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Abstract

A number of recent studies have attempted to test
propositions concerning

'long runt' economic relationships by means of frequency-domain time series

techniques that concentrate attention on low frequency co-movements of variables.

The present paper emphasizes that many of these propositions involve expectational

relationships that are not inherently related to specific frequencies or

periodicities. Thus the association of low_frequency time series test statistics

with long-run economic propositions is not generally warranted. That such an

association can be misleading is demonstrated by analysis of examples taken from
notable papers by Geweke, Lucas, and Summers.
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I. Introduction

A number of recent studies have attempted to test propositions concerning

"long run relationships" by means of frequency-domain, time series techniques

that permit attention to be concentrated on low-frequency comovements in

variables. For example, notable papers by Ge'weke (l982b), Lucas (1980), and

Summers (1983) have featured tests of important macroeconomic propositions by

reliance on statistics that pertain to low frequency--or, equivalently, long

periodicity--aspects of time series data on money, prices, output, and/or

interest rates. Apparently the general idea is that by focussing attention

upon frequencies that correspond to cycle lengths of more than (say) five years,

the investigator may be able to obtain results that "provide an empirical

counterart for the elusive 'long run' of economic theory" (Geweke, 1982b, p.1).

The purpose of the present paper is to discuss these studies and argue,

by way of example, that the association of low-frequency time series statistics

with "long run" economic propositions is not generally warranted. Instead,

many so-called long run propositions involve expectational relationships which

have little or nothing to do with low frequencies per se, so that such an

association is inappropriate in a fundamental sense. Some of the test results

reported in the three papers cited above, for example, fall into this category.

The arguments presented below are not new in terms of the basic principles

involved, which were developed and expounded in a time-domain context by Lucas

(l972a) and Sargent (1971) (1973) (l976a)(l979). Evidence provided by the

literature suggests, however, that a new exposition--one that emphasizes

frequency-domain aspects of the principles--is warranted.
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El. First Example: The Fisher Effect

The study by Summers (1983) is concerned with the Fisher effect, i.e.,

the relationship between interest rates and inflation. As a result of

various empirical investigations, Summers concludes that U.S. time series

evidence is unfavorable to the proposition that interest rates respond to

1/

inflation rates point for point as suggested by classical theory. The

specific investigation to be discussed here -- and the one featured by

Summers--attempts to treat the proposition as one that pertains to the long

run by proceeding as follows. Letting x and y denote the inflation rate

and some nominal interest rate, respectively, Summers tests the hypothesis

= 1 in a relationship of the form

(1) t = + lxt
where u is an unobserved stochastic term. To respect the long-run qualification,

however, this relationship is required to hold only at low frequenci3s. In

particular, is estimated by means of the band-spectrum regression technique

developed by Engle (1974). Thus the estimator is of the form

A
1

(2) = [Zf(ek)] Ef(k)
where f is the periodogram of x, f is the cross periodogram between x and

y, and where the summation includes only those values of k that correspond to
2/

low values of the frequency index E?.

Equation (2) refers to implementation of the band spectrum estimator in

practice, i.e., with actual finite samples and the attendant difficulties that

arise with frequency-domain techniques. But as our concern is not with

estimation, but with the more fundamental problem of the correspondence between

theoretical constructs and time series models, the discussion can be simplified
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and clarified if we restrict it to population concepts. From that perspective,

the relevant low-frequency estimator of can be represented as

(3) =
{Jx() dw11 S (w) dw

where f and f are spectral and cross spectral density functions and wherex yx

the integrals are taken over a restricted interval of frequency values close

to zero. Indeed, the principles at issue will stand out most clearly if the

estimator is viewed as pertaining to the single frequency cu = 0, in which

case we have

(4) = [f(0)] f(O)

The following discussion will proceed mainly in terms of this zero-frequency

estimator.

In order to see that a study of the Fisher effect based on such a pro-

cedure is in principle inappropriate, consider an imaginary economy in which

inflation and interest rate values are generated as follows:

(5) = p + Etxt+i +

"C = -'- 1 j<1t 0 lt-l t 1

Here Etxt+i is the conditional expectation of x1 given values of all

relevant variables in period t and before; expectations concerning future

inflation are rational. Thus (5) expresses a case in which the Fisher

relationship holds in full, period by period, and in which the real interest

rate fluctuates randomly (as a result of the stochastic disturbance v) around
3/

a constant mean value of p. Furthermore, the inflation rate is assumed to

be exogenous and generated by a stable first-order autoregressive process; e
is white noise and independent of v for all s.

In this simple case it is clear that the expected inflation rate

equals + so the true relationship between interest and inflation is
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(7) = (p + ) + + v.

And it is also clear that if the latter were estimated by ordinary least

squares (OLS), the slope coefficient corresponding to in (1) would

(in large samples) take on the value l A researcher following this

strategy would conclude that the Fisher relationship does not hold, even
4/

though it is built into the economy under investigation.

The point of this example is, of course, that use of a band-spectrum or

other low-frequency estimator would not eliminate the problem. In the

particular case at hand, the relationship between inflation and interest is

5/
the same at all frequencies; the population value of l(0) is precisely

To make the point somewhat more generally, suppose that instead of (6)

we have an autQregressiorl of order K generating the inflation rate:

(6') x = + + •.. + KXtK + e

Then Etxt÷i + J.1x + •.. + so in place of (7) we have

(7') = (p + ) + + ... + + v.

And suppose that again the test of the long run Fisher effect is based on the

estimator i(0) = f (0)/f (0). But with this specification, the spectral
yx x

6/
density functions are related to the parameters in (7') according to

(8) f(u) =''(w) f(w),

where(w) is the Fourier transform of the k sequence, =

Consequently, the estimator in (4) tends to yield the value

(9) l(0) =(0) l + + +

Again, the resulting estimate reflects the time-series behavior of the

inflation process instead of--or, more generally, in addition to--the effect
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of expected inflation on interest rates. The problem is essentially the same

as that described in Sargent's (1973) discussion of the Fisher effect or his

earlier (1971) remarks on the Phillips curve.

It is necessary to recognize that the values taken on by the estimator

in the foregoing cases re dependent upon the maintained assumption that

x is exogenous to y. In actuality, of course, one would not expect inflation

to be exogenous with respect to interest rates for reasons discussed by

Summers (1983) and many others. But that does not affect the validity of the

present argument. If, for example, lagged values of y as well as x appeared

in equation (6'), making x non-exogenous, then the magnitude of ,(O) would

depend upon the coefficients attached to these lagged as well as upon the

Before moving to the next example, it will be useful for what follows to

note that low-frequency estimators such as (2) or (3) can be interpreted as

OLS estimators computed with time series observations on variables_that are

filtered versions of x and y. The specific filter in this interpretation

is one that precisely eliminates all of the signal in each series for

frequencies outside the chosen band around w = 0. To obtain the filtered

variables, one would first calculate Fourier transforms of the x and y

series, set the values of the transform functions equal to zero outside the

chosen band of frequencies, and apply the inverse Fourier transform. That

OLS applied to the resulting variables x and y is equivalent to (2) in the

finite-sample case is demonstrated by Engle (1978); for the population case,

we proceed as follows.

First, let us note that in the population the counterpart of the finite-

**-l ** **..l **
sample OLS estimator (xx) Exy is (Extx) Exty. Thus our task is

to show that (Exx) Exy is equivalent to the low-frequency estimator
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defined in (3) when and y are formed as described in the last paragraph.

Formally, then, the filtered series is defined as

* _ iwt= f B(D) X(u)e dw t =

where (w) =E xtei denotes the Fourier transform of the x series and

3(W) is the frequency-domain representation of a filter with the property that

3(w) = 1 for -u < w < W, 0 < w < rr, and 3(w) = 0 elsewhere. The series y

is of course defined analogously.

To establish the desired equivalence it will suffice to prove that

**
Exy = f(w)dw with the integral taken over the restricted interval -W < ct < W;

that implies Exx = 1f (w)dw as a special case. Now it is well-known that,

with y and constructed in this way,

f(w) =3(w) B(-)f(w) = IB()12 f()

see Fishman (1969, p.71). And of course the covariance of y and is simply

the integral of fy*x*(W) from -ir to ii. So we have

** 2
Eyx = J1B(w)1 f(W)dw = S

which reproduces the appropriate term in (3). Making the special-case application

to Extxt then completes the demonstration.
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III. Second Example: The Quantity Theory

Let us now turn to Lucas's (1980) study of the quantity-theory proposition

that a given change in an economy's money growth rate will induce an equal

change in its inflation rate. In order to conduct a statistical examination

that treats this relationship as applicable to "long-run average behavior," Lucas

obtains estimates of a slope parameter using time series values after subjecting

the raw inflation and money growth series to a filter that "retains power at

very low frequencies, while sharply reducing power at high frequencies"

(1980, p. 1008). In effect, then, he estimates the parameter i in a

relationship such as

(10) y = 1x + Ut,

where y and x are the filtered observations on inflation rate and money growth

rate variables, respectively. Although the estimation procedure in Lucas's

paper is implemented graphicaly, it is in principle similar to use of the OLS
J1* *\.4 ,_**_,/(\X x \xy.estimator t t1 t t

Consequently, from the discussion in the Last paragraph in Section II,

we see that Lucas's procedure is of the same general type as that utilized

by Summers. The main issue, then, is whether this sort of procedure will in

principle yield appropriate results concerning the validity of the quantity-

theory relationship in question. But, to the extent that the filter employed

to emphasize low-frequency fluctuations succeeds in doing so, it will produce

an estimator that is closely related to l(01, the one that obtains in the

pure zero-frequency case. And, as we know from the discussion leading to

equation (9) above, this estimator measures the sum of the coefficients in

a distributed-lag regression of inflation on money growth rates. Thus the

issue reduces to whether this sum provides evidence concerning the validity

of the quantity theory--i.e., whether the quantity theory obtains if and only
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if . equals 1.0 in a regression such as
j=l

(11) y = o + + 2x1 + ... + Ut,

with x = money growth and = inflation.

At this point it might as a matter of logic suffice to say that careful

readers of Sargent's textbook (1979, pp. 295-6) already know the answer to

this question--which is "no." But the framework used there for the demon-

stration is slightly ad hoc, so there may be some interest in an analysis

9/
based on a model with (perhaps) somewhat better justification.

Consequently, let us consider a linearized version of the model in Lucas's

famous "Expectations and the Neutrality of Money" (1972b). Following the

development in McCallum (1983), we therefore specify the demand and supply of

money in market One with the following equations:

(12) X - p =
a0 +

a1E [m 1
-

m
- + Pt] a1

> 0

(13) m = pm1 + e !pl<l

Here and rn are logarithms of money demand per young person and money

supply per old person, respectively, with Pt the log of the local price.

Values of m are not observed until t+l so E(.) is defined as E(.IP,Qi)

where includes t-l' pt-V l-l' t2 Because of the

population allocation shock which designates the fraction of young agents

allocated to market One, market clearing is described by

(14) = m
- e.

Tinder this specification, the price in market One obeys

(15) Pt = + 1mi + rr2e +

so we have
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(16) EP+i = 1T + IT1, Em = rr0
+

-1
+ (e -

since Ee = (e - with = /(c +). Similarly, Em = Pm1 +

and Ettnt+i = PEtn. Consequently, substitution into (12) gives

(17) m - e -(1 + a1) [IT0 + ffim i
+ rr2e + IT3e] =

a0 +

a1[(p — l)(Pmi + — —

11i(pm1 + e —

Equating coefficients and solving for rrcJ,..., ¶13 results in

(18) Pt = -a0 + Pmi + O(e -

where 0 = (1 + a1)/(l + a1), 0 < 0 < 1. In market Two, the expression is the

same except that the coefficient of is +0, so the economy-wide average

value of p equals -a0 + -1 + Øe. But that is equivalent to

(19) Pt = -a0 + Øm + p(l - O)mti

so a regression of Pt Ofl m, mci,..., would yield a sum of coefficients equal

to 0 + p(l - 0) = 1 -
a1(l

- )(l - p)/(1 + a1), which differs from 1.0 except

in the special case p = 1. The same may be said, clearly, for a regression

of mi
The foregoing example admittedly does not reflect one aspect of Lucas's

(1980) discussion, namely, the possibility of occasional stochastic "structural

changes"--shifts in the monetary authority's policy rule. Instead, equation (13)

depicts a single unchanging stochastic policy rule. But our intention is not

to argue that the low-frequency procedure will never work--nor, certainly, that

Lucas's substantive conclusion is incorrect--but to show that it will fail under

a rather broad and plausible set of conditions.
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IV. Third Example: Neutrality of Money

Geweke (1982a) has recently devised an ambitious and elegant scheme for

the measurement of (linear) dependence and feedback among time series

variables. A special feature of this scheme is its emphasis on the de-

composition of the feedback measures by frequency. In particular, for a

bivariate time series Geweke defines a measure of linear feedback

from x to y at frequency , denoted f (w), as follows. Assuming that the

bivariate system permits autoregressive representations, consider the partic-

ular representation that attributes all contemporaneous correlation to an

apparent dependence of x on

(20a) x = A(L)y + B(L)xt 1
+

(20b) y = c(L)yi + D(L)x1 + n.

Here A(L), B(L), C(L), and D(L) are polynomials in the lag operator defined

by LnlZ= Ztn while and t1 are white noise disturbances that are uncorrelated

with past values of x and y and are by construction contemporaneously

uncorrelated.

Next, with and defined by the representation (20), consider the

related moving average representation

(21a) x = E(L) + F(L)T

(21b) Yt = H(L) + G(L).

Then Geweke's measure f (ui) is defined asx -y

(22) f() logff (w)l/4 1(w)12]

where G(w) = L g.e is the Fourier transform of the sequence of coefficients

j=0
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on t-l'• in (2l). For reference below, we note that Geweke

(1982a, p. 308) demonstrates that f () equals zero at frequency w if

and only if D(W) = 0.

In both the cited paper and in a related application to macroeconomic

time series (1982b), Geweke has suggested that values of f(w) at high and

low frequencies could be useful in evaluating the strength of short-run and

long-run effects of x on y. In particular, Geweke (l982b) proposes to test

the classical hypothesis of long-run monetary neutrality by determining

whether (w) is significantly different from zero at w =0, with x and yy
10/

defined as annual growth rates of the money stock and real GNP, respectively.

In order to investigate the validity of this procedure, let us consider

an extremely simple macroeconomic structure of the general type described by

Barro (1977) and Sargent (l976b). For concreteness, let u and e be

independent white noises and imagine an economy in which the log of aggregate

supply is expressible as

(23) = + (m - Eim) + 2(tn1 - E2mi) +

while the money supply is governed by

(24) = + m1 + e.

In such an economy output is obviously determined as

(25) = + 1e + 2e1 + Ut.

Thus monetary policy is neutral in the sense that policy choices of the

11/
and parameters have no effect on the characteristics of the y process.

To determine whether f (0) is zero for this economy, our first stepm — y
is to rewrite (23) and (24) in a form in which the contemporaneous relation
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between m and y appears (in this case, misleadingly) to result from a

dependence of m on y and in which the disturbances are uncorrelated.

This is accomplished by writing (23) as

(26) y = - 20 + 2m1 - 2im2 +

where 'Tl = u + cI1e, and then subtracting eY from each side of (24) with

e c2/(2 +le u le

(27) m = o - - + ey + ( - G2)m1 -
e21m 2

+

Here = e - e(u + 1e) and Etflt = 0. Now, since (26) and (27) constitute

the autoregressive representation of the form (20) for the model at hand, we

can determine whether equals zero by evaluating the counterpart of

Inspection of (26) shows that to be

(28)
-iw -iw2

so for w = 0 we have 2(l - Except in the special cases in which = 1

or 2 = 0, then, the zero-frequency feedback measure misleadingly indicates

that long-run monetary neutrality does not prevail.

An objection that might be raised to the foregoing example is that it

seems implausible--as argued in McCallum (l979)--that lagged values of monetary

innovations such as ei could directly affect y as is presumed in (23).

But that objection is not compelling for the same sort of result would hold

if the lagged innovation were deleted from (23)--i.e., 2 = 0--provided

that u is autocorrelated.
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V. Conclusions

The foregoing examples should be sufficient to demonstrate that it is not

generally appropriate to rely upon low-frequency measures of relationships

among variables as indicators of the validity of propositions concerning long

run" effects or relationships. The reason for this failure is basically the

same in all of the examples: the low-frequency measures in question are simply

not designed to reflect the distinction between anticipated and unanticipated

fluctuations that is crucial for accurately characterizing intervariable

relationships in many dynamic models.

More generally, it might be said, most of the familiar propositions of

traditional economic analysis concerning long run relationships are based,

implicitly or explicitly, upon comparisons of alternative steady-state magnitudes
in deterministic (i.e., non-stochastic) models. Consequently, these propositions

refer to relationships that obtain in settings in which there are rio fluctuations

that are less than perfectly anticipated. But in models designed for empirical

implementation--as in reality--stochastic ingredients and expectational errors

are necessarily involved. As a result, the propositions under discussion

must be reformulated in a manner appropriate to a stochastic context to make

them amenable to empirical analysis. Some such reformulation, which will

typically involve the distinction between anticipated and unanticipated

components, is an essential prelude to the design ofany valid empirical test.
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Footnotes

1. In the presence of taxes on nominal interest earnings, the response

should actually be greater than point-for-point--a complication that is

not highly relevant to the issues of interest here.

2. The latter is, in Engle?s notation, = 2Trk/T where T is sample size.

3. Alternatively, one could view the real interest rate as strictly constant

and v as a disturbance to the Fisher relationship.

4. Clearly, if (5) were written as y = p + 1Etx+1 + u, then the approach

would yield an estimate of

5. It might parenthetically be noted that the difficulty does not arise from

data misalignment, as a comparison of equations (1) and (5) has led some

readers to suggest. If the band spectrum regression used x1 in place

of x, the value of the resulting would still be l' as can be

readily verified from equation (9) below.

6. See Fishman (1969, p.64) or Sargent (1979, p.242).

7. Alternatively, xm .E b.x •. Then the b.s are related to the function
t J=— .J t-J

(w) by the inverse Fourier transform b, = (u)e'3 dtn and we find that

b. = (2/j) sin jui.

8. It is similar to that particular OLS estimator, rather than the inverse

of (E Eyx, in that y appears on the vertical axis in the

diagrams.



9. A much more extensive discussion of Lucas's procedure is provided by

Whitemán (1981, pp. 156-227). Although Whiteman does not interpret

Lucas's procedure in the same way, and uses a different model for

illustrative purposes, his conclusions are very similar to the ones

presented below.

10. To be more precise, Geweke proposes f (0) = 0 as the defining
x

characteristic of "dynamic neutrality," a concept that he distinguishes

from "stochastic neutrality." Since the latter is a more stringent

concept (Geweke, 1982b, pp. 18-20), it also requires f(O) =0.

ii. This definition of neutrality corresponds to Sargent's (1979, pp. 357-360)

use of the term and to Geweke's (1982b) concept of stochastic neutrality.




