand out record sheets
for you to record important information during the experiment. Please raise
your hand if you need a pen or pencil.
HAND OUT RECORD SHEETS AND PENS AND COLLECT YELLOW

CARDS
Please pull out your dividers so we can begin the practice session.
[START GAME on SERVER]

FIRST PPT SLIDE
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This is the decision screen for Proposal A in match 1. Your ID# is printed
at the very top left of your screen. Please record this on your record sheet.
The screen tells you your proposal A value, whether you are in the FOR

group or in the AGAINST group, and the number of people in each group
(always 2 for the FOR group and 3 for the AGAINST group in this experiment).
Then the screen tells you the number of votes you have available. The bottom
window of your screen is the history table, which is blank now because nothing
has happened yet.
Please record your proposal A value on your record sheet in the row labeled

“Practice 1 A”. Rememer that everyone in your group has the same value as
you do. That is, everyone in the FOR group of your committee has the same
positive proposal A value in this round, and everyone in the AGAINST group
of your committee has the same negative proposal A value this round. For
example, if you are in the FOR group and your proposal A value is 41, then
this tells you that both of the other members of your committee’s FOR group
in your committee also have a proposal A value equal to 41. The AGAINST
group members of your committee also share a proposal A value, but all you
would know is that it is some negative number between -1 and -100.
It is important that you understand how these values are assigned. Are there

any questions before we proceed with the practice round?
After recording this information, we begin the 2 minute message stage. Mes-

sages are entered by typing on the line at the very bottom of the screen and
then clicking the send button. Everyone please practice this once by sending
the message “Hello” now. Notice that this is echoed in the message display box,
and your message is also displayed on your screen. Also notice that each of
your have been assigned a temporary number that identifies you anonymously
to the other members of your group. For example, the two members in a FOR
group, are assigned temporary id numbers 1 and 2. The three members in the
AGAINST group are assigned temporary id numbers 1, 2, and 3.
At any time during the 2 minute message stage, you may choose how many

votes to cast in the A election, by clicking on the arrow key. You may cast
either 1, 2, or 3 votes in this election. Any unused votes in this election will be
saved for you to use in the B election of this match.
If your proposal A value is positive, then all votes you cast will count as

YES votes for A, and if your proposal A value is negative, then all votes you
cast will count as NO votes. When you have selected the number of votes you
wish to cast in this election, please click on the “vote” button. Please record the
number of votes you cast on your record sheet. Then wait for all other voters
in the room to finish casting their Proposal A votes. The proposal passes if
there are more YES votes than NO votes. Tie votes are broken randomly by
the computer.

SECOND PPT SLIDE
The experimenter will announce when the 2 minute message stage is over.

Please make your voting decision at this time, if you have not done so already.
Once everyone has made their vote decision for the A election, the votes are
tallied and the results for your match are displayed in the results window. The
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window displays your Proposal A value, the number of votes you cast, the
total number of YES votes cast in the election, the total number of NO votes,
the outcome, and your payoff from the A election. Please record all of this
information on your record sheet.
Then click OK when you are ready to proceed to the proposal B election.

THIRD PPT SLIDE
We are now in the B election. Notice that the history screen has been

updated and includes a summary of the previous proposal A election. There is no
message stage for Proposal B, and your voting decision is determined completely
by how many votes you cast in the A election. But you will need to read the
information on the screen and record it. Please record your proposal B value
on your record sheet in the row labeled “Practice 1 B”. This screen reminds
you how many votes you have remaining. This number equals the number of
bonus votes you did not use for proposal A plus your regular proposal B vote.
Please record this number on your record sheet in the column labeled “your
vote”. Then click on the “Vote” button. All these votes are now automatically
cast by the computer. They are recorded as YES votes for proposal B if you
are in the FOR group, and as NO votes if you are in the AGAINST group.

FOURTH PPT SLIDE
Once everyone has made their vote decision for the B election, the votes

are tallied and the results for the people in your committee are displayed in
the results window. The screen displays the number of YES votes and the
number of NO votes, the outcome, and your payoff in francs. Please record this
information on your record sheet.
Please press OK when you are ready to proceed.

FIFTH PPT SLIDE
Once everybody has pressed OK, a new window appears and displays what

your dollar payoff would have been if this were a paid match instead of a practice
match. It also displays your total dollar payoff from all previous matches, which
so far is zero. You do not need to record your cumulative payoff after each match.
But you will need to record it at the very end of the experiment. Please press
OK when you are ready to proceed.
We have now completed the first practice match. We will now proceed to the

second practice match. Remember that you are assigned to a new committee
in this match, although you will continue to be a FOR voter if you were a FOR
voter in the first committee; you will continue to be an AGAINST voter if you
were an AGAINST voter in the first committee. Everyone is randomly assigned
to a new committee after every match in the experiment. Notice that the full-
view history contains the information about what you did in the first match.
Please raise your hand if your history screen does not show this information.
Please complete the second practice match on your own, by following the

same directions as in the first practice match. Don’t forget to record the in-
formation as it appears on your screen. Remember, you are not paid for these
practice matches. Feel free to raise your hand if you have any questions.
When everyone has made their vote decisions for proposal A and proposal B

in this practice match, and the screen with the proposal B results has appeared

42



at the end of the match, please wait for further instructions. Do NOT click OK
on that screen.
[WAIT FOR SUBJECTS TO COMPLETE PRACTICE MATCH 2]
Practice match 2 is now over. Please press OK to go to the final screen of

the practice session, displaying your payoff from the current match, and your
total payoff in the experiment so far. Do not press OK yet. You do not need
to record your total payoff because this was a practice session. You will have to
record it at the end of the paid session. Any questions?
Please press OK when you are ready to proceed.

If you have any questions from now on, raise your hand, and an experimenter
will come and assist you.
Please pull out the dividers to ensure your privacy and the privacy of others.
Please click OK and begin the first paid match.
(Play matches 1 — 20)
This completes the experiment. Please make sure to record your total payoffs

on your record sheet, including your $10 show-up fee. Please remain in your
seat and we will come by to check your total. Do not use the computers or talk
with each other. We will pay each of you in private in the next room in the
order of your seat numbers. Please sign and turn in your record sheet when you
receive payment. You are under no obligation to reveal your earnings to the
other participants. Thank you for your participation.
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FIGURE 1 
T=B0=2; F(v) Uniform; M=m+1 

 
Figure 1a. Frequency of minority victories 
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Figure 1b. Expected payoff for majority and minority members (per capita). 
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Figure 1c. Expected aggregate payoff as share of the available surplus 
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The large black dots plot equilibrium payoffs with storable votes; the grey dots efficient payoffs, and 
the small black dots payoffs with simple majority voting.      

 



FIGURE 2  
Experimental Outcomes 

 
Figure 2a: Minorities’  Outcomes. 
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Figure 2b: Aggregate Payoff 
Share of surplus over randomness 
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FIGURE 3 
 Individual Behavior 

 
   Figure 3a: Monotonicity violations  
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Figure 3b: Cutpoints 
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FIGURE 4 
Group Behavior - Monotonicity violations 

 
Figure 4a: Percentage of violations 
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Figure 4b: Average errors’ distance relative to random voting 
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                                                           C2 experiments. Errors’ distance                  C2 experiments. Errors’ distance by session 
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FI GURE 5 
Group Behavior - Group Cutpoints 
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C2 experiments. Minority members                     C2 experiments. Majority members 
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        CChat experiments. Minority groups                   CChat experiments. Majority groups 
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Black: share of errors below 10 % 
Dark grey:  between 10 and 20 % 
Light grey:  above 20 % 




