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1 Introduction

Earnings functions are the most widely used empirical equations in labor economics and the eco-

nomics of education. Almost daily, new estimates of �rates of return� to schooling are reported,

based on numerous instrumental variable and ordinary least squares estimates. For many reasons,

few of these estimates are true rates of return.

The internal rate of return to schooling was introduced as a central concept of human capital

theory by Becker (1964). It is widely sought after and rarely obtained. Under certain conditions

which we discuss in this chapter, high internal rates of return to education relative to those of

other investment alternatives signal the relative proÞtability of investment in education. Given the

centrality of this parameter to economic policy making and the recent interest in wage inequality

and the structure of wages, there have been surprisingly few estimates of the internal rate of return

to education reported in the literature and surprisingly few justiÞcations of the numbers that are

reported as rates of return. The reported rates of return largely focus on the college-high school

wage differential and ignore the full ingredients required to obtain a rate of return. The recent

instrumental variable literature estimates various treatment effects which are only loosely related

to rates of return.

In common usage, the coefficient on schooling in a regression of log earnings on years of schooling

is often called a rate of return. In fact, it is a price of schooling from a hedonic market wage equation.

It is a growth rate of market earnings with years of schooling and not an internal rate of return

measure, except under stringent conditions which we specify, test and reject in this chapter. The

justiÞcation for interpreting the coefficient on schooling as a rate of return derives from a model by

Becker and Chiswick (1966). It was popularized and estimated by Mincer (1974) and is now called

the Mincer model.1

This model is widely used as a vehicle for estimating �returns� to schooling quality,2 for measur-

ing the impact of work experience on male-female wage gaps,3 and as a basis for economic studies

1See, e.g. Psacharopoulos (1981), Psacharopoulos and Patrinos (2004) and Willis (1986) for extensive surveys of
Mincer returns.

2See Behrman and Birdsall (1983) and Card and Krueger (1992).
3See Mincer and Polachek (1974).
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of returns to education in developing countries.4 It has been estimated using data from a variety of

countries and time periods. Recent studies in growth economics use the Mincer model to analyze

the relationship between growth and average schooling levels across countries.5

Using the same type of data and the same empirical conventions employed by Mincer and many

other scholars, we test the assumptions that justify interpreting the coefficient on years of schooling

as a rate of return. We exposit the Mincer model, showing conditions under which the coefficient

in a pricing equation (the �Mincer� coefficient) is also a rate of return. These conditions are not

supported in the data from the recent U.S. labor market. We then go on to summarize other

methods that use repeated cross section and panel data to recover ex ante and ex post returns to

schooling.

This chapter makes the following points:

(1) We test important predictions underlying the Mincer model using six waves of U.S. Census

data, 1940-1990.6 We Þnd, as does other recent literature, that Mincer�s original model fails to

capture central features of empirical earnings functions in recent decades. Our empirical analysis

in this chapter is more comprehensive than previous analyses and tests more features of the model,

including its predictions about the linearity of log earnings equations in schooling, parallelism in

log earnings-experience proÞles, and U-shaped patterns for the variance of log earnings over the life

cycle.

(2) In response to the evidence against the Mincer model, we estimate more general earnings

models, where the coefficient on schooling in a log earnings equation is not interpretable as a rate

of return. From the estimated earnings functions, we compute marginal internal rates of return to

education for black and white men across different schooling levels and for different decades. Our

estimates account for nonlinearities and nonseparabilities in earnings functions, taxes and tuition.

A comparison of these estimated returns with estimated Mincer coefficients shows that both levels

and trends in rates of return generated from the Mincer model are misleading. Caution must be

used in applying the Mincer equation to modern economies to estimate rates of return.

The estimated marginal rates of return are often implausible, calling into question the empirical

4See Glewwe (2002).
5See Bils and Klenow (2000).
6Mincer�s analysis focused on 1960 U.S. census data (earnings for 1959).
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conventions followed by Mincer and the recent U.S. Census-based/Current Population Survey-based

literature reviewed by Katz and Autor (1999) that ignore endogeneity of schooling, censoring and

missing wages, uncertainty, sequential revelation of information and psychic costs of schooling.

(3) We explore the importance of Mincer�s implicit stationarity assumptions, which allowed

him to use cross-section experience-earnings proÞles as guides to the life cycle earnings of persons.

In recent time periods, life cycle earnings-education-experience proÞles differ across cohorts. Thus

cross-sections are no longer useful guides to the life cycle earnings or schooling returns of any partic-

ular individual. Accounting for the nonstationarity of earnings over time has empirically important

effects on estimated rates of return to schooling. Since many economies have nonstationary earnings

functions, these lessons apply generally.

(4) Mincer implicitly assumes a world of perfect certainty about future earnings streams. We Þrst

consider a model of uncertainty in a static economic environment without updating of information,

which can be Þt on cross sections or repeated cross sections. Accounting for uncertainty substantially

reduces high estimated internal rates of return to more plausible levels. These adjustments introduce

ex ante and ex post distinctions into the analysis of the earnings functions, something missing in

the Mincer model, but essential to modern dynamic economics.

(5) We next consider a dynamic model of schooling decisions with the sequential resolution of

uncertainty. Following developments in the recent literature, we allow for the possibility that, with

each additional year of schooling, information about the value of different schooling choices and

opportunities becomes available. This generates an option value of schooling.7 Completing high

school generates the option to attend college and attending college generates the option to complete

college. Our Þndings suggest that part of the economic return to Þnishing high school or attending

college includes the potential for completing college and securing the high rewards associated with

a college degree. Both sequential resolution of uncertainty and non-linearity in returns to schooling

can contribute to sizeable option values.8

7Weisbrod (1962) developed the concept of the option value of schooling. For one formalization of his analysis,
see Comay, Melnik, and Pollatschek (1973).

8Schooling choices are made sequentially. Thus if the function relating the value of completing schooling at each
year of schooling is nonconcave, the return to one stage may be low but the return to the next stage may be high,
hence creating an option value at the stage with low terminal payoff. The earlier stage must be completed to obtain
the higher return arising at the later stage.
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Accounting for option values challenges the validity of the internal rate of return as a guide

to the optimality of schooling choices. The internal rate of return has been a widely sought-after

parameter in the economics of education since the analysis of Becker (1964). When schooling

decisions are made at the beginning of life, there is no uncertainty and age-earnings streams across

schooling levels cross only once. In this case, the internal rate of return (IRR) can be compared

with the interest rate to produce a valid rule for making education decisions (Hirshleifer, 1970). If

the IRR exceeds the interest rate, further investment in education is warranted. However, when

schooling decisions are made sequentially as information is revealed, a number of problems arise

that invalidate this rule. We examine the consequences of option values in determining rates of

return to schooling. Our analysis points to a need for more empirical studies that incorporate the

sequential nature of individual schooling decisions and uncertainty about education costs and future

earnings to help determine their importance. We report evidence on estimated option values from

the recent empirical literature using rich panel data sources that enable analysts to answer questions

that could not be answered with the cross section data available to Mincer in the 1960s.

(6) We then consider models that control for unobserved heterogeneity and endogeneity of

schooling in computing �the rate of return to schooling� starting with the Card (1995, 1999) model

and moving into the more recent analyses of Carneiro, Heckman, and Vytlacil (2005). These

models focus on identifying the growth of earnings with respect to schooling (the causal effect of

schooling) and not internal rates of return. In many papers, an instrument, rather than some well-

posed question, deÞnes the parameter of interest. The models ignore the sequential resolution of

uncertainty but account for heterogeneity in responses to schooling where �returns� are potentially

correlated with schooling levels. This correlation is ignored in the Census/CPS-based literature

on �returns� to schooling. We review some new analytical results from the instrumental variables

literature that aid in interpreting reported �Mincer coefficients� (growth rates of earnings in terms

of years of schooling) within a willingness to pay framework. We link the rate of return literature

to the recent literature on treatment effects.

(7) The literature on the returns to schooling focuses on certain mean parameters. Yet the origi-

nal Mincer (1974) model entertained the possibility that returns varied in the population. Chiswick

(1974) and Chiswick and Mincer (1972) estimate variation in rates of return as a contributing factor
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to overall income inequality. We survey recent developments in the literature that use rich panel

data to estimate distributions of the response of earnings to schooling using the modern theory of

econometric counterfactuals. They reveal substantial variability in ex post returns to schooling.

(8) Finally, we review research from a very recent literature that decomposes variability in

returns to schooling into components that are not forecastable by agents at the time they make

their schooling decisions (uncertainty) and components that are predictable (heterogeneity). Both

predictable and unpredictable components of ex post returns are found to be sizeable in most recent

studies. This analysis highlights the distinction between ex ante and ex post returns to schooling and

the importance of accounting for uncertainty in the analysis of schooling decisions. This literature

also identiÞes psychic costs of schooling, which are estimated to be substantial. Conventional rate

of return calculations assume that they are negligible. These components help to explain why many

people who might beneÞt Þnancially from schooling do not do so.

In this chapter, we use the Mincer model as a point of departure because it is so inßuential.

Mincer�s model was developed to explain cross sections of earnings. While the model is not a valid

guide for accurately estimating rates of return to schooling, the Mincer vision of using economics

to explain earnings data remains valid.

This chapter proceeds in the following way. Section 2 reviews two distinct theoretical arguments

for using the Mincer regression model to estimate rates of return. They are algebraically similar but

their economic content is very different. Section 3 presents empirical evidence on the validity of the

widely used Mincer speciÞcation. Using nonparametric estimation techniques, we formally test and

reject key predictions of Mincer�s model, while others survive. The predictions that are rejected

call into question the practice of interpreting the Mincer coefficient as a rate of return. Section 4

extracts internal rates of return from nonparametric estimates of earnings functions Þt on cross

sections. We show the effects on estimated rates of return of accounting for income taxes, college

tuition and psychic costs, and length of working life that depends on the amount of schooling. We

also consider how accounting for uncertainty affects estimated marginal internal rates of return.

Section 5 introduces a dynamic framework for educational choices with sequential resolution of

uncertainty, which produces an option value for schooling. We discuss why in such an economic en-

vironment the internal rate of return is no longer a valid guide for evaluating schooling investments.
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A more general measure of the rate of return used in modern capital theory is more appropriate.

Section 6 considers the interpretation of Mincer regression estimates based on cross-section data

in a changing economy. We contrast cross-sectional estimates with those based on repeated cross-

sections drawn from the CPS that follow cohorts over time. Mincer�s assumption that cross sections

of earnings are accurate guides to the life cycles of different cohorts is not valid in recent years when

U.S. labor markets have been changing.

Section 7 discusses the recent literature on the consequences of endogeneity of schooling for

estimating growth rates of earnings with schooling. We describe Card�s (1999) version of Becker�s

Woytinsky Lecture (1967) and some simple instrumental variables (IV ) estimators of the mean

growth rate of earnings with schooling. Section 8 discusses the modern theory of instrumental

variable estimation and interprets what IV estimates in the general case where growth rates of

schooling are heterogeneous and potentially correlated with schooling levels. We consider what

economic questions IV answers. The modern IV literature deÞnes the parameter of interest by

an instrument, rather than an economic question, and produces estimates of �rates of return� that

have little to do with true rates of return.

Section 9 surveys a recent literature that estimates distributions of ex post returns. Section 10

decomposes the distributions of returns and growth rates of earnings with schooling into ex ante and

ex post components and presents option values for schooling as well as estimates of the psychic costs

of schooling. Our analysis links the classical literature on rates of return to the modern literature

on counterfactual analysis. Section 11 concludes.

2 The Theoretical Foundations of Mincer�s Earnings Re-

gression

The most widely used speciÞcation of empirical earnings equations and the point of departure for

our analysis is the Mincer equation:

ln[Y (s, x)] = α+ ρss+ β0x+ β1x
2 + ε (1)
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where Y (s, x) is the wage or earnings at schooling level s and work experience x, ρs is the �rate of

return to schooling� (assumed to be the same for all schooling levels) and ε is a mean zero residual

with E(ε|s, x) = 0.9 This regression model is motivated by two conceptually different frameworks
used by Mincer (1958, 1974). While algebraically similar, their economic content is very different.

In section 3, we formally test and reject predictions of these models on the type of Census data

originally used by Mincer. In section 4, we implement a more general nonparametric approach to

estimating internal rates of return that does not require an explicit model speciÞcation.

2.1 The Compensating Differences Model

The original Mincer model (1958) uses the principle of compensating differences to explain why

persons with different levels of schooling receive different earnings over their lifetimes. Individuals

have identical abilities and opportunities, credit markets are perfect, the environment is perfectly

certain, but occupations differ in the amount of schooling required. Individuals forego earnings

while in school, but incur no direct costs. Because individuals are ex ante identical, they require a

compensating wage differential to work in occupations that require a longer schooling period. The

compensating differential is determined by equating the present value of earnings streams net of

costs associated with different levels of investment. This framework implicitly ignores uncertainty

about future earnings as well as nonpecuniary costs and beneÞts of school and work, which section 10

shows are important determinants of the return to schooling and its distribution.

Let Y (s) represent the annual earnings of an individual with s years of education, assumed to

be constant over his lifetime. Let r be an externally determined interest rate and T the length of

working life, assumed not to depend on s. The present value of earnings associated with schooling

level s is

V (s) = Y (s)

Z T

s

e−rtdt =
Y (s)

r
(e−rs − e−rT ).

Equilibrium across heterogeneous schooling levels requires that individuals be indifferent between

schooling choices, with allocations being driven by demand conditions. Equating earnings streams

9Psacharopoulos (1981) and Psacharopoulos and Patrinos (2004) provide surveys of an enormous Mincer-based
earnings literature.
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across schooling levels and taking logs yields

lnY (s) = lnY (0) + rs+ ln((1− e−rT )/(1− e−r(T−s))).

The Þnal term on the right-hand-side is an adjustment for Þnite life, which vanishes as T gets

large.10

This model implies that people with more education receive higher earnings. When T is large,

the percentage increase in lifetime earnings associated with an additional year of school, ρs, must

equal the interest rate, r. Because the internal rate of return to schooling represents the discount

rate that equates lifetime earnings streams for different education choices, it will also equal the

interest rate in this model. Therefore, ρs in equation (1) yields an estimate of the internal rate of

return, and when ρs = r, the education market is in equilibrium. If ρs > r, there is underinvestment

in education.

2.2 The Accounting-Identity Model

The model used by Mincer (1974), and now widely applied, is motivated differently from the com-

pensating differences model, but yields an algebraically similar empirical speciÞcation of the earnings

equation. It is much less clearly tied to an underlying optimizing model, although some of the as-

sumptions are motivated by the dynamic human capital investment model of Ben-Porath (1967).

Mincer�s accounting identity model emphasizes life cycle dynamics of earnings and the relation-

ship between observed earnings, potential earnings, and human capital investment, for both formal

schooling and on-the-job investment. Persons are ex ante heterogeneous, so the compensating dif-

ferences motivation of the Þrst model is absent. ρs varies in the population to reßect heterogeneity

in returns.11

Let Pt be potential earnings at age t, and express costs of investments in training Ct as a fraction

kt of potential earnings, Ct = ktPt. Let ρt be the average return to training investments made at

10This term also disappears if the retirement age, T , is allowed to increase one-for-one with s (i.e., ∂T (s)∂s = 1), so
post-school working life is the same for persons of all schooling levels.
11Chiswick and Mincer (1972) explicitly analyze income inequality with this model. We discuss earnings distribu-

tions and distributions of rates of return in section 10.
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age t. Potential earnings at t are

Pt ≡ Pt−1(1 + kt−1ρt−1) ≡
t−1Y
j=0

(1 + ρjkj)P0.

Formal schooling is deÞned as years spent in full-time investment (kt = 1), which is assumed to

take place at the beginning of life and to yield a rate of return ρs that is constant across all years

of schooling. Assuming that the rate of return to post-school investment is constant over ages and

equals ρ0, we can write

lnPt ≡ lnP0 + s ln(1 + ρs) +
t−1X
j=s

ln(1 + ρ0kj)

≈ lnP0 + sρs + ρ0

t−1X
j=s

kj,

where the last approximation is obtained for �small� ρs and ρ0.

Mincer approximates the Ben-Porath (1967) model by assuming a linearly declining rate of post-

school investment: ks+x = κ
¡
1− x

T

¢
where x = t−s ≥ 0 is the amount of work experience as of age

t. The length of working life, T , is assumed to be independent of years of schooling. Under these

assumptions, the relationship between potential earnings, schooling and experience is given by

lnPx+s ≈ lnP0 + sρs +
³
ρ0κ+

ρ0κ

2T

´
x− ρ0κ

2T
x2.

Observed earnings are potential earnings less investment costs, producing the relationship for ob-

served earnings known as the Mincer equation,

lnY (s, x) ≈ lnPx+s − κ
³
1− x

T

´
= [lnP0 − κ] + ρss+

³
ρ0κ+

ρ0κ

2T
+
κ

T

´
x− ρ0κ

2T
x2.

This expression is equation (1) without an error term. Log earnings are linear in years of schooling,

and linear and quadratic in years of labor market experience. Parameter ρs is an average rate of

return across all schooling investments and not, in general, an internal rate of return or a marginal
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return that is appropriate for evaluating the optimality of educational investments. In many studies

(see, e.g. Psacharopoulos, 1981, and Psacharopoulos and Patrinos, 2004), estimates of ρs are simply

referred to as �rates of return� without any justiÞcation for doing so. In this formulation, ρs is the

ex post average growth rate of earnings with schooling. It communicates how much average earnings

increase with schooling, but it is not informative on the optimality of educational investments which

requires knowledge of the ex ante marginal rate of return.

In most applications of the Mincer model, it is assumed that the intercept and slope coefficients

in equation (1) are identical across persons. This implicitly assumes that P0, κ, ρ0 and ρs are the

same across persons and do not depend on the schooling level. However, Mincer formulates a more

general model that allows for the possibility that κ and ρs differ across persons, which produces a

random coefficient model,

lnY (si, xi) = αi + ρsisi + β0ixi + β1ix
2
i + εi.

Letting ᾱ = E(αi), ρ̄s = E(ρsi), β̄0 = E(β0i), β̄1 = E(β1i), we may write this expression as

lnY (s, x) = ᾱ+ ρ̄ss+ β̄0x+ β̄1x
2 + [(α− ᾱ) + (ρsi − ρ̄s)s+ (β0i − β̄0)x+ (β1i − β̄1)x2],

where the terms in brackets are part of the error.12 Mincer originally assumed that (α− ᾱ), (ρsi −
ρ̄s), (β0i − β̄0), (β1i − β̄1) are independent of (s, x); although he relaxes this assumption in later
work (Mincer, 1997). Allowing for correlation between ρs and s motivates an entire instrumental

variables literature which we survey in sections 7 and 8.

Implications for log earnings-age and log earnings-experience proÞles and for the in-

terpersonal distribution of life-cycle earnings

Both Mincer models predict that log earnings are linear in years of schooling although the two

models have very different economic content. We test and reject this prediction on widely used

Census and CPS data. Assuming that post-school investment patterns are identical across persons

12In the random coefficients model, the error term of the derived regression equation is heteroskedastic.
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and do not depend on the schooling level, the accounting identity model also predicts that

(i) log-earnings experience proÞles are parallel across schooling levels ( ∂ lnY (s,x)
∂s∂x

= 0 ),

and

(ii) log-earnings age proÞles diverge with age across schooling levels ( ∂ lnY (s,x)
∂s∂t

= ρ0κ
T
> 0 ).

In section 3, we extend Mincer�s original empirical analysis of white males from the 1960 Census

to white and black males from the 1940-1990 Censuses. The data from the 1940-1950 Censuses

provide some empirical support for predictions (i) and (ii). The 1960 and 1970 data are roughly

consistent with the model; prediction (i) does not pass conventional statistical tests for whites,

although they pass an �eyeball� test.13 Data from the more recent Census years (1980-1990) are

much less supportive of these predictions of the model, due in large part to the nonstationarity of

recent labor markets.

Another implication of Mincer�s model is that for each schooling class, there is an age in the

life cycle at which the interpersonal variance in earnings is minimized. Consider the accounting

identity for observed earnings in levels at experience x and schooling s, which we can write as

Y (s, x) ≡ Ps + ρs
s+x−1X
j=s

Cj − Cs+x.

This says that earnings at schooling level s equals initial endowment from schooling plus the return

on past investments less the cost of current investment at age s+ x or experience class x.

In logs,

lnY (s, x) ≈ lnPs + ρs
x−1X
j=0

ks+j − ks+x.

Interpersonal differences in observed log earnings of individuals with the same P0 and ρs arise

because of differences in lnPs and in post-school investment patterns as determined by kj. When

lnPs and κ are uncorrelated, the variance of log earnings reaches a minimum when experience is

approximately equal to 1/ρ0. (See the derivation in Appendix A.) At this experience level, variance

in earnings is solely a consequence of differences in schooling levels or ability and is unrelated to

13Mincer (1974) provided informal empirical support for the implications using 1960 census data.
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differences in post-school investment behavior. Prior to and after this time period (often referred to

as the �overtaking age�), there is an additional source of variance due to differences in post-school

investment. Thus, the model predicts

(iii) the variance of earnings over the life cycle has a U-shaped pattern.

We show that this prediction of the model is supported in Census data from both early and recent

decades.14

3 Empirical Evidence on the Mincer Model

We now examine the empirical support for three key implications of Mincer�s accounting identity

model given above by (i), (ii), and (iii) using data on white and black males from the 1940-1990

decennial Censuses. Mincer conducted his original studies on Census and CPS data. Earnings

correspond to annual earnings, which includes both wage and salary income and business income.15

Figures 1a and 1b present nonparametric estimates of the experience � log earnings proÞles for

each of the Census years for white and black males. Nonparametric estimates of the age � log

earnings proÞles are shown for 1940, 1960 and 1980 in Figure 2. These estimates are based on a

synthetic cohort assumption: that the cross-section is a guide to the life cycle of individuals. We

question the validity of this assumption as a characterization of the recent U.S. labor market in

section 6.

Nonparametric local linear regression is used to generate the estimates.16 The estimated proÞles

for white males from the 1940-1970 Censuses generally support the hypothesis of the fanning-out

by age and the parallelism by experience patterns (implications (i) and (ii) above) predicted by

the accounting identity model. For black males, the patterns are less clear, partly due to the much

smaller sample sizes which result in less precise estimates. For 1960 and 1970, when the sample

14In addition to Mincer (1974), studies by Schultz (1975), Smith and Welch (1979), Hause (1980), and Dooley and
Gottschalk (1984) also provide evidence of this pattern for wages and earnings.
15Business income is not available in the 1940 Census. Appendix B provides detailed information on the construc-

tion of our data subsamples and variables.
16Details about the nonparametric estimation procedure are given in Appendix C. The bandwidth parameter is

equal to 5 years. Estimates are not very sensitive to changes in the bandwidth parameter in the range of 3-10 years.
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sizes of black males are much larger relative to earlier years, experience - log earnings proÞles for

black males show convergence across education levels over the life cycle.

Log earnings-experience proÞles for the 1980-1990 Censuses show convergence for both white

and black males. Thus, while data from the 1940-1950 Censuses provide support for implications (i)

and (ii) of Mincer�s model, the evidence for implication (i) is weaker for 1960 and 1970. The data

from 1980 and 1990 do not support the model.17 Formal statistical tests, reported in Table 1, reject

the hypothesis of parallel experience - log earnings proÞles for whites during all years except 1940

and 1950. Thus, even in the 1960 data used by Mincer, we reject parallelism, although it appears

roughly consistent with the data. For black males, parallelism is only rejected in 1980 and 1990,

although the samples are much smaller.18

We also formally test the hypothesis that log earnings are linear in education and quadratic in

experience against an alternative that allows the coefficient on education to differ across schooling

levels. The hypothesis of linearity is rejected for all Census years and for both blacks and whites

(p-values < .001).19

Figure 3 examines the support for implication (iii) � a U-shaped variance in earnings � for three

different schooling completion levels: eighth grade, twelfth grade, and college (16 years of school).

For the 1940 Census year, the variance of log-earnings over the life cycle is relatively ßat for whites.

It is similarly ßat in 1950, with the exception of increasing variance at the tails. However, data for

black and white men from the 1960-1990 Censuses clearly exhibit the U-shaped pattern predicted

by Mincer�s accounting-identity model. The evidence in support of predictions (ii) and (iii) gives

analysts greater conÞdence in using the Mincer model to study earnings functions and rates of return

to schooling, while failure of prediction (i) in recent decades raises a note of caution.20 A major

limitation of cross sectional analyses of variances is that they are silent about which components

are predictable by the agent and which components represent true uncertainty, which is important

in assessing the determinants of schooling decisions. We discuss this issue in section 10.

17Murphy and Welch (1992) also document differences in earnings-experience proÞles across education levels using
data from the 1964-1990 Current Population Surveys.
18The formulae for the test statistics are given in Appendix C.
19It is also rejected for nonparametric speciÞcations of the experience term. These results are available on request

from the authors.
20The U-shaped proÞle of the variance of earnings argues against the Rutherford (1955) model of earnings as

revived by Atkeson and Lucas (1992).
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Table 2 reports standard cross-section regression estimates of the Mincer return to schooling for

all Census years derived from earnings speciÞcation (1). The estimates indicate an ex post average

rate of return to schooling of around 10-13% for white men and 9-15% for black men over the 1940-

1990 period. While estimated coefficients on schooling tend to be lower for blacks than whites in

the early decades, they are higher in 1980 and 1990. The estimates suggest that the rate of return

to schooling for blacks increased substantially over the 50 year period, while it Þrst declined and

then rose for whites. The coefficient on experience rose for both whites and blacks over the Þve

decades.

The economic content of these numbers is far from clear. What does a high �rate of return��

really a high growth rate of earnings with schooling�mean? The clearest interpretation is as a

marginal price of schooling in the labor market and not as an internal rate of return. We next show

how to use empirical earnings functions to estimate marginal internal rates of return.

4 Estimating Internal Rates of Return

Given the evidence against the validity of the Mincer earnings speciÞcation presented in section 3

and in recent studies of the changing wage structure (e.g. Murphy and Welch, 1990; Katz and

Murphy, 1992; Katz and Autor, 1999), it is fruitful to develop an alternative approach to estimating

marginal internal rates of return without imposing the Mincer speciÞcation on the data. Using

a simple income maximizing framework under perfect certainty of the sort developed in Rosen

(1977) and Willis (1986), this section Þrst presents estimates of the internal rate of return based on

progressively more general formulations of the earnings function. We then relax the assumption of

perfect certainty in section 4.2 below, and also later in section 10.

We initially assume that individuals choose education levels to maximize the present value of

their lifetime earnings. They take as given a post-school earnings proÞle, which may be determined

through on-the-job investment as in the previous accounting-identity model. The model estimated

in this section relaxes many of the conditions of the models in section 2, such as the restriction

that log earnings increase linearly with schooling and the restriction that log earnings-experience

proÞles are parallel across schooling classes.

16



To estimate marginal internal rates of return, which we refer to as internal rates of return in

this section, analysts must account for direct costs, including both monetary and psychic costs as

well as indirect costs. They must also account for income taxes and length of working life that may

depend on the schooling level. With these additional considerations, the coefficient on schooling in

a log earnings equation need no longer equal the real interest rate (the rate of return on capital),

and it loses its interpretation as the internal rate of return to schooling. However, the internal rate

of return can still be estimated using an alternative direct solution method, as we discuss below.21

Let Y (s, x) be wage income at experience level x for schooling level s; T (s), the last age of

earnings, which may depend on the schooling level; v, private tuition and non-pecuniary costs of

schooling; τ , a proportional income tax rate; and r, the before-tax interest rate.22 Individuals are

assumed to choose s to maximize the present discounted value of lifetime earnings,23

V (s) =

T (s)−sZ
0

(1− τ)e−(1−τ)r(x+s)Y (s, x)dx−
sZ
0

ve−(1−τ)rzdz. (2)

The Þrst order condition for a maximum yields

[T 0(s)− 1]e−(1−τ)r(T (s)−s)Y (s, T (s)− s)− (1− τ)r
T (s)−sZ
0

e−(1−τ)rxY (s, x)dx

+

T (s)−sZ
0

e−(1−τ)rx
∂Y (s, x)

∂s
dx− v/(1− τ) = 0. (3)

21To estimate social rates of return, we need to account for the social opportunity costs of funds and full social
returns including crime reduction. See Lochner and Moretti (2004).
22The standard framework implicitly assumes that individuals know these functional relationships, credit markets

are perfect, education does not enter preferences, and there is no uncertainty.
23This expression embodies an institutional feature of the U.S. economy where income from all sources is taxed

but one cannot write off tuition and non-pecuniary costs of education. However, we assume that agents can write off
interest on their loans. This assumption is consistent with the institutional feature that persons can deduct mortgage
interest, that 70% of American families own their own homes, and that mortgage loans can be used to Þnance college
education. The expressions based on (2) can easily be modiÞed to account for other tax treatments of tuition.
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DeÞning �r = (1− τ)r (the after-tax interest rate) and re-arranging terms yields

�r =
[T 0(s)− 1]e−�r(T (s)−s)Y (s, T (s)− s)

T (s)−sR
0

e−�rxY (s, x)dx

(Term 1)

+

T (s)−sR
0

e−�rx
h
∂log Y (s,x)

∂s

i
Y (s, x)dx

T (s)−sR
0

e−�rxY (s, x)dx

(Term 2)

− v/(1− τ)
T (s)−sR
0

e−�rxY (s, x)dx

(Term 3)

. (4)

Term 1 represents a life-earnings effect � the change in the present value of earnings due to a

change in working-life associated with additional schooling (expressed as a fraction of the present

value of earnings measured at age s). Term 2 is the weighted average effect of schooling on log

earnings by experience, and Term 3 is the cost of tuition and psychic costs expressed as a fraction

of lifetime income measured at age s.

The special case assumed by Mincer and many other economists writes v = 0 (i.e., no tuition or

psychic costs). The traditional assumption is that tuition costs are a small (and negligible) compo-

nent of total earnings or that earnings in college offset tuition. In light of the substantial estimates

of psychic costs presented in Carneiro, Hansen, and Heckman (2003) and Cunha, Heckman, and

Navarro (2005a,b,c,d), the assumption that v = 0 is very strong even if tuition costs are a small

component of the present value of income. We discuss this evidence in section 10. Accounting for

these psychic costs lowers the internal rate of return.

Consider the additional common assumption that T 0(s) = 1 (i.e., no loss of work life from

schooling). This simpliÞes the Þrst order condition to

�r

T (s)−sZ
0

e−�rxY (s, x)dx =

T (s)−sZ
0

e−�rx
∂Y (s, x)

∂s
dx.

As noted in section 2, Mincer�s model implies multiplicative separability between the schooling and

experience components of earnings, so Y (s, x) = μ(s)ϕ(x) (i.e., log earnings proÞles are parallel

in experience across schooling levels). In this special case, �r = μ0(s)/μ(s). If this holds for all s,
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then wage growth must be log linear in schooling and μ(s) = μ(0)eρss, where ρs = �r. If all of these

assumptions hold, then the coefficient on schooling in a Mincer equation (ρs) estimates the internal

rate of return to schooling, which should equal the after-tax interest rate.

From equation (4) we observe, more generally, that the difference between after-tax interest

rates and the Mincer coefficient can be decomposed into three parts: a life-earnings part (Term 1),

a second part which depends on the structure of the schooling return over the life cycle, and a tuition

and psychic cost part (Term 3). Term 2 is averaged over all experience levels under multiplicative

separability; it is the Mincer rate of return estimated from equation (1). In general nonseparable

models, it is not the Mincer coefficient.

The evidence for 1980 and 1990 presented in section 3 and in the recent literature argues strongly

against the assumption of multiplicative separability of log earnings in schooling and experience.

In recent decades, cross section log earnings-experience proÞles are not parallel across schooling

groups. In addition, college tuition costs are nontrivial and are not offset by work in school for most

college students. These factors account for some of the observed disparities between the after-tax

interest rate and the steady-state Mincer coefficient.

One can view �r as a marginal internal rate of return to schooling after incorporating tuition

costs, earnings increases, and changes in the retirement age. That is, �r is the discount rate that

equates the net lifetime earnings for marginally different schooling levels at an optimum. As in the

model of Mincer (1958), this internal rate of return should equal the interest rate in a world with

perfect credit markets, once all costs and beneÞts from schooling are considered.

After allowing for taxes, tuition, variable length of working life, and a ßexible relationship

between earnings, schooling and experience, the coefficient on years of schooling in a log earnings

regression need no longer equal the internal rate of return. However, it is still possible to calculate

the internal rate of return using the observation that it is the discount rate that equates lifetime

earnings streams for two different schooling levels.24 Typically, internal rates of return are based

on non-marginal differences in schooling. Incorporating tuition (and psychic costs) and taxes, the

24Becker (1964) states this logic and Hanoch (1967) applies it.
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internal rate of return for schooling level s1 versus s2, rI(s1, s2), solves

T (s1)−s1Z
0

(1− τ)e−rI(x+s1)Y (s1, x)dx−
s1Z
0

ve−rIzdz

=

T (s2)−s2Z
0

(1− τ)e−rI(x+s2)Y (s2, x)dx−
s2Z
0

ve−rIzdz. (5)

As with �r above, rI will equal the Mincer coefficient on schooling under the assumptions of paral-

lelism over experience across schooling categories (i.e., Y (s, x) = μ(s)ϕ(x)), linearity of log earnings

in schooling (μ(s) = μ(0)eρss), no tuition and psychic costs (v = 0), no taxes (τ = 0), and equal

work-lives irrespective of years of schooling (T 0(s) = 1).25 In the next section, we compare rate

of return estimates based on speciÞcation (1) to those obtained by directly solving for rI(s1, s2) in

equation (5).

4.1 How alternative speciÞcations of the Mincer equation and account-

ing for taxes and tuition affect estimates of the internal rate of

return (IRR)

Using data for white and black men from 1940-1990 decennial Censuses, we examine how estimates

of the internal rate of return change when different assumptions about the model are relaxed.

Tables 3a and 3b report internal rates of return to schooling for each Census year and for a variety

of pairwise schooling level comparisons for white and black men, respectively.26 These estimates

assume that workers spend 47 years working irrespective of their educational choice (i.e., a high

school graduate works until age 65 and a college graduate until 69). To calculate each of the IRR

estimates, we Þrst estimate a log wage equation under the assumptions indicated in the tables.

Then, we predict earnings under this speciÞcation for the Þrst 47 years of experience, and the IRR

25When tuition and psychic costs are negligible, proportional taxes on earnings will have no effect on estimated
internal rates of return, because they reduce earnings at the same rate regardless of educational choices.
26As lower schooling levels are reported only in broader intervals in the 1990 Census, we can only compare 6 years

against 10 years and cannot compare 6 years against 8 years or 8 against 10 years as we do for the earlier Census
years. We assume the private cost to elementary and high school is zero in all the calculations.
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is taken to be the root of equation (5).27 As a benchmark, the Þrst row for each year reports the

IRR estimate obtained from the Mincer speciÞcation for log wages (equation (1)). The IRR could

equivalently be obtained from a Mincer regression coefficient.28

Relative to the Mincer speciÞcation, row 2 relaxes the assumption of linearity in schooling by

including indicator variables for each year of schooling. This modiÞcation alone leads to substantial

differences in the estimated rate of return to schooling, especially for schooling levels associated with

degree completion years (12 and 16) which have much larger returns than other schooling years.

For example, the IRR to Þnishing high school is 30% for white men in 1970, while the rate of return

to Þnishing 10 rather than 8 years of school is only 3%. In general, imposing linearity in schooling

leads to upward biased estimates of the rate of return to grades that do not produce a degree,

while it leads to downward biased estimates of the degree completion years (high school or college).

Sheepskin effects are an important feature of the data.29 There is a considerable body of evidence

against linearity of log earnings in schooling. (See, e.g. Heckman, Layne-Farrar, and Todd, 1996,

Jaeger and Page, 1996, Hungerford and Solon, 1987.) Row 3 relaxes both linearity in schooling and

the quadratic speciÞcation for experience, which produces similar estimates. The assumption that

earnings are quadratic in experience is empirically innocuous for estimating returns to schooling

once linearity in years of schooling is relaxed.

Finally, row 4 relaxes all three Mincer functional form assumptions. Earnings functions are

nonparametrically estimated as a function of experience, separately within each schooling class.

This procedure does not impose any assumption other than continuity on the earnings-experience

relationship. Comparing these results with those of row three provides a measure of the bias

induced by assuming separability of earnings in schooling and experience. In many cases, especially

in recent decades, there are large differences. This Þnding is consistent with the results reported in

section 3, which show that earnings proÞles in recent decades are no longer parallel in experience

across schooling categories.

27Strictly speaking, we solve for the root of the discrete time analog of equation (5).
28They would be identical if our internal rate of return calculations were computed in continuous time. Because

we use discrete time to calculate internal rates of return, rI = eρs − 1, which is approximately equal to ρs when it is
small.
29We use the term �sheepskin effects� to refer to exceptionally large rates of return at degree granting years of

schooling. We cannot, however, distinguish in some years of the Census data which individuals receive a diploma
among individuals reporting 12 or 16 years of completed schooling.
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The general estimates in Table 3 show a large increase in the return to completing high school for

whites (Table 3a), which goes from 24% in 1940 to 50% in 1990, and even more dramatic increases

for blacks (Table 3b). The estimates for 1990 seem implausible but are the rates of return that are

implicit in recent Census- and CPS-based estimates. It is possible that these increases in rates of

return over time partially reßect a selection effect, stemming from a decrease in the average quality

of workers over time who drop out of high school. Given the limitations of Census and CPS data,

we do not correct for censoring or selection bias in our analysis of these data.30 Sections 7 and 8

consider estimation when schooling choices are endogenous.

Since 1950, there has been a sizeable increase over time in the marginal internal rate of return

to attending and completing college, consistent with changes in demand favoring highly skilled

workers. For most grade comparisons and years, the Mincer coefficient implies a lower return to

schooling than do the nonparametric estimates, with an especially large disparity for the return

to high school completion. For whites, the return to a 4-year college degree is similar under the

Mincer and nonparametric models, but for blacks the Mincer coefficient substantially understates

the return in recent decades. While the recent literature has focused on rising returns to college

relative to high school, the increase in returns to completing high school appears to have been

substantially greater.

A comparison of the IRR estimates based on the most ßexible model for black males and white

males shows that for all years except 1940, the return to high school completion is higher for black

males, reaching a peak of 58% in 1990 (compared with 50% for whites in 1990). The internal rate

of return to completing 16 years is also higher for blacks in most years (by about 10% in 1990).

Estimated internal rates of return differ depending on the set of assumptions imposed by the

earnings model. Murphy and Welch (1990) note that allowing for quartic terms in experience

is empirically important for Þtting the earnings curve, but do not report any effects of relaxing

the quadratic-in-experience assumption on estimated marginal rates of return to schooling. We

Þnd that the quadratic-in-experience assumption is fairly innocuous; the assumptions of linearity

30Though, it is worth noting that the fraction of white men completing high school is relatively stable after 1970.
Among black men, high school graduation rates continued to increase until the early 1980s. Heckman, Lyons, and
Todd (2000), Chandra (2003) and Neal (2004) show the importance of selection adjustments in estimating wage
functions, but there have been few adjustments of rates of return for selection. This important topic is neglected in
the recent literature.
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in schooling and separability in schooling and experience are not. Comparing the unrestricted

estimates in row 4 with the Mincer-based estimates in row 1 reveals substantial differences for

nearly all grade progressions and all years. If imposing linearity and separability is innocuous,

relaxing these conditions should not have such a dramatic effect on estimates of rates of return.

Table 4 examines how the IRR estimates for post-secondary education change when we account

for income taxes (both ßat and progressive) and college tuition.31 Below, in section 10, we discuss

the relevance of psychic costs. For ease of comparison, the Þrst row for each year reports estimates

of the IRR for the most ßexible earnings speciÞcation, not accounting for tuition and taxes. (These

estimates are identical to the fourth row in Tables 3a and 3b.) All other rows account for private

tuition costs for college (v) assumed equal to the average college tuition paid in the U.S. that year.

The average college tuition paid by students increased steadily since 1950 as shown in Figure 4a.

In 1990, it stood at roughly $3,500 (in 2000 dollars).32 Row three accounts for ßat wage taxes using

estimates of average marginal tax rates (τ) from Barro and Sahasakul (1983) and Mulligan and

Marion (2000), which are plotted for each of the years in Figure 4b. Average marginal tax rates

increased from a low of 5.6% in 1940 to a high of 30.4% in 1980 before falling to 23.3% in 1990. The

Þnal row accounts for the progressive nature of our tax system using federal income tax schedules

(Form 1040) for single adults with no dependents and no unearned income. (See Appendix B for

details.)

When costs of schooling alone are taken into account (comparing row 2 with row 1), the return

to college generally falls by a few percentage points. Because the earnings of blacks are typically

lower than for whites but tuition payments are assumed here to be the same, accounting for tuition

costs has a bigger effect on the estimates for the black samples. For example, internal rates of

return to the Þnal two years of college decline by about one-fourth for whites and one-third for

31Because we assume that schooling is free (direct schooling costs are zero) through high school and because
internal rates of return are independent of ßat taxes when direct costs of schooling are zero, internal rates of return
to primary and secondary school are identical across the Þrst three speciÞcations in the table. Empirically, taking
into account progressive tax rates has little impact on the estimates for these school completion levels. (Tables are
available upon request.) For these reasons, we only report in Table 4 the IRR estimates for comparisons of school
completion levels 12 and 14, 12 and 16, and 14 and 16.
32Average college tuition was computed by dividing the total tuition and fees revenue in the U.S. by total college

enrollment that year. Federal and state support are not included in these Þgures. See Appendix B for further
details on the time series we used for both tuition and taxes. We lack data on psychic costs, although the estimates
from structural models suggests that they may be sizeable. See Carneiro, Hansen, and Heckman (2003) and Cunha,
Heckman, and Navarro (2005d).
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blacks. Further accounting for taxes on earnings (rows 3 and 4) has little additional impact on

the estimates. Interestingly, the progressive nature of the tax system typically reduces rates of

return by less than a percentage point. Overall, failure to account for tuition and taxes leads to an

overstatement of the return to college, but the time trends in the return are fairly similar whether

or not one adjusts for taxes and tuition. As discussed in section 10, however, accounting for psychic

costs has a substantial effect on estimated rates of return.33

Figure 5 graphs the time trend in the IRR to high school completion for white and black males,

comparing estimates based on (i) the Mincer model and (ii) the ßexible nonparametric earnings

model accounting for progressive taxes and tuition. Estimates based on the Mincer speciÞcation

tend to understate returns to high school completion and also fail to capture the substantial rise in

returns to schooling that has taken place since 1970. Furthermore, the sizeable disparity in returns

by race is not captured by the estimates based on the Mincer equation.

Figure 6 presents similar estimates for college completion (14 vs. 16 years of school). Again, the

Mincer model yields much lower estimates of the IRR in comparison with the more ßexible model

that also takes into account taxes and tuition. Nonparametric estimates of the return to college

completion are generally 5-10% higher than the corresponding Mincer-based estimates even after

accounting for taxes and tuition. Additionally, the more general speciÞcation reveals a substantial

decline in the IRR to college between 1950 and 1960 for blacks that is not reßected in the Mincer-

based estimates.

Using our ßexible earnings speciÞcation, we also examine how estimates depend on assumptions

about the length of working life, comparing two extreme cases. The estimates just reported assume

that individuals work for 47 years regardless of their schooling (i.e., T 0(s) = 1). An alternative

assumption posits that workers retire at age 65 regardless of their education (i.e., T 0(s) = 0). We

Þnd virtually identical results for all years and schooling comparisons for both assumptions about

the schooling - worklife relationship.34 Because earnings at the end of the life cycle are heavily

discounted, they have little impact on the total value of lifetime earnings and, therefore, have little

effect on internal rate of return estimates.
33We do not produce any estimates of the time series of psychic costs. We only report a one time snapshot. Thus

we do not know whether psychic costs increased or decreased.
34Results available from authors upon request.
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4.2 Accounting for Uncertainty in a Static Version of the Model

To this point, we have computed internal rates of return using Þtted values from estimated earnings

equations. Mincer�s approach and more general nonparametric approaches pursued in the litera-

ture make implicit assumptions about how individuals forecast their future earnings. The original

formulations ignore uncertainty, making no distinction between ex post and ex ante returns. It is

essential to know ex ante returns in order to understand schooling choices, because they are the

returns on which individuals act.

In this subsection, we explore alternative approaches for estimating the IRR used by agents

in making their schooling choices that are based on alternative assumptions about expectation

formation mechanisms. These analyses are based on cross section data. We present a more general

dynamic analysis in the next section.

As previously discussed, it is common in the literature to use log speciÞcations for earnings.

Thus, using a general notation, it is common to assume lnY = Zγ + ε, so Y = eZγeε and that

expected earnings given Z are

E(Y |Z) = eZγE(eε).

Assume for the sake of argument (but contrary to the evidence in section 3) that equation

(1) describes the true earnings process and that E(ε|x, s) = 0. To this point, when we have Þt

Mincer equations, we have estimated internal rates of return using Þtted values for Y in place of

the true values. That is, we use the following estimate for earnings: �Y (s, x) = exp(�α0+�ρss+ �β0x+

�β1x
2), where �α0, �ρs, �β0, and �β1 are the regression estimates. This procedure implicitly assumes

that individuals place themselves at the mean of the log earnings distribution when forecasting

their earnings and making their schooling choices.35 Individuals take Þtted log earnings proÞles

as predictions for their own future earnings, ignoring any potential person-speciÞc deviations from

that proÞle. Ignoring taxes, for this case, the IRR estimator �rI solves

TX
x=0

�Y (s+ j, x)

(1 + �rI)s+j+x
−

TX
x=0

�Y (s, x)

(1 + �rI)s+x
− v

jX
x=1

1

(1 + �rI)s+x
= 0,

35Assuming a symmetric distribution for ε, this is equivalent to placing themselves at the median of the earnings
distribution.
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which is the discrete time analogue to the model of equation (2) for two schooling levels s and

s+ j.36 If tuition and psychic costs are negligible (v = 0),

plim �rI = e
ρs − 1 ≈ ρs.

Given our assumptions on expectations, this is an ex ante rate of return. Ex ante returns are

the theoretically appropriate ones for studying schooling behavior, because they are the returns on

which schooling decisions are based.

Suppose instead that agents base their expectations of future earnings at different schooling

levels on the mean earnings proÞles for each schooling level, or on E(Y |s, x). In this case, the
estimator of the ex ante rate of return is given by the root of

TX
x=0

E(Y (s+ j, x)|s, x)
(1 + �rI)s+j+x

−
TX
x=0

E(Y (s, x)|s, x)
(1 + �rI)s+x

−
jX
x=1

v

(1 + �rI)s+x
= 0. (6)

If v = 0 and Mincer�s assumptions hold, this formula specializes to

eρsj

(1 + �rI)j

TX
x=0

eβ0x+β1x
2
E(eε(s+j,x)|s, x)
(1 + �rI)x

=
TX
x=0

eβ0x+β1x
2
E(eε(s,x)|s, x)

(1 + �rI)x
.

If E[eε(s,x)|s, x] = E[eε(s+j,x)|s, x] for all x, then the two sums are equal and plim �rI = eρs − 1
as before. In this special case, using �Y (s, x) = exp(�α0 + �ρss + �β0x + �β1x

2) or E(Y (s, x)|s, x)
will yield estimates of the internal rate of return that are asymptotically equivalent. However, if

E(eε(s+j,x)|s, x) is a more general function of s and x, then the estimators of the ex ante return will
differ.

In the more general case, using estimates of E(Y (s, x)|s, x) under a Mincer speciÞcation yields
an estimated rate of return with a probability limit

plim �rI = e
ρs [M(s, j)]1/j − 1 ≈ ρs +

1

j
(lnM(s, j)),

36We assume here that T (s)− s = T for all s, or that T 0(s) = 1.
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where

M(s, j) =

TP
x=0

eβ0x+β1x
2
E(eε(s+j,x)|s, x)(1 + rI)−x

TP
x=0

eβ0x+β1x2E(eε(s,x)|s, x)(1 + rI)−x
. (7)

This estimator of the ex ante internal rate of return will be larger than ρs if the variability in

earnings is greater for more educated workers (i.e., M(s, j) > 1) and smaller if the variability is

greater for less educated workers (i.e., M(s, j) < 1). If individuals use mean earnings at given

schooling levels in forming expectations, then this estimator is more appropriate. However, this

approach equates all variability across people with uncertainty, even though some aspects of vari-

ability across persons are predictable. We discuss how to decompose variability into predictable

and unpredictable components in section 10. Inspection of Figure 3 reveals that, at young ages,

the variability in earnings for low education groups is the highest among all groups. If discounting

dominates wage growth with experience, we would expect that M(s, j) < 1.37

These calculations assume that agents are forecasting the unknown ε(s, x) using (s, x). If they

also use another set of variables q, then the rate of return should be deÞned conditional on q

(�rI = �rI(q)) and we would have to average over q to obtain the average ex ante rate of return. If

agents know ε(s, x) at the time they make their schooling decisions, then the ex ante return and the

ex post return are the same, and �rI now depends on the full vector of �shocks� confronting agents.

Returns would then be averaged over the distribution of all �shocks� to calculate an expected return.

Due to the nonlinearity of the equation used to calculate the internal rate of return, the rate of

return based on an average earnings proÞle is not the same as the mean rate of return. Thus, mean

ex ante and mean ex post internal rates of return are not the same.

When ρs varies in the population, these results must be further modiÞed. Assume that ρs varies

across individuals, that E(ρs) = ρ̄s, and that ρs is independent of x and ε(s+ j, x) for all x, j. Also,

assume v = 0 for expositional purposes (no tuition or psychic costs). Using Þtted earnings, �w(s, x),

to calculate internal rates of return yields an estimator, �rI , that satisÞes

plim �rI = e
ρ̄s − 1 ≈ ρ̄s.

37More generally if v 6= 0, then �rI converges to the root of equation (6). Neglecting this term leads to an upward
bias, as previously discussed.
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This estimator calculates the ex ante internal rate of return for someone with the mean increase

in annual log earnings ρs = ρ̄s and with the mean deviation from the overall average ε(s, x) =

ε(s+ j, x) = 0 for all x.

On the other hand, assuming agents cannot forecast ρs, using estimates of mean earnings

E(Y (s, x)|s, x) will yield an estimator for r with

plim �rI = e
ρ̄s [kM(s, j)]1/j − 1 ≈ ρ̄s +

1

j
[ln k + lnM(s, j)],

where k = E(e(s+j)(ρs−ρ̄s)|s,x)
E(es(ρs−ρ̄s)|s,x) and M(s, j) is deÞned in equation (7).

For ρ̄s > 0, it is straightforward to show that k > 1, which implies that everything else the

same, the estimator, �rI , based on mean earnings will be larger when there is variation in the return

to schooling than when there is not. Furthermore, the internal rate of return is larger for someone

with the mean earnings proÞle than it is for an individual with the mean value of ρs. Again, if

agents know ρs, we should compute �rI conditioning on ρs and construct the mean rate of return

from the average of those �rI . Again, the mean ex post and ex ante rates of return are certain to

differ unless agents have perfect foresight.

Table 5 reports estimates of the ex ante IRR based on our general nonparametric speciÞcation.

We compute the IRR under two alternative assumptions (i) that agents forecast future earnings

using the earnings function for ε = 0 (�unadjusted earnings�) and (ii) that they forecast using

mean earnings within each education and experience category rather than using predicted earnings

placing themselves at ε = 0 (�adjusted earnings�). Both the adjusted and unadjusted estimates

account for tuition and progressive taxes. The adjusted estimates generate much lower (and more

reasonable) IRR estimates than the unadjusted ones.38

Using mean earnings rather than earnings for someone with the mean residual generally leads to

lower estimated ex ante internal rates of return for most schooling comparisons. Even if the Mincer

speciÞcation for log earnings is correct, the internal rate of return guiding individual decisions is

lower than the Mincer estimated rate of return when individuals base their schooling decisions

on average earnings levels within schooling and experience categories. In other words, predicted

38We lack the required panel data on individuals to compute ex post rates of return. See the discussion in section 10.
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earnings obtained using the coefficients from a log earnings regression evaluated where ε = 0 is an

inaccurate measure of the average earnings within each schooling and experience category.

The adjustment for uncertainty reported in this section based on mean earnings makes the strong

assumption that all variation is unforecastable at the time schooling decisions are made. A better

approach is to extract components of variation that are forecastable at the time schooling decisions

are being made (heterogeneity) from components that are unforecastable (true uncertainty). Only

the latter components should be used to computeM(s, j). Methods for separating forecastable het-

erogeneity from uncertainty are available (Carneiro, Hansen, and Heckman, 2003; Cunha, Heckman,

and Navarro, 2005d; Heckman and Navarro, 2005) but require panel data and cannot be applied to

Census cross-sections. We review the evidence from the panel literature in section 10.

Another major issue about the entire enterprise of calculating rates of return is whether the

marginal rate of return is an economically interesting concept when agents are sequentially revising

their information about returns to schooling. As shown in the next section, in general it is not.

This casts doubt on the policy relevance of the entire rate of return literature, that was initially

motivated by Becker (1964), and suggests that the literature should be refocused to account for

intrinsic uncertainty.

5 The Internal Rate of Return and The Sequential Reso-

lution of Uncertainty

Human capital theory was developed in an era before the tools of dynamic decision making under

uncertainty were fully developed. Concepts central to human capital theory like the internal rate

of return are not generally appropriate to the evaluation of investment programs under sequen-

tial resolution of uncertainty. The recent literature has made progress towards empirical analysis

of schooling decisions in dynamic settings.39 Our analysis of this issue in this section is mainly

theoretical and aimed at clarifying a number of important features of dynamic schooling decisions

under uncertainty. We discuss estimates of option values from the recent dynamic literature in

39See Keane and Wolpin (1997), Belzil and Hansen (2002), Cunha, Heckman, and Navarro (2005d) and Heckman
and Navarro (2005) for such models.
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section 10.40

This section makes three main points. First, ignoring the sequential revelation of information,

Mincer�s assumption of the linearity of log earnings in years of schooling rules out option values

which can arise even in an environment where the agent perfectly anticipates future earnings. We

show how nonlinearity is a source of option values, and accounting for option values affects estimated

returns to schooling. Second, sequential revelation of information is an additional source of option

values. Accounting for information updating is a force toward generating a downward bias in least

squares estimates of returns to schooling. Intuitively, people drop out of school when they have

good draws, leaving only the unlucky to continue on in their schooling. This result runs counter to

the intuitions in the conventional ability bias literature that the most able continue on to school.

(For a survey of the conventional literature see, e.g., Griliches, 1977.) Third, we show that the

internal rate of return is not a correct investment criterion when earnings are uncertain and there

are option values.

For two reasons, the dynamic nature of schooling suggests that the returns to education may

include an option value. First, the return to one year of school may include the potential for larger

returns associated with higher levels of education when the returns to school are not constant across

all schooling levels. For example, Þnishing high school provides access to college, and attending

college is a necessary Þrst step for obtaining a college degree. Given the large increase in earnings

associated with college completion, the total return to high school or college attendance includes

the potential for even greater returns associated with Þnishing college. The return in excess of the

direct return (the lifetime income received at a given schooling level) is the option value. Mincer�s

assumption that earnings are log linear in schooling implicitly rules out this type of option value if

the growth rate in earnings is the same as the interest rate. The traditional approach to schooling

computes the rate of return using the lifetime income arising from stopping at schooling level s with

the lifetime income from stopping at s+ 1 using the direct return, i.e., the return of stopping at s

versus the return from stopping at s+ 1, and does not consider the continuation value.

Second, when there is uncertainty about college costs or future earnings and when each additional

year of schooling reveals new information about those costs or earnings, the full returns to schooling

40See Heckman and Navarro (2005).
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will include the expected value of newly revealed information that can be acted on. Finishing

high school opens the possibility of attending college, which will be realized if tuition costs and

opportunity costs turn out to be low. Therefore, the returns to high school completion include both

the increase in earnings associated with completing high school and the ex ante expected value of

continuing beyond high school, including the expected value of future information. The value of this

information depends on the probability that the individual decides to continue on to college and the

expected return if he does so. Failing to Þnish high school precludes an individual from learning the

information that arises from high school completion as well as the value of exercising the option to go

to college. Dropping out eliminates the college option. Earnings each period may also be uncertain.

The decision to continue on in school will depend on both current and expected future labor market

conditions. By ignoring uncertainty, the literature based on the Mincer earnings equation neglects

this source of option values. Sequential arrival of information implies that education decisions are

made sequentially and should not be treated as a static discrete choice problem made once in a

lifetime by individuals � the traditional approach used in human capital theory (see, e.g. Mincer,

1958; Willis and Rosen, 1979; Willis, 1986).

The empirical evidence presented in section 3 (see also Bound, Jaeger, and Baker, 1995; Heck-

man, Layne-Farrar, and Todd, 1996; Hungerford and Solon, 1987) strongly rejects Mincer�s (1958)

implicit assumption that marginal internal rates of return to each year of schooling are identical

and equal to a common interest rate, i.e., the assumption that log earnings are linear in years of

schooling. This observation alone undermines the interpretation of the coefficient on schooling in

a log earnings regression as a rate of return. But this non-linearity, combined with the sequential

resolution of uncertainty, creates additional problems for estimating rates of returns using Mincer

regressions. Because the returns to college completion are high, it may be worthwhile to Þnish high

school to keep open the option of attending college. The total return to high school and earlier

schooling choices includes a non-trivial option value.

To analyze this option value, we present two simple dynamic models with uncertainty about

the value of future schooling choices. Following most of the literature, we assume that individuals

maximize the expected value of lifetime earnings given their current education level and the available

information. We brießy discuss estimates of option values from the literature in section 10.
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To gain some understanding about the separate roles of nonlinearity and uncertainty in generat-

ing option values, we Þrst consider the option value framework of Comay, Melnik, and Pollatschek

(1973), which assumes that there is no uncertainty about earnings conditional on Þnal schooling

attainment but that individuals face an exogenously speciÞed probability (πs+1,s) of being accepted

into grade s+1 if they choose to apply after Þnishing grade s.41 Thus they face a lottery where the

chance of being admitted to the next round of schooling does not depend on earnings. For someone

attending exactly s years of school, deÞne the discounted present value of lifetime earnings as of

the schooling completion date as:

Ys =
TX
x=0

(1 + r)−xY (s, x),

where the interest rate, r, is assumed to be exogenously speciÞed and common across persons. This

expression is assumed to be known with certainty. If an individual who chooses to apply for grade

s + 1 is rejected, he or she begins working immediately, earning Ys. This is the direct value of

schooling as conventionally measured. In this environment, the total expected value of attaining

s ∈ {1, 2, . . . , S̄} years of school, given the information available at the end of stage s− 1, is

Es−1(Vs) = (1− πs+1,s)Ys + πs+1,sEs−1max
½
Ys,
Es(Vs+1)

1 + r

¾

for s < S̄ and ES̄−1(VS̄) = YS̄. This expression assumes that each grade of school takes one period

and that direct costs of schooling are negligible.

The ex ante option value of grade s as perceived at the end of s− 1 is deÞned as the difference
between the total expected value of that opportunity, Es−1(Vs), and the direct value or the present

41They also consider the probability of failing conditional on attending the next grade. The results from such an
analysis are quite similar to those discussed here.
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discounted value of earnings if the person does not continue in school, Ys:

Os,s−1 = Es−1[Vs − Ys]

= Es−1max
½
0, πs+1,s

µ
Es(Vs+1)

1 + r
− Ys

¶¾
= max

½
0, πs+1,s

µ
Es−1(Vs+1)
1 + r

− Ys
¶¾

,

where the Þnal equality follows from the assumption that there is no uncertainty about earnings

conditional on the Þnal schooling outcome. Notice that if the growth rate of earnings is the same as

the interest rate, as is assumed by Mincer (1958), or if the growth in earnings with schooling is at the

same rate as the individual-speciÞc interest rate in the accounting identity model, then Ys =
Ys+1
1+r

for

each individual and all s. Under this assumption, Mincer�s assumption of linearity of log earnings

in schooling implicitly rules out any option value of schooling.42 Intuitively, if the earnings proÞles

associated with all schooling choices provide the same present value when discounted back to the

same date, then there is no value attached to the possibility of continuation of schooling. Thus,

linearity of log wages in years of schooling with a growth rate equal to the interest rate implies no

option value of education in the Comay, Melnik, and Pollatschek (1973) framework.

This model generates option values when future wage growth is greater than 1 + r for an

additional year of schooling. For example, if college graduation offers large returns, Þnishing high

school will carry an option value since there is some probability that an individual will be accepted

into college. In this case, the total value of a high school degree includes the value of a lottery ticket

that pays the rewards of a college degree to �winners�. The option value of high school represents

42Proof: VS̄ = YS̄ at S̄, so

ES̄−2
¡
VS̄−1

¢
=
¡
1− πS̄,S̄−1

¢
YS̄−1 + πS̄,S̄−1max

½
YS̄−1,

YS̄
1 + r

¾
,

since there is no uncertainty about earnings conditional on each schooling level. For proportional earnings growth
at rate r, both versions of the Mincer model imply that Ys = 1

1+rYs+1 for all s. Thus, people may differ in their
earnings levels and face different individual speciÞc interest rates as in the accounting identity model. They may
also face different πs+1,s. For any sequence of πs+1,s and r, we obtain

ES̄−2
¡
VS̄−1

¢
= YS̄−1 =

YS̄
1 + r

.

Backward induction produces Es−2 (Vs−1) = Ys−1 = Ys
1+r for all s, which implies no option value for any schooling

level.¥
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the value of this lottery ticket scaled by the probability that the option will arise. Notice that even

if the probability of being accepted to college is one (πs+1,s = 1), if s corresponds to the state of

high school graduation, there is an option value. Thus even in a certain environment, because of

the staged nature of the schooling process, option values may arise.43

The Comay, Melnik, and Pollatschek (1973) model assumes that the probability of transiting

to higher grades is exogenously determined by a lottery. Because there is no uncertainty about

future earnings paths conditional on schooling or about the future costs, their model isolates the

role played by a non-linear log earnings - schooling relationship in determining option values.

We now consider an economically more interesting model of the schooling choice problem that

incorporates uncertainty in future earnings (or school costs) and sheds light on the impact of that

uncertainty on the option value of education. This model motivates recent work in the economics

of education by Keane and Wolpin (1997), Belzil and Hansen (2002) and Heckman and Navarro

(2005). Suppose that there is uncertainty about net earnings conditional on s, so that actual lifetime

earnings for someone with s years of school are

Ys =

"
TX
x=0

(1 + r)−xY (s, x)

#
Hs.

This form of uncertainty is a one time, schooling-speciÞc shock. The literature discussed in section 10

considers more general models with age or period-speciÞc shocks, but we start with this simple set

up to motivate ideas. We assume that Es−1(Hs) = 1 and deÞne expected earnings associated with

schooling s conditional on current schooling s− 1,

Ȳs = Es−1(Ys).

The disturbance, Hs, may represent a shock to additional schooling costs or to current earnings

that is revealed after the decision to attend grade s is made at the end of s − 1 but prior to any
future schooling decisions. Individuals with s years of schooling must decide whether to quit school

43An inßuential book by Dixit and Pindyck (1994) deÞnes option values as arising only in an environment of
uncertainty. This deÞnition is too restrictive. Options include any extra choices created by completing one stage of
schooling beyond stopping and earning at that stage.
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and receive lifetime earnings of Ys, or continue on in school for an additional year and receive an

expected lifetime earnings of Es(Vs+1).

The decision problem for a person with s years of schooling given the sequential revelation of

information is to complete another year of schooling if

Ys ≤ Es(Vs+1)

1 + r
,

so the value of schooling level s, Vs, is

Vs = max

½
Ys,
Es(Vs+1)

1 + r

¾

for s < S̄. At the maximum schooling level, S̄, after all information is revealed, we obtain VS̄ =

YS̄ = ȲS̄HS̄.

The endogenously determined probability of going on from school level s to s+ 1 is

ps+1,s = Pr

µ
Hs ≤ Es(Vs+1)

(1 + r)Ȳs

¶
,

whereEs(Vs+1)may depend on Hs because it enters the agent�s information set. The average earnings

of a person who stops at schooling level s are

ȲsEs−1

µ
Hs|Hs > Es(Vs+1)

(1 + r)Ȳs

¶
. (8)

Thus, the expected value of schooling level s as perceived at current schooling s− 1 is:

Es−1(Vs) = (1− ps+1,s)ȲsEs−1
µ
Hs|Hs > Es(Vs+1)

(1 + r)Ȳs

¶
+ ps+1,s

µ
Es−1(Vs+1)
1 + r

¶
.

The Þrst component is the direct return. The second component arises from the option to go on to

higher levels of schooling.

Assuming that schooling choices are irreversible, the option value of schooling s, as perceived

after completing s− 1 levels of schooling given that the agent has the information about all of the
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shocks Hs−j, j ≥ 1, is the difference between the expected value of the earnings associated with

termination at schooling level s and the corresponding value function:

Os,s−1 = Es−1 [Vs − Ys] .

These option values can be deÞned for all s. Option values are non-negative for all schooling levels,

since Vs ≥ Ys for all s. The option value for the highest schooling level is zero, since there is

no tomorrow and VS̄ = YS̄ although in reality even Þnal schooling opens up other choices beyond

schooling.

The ex ante rate of return to schooling s as perceived at the end of stage s − 1, before the
information is revealed, is

Rs,s−1 =
Es−1(Vs)− Ys−1

Ys−1
. (9)

This expression assumes no direct costs of schooling. If there are direct costs of schooling Cs, the

ex ante return is eRs,s−1 = Es−1(Vs)− (Ys−1 + Cs−1)
Ys−1 + Cs−1

.

This expression assumes that tuition or direct costs are incurred up front and that returns are

revealed one period later.eRs,s−1 is an appropriate ex ante rate of return concept because if
Ys−1 + Cs−1 ≤ Es−1(Vs)

1 + r
, (10)

i.e.,

r ≤ Es−1(Vs)− (Ys−1 + Cs−1)
Ys−1 + Cs−1

= eRs,s−1,
then it would be optimal to advance one more year of schooling (from s−1 to s) given the assumed
certain return on physical capital r. The ex post return as of period s is

Vs − (Ys−1 + Cs−1)
Ys−1 + Cs−1

.
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The distinction between ex ante and ex post returns to schooling is an important one that is not

made in the conventional literature on �returns to schooling� surveyed in Willis (1986) or Katz

and Autor (1999). In section 10, we survey a literature that demonstrates that uncertainty is an

empirically important feature of lifetime earnings. Hence, option values play an important role in

computing the theoretically motivated ex ante return.44

This analysis highlights the sequential nature of the schooling choice problem under uncertainty.

The schooling allocations that arise out of this framework differ from those implied by the standard

Mincer approach, which uses a static decision rule based on expected earnings proÞles as of some

initial period. The sequential approach recognizes that individuals face uncertainty at the time they

make their schooling decisions and that some of that uncertainty is resolved after each schooling

decision is made. After completing a schooling level, individuals observe the shock associated with

that level and can base their decision to continue in school on its realization. This, along with any

nonlinearity in the reward function, can create an option value of attending school. If the shock at

stage s is bad, one can always continue to the next higher schooling level, s+ 1.

It is interesting to note that even when Ȳs =
Ȳs+1
1+r

as assumed by Mincer�s models, there is still

an option value in this framework. This is so because after completing s, new information about

the actual returns associated with that choice offers the option of continuing on to level s+ 1 with

fresh draws of the H. This is in contrast to the role of uncertainty in the simple Comay, Melnik,

and Pollatschek (1973) model. More generally, when future earnings choices (Ys+1 vs. Ys in this

example) offer very large expected returns, the option value might be quite substantial � both

sources of option values are at work.

Conventional rate of return calculations for comparing the �returns� to schooling levels s and

s+1 base the calculation only on the direct or terminal earnings streams associated with s and s+1.

Taking into account the option value also requires consideration of the earnings stream associated

with higher schooling levels. That is, the value of graduating from high school instead of dropping

out is affected by the expected earnings associated with graduating from college.

Keane andWolpin (1997) develop sequential models of schooling. Although not the focus of their

44Our deÞnition of the ex post return is a bit ambiguous because at different stages after s− 1, information about
Vs (which is deÞned over streams of future earnings at different stages of schooling) is revealed. We use Vs in the
full information, end of life version when all information is in.
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analysis, option values can be derived from the estimated value functions associated with different

schooling levels.45 Heckman and Navarro (2005) present a more general framework for information

revelation with serially correlated unobservables and establish semiparametric identiÞcation of the

model and explicitly estimate option values. We brießy discuss their work in section 10.

To illustrate the role of uncertainty and non-linearity of log earnings in terms of schooling,

we simulate a Þve schooling-level version of our model with uncertainty. Results are reported in

Tables 6a and 6b. In both tables, we assume an interest rate of r = 0.1 and further assume that

Hs is independent and identically distributed log-normal: log(Hs) ∼ N(0, σ) for all s.46 We assume
that σ = 0.1 in the results presented in the tables. Table 6a reports various outcomes related

to the returns to schooling when we assume log earnings are linear in years of schooling (i.e.,

Ȳs−1 = Ȳs/(1 + r)). Schooling continuation probabilities (ps,s−1) and the proportional increase in

Ȳ associated with an increase in schooling from s− 1 to s are shown. By assumption, the latter is
equal to r = 0.1 for all education levels. Column 4 displays the proportional increases in observed

earnings (where observed earnings are measured by equation 8) from period s− 1 to s, which are
always less than r. In the presence of uncertainty, self-selection leads to a substantial downward

bias in the observed returns to schooling, especially for the schooling transitions associated with

higher grades. The traditional ability bias model discussed below in section 8 predicts an upward

bias in OLS estimates of the return to schooling. In a sequential model, people with a good draw

at lower schooling levels drop out, thus producing a downward bias.

Option values as a fraction of the total expected value of a schooling level (Os,s−1/Es−1(Vs))

are reported in column 5. They show a pattern of decline with schooling levels attained. The Þnal

three columns report average measures of the return to schooling for different sets of individuals.

45In the ordered choice models in Cameron and Heckman (1998) and Heckman and Navarro (2005), there is
no option value arising from sequential resolution of uncertainty, because of the assumed one sided nature of the
information revelation process.
46We also considered models with an AR(1) process for the shocks: log(/s) = ρ log(/s−1) + vs where vs ∼ N(0, σ)

but for the sake of brevity we do not report them. The case where ρ = 0 corresponds to Tables 6a and 6b. For
ρ = 1, E(/s+1|/s) = /s and a good or bad shock affects expected future outcomes in the same proportion as current
outcomes. In this model, the outcome of /s has no effect on schooling decisions. In the linear case corresponding to
Table 6a, expected rates of return as measured by Es−1(Rs,s−1) range between those reported in the table (when ρ
is zero) and the linear increase in earnings, r = 0.10 (when ρ is near one). Expected returns for the more general
non-linear case differ little from those shown in Table 6b, since nearly everyone chooses to attend the highest level
of schooling regardless of the value for ρ. This implies that returns always reßect the expected increase in earnings
between the current schooling level and the highest possible schooling level, which is, on average, independent of ρ.
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Column 6 reports the average return for the entire population (Es−1[Rs,s−1]), while column 7 reports

estimates of the return for those who choose to continue on to grade s (�treatment on the treated�)

and column 8 reports the expected return that would be received by those who choose not to

continue in school (�treatment on the untreated�). Here the treatment is schooling at the stated

level. Comparing average returns with the proportional increase in Ȳ with schooling or in observed

earnings with schooling, observe that total rates of return to schooling are substantially higher

for all but the Þnal schooling transition due to the additional effect of the option value of school

and the self-selection that takes place. When log earnings are linear in schooling, true returns are

actually declining in accumulated schooling since option values are decreasing in s.47 Returns for

those who choose to continue in school are noticeably larger than average returns, while returns for

those who choose not to continue are all less than r. The least squares estimate of the rate of return

to school (i.e., the coefficient on schooling in a log earnings regression or the �Mincer coefficient�)

is only 0.063, far below the estimates of the true average growth rate (ATE) or treatment on the

treated (TT), the growth rate among the treated. It also under-estimates the rate of increase

in expected earnings, Ȳs, and does not accurately reßect the pricing relationship for wages and

schooling. Even under linearity of mean log earnings in schooling, Mincer-based estimates of the

return are substantially downward biased in the presence of sequential resolution of uncertainty.

Not surprisingly, this bias (along with option values) disappears as the variance of Hs goes to zero.

However, we Þnd a bias as large as −0.01, roughly 10% of the true return, when σ is as low as

0.01.48

Table 6b adds nonlinearity in the wage equation in terms of schooling to the base model to

demonstrate its added effect on rates of return and option values. The simulation reported in this

table assumes that increases in population mean log earnings from the Þrst to the second and third

to fourth levels of school are both 0.1, but the increase associated with going from level two to

three is 0.3 and from four to Þve is 0.2. This roughly mimics the patterns observed in the later

47We have assumed that individuals cannot choose to recall the wage streams associated with earlier schooling
choices (i.e., someone with s years of school cannot choose to work at a lower schooling level and obtain Ys−1 or
Ys−2, . . . ) if they receive a low realization for Ys. Allowing for resort to the earnings opportunities created at all
earlier schooling opportunities provides a force offsetting the tendency for option values to decline with schooling.
These opportunities provide the agent with a form of insurance.
48Results available from the authors upon request.
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Census years with schooling levels three and Þve representing high school and college graduation,

respectively. These simulations show substantially larger returns to the lower school transitions as

a result of the sizeable sheepskin effects in later years. Option values are particularly large in early

schooling years. In general, the greater the nonlinearity, the greater the option value. Estimates

from a Mincer regression suggest a rate of return of only 0.060, substantially less than the true

average growth rate or the treatment on the treated growth rate estimates, which range from 0.21

to 0.46. While true returns increase relative to those reported in Table 6a, the Mincer estimate

actually declines slightly. Because most individuals are choosing to continue to higher schooling

levels in this simulation, there is little difference between �average returns� and estimated treatment

on the treated parameters.

The simulations presented in Tables 6a and 6b point to the potentially important role of both

sources of option values in determining total returns to schooling. Turning to real data, we use the

nonparametrically estimated earnings proÞles for white males in the 1990 Census to compute the

option value of high school completion and college attendance for a range of reasonable schooling

transition probabilities, p, and interest rates, r. These estimates are unbiased measures of the option

value within the framework of Comay, Melnik, and Pollatschek (1973) where ps+1,s = πs+1,s are the

empirical transition probabilities for the schooling levels we examine. For a model of sequential

resolution of uncertainty, where ps+1,s is Pr
³
Hs ≤ Es(Vs+1)

(1+r)Ȳs

´
and Hs is in the information set used to

deÞne Es, they under-estimate the option value and return to schooling, since observed earnings

are ȲsEs−1
³
Hs|Hs > Es(Vs+1)

(1+r)Ȳs

´
rather than Ȳs (i.e., observed earnings are based on a sample selecting

not to continue). Table 7 reports the average discounted lifetime earnings for individuals making

different schooling choices, denoted by �Ys. It also reports the total expected value of a schooling

choice, Es−1(Vs), the implied option value, �Os,s−1, and return to schooling, Rs,s−1. The table reports

estimates based on interest rates of 7% and 10% and transition probabilities ranging from 0.1 to

0.5 (empirically, about half of all 1990 high school graduates attended college and about half of

those went on to graduate). As expected, both the present value of earnings for each schooling

choice and the option value of continuing are declining in the interest rate. Option values rise with

increases in the transition probability. The option value for high school completion ranges from

a low of only $370 when the interest rate is 10% and p = 0.1 to a high of $22,000 when interest
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rates are 7% and p = 0.5. The major component of this option value comes from the return to

completing college rather than the return to attending college, because the difference in earnings

between high school graduates and those with some college is quite small. Accordingly, option

values are noticeably higher for college attendance, reaching a high of $35,000 when the interest

rate is 7% and p = 0.5. Simply comparing the earnings streams for two schooling levels fails to

recognize a potentially important component of the returns to education. Rates of return, shown in

the Þnal two columns, increase by about 50% for college attendance when the transition probability

is raised from 0.1 to 0.5. Returns to high school completion are less sensitive to assumptions about

p and the option values. Failing to consider option values leads to biased estimates of the true

return to schooling.

We conclude this section by considering whether the internal rate of return has any relevance

in a model with sequential updating of information or in a model with a lottery structure, like the

framework of Comay, Melnik, and Pollatschek (1973). Investment criterion (10) based on (9) is the

appropriate criterion for ex ante calculations. Ex post returns, of the sort traditionally reported in

the labor economics literature, are obtained by using realized values of earnings.49

The natural generalization of the IRR to an environment with sequential revelation of infor-

mation would be as that rate that equates value functions across different schooling levels deÞned

relative to some information set at the date schooling choices are being made. However, even for a

particular information set, single crossings of realized age-earnings proÞles, a near universal feature

of schooling-earnings data, do not guarantee unique internal rates of return applied to the valuation

function when option values are taken into account. Hirshleifer (1970) shows that there is always

a unique positive internal rate of return when comparing two deterministic earnings streams which

cross at only one age. This is the typical case when comparing the earnings proÞles for any two

schooling levels. Accounting for options to continue in school, it is possible for multiple roots to

arise in the computation of more sophisticated internal rates of return that account for the option

value of schooling even if earnings are monotonically increasing in schooling for workers conditional

on age, and there are single crossings of any two earnings streams. Intuitively, the value function is

49As information unfolds after s, one could deÞne a sequence of ex post value functions depending on what is
revealed after stage s.
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a weighted average of future earnings streams so a single crossing property for earnings streams is

not enough to guarantee unique internal rates of return for value functions.

To explore this intuition formally, consider a model of exogenous schooling transition probabil-

ities like that of Comay, Melnik, and Pollatschek (1973) for the case where earnings are zero until

the end of school, age s, at which time they jump up to αs + βs and linearly increase thereafter

at rate β > 0.50 As long as αs > αs0 for all s > s0, any two earnings streams will only cross once.

Letting Ys(a) denote the earnings for someone with s years of school at age a, we have

Ys(a) =

⎧⎪⎨⎪⎩ 0 if a < s

αs + βa if a ≥ s.

Consider three schooling choices, s ∈ {0, s1, s2}. Suppose p is the exogenously speciÞed proba-
bility that someone with s1 < s2 years of school continues on to s2 years. The expected earnings

or value function at age a of someone choosing to attend s1 years of school with the option of

continuing will be Ȳ = (1− p)Ys1 + pYs2.
For α0 < αs1 < αs2, Ȳ will cross Y0(a) three times whenever

α0 + βs1
αs1 + βs1

< 1− p < α0 + βs

αs1 + βs

for any s, where s1 < s < s2.51 This is illustrated in Figure 8. Because there are three crossings

between Y0 and Ȳ , internal rate of return equations for the value functions produced from this

model can generate up to three possible real roots. Even if pairwise earnings streams cross only

once, there may be multiple internal rates of return when we use the appropriate value function,

invalidating their use as a guide to selecting human capital investment projects.

In the more general case of sequential resolution of uncertainty, the schooling transition probabil-

ity is not exogenous. Multiple roots are even more likely in this case, since the transition probability

50The example can easily be extended to account for tuition costs and more general lifecycle earnings proÞles.
51The left hand side of this condition ensures that ȳ jumps from zero to some point above ȳ0 at age s1. Then, ȳ

increases with age at a slower rate than does ȳ0. The right hand condition guarantees that at some later age s, w̄
will be below ȳ0. Finally, we know at age s2, ȳ will jump above w0, since both αs1 and αs2 are both greater than α0.
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depends on the discount rate. Writing equations out explicitly in terms of interest rate r, we obtain

Es−1 (Vs (r)) = Prs−1

µ
Hs ≥ Es [Vs+1 (r)]

(1 + r) Ȳs (r)

¶
Ȳs (r)Es−1

µ
Hs

¯̄̄̄
Hs ≥ Es [Vs+1 (r)]

(1 + r) Ȳs (r)

¶
+Prs−1

µ
Hs <

Es [Vs+1 (r)]

(1 + r) Ȳs (r)

¶
Es−1 [Vs+1 (r)]
(1 + r)

.

In this setting, the natural generalization of the IRR is the value (or values) of rI that solves

Ys (rI) =
Es−1 (Vs+1 (rI))

1 + rI
.

Take a three period example. In this case, the IRR for the second level of schooling solves

Ȳ1 (rI) = Pr1

µ
H2 ≥ Ȳ3 (rI)

(1 + rI) Ȳ2 (rI)

¶
Ȳ2 (rI)

1 + rI
E1

µ
H2

¯̄̄̄
H2 ≥ Ȳ3 (rI)

(1 + rI) Ȳ2 (rI)

¶
+Pr1

µ
H2 <

Ȳ3 (rI)

(1 + r) Ȳ2 (rI)

¶
Ȳ3 (rI)

(1 + rI)
2

The fact that the continuation probabilities also depend on rI makes multiple roots more likely. To

gain some intuition in this case, take a limiting case where the variance of H2 goes to zero. This

implies that the probability of continuing to level three will be either zero or one, depending on

whether or not Ȳ2 is greater or less than Ȳ3
(1+rI)

. We may, therefore, get two valid solutions to the

above IRR equation:

Case 1 (individual always continues): r1I satisÞes

Ȳ1
¡
r1I
¢
=

Ȳ3 (r
1
I)

(1 + r1I)
2 >

Ȳ2 (r
1
I)

1 + r1I
.

The latter inequality guarantees that the person always wants to continue to schooling level three

upon reaching level two.

Case 2 (individual never continues): r2I satisÞes

Ȳ1
¡
r2I
¢
=
Ȳ2 (r

2
I)

(1 + r2I )
>

Ȳ3 (r
2
I)

(1 + r2I)
2 .

The latter inequality guarantees that the person always stops his schooling at level two.
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Both of these cases can arise if log earnings are not parallel in experience. Consider the case

where wage gaps are small initially and large later in the life cycle. In this case, r1I would be less

than r2I . In Case 1, the high wage differential later on is not discounted very much, so the individual

always wants to attend schooling level three. A low IRR must, therefore, equate level one earnings

with discounted level three earnings. On the other hand, the high late wage differential may be

discounted so much with a high discount rate that the individual never chooses to go on to college

at that rate. In this case, a high IRR, r2I , must equate level one earnings with discounted level two

earnings. These examples are extreme, but multiple roots can arise more generally as long as the

variance of Hs is not too large. This type of multiplicity of roots could also come more directly out

of the Comay, Melnik, and Pollatschek (1973) type of model, where the probability of continuing

to level three would be either zero (if individuals do not want to continue) or p (if individuals wish

to continue), depending on the discount rate. Given the lack of parallelism in cross section log

earnings proÞles, multiplicity of roots is likely to be empirically important.

These issues call into serious question the usefulness of internal rates of return as a measure of

the return to education in an environment where the schooling decision is dynamic and sequential. A

central tool of policy evaluation from classical human capital theory loses its validity in the presence

of option values. Criterion (9) does not suffer from this criticism and is the appropriate measure of

the ex ante rate of return to use but it is rarely reported. For an exception, see Cunha, Heckman,

and Navarro (2005d) and Heckman and Navarro (2005) who estimate this rate of return. In the

absence of sequential resolution of uncertainty and option values, Rs,s−1 is the same as the classical

internal rate of return applied to pairwise earnings streams, so it is the natural generalization of

that concept.

Empirical work on the option value of schooling is in its infancy. If option values are empirically

relatively unimportant in models with the sequential resolution of uncertainty, conventional invest-

ment evaluation methods based on the IRR may well be informative on the optimality of schooling

investments. Estimates reported in Heckman and Navarro (2005) suggest that these option values

are negligible. So our theoretical concerns may be misplaced. Much more work has to be done to see

if their work holds up. Even if option values are negligible, the analysis presented throughout this

paper suggests that the Mincer model will not estimate theoretically appropriate rates of return
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to schooling. In the absence of option values, other key assumptions required to equate Mincer

coefficients with internal rates of return are violated. Even in an environment that ignores the

sequential resolution of uncertainty, more general methods of the type presented in section 4 are

required to obtain internal rates of return.

We next turn to an analysis of cross section bias. In doing so, we ignore option values, following

conventions in the labor economics literature, and focus on �rates of return� as conventionally

measured to concentrate on the issue of whether cross section estimates of �rates of return� are

valid for life cycle �rates of return.�

6 How do Cross-sectional IRR Estimates Compare with

Cohort-based Estimates?

Thus far we have considered estimation of rates of return to schooling using cross-section data which

applies the standard synthetic cohort approach followed by most of the literature. For an ex ante

analysis it assumes that younger workers base their earnings expectations on the current experiences

of older workers. For an ex post analysis, it assumes that the experiences of older workers at a point

in time will be those of younger workers when they reach those ages. If skill prices are changing over

time and workers at least partially anticipate these changes, the estimates of the ex ante return to

different schooling levels based on cross-sectional data may not represent the ex ante rates of return

governing human capital investment decisions. Similarly, if the environment is nonstationary, the

ex post returns of the younger cohort are not accurately estimated. While estimates based on cross-

section data reßect current price differentials and opportunity costs, they do not capture future

skill price differentials that forward-looking individuals would take into account. The U.S. labor

market in recent years is highly nonstationary as are the labor markets of many economies around

the world.

If cohorts anticipate future changes in the skill premium, they will base their schooling decisions

on their true cohort-speciÞc rate of return and not the rate of return estimated from a cross-section

of current workers. However, if individuals do not anticipate the future price changes, cross-section
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estimates may better represent their expectations about the returns to school. Expectations play

a crucial role in determining whether cross-section or cohort-based estimates of the rate of return

inßuence schooling decisions.

Another possible source of discrepancy between cross-section and cohort-based rate of return

estimates is change in cohort quality, as might arise from changes in the quality of schools over

time. If relative skills for some schooling classes increase permanently, then cohort rates of return

jump up with the Þrst �new� cohort and remain higher for all succeeding cohorts. Cross-section

estimates only reßect the changes slowly as more high quality cohorts enter the sample each year.

As a result, they under-estimate true rates of return for cohorts entering the labor market after the

change in school quality, with the bias disappearing as time progresses. While future price changes

are difficult to predict, changes in cohort or school quality are more identiÞable. This suggests a

preference for cohort-based estimates when changes in cohort quality are taking place.

Mincer (1974) addressed cross section bias in his pioneering work. He found that patterns for

wage growth in a 1956 cross-section of male workers were quite similar to the 1956 to 1966 growth

in wages for individual cohorts. The empirical discrepancy between cross-section and cohort-based

estimates was relatively small. Recent analyses reveal that wage patterns have changed dramatically

across cohorts and that cross-sections no longer approximate cohort or life cycle change (MaCurdy

and Mroz, 1995; Card and Lemieux, 2001). While these studies do not agree on whether or not these

changes are due to changes in relative skill prices or cohort quality, there is little question in the

U.S. data that life cycle earnings proÞles based on a cross-section of workers no longer accurately

reßect the true earnings patterns for any given cohort. As a result, the rates of return to schooling

estimated from cross-sections of workers reported in the previous section are likely to differ from

the rates of return faced by cohorts making their schooling decisions.

Next, we present a cohort analysis focusing on the actual returns earned by each cohort without

taking a position on whether changes in those returns over time are due to changes in cohort quality

or skill prices. We study how the actual ex post returns earned by individual cohorts compare with

returns estimated from a cross-section of individuals at the time those cohorts made their schooling

decisions. We use repeated cross-section data from the 1964-2000 Current Population Survey (CPS)

March Supplements, comparing cross-section estimates of the return to schooling with estimates
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that combine all years of the CPS to follow cohorts over their life cycles. Given the sensitivity

noted in the previous sections of this chapter to speciÞcations of the functional forms of earnings

equations, we adopt a ßexible earnings speciÞcation and compute internal rates of return to high

school completion (12 vs. 10 years of schooling) and college completion (16 vs. 12 years of schooling)

that relax the assumptions that log earnings are parallel in experience and linear in schooling. Our

estimates also take into account average marginal tax rates and tuition costs using the time series

generated from CPS data.52 Because earnings are not observed at every experience level for any

cohort in the sample (an obvious practical problem in estimating cohort rates of return), a fully

non-parametric approach is infeasible. To extrapolate the earnings function to work experience

levels not observed in the data, we assume that log earnings proÞles are quadratic in experience in

a speciÞcation that allows the intercept and coefficients on experience and experience-squared to

vary by schooling class and year or cohort of data. We estimate log earnings for each year or for

each cohort using regressions of the form

log(Y (s, x)) = αs + β0sx+ β1sx
2 + εs,

where the regression coefficients are allowed to vary by schooling group.53 Two sets of estimates are

generated: (i) regressions are estimated separately for each year of CPS data (to produce a set of

cross-section estimates), and (ii) all CPS cross-sections are combined and separate regressions are

estimated for each cohort by following them over their life cycles (to produce a set of cohort-based

estimates). Both sets of estimates are used to generate predicted life cycle earnings proÞles for each

cohort or cross-section of individuals, which are then used to compute internal rates of return to

high school and college by the method described in the previous section.54

Figures 7a and 7b show cohort and cross-section high school and college completion IRR es-

52An average marginal tax rate of 25% is assumed for all years after 1994, the Þnal year of tax rates reported in
Mulligan and Marion (2000). This corresponds to the average of all rates since 1950, after which rates changed very
little from year to year.
53In estimating earnings proÞles for those with 10 years of education, we combine individuals with 9-11 years,

with separate intercept terms for each of the education levels. This is done to increase precision in estimation. See
Appendix B for additional details on the coding of the education variables.
54In addition to the quadratic speciÞcation, we also tried using a cubic and quartic in experience to extrapolate

for the missing experience levels. For cohorts with 25 or fewer years of data, extrapolations based on higher order
polynomial speciÞcations were unreliable, so we adopted the more parsimonious quadratic speciÞcation.
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timates for white men, which corresponds to CPS estimates in Table 8a. Cross-section estimates

are shown for each year of the sample from 1964-1995, and cohort-based estimates are shown for

cohorts turning age 18 in 1950 through 1983.55 The cohort-based estimates reported in Figure 7a

reveal relative stability in the return to high school for cohorts making their high school completion

decisions prior to 1960, followed by a large increase in the IRR for cohorts making their decisions

over the Þrst half of the 1960s, followed by another period of relative stability. Returns increased

from around 10% among 1950-60 cohorts to around 40% for post-1965 cohorts. Cross-section based

estimates increase slowly but consistently over most of the 1964-1995 period. In general, cross-

section estimated rates of return under-estimate the true rates of return earned by cohorts of white

men making their schooling decisions in the late 1960s and 1970s. However, basic time patterns

are consistent across the two sets of estimates. More dramatic differences are observed for the

college-going decision of white men as shown in Figure 7b. While cross-section estimates show

declining �returns� to college over the 1970s (from 12% down to 8%), cohort-based estimates show

continually increasing returns from the early 1960s to the early 1980s. The rate of return estimated

from cross-sections does not begin to increase until 1980. Cross-section estimates overestimate the

rate of return faced by cohorts making their college attendance decisions around 1965 by as much

as 4 percentage points, while estimates in the early 1980s under-estimate the return by nearly the

same amount. Table 8b reports comparable numbers for black men.

If the observed discrepancies between cross-section and cohort-based estimated �rates of return�

are due to price changes over time that could be at least partly anticipated or are due to changing

cohort quality, then cross-section estimates would not reßect the ex ante �rates of return� that

governed schooling decisions. On the other hand, if changes in skill prices were entirely unantici-

pated, then cross-section estimates may provide a better indication of the ex ante returns governing

schooling decisions than would the actual ex post returns experienced by each cohort. A better

understanding of the underlying causes for such dramatic changes in wages and of individual expec-

tations is needed. Buchinsky and Leslie (2000), Carneiro, Hansen, and Heckman (2003) and Cunha,

Heckman, and Navarro (2005d) present empirical explorations of alternative expectation-formation

55We do not estimate returns for cohorts beyond 1983, since there are too few years of earnings observations for
those cohorts to produce stable and reliable estimates.
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models. We review methods for estimating agent information sets in section 10.

In summary, cross-section estimates of the �rate of return� to schooling should be cautiously

interpreted, particularly when skill prices are changing over time or when cohort quality is changing.

If one is interested in empirically estimating historical rates of return, a cohort analysis is clearly

preferable. Data from the 1964-2000 March CPS suggest that �returns� estimated from a cross-

section of workers are not only biased in levels, but they also suggest patterns that sometimes differ

from those obtained using a cohort-based estimation strategy. If one is interested in estimating the

conventional rates of return governing school investment decisions, then whether to use cross-section

or cohort-based estimates depends on the extent to which individuals are able to forecast future

changes in wages and skill prices.

7 Accounting for the Endogeneity of Schooling

Much of the CPS-Census literature on the returns to schooling ignores the choice of schooling and

its consequences for estimating �the rate of return�. It also ignores ability bias.56 Economists

since C. Reinhold Noyes (1945) in his comment on Friedman and Kuznets (1945) have raised the

specter of ability bias, noting that the estimated return to schooling may largely be a return to

ability that would arise independently of schooling. Griliches (1977) and Willis (1986) summarize

estimates from the conventional literature on ability bias. For the past 30 years, labor economists

have been in pursuit of good instruments to estimate �the rate of return� to schooling, usually

interpreted as a Mincer coefficient. However, the previous sections show that, for many reasons,

the Mincer coefficient is not informative on the true rate of return to schooling, and therefore is not

the appropriate theoretical construct to gauge educational policy. Card (1999) is a useful reference

for empirical estimates from instrumental variable models, although the economic interpretation of

the estimates he reports is not at all clear, as is typical of the entire recent instrumental variable

literature.

Even abstracting from the issues raised by the sequential updating of information, and the

distinction between ex ante and ex post returns to schooling, which we discuss further below, there
56See Katz and Autor (1999) for a survey. An exception is Angrist and Krueger (1991). For an analysis of the

quality of their instruments see Staiger and Stock (1997).
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is the additional issue that returns, however deÞned, vary among persons. A random coefficients

model of the economic return to schooling has been an integral part of the human capital literature

since the papers by Becker and Chiswick (1966), Chiswick (1974), Chiswick and Mincer (1972) and

Mincer (1974).57 In its most stripped-down form and ignoring work experience terms, the Mincer

model writes log earnings for person i with schooling level Si as

ln yi = αi + ρiSi, (11)

where the �rate of return� ρi varies among persons as does the intercept, αi. For the purposes

of this discussion think of yi as an annualized ßow of lifetime earnings. Unless the only costs of

schooling are earnings foregone, and markets are perfect, ρi is a percentage growth rate in earnings

with schooling and not a rate of return to schooling. Let αi = ᾱ+ εαi and ρi = ρ̄+ ερi where ᾱ and

ρ̄ are the means of αi and ρi. Thus the means of εαi and ερi are zero. Earnings equation (11) can

be written as

ln yi = ᾱ+ ρ̄Si + {εαi + ερiSi}. (12)

Equations (11) and (12) are the basis for a human capital analysis of wage inequality in which the

variance of log earnings is decomposed into components due to the variance in Si and components

due to the variation in the growth rate of earnings with schooling (the variance in ρ̄), the mean

growth rate across regions or time (ρ̄), and mean schooling levels (S̄). (See, e.g. Mincer, 1974, and

Willis, 1986.)

Given that the growth rate ρi is a random variable, it has a distribution that can be studied

using the methods surveyed in sections 9 and 10. Following the representative agent tradition in

economics, it has become conventional to summarize the distribution of growth rates by the mean,

although many other summary measures of the distribution are possible. For the prototypical

distribution of ρi, the conventional measure is the �average growth rate� E(ρi) or E(ρi|X), where
the latter conditions on X, the observed characteristics of individuals. Other means are possible

such as the mean growth rates for persons who attain a given level of schooling.

The original Mincer model assumed that the growth rate of earnings with schooling, ρi, is

57Recall our discussion in section 2.2.
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uncorrelated with or is independent of Si. This assumption is convenient but is not implied by

economic theory. It is plausible that the growth rate of earnings with schooling declines with the

level of schooling. It is also plausible that there are unmeasured ability or motivational factors that

affect the growth rate of earnings with schooling and are also correlated with the level of schooling.

Rosen (1977) discusses this problem in some detail within the context of hedonic models of schooling

and earnings. A similar problem arises in analyses of the impact of unionism on relative wages and

is discussed in Lewis (1963).

Allowing for correlated random coefficients (so Si is correlated with ερi) raises substantial prob-

lems that are just beginning to be addressed in a systematic fashion in the recent literature. Here,

we discuss recent developments starting with Card�s (1999) random coefficient model of the growth

rate of earnings with schooling, a model that is explicitly derived from economic theory and is based

on the explicit analysis of Becker�s model by Rosen (1977).58 We consider conditions under which

it is possible to estimate the effect of schooling on the schooled in his model. The next section

considers the more general and recent analysis of Carneiro, Heckman, and Vytlacil (2005).

In Card�s (1999, 2001) model, the preferences of a person over income (y) and schooling (S) are

U(y, S) = ln y (S)− ϕ(S) ϕ0(S) > 0 and ϕ00(S) > 0.

The schooling-earnings relationship is y = g(S). This is a hedonic model of schooling, where g(S)

reveals how schooling is priced out in the labor market. This speciÞcation is written in terms

of annualized earnings and abstracts from work experience.59 It assumes perfect certainty and

abstracts from the sequential resolution of uncertainty that is central to the modern literature.

In this formulation, discounting of future earnings is kept implicit. The Þrst order condition for

optimal determination of schooling is
g0(S)
g(S)

= ϕ0(S). (13)

The term g0(s)
g(s)

is the percentage change of earnings with schooling or the �growth rate� at level s.

58Random coefficient models with coefficients correlated with the regressors are systematically analyzed in Heckman
and Robb (1985, 1986). They originate in labor economics with the work of Lewis (1963). Heckman and Robb analyze
training programs but their mathematics applies to estimating the returns to schooling.
59Adding work experience in a multiplicatively separable way invokes the Mincer model.
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Card�s model reproduces Rosen�s (1977) model if r is the common interest rate at which agents can

freely lend or borrow and if the only costs are S years of foregone earnings. In Rosen�s setup an

agent with an inÞnite lifetime maximizes 1
r
e−rSg(S) so ϕ(S) = rS + ln r, and g0(S)

g(S)
= r.

Linearizing the model, we obtain

g0(Si)
g(Si)

= βi(Si) = ρi − k1Si, k1 ≥ 0,

ϕ0(Si) = δi(Si) = ri + k2Si, k2 ≥ 0.

Substituting these expressions into the Þrst order condition (13), we obtain that the optimal level

of schooling is Si =
(ρi − ri)
k

, where k = k1 + k2. Observe that if both the growth rate and the

returns are independent of Si, (k1 = 0, k2 = 0), then k = 0 and if ρi = ri, there is no determinate

level of schooling at the individual level. This is the original Mincer (1958) model.60

One source of heterogeneity among persons in the model is ρi, the way Si is transformed into

earnings. (School quality may operate through the ρi for example, as in Behrman and Birdsall,

1983, and ρi may also differ due to inherent ability differences.) A second source of heterogeneity

is ri, the �opportunity cost� (cost of schooling) or �cost of funds.� Higher ability leads to higher

levels of schooling. Higher costs of schooling results in lower levels of schooling.

We integrate the Þrst order condition (13) to obtain the following hedonic model of earnings,

ln yi = αi + ρiSi −
1

2
k1S

2
i . (14)

To achieve the familiar looking Mincer equation, assume k1 = 0.61 This assumption rules out

diminishing �returns� to schooling in terms of years of schooling. Even under this assumption, ρi is

the percentage growth rate in earnings with schooling, but is not in general an internal rate of return

to schooling. It would be a rate of return if there were no direct costs of schooling and everyone

faces a constant borrowing rate. This is a version of the Mincer (1958) model, where k2 = 0, and

60In that model, aggregate allocations of persons to schooling are determined by an arbitrage condition that returns
must be equalized across choices.
61The Card model (1999) produces a Mincer-like model where ρi is the Mincer return for individual i. The mean

return in the population is E(ρi). It is an ex post return derived under the assumption that log earnings are linear
in schooling, contrary to the literature, previously discussed, that shows pronounced nonlinearities and sheepskin
effects. (See the discussion in sections 3 and 4.)
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ri is constant for everyone but not necessarily the same constant. If ρi > ri, person i takes the

maximum amount of schooling. If ρi < ri, person i takes no schooling and if ρi = ri, schooling is

indeterminate. In the Card model, ρi is the person-speciÞc growth rate of earnings and overstates

the true rate of return if there are direct and psychic costs of schooling.62

This simple model is useful in showing the sources of endogeneity in the schooling earnings

model. Since schooling depends on ρi and ri, any covariance between ρi − ri (in the schooling
equation) and ρi (in the earnings function) produces a random coefficient model. Least squares will

not estimate the mean growth rate of earnings with schooling unless, COV (ρi, ρi − ri) = 0.
Under linearity of the estimating equations and exogeneity of the regressors, least squares es-

timates conditional expectations. Our analysis is more general. Dropping the i subscripts, the

conditional expectation of log earnings given s is

E (ln y | S = s) = E (α | S = s) +E (ρ | S = s) s.

The Þrst term produces the conventional ability bias if there is any dependence between s and raw

ability α. Raw ability is the contribution to earnings independent of the schooling level attained.

The second term arises from sorting on returns to schooling that occurs when people make schooling

decisions on the basis of growth rates of earnings with schooling. It is an effect that depends on the

level of schooling attained.

In his Woytinsky Lecture (1967), Becker points out the possibility that many able people may

not attend school if ability (ρi) is positively correlated with the cost of funds (ri). A meritocratic

society would eliminate this positive correlation and might aim to make it negative. Schooling is

positively correlated with the growth rate (ρi) if COV (ρi, ρi − ri) > 0. If the costs of schooling are
sufficiently positively correlated with the growth rate, then schooling is negatively correlated with

the growth rate.

Observe that Si does not directly depend on the random intercept αi. Of course, αi may be

statistically dependent on (ρi, ri). In the context of Card�s model, we consider conditions under

62Recall our discussion of Section 4. From equation (4) if term 1 is zero, and we assume multiplicative separability
(or no experience) then ρi(= term 2) = �r+ term 3 which arises from tuition and psychic costs where �r is the
opportunity cost of funds.
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which one can identify ρ̄, the mean growth rate in the population. First we consider the case where

the marginal cost of funds, ri, is observed and then other cases in the following subsections.63

7.1 Estimating the mean growth rate of earnings when ri is observed

A huge industry surveyed in Card (1999) seeks to estimate the mean growth rate in earnings, E (ρi),

calling it the �causal effect� of schooling. For reasons discussed earlier in this chapter, in general,

it is not an internal rate of return. However, it is one of the ingredients used in calculating the rate

of return as we develop further in section 8.2. The causal effect may also be of interest in its own

right if the goal is to estimate earnings pricing equations. We discuss some simple approaches for

identifying causal effects before turning to a more systematic analysis in section 8.

Suppose that the cost of schooling, ri, is measured by the economist. Use the notation �⊥⊥� to
denote statistical independence. Assume

ri ⊥⊥ (ρi, αi).

This assumption rules out any relationship between the cost of funds (ri) and raw ability (αi) with

the growth rate of earnings with schooling. For example, it rules out fellowships based on ability.

We make this assumption to illustrate some ideas and not because of its realism. Observing ri

implies that we observe ρi up to scale. Recall that Si =
(ρi − ri)
k

, so that ρi = ri + kSi and

ρ̄ = E(ρi) = r̄ + kE(Si).

ri is a valid instrument for Si under the assumption that k1 = 0. It is independent of αi, ρi (and

hence εαi,ερi) and is correlated with si because si depends on ri. Form

COV (ln yi, ri)

COV (Si, ri)
=

E
£
(ri − r̄)[(αi − ᾱ) + (ρi − ρ̄)(Si − S̄) + ρ̄Si + ρiS̄ − ρ̄S̄)

¤
E

½∙
ρi − ri
k

¸
[ri − r̄]

¾

=

1

k
E[(∆r)(∆ρ)(∆ρ−∆r)]− ρ̄

k
σ2r

−σ
2
r

k

,

63Our discussion is based in part on Heckman and Vytlacil (1998).
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where ∆X = X − E(X). As a consequence of the assumed independence between ρi and (αi, ri),
E[(∆r)(∆ρ)2] = 0 and E[(∆r)2∆ρ] = 0, so

∙
COV (ln yi, ri)

COV (Si, ri)

¸
= ρ̄.

Observe that ρ̄ is not identiÞed by this argument if ρi ⊥Á⊥ ri (so the mean growth rate of earnings
depends on the cost of schooling).64 In that case, E[(∆r)(∆ρ)2] 6= 0 and E[(∆r)2(∆ρ)] 6= 0. If ri is
known and ri = Liγ +Mi, where the Li are observed variables that explain ri and E(Mi | Li) = 0,
then γ is identiÞed, provided a rank condition for instrumental variables is satisÞed.65 We require

that Li be at least mean independent of (Mi, ρi, αi). From the schooling equation we can write

Si = (ρi − Liγ −Mi)/k and k is identiÞed since we know γ.

Observe that we can estimate the distribution of ρi since ρi = ri+kSi, k is identiÞed and (ri, Si)

are known. This is true even if there are no instruments L, (γ = 0), provided that ri ⊥⊥ (αi, ρi).
With the instruments that satisfy at least the mean independence condition, we can allow ri ⊥Á⊥ ρi
and all parameters and distributions are still identiÞed. The model is fully identiÞed provided ri is

observed and Li ⊥⊥ (Mi, ρi, αi).
66 Thus, we can identify the mean return to schooling.

7.2 Estimating the Mean Growth Rate when ri is not observed

If ri is not observed and so cannot be used as an instrument, but we know that ri depends on

observed factors Li and Mi, ri = Liγ +Mi and Li ⊥⊥ (Mi, αi, ρi), then the analysis of section 7.1

carries over and the mean growth rate ρ̄ is identiÞed. Recall that ln yi = αi + ρ̄Si + (ρi − ρ̄)Si.
Substitute for Si to get an expression of yi in terms of Li, ln yi = αi + ρi(ρi − Liγ −Mi)/k. We

obtain the vector moment equations:

COV (ln yi, Li) = ρ̄ COV (Si, Li),

64The symbol ⊥Á⊥ means �not independent of.�
65See, e.g. Greene (2003).
66As we have stressed, the independence conditions are overly strong, but can be weakened to a mean independence

assumption provided that we only seek to recover conditional means.
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so ρ is identiÞed from the population moments because the covariances on both sides are available.67

Partition γ = (γ0, γ1), where γ0 is the intercept and γ1 is the vector of slope coefficients. From the

schooling equation, we obtain

Si =
ρi − Liγ1 −Mi

k
− γ0
k

= −Liγ1
k
+
ρi −Mi

k
− γ0
k
.

We can identify γ1/k from the schooling equation, as well as the mean growth rate ρ̄. However, we

cannot identify the distribution of ρi or ri unless further assumptions are invoked. We also cannot

separately identify γ0, γ1 or k. Heckman and Vytlacil (1998) show how to deÞne and identify a

version of �treatment on the treated� for growth rates in the Becker-Card-Rosen model.

7.3 Adding Selection Bias

Selection bias can arise in two distinct ways in the Becker-Card-Rosen model: through dependence

between αi and ρi and through dependence between αi and ri. Allowing for selection bias,

E(ln yi | Si) = E(αi | Si) +E(ρiSi | Si) = E(αi | Si) +E(ρi | Si)Si.

If there is an L that affects ri but not ρi and is independent of (αi,Mi), i.e., Li ⊥⊥ (αi, ρi,Mi),

and E(ri|Li) is a nontrivial function of Li, in the special case of a linear schooling model as in
section 7.2,

E (ln yi | Li) = E(αi | Li) +E(ρiSi | Li)

= η + ρ̄E(Si | Li).68
67One can use the GMM formula presented in Hansen (1982) to construct an efficient estimator if there is more

than one non-constant element in Li.

56



Since we can identify E(Si | Li) we can identify ρ̄. Thus, under the stated conditions, the instrumen-
tal variable (IV ) method identiÞes ρ̄ when there is selection bias. In a more general nonparametric

case for the schooling equation, which we develop in the next section of this chapter, this argument

breaks down and ρ̄ is not identiÞed when ρi determines Si in a general way. The sensitivity of the

IV method to assumptions about special features of Card�s model is a simple demonstration of

the fragility of the method. We return to this model in section 10 and use it to motivate recent

developments in the literature on identifying information available to agents when they make their

schooling decisions.

7.4 Summary

Card�s version of the Becker (1967)-Rosen (1977) model is a useful introduction to the modern

literature on heterogeneous �returns to schooling.� ρi is, in general, a person-speciÞc growth rate

of log earnings with schooling and not a rate of return. There is a distribution of ρi and no scalar

measure is an adequate summary of this distribution. Recent developments in this literature, to

which we now turn, demonstrate that standard instrumental variable methods are blunt tools for

recovering economically interpretable parameters.

8 Accounting Systematically for Heterogeneity in Returns

to Schooling: What Does IV Estimate?

To understand what IV estimates in a more general setting, this section analyzes a simple version of

(11) in which there are only two levels of schooling. Our discussion can be generalized (see Heckman

and Vytlacil, 2005b and Heckman, Urzua, and Vytlacil, 2004), but for purposes of exposition it is

fruitful to focus on a two outcome model. It links IV to the analysis of Willis and Rosen (1979)

and Willis (1986), who focus on a two outcome model of schooling in which the ρi of equation (14)

varies in the population. Recent research on instrumental variables in the correlated coefficient

model establishes a close link between IV and the selection model (Heckman, 1976) that Willis

68η = ᾱ+

Ã
σ2ρ
k

!
− E(ρiMi)

k
, where σ2ρ = V AR(ρi).
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and Rosen apply to obtain their estimates. As shown in Heckman, Urzua, and Vytlacil (2004), the

contrast between IV and selection methods emphasized by Angrist and Krueger (1999) and echoed

throughout the literature is not valid once the IV method for the correlated random coefficient

model is correctly understood.

Since schooling is usually received in integer amounts, and most well posed models of schooling

choice are based on nonlinear discrete choice frameworks, the simple Card model abstracts from

key features of the schooling choice � earnings outcome model which can be captured in a simple

way by a discrete outcome model.69 Heckman (1997) and Heckman and Vytlacil (1998) show how

models of schooling that capture key features of economic theory are intrinsically nonlinear. See

also the discussion in Heckman and Vytlacil (1998).

In the model of section 7, the mean growth rate of earnings with schooling, ρ̄, was assumed to

be the parameter of interest without any good justiÞcation. While statisticians sometimes call such

averages the �average causal effect� (ACE), there is no reason to focus on this parameter to the

exclusion of other parameters that can be derived from the distribution of ρi.

Moreover, as we shall show in this section, the instrumental variable estimators set forth in the

recent literature do not in general estimate ACE or any of the other standard treatment effects of

schooling on earnings when schooling choices are discrete. They do not estimate rates of return to

schooling, nor are they designed to. Instead, they estimate certain weighted averages of individual

growth rates where the weights can sometimes be negative.

Following Heckman and Vytlacil (2000, 2005a,b), Heckman, Urzua, and Vytlacil (2004), and

Carneiro, Heckman, and Vytlacil (2005), consider the following generalized Roy model of schooling

and its �return.� A version of it is applied by Willis and Rosen to the problem of choice of college

using tools developed in the econometrics of selection bias. Our analysis of this model links the

modern IV literature to the classical selection literature.70

Let Y1 denote the present value of earnings from college. Y0 is the present value of earnings

from high school. There is a distribution of G = Y1 − Y0 and another distribution of G − C in

69Card�s model becomes nonlinear if one constrains it to rule out negative schooling and schooling above observed
magnitudes.
70Heckman, Urzua, and Vytlacil (2004) systematically compare these literatures. See also Heckman and Vytlacil

(2005a,b).
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the population where C denotes the cost of schooling and G denotes earnings gains from college.

No single number summarizes either distribution, although much of the literature focuses on one

conditional mean or some other single number as the object of economic and econometric interest.

Attention has focused in recent years on IV estimates of the coefficient of schooling in a regression

of log earnings on schooling. In the special cases analyzed in section 7, IV can sometimes identify

the mean growth rate in earnings (E (ρi)) which is usually not the same as the rate of return. But

more generally, IV does not even identify this parameter. This section considers what IV estimates

in general cases.

If G varies in the population but everyone faces the same C, individuals decide to enroll in

school (S = 1) if G− C > 0. Figure 9 plots the hypothetical density of G in this example, f(G),
and also presents the cost that everyone faces, C. Individuals who have values of G to the right

of C choose to enroll in school, while those to the left choose not to enroll. The gross gain for the

individuals who choose to go to school, E(G | G ≥ C), is computed with respect to the normalized
density of f(G) that is to the right of C. The marginal return (the return for individuals at the

margin) is exactly equal to C. Figure 9 presents both the average and the marginal return for this

example.

Suppose that we want to estimate the effect on earnings of compulsory college attendance.

Those individuals who are induced to enroll in school by this policy have G below C (they were not

enrolled in school before the policy), and the average �return� for these individuals is E(G|G ≤ C).
Alternatively, one might be interested in analyzing the effect of a tuition subsidy that changes the

cost of attending school from C to C 0 for everyone in the economy. Those individuals who are

induced to enroll in school by this policy have G below C (they were not enrolled in school before

the policy) and G above C 0 (they decide to enroll after the policy), and the average �return� for

these individuals is E(G|C 0 < G ≤ C). One needs different parameters to evaluate each of these
two different policies (E (G|G ≤ C) vs. E(G|C 0 < G ≤ C)). Neither is estimated by the average

growth rate, and hence by the IV method discussed in section 7. In this example, the marginal

entrant into college has a lower return than the average entrant, and the return for the average

student is not the relevant return to evaluate either policy.71

71There is an additional assumption behind this example which we will maintain throughout this chapter: that the
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Standard estimates of the returns to schooling, such as the ones obtained using the method of

least squares, as in the vast literature surveyed by Katz and Autor (1999), or using the method of

instrumental variables, as surveyed by Card (1999), are not designed to produce either of the policy

parameters just described. It is unusual in the recent literature on the �returns to schooling� for

researchers estimating �the effect� of schooling to specify a policy or economic question of interest

and address it directly. Following Card (1999) and Angrist and Krueger (1999), many deÞne

the probability limits of instrumental variable estimators (LATE, deÞned below) as �the� return

to schooling without stating what economic questions these statistical objects address. Different

instruments deÞne different parameters. These parameters answer different economic questions.

Moreover the commonly accepted interpretation of LATE � that it estimates the returns for those

induced to change their schooling status by the change in the instrument � assumes that everyone

responds to the instrument in the same direction (i.e., all increase their schooling or all decrease

it). This is a strong assumption that rules out heterogeneity in the response of schooling choices to

instruments.72

In this section we distinguish between policy parameters of interest, conventional evaluation

parameters and standard estimates of the �returns to schooling.� We show how these parameters

answer different questions, and how we can recover each of them from the data. We illustrate the

empirical importance of accounting for heterogeneity and the fragility of instruments even in an

ideal data set with far richer instruments than are available in the widely used CPS or Census data

analyzed in earlier sections of this survey. This section draws from Heckman and Vytlacil (2005a,b),

Heckman, Urzua, and Vytlacil (2004) and Carneiro, Heckman, and Vytlacil (2005). They estimate

the growth rate of earnings in schooling relevant for evaluating a particular education policy such

as a tuition subsidy (in a partial equilibrium framework) and Þnd that it is very different from the

conventional program evaluation parameters usually deÞned in the literature, such as the �return to

schooling� for the average person, or the �return to schooling� for the average student in college. It

also differs from the estimates obtained by applying least squares or instrumental variables methods,

the two methods most often used to estimate �returns� to schooling.

policy does not have important general equilibrium effects.
72Heckman and Vytlacil (2005b) and Heckman, Urzua, and Vytlacil (2004) present an extensive discussion of this

issue.
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We clarify the interpretation of what is usually labeled �ability bias� and �selection bias� in this

literature. Standard intuitions break down in a model of heterogeneous returns. They can be very

misleading when comparing OLS and IV estimates of the growth rates of earnings with respect to

schooling (See Heckman and Vytlacil, 2005b).

Instrumental variables estimates of the �return to schooling� (really growth rates of earnings

with schooling) are usually interpreted as estimating an average �return� to schooling for individuals

induced to go to school by changes in the values of the instrument, following the LATE (local

average treatment effect) interpretation of Imbens and Angrist (1994). Angrist and Krueger (1999)

are ardent and inßuential proponents of this approach. We discuss the relationship of LATE to

treatment effects and rates of return below.

Intuitions about ability bias break down in a particularly serious way if individuals have multiple

skills and sort across schooling levels in such a way that the best individuals in one schooling level

are the worst in the other, and vice versa.73 Heckman and Robb (1985, 1986) make the point that

IV does not identify interpretable parameters in a selection model or a generalized Roy model.

8.1 The Generalized Roy Model of Schooling

To focus the discussion, and motivate the empirical literature, we consider a two outcome model.

Heckman and Vytlacil (2005a,b) and Heckman, Urzua, and Vytlacil (2004) extend this discussion

to ordered choice and general unordered choice models with multiple outcomes.

As noted in section 7, from its inception, the modern literature on the �returns to schooling� has

recognized that returns may vary across schooling levels and across persons of the same schooling

level.74 The early literature was not clear about the sources of variation in returns. The Roy model

(1951) and its extensions (see Heckman, 1976, 1979), as applied by Willis and Rosen (1979), gives

a more precise notion of why returns vary and how they depend on S. In the generalized Roy

framework, the potential outcomes associated with two different schooling levels are generated by

73As opposed to what we would expect from a single skill model where the best individuals in one sector would
also be the best individuals in the sector they did not choose if they were placed there instead.
74See Becker and Chiswick (1966), Chiswick (1974) and Mincer (1974).
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two random variables (U0, U1):

lnY0 = α+ U0 (15a)

lnY1 = α+ β̄ + U1 (15b)

where E(U0) = 0 and E(U1) = 0 so α (= E(lnY0)) and α+ β̄ (= E (lnY1)) are the mean potential

outcomes for lnY0 and lnY1 respectively. The common coefficient model assumes U0 = U1. We

implicitly condition on X, the regressors determining potential outcomes. Let C (Z) denote costs

of schooling measured in proportional terms. The Z are the variables determining costs. The

individual level �causal effect� of educational choice S = 1 is

β = lnY1 − lnY0 = β̄ + U1 − U0.

In general, this is not a rate of return but a growth rate of earnings with schooling. There is a

distribution of β in the population.

Observed earnings are written in a �switching regression� form,

lnY = S lnY1 + (1− S) lnY0 = α+ βS + U0 = α+ β̄S + {U0 + S(U1 − U0)}. (16)

Persons live once and we only observe them in one or the other education state (recall S = 0

or 1). This equation captures the literature on counterfactual states that was developed by Roy

(1951). It is also a version of Quandt�s switching regression model (1958, 1972). It is equivalent to

the familiar semilog speciÞcation of the earnings-schooling equation popularized by Mincer (1974),

given in equation (11), which in the current notation writes log earnings lnY as a function of S,

lnY = α+ β̄S + U, (17)

where U = U0 + S(U1 − U0).75 In terms of the notation of section 7, U0 = εα, U1 − U0 = ερ.
In the generalized Roy framework, the choice of schooling is explicitly modeled. In its simplest

75For simplicity, throughout this section we suppress explicit notation for dependence of the parameters on the
covariates X unless it is clarifying to make this dependence explicit.
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form

S =

⎧⎪⎨⎪⎩ 1 if lnY1 − lnY0 ≥ C ⇐⇒ β ≥ C
0 otherwise.

(18)

If agents know or can partially predict β at the time they make their schooling decisions, there is

dependence between β and S in equation (16). This produces the �correlated random coefficient

model� that is often applied to general versions of (16). Decision rules similar to (18) characterize

many other economic choices.

The conventional approach to estimating selection models postulates normality of (U0, U1) in

equations (15a) and (15b), writes β̄ and α as linear functions of X and postulates independence

between X and (U0, U1). Parallel normality and independence assumptions are made for the un-

observables and observables in selection equation (18). From estimates of the structural model, it

is possible to answer a variety of economic questions and to construct the various treatment pa-

rameters and distributions of treatment parameters.76 However in recent years these assumptions

have often been viewed as unacceptably strong by empirical labor economists (See, e.g. Angrist and

Krueger, 1999).77

A major advance in the recent literature in econometrics is the development of frameworks that

relax conventional linearity, normality and separability assumptions to estimate various economic

parameters. Heckman and Vytlacil (2000, 2005a,b) develop a framework for estimating rates of

return to schooling (mean growth rates of earnings with schooling) that do not depend on normal-

ity, independence of the conditioning variables with the regressors, separability or linearity of the

estimating equations. Their work unites IV and selection models and presents a new local IV ap-

proach as a way to estimate selection models. Heckman, Urzua, and Vytlacil (2004) and Heckman

and Vytlacil (2005b) present extensive discussions of the relationship between the two approaches.

76Willis and Rosen (1979) is an example of the application of the generalized Roy model. Textbook treatments
of the normal selection model are available in Amemiya (1985) and Ruud (2000). Aakvik, Heckman, and Vytlacil
(2005) and Heckman, Tobias, and Vytlacil (2001, 2003) derive all of the treatment parameters and distributions
of treatment parameters for several parametric models including the normal. The Heckman, Tobias and Vytlacil
papers present one elementary discussion of the normal selection model applied to the generalized Roy framework.
Carneiro, Hansen, and Heckman (2003) and Cunha, Heckman, and Navarro (2005d) estimate the distribution of
treatment effects under semiparametric assumptions. We review this work in the last two sections of this chapter.
77A large literature, starting with Heckman and Sedlacek (1985) and exempliÞed most recently by Blundell, Reed,

and Stoker (2003) shows that correcting for selection and sectoral choices, a log normality assumption for sectoral
earnings Þts the data well.
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Heckman and Vytlacil work with general nonseparable models,

lnY1 = μ1(X,U1) and lnY0 = μ0(X,U0). (19)

The growth rate of earnings due to schooling is lnY1 − lnY0 = β = μ1(X,U1) − μ0(X,U0), which
is a general nonseparable function of (U1, U0). It is not assumed that X ⊥⊥ (U0, U1), so X may

be correlated with the unobservables in potential outcomes. As demonstrated by Heckman and

Vytlacil (2000, 2005a,b) one needs exogeneity of X only if one is seeking to make out of sample

projections. Like virtually the entire microeconomic literature, they ignore any general equilibrium

effects of policies on Y1, Y0 or β.78

A latent variable model that captures decision rule (18) in a general way is:

S∗ = μS(Z)− US
S = 1 if S∗ ≥ 0.

(20)

In this notation the Z can include all of the variables in the outcome equations plus the variables

in the cost function which are a source of exclusion restrictions. μS (Z) is a general function of the

observables where US is an unobservable arising from Y1, Y0 and C. A person goes to school (S = 1)

if S∗ ≥ 0. Otherwise S = 0. In this notation, (Z,X) are observed and (U1, U0, US) are unobserved.
US may depend on U1 and U0 and the unobservables in C in a general way. The Z vector may

include some or all of the components of X.

The separability between Z and US in (20) plays a crucial role in the entire modern instrumental

variables literature based on LATE and its extensions. It produces the �monotonicity� or �unifor-

mity� condition of Imbens and Angrist (1994). Without the separability, changes in the instruments

in Z induce two-way ßows into and out of treatment and cause IV to break down as a method

for estimating treatment effects. See Heckman and Vytlacil (2005a,b) and Heckman, Urzua, and

Vytlacil (2004).

The separability that is required to justify (20) and that underlies the entire LATE-based liter-

78Heckman, Lochner, and Taber (1998) analyze generalized Roy models of schooling in a general equilibrium
framework.
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ature cannot be justiÞed in many choice-theoretic models of schooling including dynamic discrete

models (See Heckman and Navarro, 2005). The method of IV applied to a heterogeneous outcome

model is fundamentally asymmetric. It allows for heterogeneity in responses to schooling (i.e., it

imposes no restrictions on β which may be general random variables). At the same time, it re-

stricts the heterogeneity in responses of schooling choices to changes in Z. Consider the special

case μs (Z) = Zγ. The �monotonicity conditions� invoked in the recent literature to justify IV

as estimating the return to schooling for people induced into schooling by a change in instrument

rules out a random coefficient model for γ except for very special cases. Thus it does not allow for

heterogeneity in choices, but it allows for heterogeneity in outcomes. See the discussion in Heckman

and Vytlacil (2005a,b) and Heckman, Urzua, and Vytlacil (2004).

Heckman and Vytlacil (2001a, 2005a) assume that (a) Z has some variables that shift μS (Z)

given X (the other variables) � an exclusion condition that is standard in the IV literature; (b) The

unobservables (U0, U1, US) are independent of Z given X (a standard instrumental variables condi-

tion) and (c) 0 < Pr (S = 1 | X) < 1, so in large samples there are some people who have S = 1
and some who have S = 0, so comparisons between treated and untreated persons can be made for

those values of X. They make additional mild regularity assumptions. Under these conditions it is

possible to interpret IV as a weighted average of willingness to pay measures called the marginal

treatment effect (MTE). A version of this treatment effect was introduced into the econometrics

literature by Björklund and Moffitt (1987) for a linear-in-parameters model.79

Let P (z) be the probability of receiving schooling level 1, S = 1 conditional on Z = z, P (z) ≡
Pr(S = 1 | Z = z) = FUS(μS(z)) where FUS is the distribution of US. Without loss of generality,
one may write US ∼ Unif[0,1] so μS(z) = P (z).80 (If S∗ = ν(Z)−VS, and VS is a continuous random
variable, one can always reparameterize the model using simple transformation of variable rules so

μS(Z) = FVS(ν(Z)), where FVS is the distribution of V and US = FV s(VS).) The propensity score

P (z) is a monotonic transformation of the mean utility of attending school and we will refer to it

79Vytlacil (2002) shows that under the conditions stated in this paragraph, separability (20) implies and is implied
by the monotonicity and independence conditions of Imbens and Angrist (1994) and Angrist and Imbens (1995).
Heckman and Vytlacil (2005a,b) present three alternative deÞnitions of theMTE for a general nonlinear model which
are equivalent in a linear model.
80We say a random variable is uniformly distributed over [0,1] if its density is identically equal to 1 over this

interval.
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as the mean utility.

When β varies in the population, the growth rate of earnings with schooling is a random variable

and there is a distribution of �causal effects.� There are various ways to summarize this distribution

and, in general, no single statistic will capture all aspects of the distribution.

Many summary measures of the distribution of β are used in the recent literature. Among them

are

E (β | X = x) = E(lnY1 − lnY0 | X = x)

= β̄(x)

the return to the population average person given characteristicsX = x. This quantity is sometimes

called �the� causal effect of S.81 Others report the �return� for those who attend school:

E (β | S = 1, X = x) = E(lnY1 − lnY0 | S = 1,X = x)

= β̄(x) +E(U1 − U0 | S = 1, X = x).82

This is the parameter emphasized by Willis and Rosen (1979) where E(U1 − U0 | S = 1,X = x) is

the sorting gain�how people who take S = 1 differ from randomly sampled persons.

Another parameter is �the return� for those who are currently not going to school:

E (β | S = 0,X = x) = E(lnY1 − lnY0 | S = 0,X = x)

= β̄(x) +E(U1 − U0 | S = 0,X = x).

Angrist and Krueger (1991) and Meghir and Palme (2001) estimate this parameter. In addition to

these �effects� is the effect for persons indifferent between the two levels of schooling, which in the

simple Roy model without costs (C = 0) is E(lnY1 − lnY0 | lnY1 − lnY0 = 0) = 0.
Depending on the conditioning sets and the summary statistics desired, a variety of �causal

81It is the Average Treatment Effect (ATE ) parameter. Card (1999, 2001) deÞnes it as the �true causal effect�
of education. See also Angrist and Krueger (1999, 2001). Our chapter demonstrates that there is no �true causal
effect.�
82It is the Treatment on the Treated parameter as discussed by Heckman and Robb (1985).
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effects� can be deÞned. Different causal effects answer different economic questions. As noted by

Heckman and Robb (1986), Heckman (1997) and Heckman and Vytlacil (2005a,b), under one of

two conditions

I: U1 = U0 (common effect model)

or more generally

II: Pr(S = 1 | X = x, β) = Pr(S = 1 | X) (conditional on X, β does not affect choices)

all of the mean treatment effects conditional on X collapse to the same parameter. The second

condition is the one implicitly used by Mincer (1974). It assumes that schooling decisions are not

made on the basis of any component of the growth rate β. If neither condition is satisÞed, there are

many candidates for the title of causal effect. This ambiguity has produced considerable confusion

in the empirical literature as different analysts use different deÞnitions in reporting empirical results

and many of the estimates are not strictly comparable.83

Which, if any, of these effects should be designated as �the� causal effect? We have already

noted that conventional �causal effects� are not estimates of a marginal internal rate of return, but

instead are estimates of some average growth rate of earnings with schooling. Instead of hoping

that a treatment effect or estimator answers an interesting economic question, it is far clearer to

state an economic question and Þnd the answer to it. This obvious and traditional approach is not

pursued in the literature. Heckman and Vytlacil (2001c, 2005a,b) develop this approach using a

standard welfare framework. Aggregate per capita outcomes under one policy are compared with

aggregate per capita outcomes under another. One of the policies may be no policy at all. For

utility criterion V (Y ), a standard welfare analysis compares an alternative policy with a baseline

policy:

E(V (Y ) | Alternative Policy)−E(V (Y ) | Baseline Policy). (21)

Adopting the common coefficient model, so β = β̄, a log utility speciÞcation (V (Y ) = lnY ) and

ignoring general equilibrium effects, where β is a constant, β̄, the mean change in welfare is

E(lnY | Alternative Policy)−E(lnY | Baseline Policy) = β̄(∆P ),
83For example, Heckman and Robb (1985) note that in his survey of the union effects on wages, Lewis (1986)

confuses these different �effects.� This is especially important in his comparison of cross section and longitudinal
estimates where he inappropriately compares conceptually different parameters.

67



where (∆P ) is the change in the proportion of people induced to attend school by the policy. This

can be deÞned conditional on X = x or overall for the population. In terms of gains per capita to

recipients, the effect is β̄. This is also the mean change in log income if β is a random variable but

independent of S if conditions I or II apply. In the general case, when agents partially anticipate β,

and comparative advantage dictates schooling choices, none of the traditional treatment parameters

plays the role of β̄ in (21) or answers the stated economic question. Heckman and Vytlacil (2001c,

2005a,b) show how (21) can be represented as a weighted average of the MTE. The weights are

given in Table 9b. See Heckman, Urzua, and Vytlacil (2004) for further examples.

In the empirical literature on the returns to schooling the aim is often to estimate E(β | X = x),

although this is unlikely to be the answer to many relevant policy questions. The standard estima-

tion method is instrumental variables. However, in the presence of heterogeneity and self-selection,

we cannot identify E(β | X = x) by using standard instrumental variables methods. Instead, we

identify LATE (Imbens and Angrist, 1994), or a weighted average of LATE parameters, which is an

instrument dependent parameter. It is usually broadly deÞned as the �average �return� to schooling

for individuals induced to change their schooling by the observed change in the instrument�. The

economic interpretation of this parameter is unclear. In general, LATE does not correspond to a

policy relevant parameter or a rate of return. The LATE parameter of Imbens and Angrist (1994) is

often invoked by empirical analysts to justify an instrumental variable estimate, without providing

any precise deÞnition of the economic question it addresses.

One way to make this general point is to explore what is estimated by using compulsory schooling

as an instrument. Compulsory schooling is sometimes viewed as an ideal instrument (see Angrist

and Krueger, 1991). But when �returns� are heterogeneous, and agents act on that heterogeneity

in making schooling decisions, compulsory schooling used as an instrument identiÞes only one of

many possible treatment parameters and in general does not estimate a rate of return to schooling.

Compulsory schooling selects at random persons who ordinarily would not be schooled (S = 0)

and forces them to be schooled. It is straightforward to establish that it identiÞes treatment on the

untreated:

E(lnY1 − lnY0 | X = x, S = 0) = E(β | X = x, S = 0)
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but not ATE = E(lnY1 − lnY0) = β̄, treatment on the treated TT = E(lnY1 − lnY0 | X = x, S =

1) = E(β|X = x, S = 1), or the marginal internal rate of return.84

Treatment on the untreated answers an interesting policy question. It is informative about the

earnings gains for a policy directed toward those who ordinarily would not attend school and who

are selected into school at random from this pool. If the policy the analyst seeks to evaluate is

compulsory schooling then the instrumental variable estimand85 and the policy relevant treatment

effect coincide. More generally, if the instrumental variable we use is exactly the policy we want

to evaluate, then the IV estimand and the policy relevant parameter are the same. But whenever

that is not the case, the IV estimand does not identify the effect of the policy when returns vary

among people and they make choices of treatment based on those returns.86 For example, if the

policy we want to consider is a tuition subsidy directed toward the very poorest within the pool

of nonattenders, then an instrumental variable estimate based on compulsory schooling will not be

the relevant return to evaluate the policy.87

8.2 DeÞning Treatment Effects in the Generalized Roy Model and Re-

lating them to True Rates of Return

The index model (18) and (20) can be used to deÞne the marginal treatment effect (MTE),

∆MTE(x, uS) ≡ E(β | X = x,US = uS).

This is the mean gain to schooling for individuals with characteristics X = x and with unobservable

US = uS.88 It is a willingness to pay measure for an additional year of schooling for persons

indifferent between attending or not attending college at a mean utility P (Z) = uS.

Under their assumptions, Heckman and Vytlacil (1999, 2001b, 2005a,b) establish that all of the

84See Carneiro, Heckman, and Vytlacil (2005).
85An estimand is the probability limit of an estimator.
86See Heckman, Urzua, and Vytlacil (2004) for an analysis of this case.
87Heckman and Vytlacil (2005b) show that for every policy it is possible in principle to deÞne an instrumental

variable that generates the correct policy relevant treatment effect. However, such an instrument may not be feasible
in any given data set because of support problems. (Support is the range of a random variable where it has positive
density.) Different policies deÞne different policy relevant instrumental variables.
88Björklund and Moffitt (1987) introduced this parameter in the context of the parametric normal Roy model. See

Heckman and Vytlacil (2005a,b) for a discussion of this literature.
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conventional treatment parameters used in the program evaluation literature are different weighted

averages of the MTE where the weights integrate to one. The conventional treatment parameters

are the average treatment or ATE, E(Y1 − Y0 | S = 1, x), and treatment on the untreated or TUT,
E(Y1 − Y0 | S = 0, x). See Table 9a (from Heckman and Vytlacil, 2000, 2005a,b) for the treatment

parameters expressed in terms of MTE and Table 9b for the weights. The analysis of Heckman

and Vytlacil (2001b, 2005a,b) unites the selection literature and the modern IV literature using a

common analytical framework. Heckman, Urzua, and Vytlacil (2004) discuss how to construct the

weights.89

These tables also show how one can write the IV and OLS estimates and the Policy Relevant

Treatment Effect as weighted averages of the MTE. The crucial observation to extract from this

table is that the weights on MTE are different for IV and for the treatment parameters. Thus, not

only is it true that the treatment parameters are not rates of return, but IV does not in general

estimate the treatment parameters.

Figure 10a plots the marginal treatment effect (MTE) derived from a generalized normal Roy

model using the parameterization of (17) and (18) shown at the base of the Þgure. It displays the

prototypical pattern that the returns to schooling decline for those persons who have higher costs

of schooling (higher US), i.e., for persons less likely to attend school.90 The same Þgure is implicit

in the analysis of Willis and Rosen but they do not develop or exposit it. The treatment effect

parameters generated from this model are presented in Table 10. It also presents IV and OLS

estimates as well as the sorting gain and selection bias terms for this model.

Figure 10a also displays the weights on MTE used to form ATE (Average Treatment Effect),

TT (Treatment on the Treated) and TUT (Treatment on the Untreated) for a generalized Roy

model (with tuition costs).91 TT overweights the MTE for persons with low values of US who,

ceteris paribus, are more likely to attend school. TUT overweights the MTE for persons with high

values of US who are less likely to attend school. ATE weights MTE uniformly. The decline in

MTE reveals that the �gross return� (β) declines with US. Those more likely to attend school

89Their paper provides software for doing so.
90Recall that S = 1 (S∗ > 0) = 1 (μS (Z) > US) so that the higher US , the less likely is a person to attend college

or have S = 1.
91The form of the Roy model we use assumes additive separability and generates U0,U1 and US from a common

unobservable ε. Thus, in this example, the distribution of U1 − U0 given US is degenerate.
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(based on lower US) have higher �gross returns� or higher growth rates of earnings with schooling.

Not surprisingly, in light of the shape of MTE and the shapes of the weights, TT > ATE > TUT .

There is a positive sorting gain (E(U1 − U0 | X = x, S = 1) > 0) and a negative selection bias

(E(U0 | X = x, S = 1)−E(U0 | X = x, S = 0) < 0). Figure 10b displays the MTE and the weights

for OLS and for IV using P (Z) as the instrument. IV weights the MTE more symmetrically and

in a different fashion than ATE, TUT or TT. The shape of the IV weight is prototypical when

P (Z) is the instrument. However, for other instruments, including individual components of Z, the

shapes of the weights are different (see Heckman, Urzua, and Vytlacil, 2004, for further analysis and

examples). We present examples of these weights below. OLS weights MTE very differently. The

contrast between the OLS weight and the IV weight conveys the contrast between the CPS/Census

literature and the modern IV literature. In general, neither identiÞes ATE or the other treatment

effects, and the conventional treatment effects are not rates of return.

To estimate ex post rates of return, it is necessary to account for foregone earnings and direct

costs. The treatment effect literature typically accounts for neither and reports differences in labor

market payments to different schooling levels. To cast the discussion of section 4 into the framework

of this section, let Y1,t be the earnings of a college-educated person at age t. Let Y0,t be the earnings

for a high school-educated person at age t. (To this point in this section we have abstracted from

age-dependent growth rates of earnings.) Suppose that it takes τ periods to complete college and

that direct costs are Ct per period while in college. The interest rate is r, assumed to be constant.

Assume that while in school persons receive no earnings. (If they did, they could help offset costs

C.) College educated persons retire at age T1. High school educated persons retire at age T0. The

return to college R is

R =

PT1
t=τ

Y1,t
(1+r)t−τ −

PT0
t=0

(Y0,t+Ct)

(1+r)tPT0
t=0

Y0,t+Ct
(1+r)t

,

This is a version of the Becker (1964) formula.

As discussed in section 3, in the special case assumed by Mincer, log earnings are parallel in

experience across schooling categories. For the case of geometric growth and deÞning Ȳ0 = Y0,0 and
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Ȳ1 = Y1,τ , earnings may be written as:

Y0,t = Ȳ0(1 + g)
t

Y1,t = Ȳ1(1 + g)
t−τ t ≥ τ ,

where g is the growth rate of earnings with age.92 Mincer further assumes that T1 − T0 = τ so

working lives are the same for both schooling classes. The discounted growth rate of earnings with

experience, e, is

e =
T0X
j=0

µ
1 + g

1 + r

¶j
.

Assume that direct costs (psychic and tuition) are the same per period during the schooling years

and deÞne

A(τ) =
τX
j=0

µ
1

1 + r

¶j
.

The return in this case is

R =
Ȳ1e− Ȳ0e− CA(τ)
CA(τ) + Ȳ0e

.

The growth rate of earnings with schooling is

γ =
Ȳ1 − Ȳ0
Ȳ0

≈ ln Ȳ1 − ln Ȳ0.

This is the �Mincer return� to school. An alternative expression for the return is

R =
γ − CA(τ)

Ȳ0e

1 + CA(τ)
Ȳ0e

.

This shows that the Mincer return γ, is greater than the true return, R, whenever costs are positive.

When costs are zero (C = 0), R equals the Mincer return, γ. Thus, the Mincer assumptions justify

the conventional practice of equating growth rates to rates of returns, the implicit assumption in

the recent literature on estimating rates of return. In general, if 1 + R > (1 + r)τ , it pays to go

92Mincer assumes more general period-speciÞc growth rates. The argument in the text can be modiÞed to account
for this at the cost of more notational complexity.
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to college; otherwise, it does not. When C = 0, an alternative way to state this criterion is that it

pays to go to college if

1 + γ > (1 + r)τ .

When τ = 1, this simpliÞes to the conventional criterion that γ > r.

The evidence presented in sections 3 and 4 of this chapter argues strongly against the practice of

equating growth rates with rates of return. Mincer�s parallelism assumption across schooling levels

(i.e., that growth rates of earnings with experience, g, are the same for all schooling levels) is not

accurate for earnings proÞles from more recent data. Additionally, the evidence presented below

in section 10 points to the existence of substantial psychic cost components and an adjustment for

psychic cost components substantially reduces the rate of return to schooling. The current literature

on estimating rates of return makes none of these adjustments and instead reports the growth rate

of earnings as a �return.� While the growth rate of γ is an ingredient of returns, it is not in general

a return, as the expression for R reveals.93

We can use the modern literature to identify growth rates of earnings for persons at different

margins of choice. Costs, discount rates and horizons need to be adjusted appropriately to get true

rates of return. To our knowledge, this has not been done in the vast IV literature on computing

rates of return.

8.3 Understanding Why IV Estimates Exceed OLS Estimates of the

Schooling Coefficient

In the generalized Roy model, there are three sources of potential econometric problems; (a) S is

correlated with U0; (b) β is correlated with S (i.e., U1−U0 is correlated with S); (c) β is correlated
with U0. The relative importance of the problems depends on what question the analyst seeks to

answer. Source (a) arises in ability bias or measurement error models. Source (b) arises if agents

partially anticipate β when making schooling decisions so that Pr(S = 1 | X, β) 6= Pr(S = 1 | X).
In this framework, β is an ex post �causal effect,� which may not be known to agents ex ante. In

93In addition, in this two choice example, there are no option values. Accounting for them is a factor toward
raising the rate of return above the measured growth rate.
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the case where decisions about S are made in the absence of information about β, β is independent

of S. Source (c) arises from the possibility that the gains to schooling (β) may be dependent on

the level of potential earnings in the unschooled state (Y0) as in the Roy model.

When U1 = U0, β is a constant for all persons (conditional onX), and we obtain the conventional

IV model as analyzed by Griliches (1977). In this framework, because β is a constant, there is a

unique effect of schooling. Indeed, β is �the� effect of schooling, and the marginal effect is the same

as the average effect (conditional on X).

In the notation of equation (17), the usual assumption in the literature is that COV (S, U0) > 0.

Measured schooling S may be correlated with unmeasured U0 because of omitted ability factors.

Therefore, when β is constant across individuals, the OLS estimate of the �return� is an upward

biased estimate of β:

plim �βOLS = β +
COV (S, U0)

V (S)
> β.

Following Griliches (1977) and the scholars who preceded him, many advocate using instrumen-

tal variable estimators for β to correct for this problem. If there is an instrument Z such that

COV (Z,S) 6= 0 and COV (Z,U0) = 0, then:

plim �βIV = β +
COV (Z,U0)

COV (Z,S)
= β.

Therefore we expect that �βIV < �βOLS.

However, as noted by Griliches (1977) and Card (1995, 1999, 2001), almost all of the empirical

literature on the returns to schooling shows precisely the opposite pattern: �βIV > �βOLS. How can

one rationalize this Þnding? One standard explanation is that schooling is measured with error.

This would induce a downward bias in the schooling coefficient, which would be corrected by the

use of IV.

This simple explanation has been questioned in two different ways. Kane, Rouse, and Staiger

(1999) claim that measurement error in schooling is nonclassical and therefore we might not expect

the standard attenuation bias that results from nonclassical measurement error.94 Card (1999, 2001)

94Nonclassical measurement error is measurement error of a true variable that is stochastically dependent on the
true value of the variable. Thus the mean, the variance and other moments of the measurement error may depend
on the true value.
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argues that, if measurement error is classical, the amount of measurement error in schooling that

would have to exist to justify the large gaps between OLS and IV estimates is unreasonably large.

He argues that, in fact, schooling is relatively well measured in the U.S., so that the measurement

error explanation for the empirical regularity is likely to be of second order importance.

The explanation for the empirical regularity that Card (1999, 2001) favors is that there is

heterogeneity in the returns to schooling so β is a random variable and it is correlated with schooling.

For a model with two levels of schooling, this is just the generalized Roy model. In this case, it is

possible that IV estimates of returns to schooling exceed OLS estimates. Implicitly, his argument

has three steps: (1)OLS is an upward biased estimate of the average �return to schooling� (this is the

standard ability bias intuition in a model in which β is the same for everyone); (2) IV corresponds

to an estimate of the returns to schooling for individuals at the margin;95 and therefore, (3) if the

IV estimate of the �return� exceeds the OLS estimate of the �return,� then individuals at the

margin have higher �returns� than the average individual in the economy.96 In our notation, the

probability limits of the least squares and IV estimators are

plim �βOLS = β̄ +
COV (S,U0)

V (S)
+
COV [S, S (U1 − U0)]

V (S)
(22)

plim �βIV =
COV [Z,S (U1 − U0)]

COV (Z, S)
+ β̄ +

COV (Z,U0)

COV (Z, S)

= β̄ +
COV [Z, S (U1 − U0)]

COV (Z,S)
. (23)

In general, plim �βOLS can be larger than, smaller than or equal to plim �βIV . We can rewrite (22)

95This argument is based on LATE (Imbens and Angrist, 1994). Card does not provide a precise deÞnition of the
concept. Carneiro, Heckman, and Vytlacil (2005) precisely deÞne and estimate the return for the average marginal
person. See also the discussion in Heckman and Vytlacil (2005b).
96Card�s model was described in section 7. It allows for multiple levels of schooling, but assumes a common rate

of return across all schooling levels or else reports an average return to schooling across schooling levels. Heckman,
Urzua, and Vytlacil (2004) and Heckman and Vytlacil (2005b) develop methods for identifying marginal returns to
different schooling levels. For simplicity, we assume a two outcome schooling model.
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and (23) as:

plim �βOLS = β̄ +E (U0|S = 1)−E (U0|S = 0) +E (U1 − U0|S = 1)

= E (β|S = 1) +E (U0|S = 1)−E (U0|S = 0)

plim �βIV = β̄ +E (U1 − U0|S = 1)

+
COV [Z, (U1 − U0) |S = 1]Pr (S = 1)

COV (Z, S)

= E (β|S = 1) + COV [Z, (U1 − U0) |S = 1]Pr (S = 1)
COV (Z,S)

.

Therefore, plim �βIV >plim �βOLS if
COV [Z,(U1−U0)|S=1]Pr(S=1)

COV (Z,S)
> E (U0|S = 1)−E (U0|S = 0).97

The assumption implicit in Card�s argument, and in the standard ability bias literature, is that

E (U0|S = 1)−E (U0|S = 0) > 0. This condition is satisÞed if persons who go to college are above
average in high school. In such a case, current college graduates would be at the top of the high

school wage distribution if they chose to become high school graduates. If this model generates the

data, the only way that plim �βIV >plim �βOLS is if
COV [Z,(U1−U0)|S=1]Pr(S=1)

COV (Z,S)
> 0.

How plausible is this condition? Recall that Z is a determinant of the cost of schooling C(Z)

and satisÞes the standard instrumental variable assumptions. Assume that C is increasing in Z

which is assumed to be scalar.98 As a consequence of these two conditions,

COV (Z,S) < 0 and COV (Z,U1) = COV (Z,U0) = 0. (24)

In the simple two outcome model of schooling, individuals enroll in school if beneÞts are higher

than costs as is clear from equation (18) (S = 1 if β − C (Z) = β̄ + (U1 − U0) − C (Z) > 0). In
such a model the average individual who attends school has a higher return than the marginal

individual (E (β|S = 1) > E(β|β = C (Z))). Furthermore, even though COV (Z,U1 − U0) = 0,

COV (Z,U1 − U0|S = 1) > 0 (if an individual has a high cost, or high Z, he or she will only attend
school if he or she also has a high U1−U0). But in that case, because COV (Z,S) < 0, plim �βIV <

plim �βOLS. Implicit in Card�s analysis is the assumption that it is not possible for the average

97This argument appears in Carneiro and Heckman (2002).
98Z may be a vector, but in this example we assume it is a scalar.
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student to have a higher return than the marginal student and still Þnd that �βIV > �βOLS. Card

rationalizes �βIV > �βOLS by assuming that the marginal student with a higher return than the

average student is out of school because of some external constraint, such as a liquidity constraint

so E (β|S = 1) < E(β|β = C (Z)). The less able (lower β) people are excluded from school. In

Card�s original model, the �returns� to schooling decrease with the amount of schooling for each

individual (k1 < 0 in section 7), and those individuals whose schooling decision is more sensitive

to changes in the instrument have relatively little schooling and, as a consequence, relatively high

returns.

Drawing on the generalized Roy model, Carneiro and Heckman (2002) and Carneiro, Heck-

man, and Vytlacil (2005) argue instead that the reason why �βIV > �βOLS is not that the marginal

student has a higher return than the average student (E (β|S = 1) < E(β|β = C (Z))), but in-

stead that E (U0|S = 1) − E (U0|S = 0) < 0. They show empirically, for a nationally representa-
tive sample of U.S. white males (NLSY79), that the marginal �return� is below the average for

college goers while, simultaneously, �βIV > �βOLS. In their setup,
COV [Z,(U1−U0)|S=1]Pr(S=1)

COV (Z,S)
< 0,

E (U0|S = 1) − E (U0|S = 0) < 0 and COV [Z,(U1−U0)|S=1]Pr(S=1)
COV (Z,S)

> E (U0|S = 1) − E (U0|S = 0).99

OLS estimates are downward biased for E (β|S = 1) because E (U0|S = 1)−E (U0|S = 0) < 0. For
example, if individuals with S = 1 become teachers and those with S = 0 become plumbers, then

the latter are better plumbers than the average teacher would be if he became a plumber.100 This

possibility is featured in Willis and Rosen (1979), who speculate that, contrary to conventional wis-

dom, COV (U1, U0) < 0, although, with their model, they cannot identify this correlation from the

data. Carneiro, Heckman, and Vytlacil (2005) and Cunha, Heckman, and Navarro (2005d) identify

this covariance and Þnd evidence that supports the Willis-Rosen conjecture of a negative correla-

tion. When analysts use OLS, they compare E (Y1|S = 1) with E (Y0|S = 0) (see equation (22)),
and since E (Y0|S = 0) > E (Y0|S = 1), the OLS estimate is an underestimate of E (Y1 − Y0|S = 1).
To summarize, an important lesson from the recent literature is that in a model of heterogeneous

returns, intuitions about ability bias are no longer as simple as in the standard homogeneous returns

model with a single measure of ability (Griliches, 1977). In such a model, the most able people enroll

99Carneiro (2002) shows that their conclusions hold for white females and across different data sets.
100In such a model we need to have more than one dimension of ability.
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in school.101 In a more general Roy-type model, there can be multiple abilities (in this case, U1 and

U0), which can be arbitrarily correlated (positively or negatively). The idea that individuals with

�high ability� are more likely to enroll in school is no longer obvious. Recent evidence supports

the claim that the most able persons in the U0 distribution (high school skills) do not go on to

college. This is true not only in models of schooling, but also in many other models in economics

where returns to an activity are heterogeneous and people sort into different activities based on

those returns.102

8.4 Estimating the MTE

We now show how the local IV methods of Heckman and Vytlacil (1999, 2001b, 2005a,b) can be

used to estimate average returns to school for any population of interest. Heckman, Urzua, and

Vytlacil (2004) show how to estimate the MTE and generate all of the weights shown in Table 9b.

They also provide software for doing so. Using equation (16) the conditional expectation of log Y

(= lnY0(1− S) + lnY1S) is

E(lnY | Z = z) = E(lnY0 | Z = z) +E(lnY1 − lnY0 | Z = z, S = 1)Pr(S = 1 | Z = z)

where we keep the conditioning on X implicit. From the index structure generated by decision rules

(18) and (20), we may write this expectation as

E(lnY | Z = z) = E(lnY0) +E(β | P (z) ≥ US, P (Z) = P (z))P (z).

Observe that the instruments enter the model through the probability of selection or the propensity

score (P (z)). Using P (z) as the instrument, and applying the Wald estimator for two different

101However, even in the one ability model, Griliches (1977) shows that it is possible that the most able do not enroll
in school because their opportunity costs of doing so are too high.
102For example, returns to job training or unionism vary across individuals and individuals make choices based on
them. The productivity of different inputs varies across Þrms and they choose different quantities of inputs according
to the productivity patterns they face (this is relevant for the estimation of production functions). Different consumers
have different demand elasticities for a good and their choice of quantities depends on their elasticity.
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values of Z, z and z0, assuming P (z) < P (z0), we obtain the IV formula:

E(lnY | P (Z) = P (z))−E(lnY | P (Z) = P (z0))
P (z)− P (z0)

= β̄ +
E(U1 − U0 | P (z) ≥ US)P (z)−E(U1 − U0 | P (z0) ≥ US)P (z0)

P (z)− P (z0)
= E (β | P (z) < US ≤ P (z0))

= ∆LATE(P (z), P (z0)),

where ∆LATE is the LATE parameter. This is the average return to schooling for individuals who

have US between P (z) and P (z0) (P (z) < US ≤ P (z0)). As we make z and z0 closer to each

other, we identify β for a narrower group of individuals deÞned in terms of their US. The MTE can

therefore be estimated by taking a limit of LATE when z and z0 are arbitrarily close to each other.

When U1 ≡ U0 or (U1−U0) ⊥⊥ US, corresponding to the two special cases in the literature, IV based

on P (Z) estimates ATE (= β̄) because the second term on the right hand side (second line) of this

expression vanishes. Otherwise IV estimates an economically difficult-to-interpret combination of

MTE parameters with weights given in Table 9b.

Another representation of E(lnY | P (Z) = P (z)) reveals the index structure underlying this

model more explicitly and writes

E(lnY | P (Z) = P (z)) = α+β̄P (z)+
Z ∞

−∞

Z P (z)

0

(U1−U0)f(U1−U0 | US = uS) duS d(U1−U0). (25)

Differentiating with respect to P (z), we obtain MTE :

∂E(lnY | P (Z) = P (z))
∂P (z)

= β̄ +

Z ∞

−∞
(U1 − U0)f(U1 − U0 | US = P (z)) d(U1 − U0)

= ∆MTE(P (z)).

IV estimates β̄ if ∆MTE(uS) does not vary with uS. Under this condition E(lnY | P (Z) = P (z))
is a linear function of P (z). Thus, under our assumptions, a test of the linearity of the conditional

expectation of lnY in P (z) is a test of the validity of linear IV for β̄. It is also a test for the validity

of conditions I and II. Heckman, Urzua, and Vytlacil (2004) elaborate on this point.
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More generally, a test of the linearity of E(lnY | P (Z) = P (z)) in P (z) is a test of whether or not
the data are consistent with a correlated random coefficient model and is also a test of comparative

advantage in the labor market for educated labor. If E (lnY |P (z)) is linear in P (z), standard
instrumental variables methods identify �the� effect of S on lnY . In contrast, if E (lnY |P (z)) is
nonlinear in P (z), then there is heterogeneity in the return to college attendance, individuals act at

least in part on their own idiosyncratic return, and standard linear instrumental variables methods

will not in general identify the average treatment effect or any other of the treatment parameters

deÞned earlier. This test for nonlinearity in P (Z) as a sign of correlated heterogeneity is simple to

execute and interpret. Carneiro, Heckman, and Vytlacil (2005) and Heckman, Urzua, and Vytlacil

(2004) implement it and Þnd evidence in support of nonlinearity in the data they analyze.

It is straightforward to estimate the levels and derivatives of E(lnY | P (Z) = P (z)) and

standard errors using the methods developed in Heckman, Ichimura, Smith, and Todd (1998). The

derivative estimator of MTE is the local instrumental variable (LIV ) estimator of Heckman and

Vytlacil (1999, 2001b, 2005a,b).103

This framework can be extended to consider multiple treatments, which in this case can be

either multiple years of schooling, or multiple types or qualities of schooling. These can be either

continuous (see Florens, Heckman, Meghir, and Vytlacil, 2002) or discrete (see Carneiro, Hansen,

and Heckman, 2003; Heckman and Vytlacil, 2005a,b; Heckman, Urzua, and Vytlacil, 2004).

8.5 Evidence From the Instrumental Variables Literature

Card (1999) surveys empirical estimates from the instrumental variables literature. In the case

of the general model presented in this chapter, different instruments identify different weighted

averages of the MTE and in general do not identify any interpretable economic object such as a

rate of return to schooling. The intensity of the search for instruments Z uncorrelated with (U0, U1)

and correlated with S has not been matched by an equally intense search for an interpretation

of what economic question the instrumental variables estimators answer. As noted by Heckman

and Vytlacil (2005a) and Heckman, Urzua, and Vytlacil (2004), since the question being addressed

by the recent literature is not clearly stated, it is not obvious that IV is better than OLS. The
103Software is available in Heckman, Urzua, and Vytlacil (2004).
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estimates produced from many of the commonly used instruments have large standard errors in

producing any particular parameter of interest except for parameters deÞned by instruments. On a

purely statistical basis there is often little difference between IV and OLS estimates once sampling

variation is accounted for. Many of the instruments used in this literature are controversial.

Parental education and number of siblings have been used as instruments by Willis and Rosen

(1979) and Taber (2001). They tend to produce estimates of �effects� with small standard errors.

However, they are controversial. It is necessary to assume that potential wages in both the college

and high school state are independent of family background, but many studies show that these are

determinants of ability. (See Cunha, Heckman, Lochner, and Masterov, 2005). Unless one controls

for ability, the quality of the instruments is in question. Many data sets lack direct measures of

ability.

Other popular instruments are based on the geographic location of individuals at the college

going age. If the decision of going to college and the location decision are correlated then these

instruments are not valid. For example, individuals who are more likely to enroll in college may

choose to locate in areas where colleges are abundant and inexpensive. Distance to college is used as

an instrument for schooling by Card (1993), Kling (2001) and Cameron and Taber (2004). Carneiro

and Heckman (2002) show that distance to college in the NLSY79 is correlated with a measure of

ability and is an invalid exclusion unless the analyst conditions on ability since ability determines

outcomes. Tuition is used as an instrument by Kane and Rouse (1995). Average tuition in the

county of residence may also be a problematic instrument since it is correlated with average college

quality in the county (see Carneiro and Heckman, 2002). Finally, local labor market variables have

been used by Cameron and Heckman (1998), Carneiro, Heckman, and Vytlacil (2005) and Cameron

and Taber (2004). Cameron and Taber use a measure of the local wage. Carneiro, Heckman and

Vytlacil use a measure of local unemployment. They also control for long term wages in the county

of residence both in the selection and in the outcome equations, so that the instrument measures

business cycle ßuctuations orthogonal to the long term quality of the location of residence.

The CPS and Census data sets lack strong instruments and for that reason few analysts of those

data use the method of IV. The �quarter of birth� instrument used by Angrist and Krueger (1991)

to identify treatment on the untreated is notoriously weak (see Staiger and Stock, 1997).

81



Rather than reproduce Card�s (1999) survey, we present some evidence from Carneiro, Heckman,

and Vytlacil (2005) on estimates of the MTE using the method of local instrumental variables and

some estimates from Heckman, Urzua, and Vytlacil (2004). Both sets of authors use the NLSY

data set. The fragility of the estimates and the large standard errors document the problems that

plague the application of the IV to data sets with rich instruments that typically have only a few

thousand observations.

The details of the estimation procedure used to generate the numbers reported in this section

are described in Carneiro, Heckman, and Vytlacil (2005) and Heckman, Urzua, and Vytlacil (2004).

Both papers use a logit model for schooling choice. The regressors in the choice equation are a

measure of ability (the Armed Forces Qualifying Test or AFQT), number of siblings, mother�s

and father�s education levels, tuition, distance to college, local unemployment rate, and interaction

terms. Tuition is a strong predictor of schooling, as are family background and AFQT. �Distance to

College at 14� and �Local Unemployment Rate at 17� have weak effects. The only strong exclusion

is tuition, conditioning on ability.

The density of P (Z) and the support of the estimated propensity score P (Z) (the region over

which P (Z) has positive density) is shown in Figure 11 for the Carneiro, Heckman, and Vytlacil

(2005) study. It is almost the full unit interval,104 although at the extremes of the interval the cells

of data become very thin. In their estimation of the MTE, Carneiro, Heckman and Vytlacil only

use values of P between 0.07 and 0.98. (They trim 5% of the observations in the sample.105) Even

after trimming, the sparseness of data in the tails results in a large amount of noise (variability) in

the estimation of E(Y |X,P (Z) = p) for values of p close to 0.07 or 0.98, which in turn makes prob-
lematic estimation of the parameters deÞned over the full support of US (which require estimation

of E(Y |X,P (Z) = p) over the full unit interval).
The lack of full support of P (Z) means that ATE, TT and TUT are not identiÞed nonpara-

metrically by the method of instrumental variables. However the MTE can be estimated pointwise

for a wide range of evaluation points without full support. This highlights what LATE can and

104Formally, for nonparametric analysis, we need to investigate the support of P (Z) conditional on X. However,
the partially linear structure that we will impose below implies that we only need to investigate the marginal support
of P (Z).
105The importance of trimming in a semiparametric model similar to the one we use is illustrated in Heckman,
Ichimura, and Todd (1997).
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cannot do. It can produce a number. It cannot produce even a conventional treatment effect, much

less a rate of return to schooling in these data. The pattern of support of P (Z) is similar in the

Heckman, Urzua, and Vytlacil (2004) study. See Figure 12 taken from their analysis.

Cognitive ability (as measured by AFQT) is an important determinant of the returns to school-

ing. Simple least squares regressions of log wages on schooling, ability measures, and interactions of

schooling and ability (ignoring selection arising from uncontrolled unobservables) have been widely

estimated in this and other data sets and generally show that cognitive ability is an important

determinant of the returns to schooling.106 Carneiro, Heckman, and Vytlacil (2005) and Heckman,

Urzua, and Vytlacil (2004) include AFQT in their model as an observable determinant of the re-

turns to schooling and of the decision to go to college. In the absence of such a measure of cognitive

ability, selection arising from unobservables should be important. Most of the data sets that are

used to estimate the returns to education (such as the Current Population Survey or the Census)

lack such ability measures.

The test for selection on the individual returns to attending college checks whether E(lnY |X,P )
is a linear or a nonlinear function of P . Nonlinearity in P means that there is heterogeneity in the

returns to college attendance and that individuals select into college based at least in part on

their own idiosyncratic return (conditional on X). One possible way to implement this test is to

approximate K(P ) with a polynomial in P and test whether the coefficients in the terms of the

polynomial of order higher than one are jointly equal to zero. Carneiro, Heckman and Vytlacil test

and reject linearity, indicating that a correlated random coefficient model describes the NLSY data.

Heckman, Urzua, and Vytlacil (2004) report similar Þndings.

Carneiro, Heckman, and Vytlacil (2005) partition the estimatedMTE into two components, one

depending on X and the other on uS,

MTE (x, uS) = E (lnY1 − lnY0|X = x,US = uS)

= μ1 (X)− μ0 (X) +E (U1 − U0|US = uS) .
106See Blackburn and Neumark (1993); Bishop (1991); Grogger and Eide (1995); Heckman and Vytlacil (2001a);
Murnane, Willett, and Levy (1995); Meghir and Palme (2001).
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Figure 13 plots the component of the MTE that depends on US but not on X where the conÞdence

interval bands are bootstrapped. E(U1−U0 | US = uS) is declining in uS for values of uS below 0.7,
and then it is ßat and if anything it slightly rises.107 Returns are annualized to reßect the fact that

college goers on average attend 3.5 years of college. The most college worthy persons in the sense of

having high gross returns are more likely to go to college (they have low US).108 The magnitude of

the heterogeneity in returns is substantial: returns can vary from 13% to 40% per year of college.109

The wide standard error bands are symptomatic of a phenomenon that plagues the entire IV

literature. Estimates are not precisely determined. Figure 14 from Heckman, Urzua, and Vytlacil

(2004) reveals a similar pattern and a wide band of standard errors. Over broad intervals the

conÞdence bands include zero indicating no effect of schooling on earnings. If β is independent

of S, the MTE is ßat. The evidence clearly rejects this so a correlated random coefficient model

describes their data but there is a considerable loss in precision in using instrumental variables.

Table 11 presents estimates of different summary measures of returns to one year of college

for two models from Carneiro, Heckman, and Vytlacil (2005). In the Þrst column they use family

background as an exclusion and in the second they do not. The point estimates are similar in

both models but they are more precise in the Þrst one, and therefore we focus on those. However,

this precision in estimation is obtained by using what many would argue are invalid exclusion

restrictions. These parameters are obtained by using the appropriate weights for each parameter

(see Carneiro, Heckman, and Vytlacil, 2005).

The limited support of P near the boundary values of P = 0 and P = 1 creates a practical

problem for the computation of the treatment parameters such as ATE, TT, and TUT, since MTE

cannot be estimated for values of US outside the support of P . The sparseness of the data in the

extremes does not allow accurate estimation of the MTE at evaluation points close to 0 or 1. The

numbers presented in Table 11 are constructed after restricting the weights to integrate over the

region [0.07, 0.98]. These can be interpreted as the parameters deÞned in the empirical (trimmed)

107Notice that the decision rule is S = 1 if P (Z)− US ≥ 0 so, for a given Z, individuals with a higher US are less
likely to go to college.
108US may be interpreted as the unobservable cost of college.
109The bootstrapped conÞdence intervals are very wide. However, the estimates of each point of the curve are highly
correlated which will reduce the imprecision of the implied treatment parameters. For example, Carneiro, Heckman
and Vytlacil can reject (at the 10% level) the hypothesis that MTE (x̄, v = 0.05) = MTE (x̄, v = 0.5) (although,
they cannot reject that MTE (x̄, v = 0.5) =MTE (x̄, v = 0.95)).
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support of P (Z), which is close to the full unit interval.110

The sensitivity of estimates to lack of support in the tails (P = 0 or P = 1) is important for

parameters, such as ATE or TT, that put substantial weight on the tails of the MTE distribution.

Even with support over most of the interval [0, 1], such parameters cannot be identiÞed unless 0

(for both ATE and TT) and 1 (for ATE) are contained in the support of the distribution of P (Z).

Estimates of these parameters are highly sensitive to imprecise estimation or extrapolation error

for E(Y |X,P (Z) = p) for values of p close to 0 or 1. Even though empirical economists often seek
to identify ATE and TT, usually they are not easily estimated nor are they always economically

interesting parameters. As we have stressed repeatedly, they are not rates of return.

Integrating only over P (Z) in the interval [0.07, 0.98], Table 11 reports estimates of the average

annual return to college for a randomly selected person in the population (ATE) of 21.24%, which

is between the annual return for the average individual who attends college (TT), 32.02%, and the

average return for high school graduates who never attend college (TUT), 10.42%. Card reports

IV estimates between 6 and 16% using different instruments but, as previously noted, different

instruments weightMTE differently and answer different implicit questions. None of these numbers

corresponds to the average annual return to college for those individuals of poor backgrounds who

are induced to enroll in college by a $500 tuition subsidy (PRTE), which is 24.89%.111 This is the

relevant return for evaluating this speciÞc policy using a Benthamite welfare criterion. It is below

TT, which means that the marginal entrant induced to go to college by this speciÞc policy has an

annual return well below (ten log points) that of the average college attendee.

Carneiro, Heckman, and Vytlacil (2005) compare all of these estimated summary measures of

110Alternative ways to deal with the problem of limited support are to construct bounds for the parameters or to
use a parametric extrapolation outside of the observed support. Bounds on the treatment effects are generally wide
even though the support is almost full. Parametric extrapolation outside of the support is potentially sensitive to
the choice of extrapolation model. Estimates based on locally adapted extrapolations show much less sensitivity
than do estimates based on global approximation schemes. See Carneiro, Heckman, and Vytlacil (2005) for further
discussion.
111The policy consists of a subsidy of $500 for individuals who have higher than median ability and for whom both
parents have less than a high school degree. The purpose of this simulation is to approximate a means tested tuition
subsidy for high ability individuals. The standard error of this estimate is quite high, even though it overweights the
MTE where it is more precisely estimated. The reason is that the ßexible form we use for the selection equation,
although useful for the estimation of the MTE, creates some imprecision in the policy simulation because not all the
coefficients on the terms involving tuition are precisely estimated, at least for this policy. It is easier to simulate
policies in models where tuition enters the choice equation in a simpler way, although in some cases the standard
errors of the MTE become larger because it is important (for the standard errors) to be ßexible in the way the
instruments affect choices. See Carneiro, Heckman, and Vytlacil (2005) for further details.
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returns with the OLS and IV estimates of the annual return to college, where the instrument is

�P (Z), the estimated probability of attending college for individuals with characteristics Z. OLS

estimates ATE if S and X are orthogonal to U0+S(U1−U0). Since the returns estimated by OLS
and by IV both depend on X, they evaluate the OLS and IV returns at the average value of X

for individuals induced to enroll in college by a $500 tuition subsidy,112 so that they can compare

these estimates with the policy relevant treatment effect. The OLS estimate of the return to a

year of college is 7.88% while the IV estimate is 16.49%.113 Only by accident does IV identify

policy relevant treatment effects when theMTE is not constant in US and the instrument is not the

policy. Carneiro, Heckman, and Vytlacil (2005) display the weights for all the treatment parameters

reported in this section.

Carneiro, Heckman, and Vytlacil (2005) report that �βOLS < �βIV . This Þnding is common in

the literature (Card, 2001). At the same time, the returns to schooling are higher for individuals

more likely to enroll in college, which means that the average return for the marginal individual

is below the return for the average student in college. As explained in section 8.2 and conÞrmed

in the empirical work of Carneiro, Heckman, and Vytlacil (2005) reported here and in Cunha,

Heckman, and Navarro (2005d), this is possible because the conventional measure of selection bias

(E (U0|S = 1)−E (U0|S = 0)) is negative and not positive, as is implicitly assumed in Card (1999,
2001) and in most of the empirical literature. In a model of heterogeneous returns, standard

intuitions about instrumental variables and ability bias break down. Carneiro, Heckman, and

Vytlacil (2005) conÞrm the conjecture of Willis and Rosen (1979). The evidence of Cunha, Heckman,

and Navarro (2005d) shows that the single skill or efficiency units representation of the labor market

which is implicit in most of the literature is invalid.

Table 12, taken from the analysis of Heckman, Urzua, and Vytlacil (2004), demonstrates the

sensitivity of IV estimates to the choice of instruments and to whether or not the estimates are

conducted on samples where there is full support. As Figure 12 reveals, there are many intervals

over which support is less than full, or very thin. In Table 12, for the full sample (Þrst column) or the

common support sample (second column), the IV estimates are all over the map. (Their estimates

112This is obtained by integrating X with respect to fX (x|PRT ) = fX (x|μS (Z)− US < 0, μS (Z0)− US ≥ 0).
113When they compute the IV parameter by weighting up the MTE using the IV weights, they get an estimate of
12.12%, which is close to the IV estimate we obtain using the direct method.
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should be divided by 3.5 to get the annual returns to college reported in Carneiro, Heckman, and

Vytlacil (2005).) The Þnal three columns show the IV based on an estimated MTE using (a) a

parametric normal model (third column); (b) a semiparametric polynomial estimation method and

(c) a nonparametric method based on local linear regression. The weights used to produce the

IV estimates are given in Table 9b and are tailored to each estimation situation. There is close

agreement between the two semiparametric methods and they are very different from the estimates

in the third column that assume normality. The instability manifest in the numbers reported in

the Þrst two columns is reduced by using the MTE. But the instability is manifest in a number of

studies in the literature.

Table 13 shows estimates of the various treatment parameters based on the three versions of the

MTE. There is a sharp contrast in the estimates produced from the parametric and nonparametric

approaches. The different treatment parameters estimate different objects. The LATE estimators,

deÞned for different points of evaluation P (Z) (given by the arguments in parentheses) estimate

very different numbers.

Figures 15a and 15b from Heckman, Urzua, and Vytlacil (2004) graph the weights for the MTE

for some of the instruments used to generate the numbers in Table 12. The weights for P (Z) as

an instrument are very different from the weights for four-year college tuition (Figure 15a) and

especially two-year college tuition (Figure 15b). This accounts for why different instruments deÞne

different parameters in terms of their weighting of a commonMTE function. It is theMTE function

and not an IV estimate that plays the role of a policy invariant parameter in the modern literature

on instrumental variables.

8.6 The Validity of the Conventional Instruments

This section examines the validity of conventional instruments in the NLSY data which is unusually

rich. Many data sets on earnings and schooling do not possess measures of cognitive ability. For

example, the CPS and many other data sets used to estimate the returns to schooling surveyed in

Katz and Autor (1999) do not report measures of cognitive ability. In this case, ability becomes

part of U1, U0 and US instead of being in X.
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The assumption of independence between the instrument and U1 and U0 implies that the instru-

ments have to be independent of cognitive ability. However, the instruments that are commonly

used in the literature are correlated with AFQT, a widely used measure of ability. The Þrst column

of Table 14a shows the coefficient of a regression of each instrument (Z) on college attendance (S),

denoted by βS,Z . With the exception of the local unemployment rate, all candidate instruments

are strongly correlated with schooling. The second column of this table presents the coefficient

of a regression of each instrument on AFQT scores (A), denoted by βA,Z . It shows that most of

the candidates for instrumental variables in the literature are also correlated with cognitive ability.

Therefore, in data sets where cognitive ability is not available most of these variables are not valid

instruments since they violate the crucial IV assumption of independence. Since few data sets have

measures of cognitive ability, this Þnding calls into question much of the IV literature. Notice that

the local unemployment rate is not strongly correlated with AFQT. However, it is only weakly

correlated with college attendance.

The third column of Table 14a presents the F-statistic for the test of the hypothesis that the

coefficient on the instrument is zero in a regression of schooling on the instrument. Staiger and

Stock (1997) suggest using an F-statistic of 10 as a threshold for separating weak and strong

instruments.114 The table shows that the local unemployment variable has an F statistic well below

10 which suggests that it is a weak instrument when used by itself. Therefore either the candidate

instrumental variable is correlated with ability or it is weakly correlated with schooling.

Table 14b presents coefficients of regressions of each instrument on schooling and ability, after

controlling for family background variables (number of siblings and parental education). Condition-

ing on family background weakens the correlation between AFQT and the instruments. However

the F-test for a regression of schooling on the residualized instrument is low by Staiger-Stock stan-

dards. Residualizing on family background attenuates the correlation between the instruments and

ability but also between the instruments and schooling. The strength of this correlation is reported

in the third column of Table 14b.

The instrument used by Carneiro, Heckman, and Vytlacil (2005) is P (Z). Regressing schooling

114In a recent paper Stock and Yogo (2002) propose a different test. However they still Þnd that the rule of thumb
Þrst proposed in Staiger and Stock (1997) works well in general.
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on polynomials in experience, corrected AFQT, number of siblings, mother�s education, father�s

education (the variables we include in the wage regression) and P (Z), the F-statistic of the coef-

Þcient on P is 33.76. By including AFQT in the wage regression they attenuate the possibility of

using invalid instruments. By using an index of instruments instead of a single instrument, it is

possible to overcome the weak instrument problem. Furthermore, using an index of instruments

instead of a single instrument tends to reduce support problems for any instrument. Even if one

instrument has limited support, other instruments can augment the support of P . Observe that

the IV estimates based on P (Z) are more stable in Table 12 than are the estimates based on the

individual components.

8.7 Summary of the Modern Literature on Instrumental Variables

Heckman and Vytlacil (2001a, 2005a,b) show how to write different conventional mean parameters

and IV estimates as weighted averages of the marginal treatment effect (MTE). In a model with

heterogeneous responses, different instruments deÞne different parameters. Unless the instruments

are the policies being studied, these parameters answer well-posed economic questions only by

accident. It is possible to identify and estimate the MTE using a robust nonparametric selection

model. Their method allows them to combine diverse instruments into a scalar instrument motivated

by economic theory. This combined instrument expands the support of any one instrument, and

allows the analyst to perform out-of-sample policy forecasts. Focusing on a policy relevant question,

they construct estimators based on the MTE to answer it, rather than hoping that a particular

instrumental variable estimator happens to answer a question of economic interest. The approach

based on the MTE unites the selection and IV literatures. As noted by Heckman, Urzua, and

Vytlacil (2004), both methods use P (Z) but one conditions on it (the selection model) while the

other (the IV literature) does not.

The recent literature conÞrms in a semiparametric setting a central claim of the parametric

Willis and Rosen (1979) analysis (Carneiro, Hansen, and Heckman, 2003; Cunha, Heckman, and

Navarro, 2005d). Individuals sort into schooling on the basis of both observed and unobserved gains

where the observer is the economist analyzing the data. Moreover, as noted by Willis and Rosen
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(1979), it is not possible to rationalize labor market data with the single skill (or efficiency units)

model that governs most of the standard intuitions about ability bias in schooling. In fact, these

intuitions break down in a general model of heterogeneous returns, and lead to potentially wrong

interpretations of the data.

Instrumental variables are not guaranteed to estimate policy relevant treatment parameters or

conventional treatment parameters. Different instruments deÞne different parameters, and in the

empirical analysis of Carneiro, Heckman, and Vytlacil (2005) and Heckman, Urzua, and Vytlacil

(2004) they produce wildly different �effects� of schooling on earnings. The current practice of

reporting IV estimates as �returns� to schooling deÞnes the parameter being identiÞed by an

econometric method and not by an economic question. Our examples show that the IV method does

not produce an economically interesting or interpretable parameter, and in general does not estimate

a rate of return. Different IV estimators weight the MTE differently and are not comparable in

their economic content.

Even granting the validity and the strength of the instruments, the entire recent IV enterprise

for correlated random coefficient models is premised on a fundamental asymmetry. Returns (growth

rates) are allowed to be heterogeneous in a general way. Schooling may either increase or decrease

rates of return. However, choices are not permitted to be heterogeneous in a general way (Heckman

and Vytlacil, 2005a; Heckman, Urzua, and Vytlacil, 2004). The monotonicity assumptions (or index

structure assumptions embodied in (18) or (20) so that schooling is determined by an index of �net

utility� where the observables are separable from the nonobservables) impose the condition that all

persons respond in the same way in their schooling choices for any change in Z. Thus if increasing

a coordinate of Z, say Z1, increases schooling for one person, the same increase cannot decrease

schooling for anyone else. This condition rules out heterogeneity in the choice equations. These

conditions are at odds with a variety of economic models for schooling such as models for dynamic

discrete choice (see Heckman and Navarro, 2005). See Belzil and Hansen (2005) for an interesting

contrast between IV and structural estimates of returns to schooling. Their structural models and

those of Heckman and Navarro do not impose monotonicity conditions on the choice data.

If the monotonicity conditions are violated, increases in Z1 may increase participation in school-

ing for some and decrease it for others. In this case, instrumental variables methods do not estimate
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treatment effects and the local instrumental variable does not identify the marginal treatment ef-

fect (see Heckman and Vytlacil, 2001c, 2005b; Heckman, Urzua, and Vytlacil, 2004, for further

discussion of this point).

9 Estimating Distributions of Returns to Schooling

Following the representative agent tradition, economists usually summarize the distribution of the

growth rate of earnings with schooling by some mean. In section 8, we presented a variety of mean

treatment effects which are deÞned by the conditioning variables used. Different means answer

different policy questions.

The research reported in this section (based on Aakvik, Heckman, and Vytlacil, 2005; Heck-

man, Smith, and Clements, 1997; Carneiro, Hansen, and Heckman, 2001, 2003; Cunha, Heck-

man, and Navarro, 2005a,c,d) moves beyond means as descriptions of policy outcomes and con-

siders joint counterfactual distributions of outcomes (for example, F (Y1, Y0), gains F (Y1 − Y0) or
F (Y1, Y0|S = 1)). These are ex post distributions realized after schooling decisions are completed.
We analyze ex ante distributions in the next section. From knowledge of the ex post joint distrib-

utions of counterfactual outcomes, it is possible to determine the proportion of people who beneÞt

or lose from schooling, the origin and destination outcomes of those who change status because of

schooling and the amount of gain (or loss) from various policy choices such as tuition subsidies by

persons at different deciles of an initial prepolicy income distribution.115 Using the joint distribu-

tion of counterfactuals, it is possible to develop a more nuanced understanding of the distributional

impacts of public policies directed toward education, and to move beyond comparisons of aggregate

distributions induced by different policies to consider how people in different portions of an initial

distribution are affected by public policy. From knowledge of the mean treatment effects presented

in section 8, if Y1 − Y0 varies in the population, it is not possible to answer the simple question
of who beneÞts from schooling and the proportion of people beneÞting, except in the special case

where everyone with the same X receives the same beneÞt. The methods can be used to explain
115It is also possible to generate all mean, median or other quantile gains to schooling, to identify all pairwise treat-
ment effects in a multi-outcome setting, and to determine how much of the variability in returns across persons comes
from variability in the distributions of the outcome selected and how much comes from variability in opportunity
distributions.
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effects of schooling (and other interventions) on earnings, employment and health. In this chapter,

we focus on earnings measures.

Under the assumptions of section 8, joint distributions of counterfactuals are not identiÞed non-

parametrically (see Heckman, 1990). We observe Y1 or Y0 for the same person but not both. Thus

it is not possible to use cross section data to tabulate the joint distribution of (Y0, Y1) from the raw

data. However, with additional information, it is possible.

More precisely, an agent can experience one of two possible counterfactual schooling levels

with associated outcomes (Y0, Y1). As before, we denote X as determinants of the counterfactual

outcomes (Y0, Y1); S = 1 if the agent is in state 1; S = 0 otherwise. The observed outcome is

Y = SY1 + (1 − S)Y0. Let Z be a determinant of S that does not affect Y1, Y0.116 The standard
treatment effect model analyzed in section 8 and in this section considers policies that shift Z and

that affect choices of treatment but not potential outcomes (Y0, Y1). It ignores general equilibrium

effects.117

The goal is to recover F (Y0, Y1 | X) and hence F (Y1 − Y0 | X), and related distributions such
as those for gross gains

¡
1
1+r
Y1 − Y0

¢
or net gains

¡
Y1
1+r

− Y0 − C
¢
assuming one period of foregone

earnings is required to move from �0� to �1�.

The problem of recovering joint distributions from cross section data has two aspects. The Þrst

is the selection problem. From data on the distribution of earnings by schooling and characteristics

X, F (Y1 | S = 1, X) and F (Y0 | S = 0, X), under what conditions can one recover F (Y1 | X) and
F (Y0 | X), respectively? The second problem is how to construct the joint distribution F (Y0, Y1 |
X) from the two marginal distributions of earnings for each secondary schooling level.

If the selection problem can be solved and the marginal distributions of Y1 and Y0 are identiÞed

and obtained, results from probability theory due to Fréchet (1951) and Hoeffding (1940) can be

used to bound F (Y1, Y0 | S, X) from the marginal distributions. In practice these bounds are often
very wide, and the inferences based on the bounding distributions are often not very helpful.118

A second approach, based on matching, postulates access to variables Q that have the property

that conditional onQ, F (Y0 | S = 0,X,Q) = F (Y0 | X,Q) and F (Y1 | S = 1, X,Q) = F (Y1 | X,Q) .
116Thus (Y1, Y0) ⊥⊥ Z | X and Pr (S = 1 | Z,X) depends on Z for all X.
117See Heckman, Lochner, and Taber (1998) for a treatment of general equilibrium policy evaluation.
118See Heckman and Smith (1998) and Heckman, Smith, and Clements (1997).
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Matching is a form of nonparametric least squares that assumes that conditional on observed vari-

ables, there is no selection problem. If it is further assumed that all of the dependence between

(Y0, Y1) givenX comes throughQ, then it follows that F (Y1, Y0 | X,Q) = F (Y1 | X,Q)F (Y0 | X,Q).
Using these results, it is possible to create the joint distribution F (Y0, Y1 | X) because

F (Y0, Y1 | X) =
Z
F (Y0 | X,Q)F (Y1 | X,Q) dμ (Q | X) .

μ (Q | X) is the conditional distribution of Q given X. We obtain F (Y0 | X,Q) , F (Y1 | X,Q)
by matching. We know the distribution of Q given X because we observe Q and X. Thus we

can construct the right hand side of this expression. Matching makes the strong assumption that

conditional on (Q,X) the marginal return to schooling is the same as the average return.119

One traditional approach in economics assumes that the joint distribution F (Y0, Y1 | X) is a
degenerate one dimensional distribution. It assumes that conditional on X, Y1 and Y0 are deter-

ministically related,

Y1 = Y0 +∆ (26)

where ∆ is the difference in means between Y1 and Y0 for the selection corrected distribution.120

This assumes that schooling has the same effect on everyone (with the same X) and that effect is

∆.

Heckman and Smith (1998) and Heckman, Smith, and Clements (1997) relax this assumption

by assuming perfect ranking in the positions of individuals F (Y1 | X) and F (Y0 | X) distributions.
(The best in one distribution is the best in the other). Assuming continuous and strictly increasing

marginal distributions, they postulate that quantiles are perfectly ranked so Y1 = F−11 (F0(Y0))

where F1 = F1(y1 | X) and F0 = F0(y0 | X). This assumption generates a deterministic relationship
which turns out to be the tight upper bound of the Fréchet bounds.121 An alternative assumption

is that people are perfectly inversely ranked so the best in one distribution is the worst in the other:

119See Heckman and Vytlacil (2005a,b)
120∆ may be a function of X.
121An upper bound is �tight� if it is the smallest possible upper bound. A lower bound is tight if it is the largest
lower bound.

93



Y1 = F
−1
1 (1− F0(Y0)) . This is the tight Fréchet lower bound.122

A perfect ranking (or perfect inverse ranking) assumption generalizes the perfect-ranking, constant-

shift assumptions implicit in the conventional literature. It allows analysts to apply conditional

quantile methods to estimate the distributions of gains.123 However, it imposes a strong and arbi-

trary dependence across distributions. When the perfect ranking assumption is relaxed and tested,

it is rejected.124

A more general framework attacks this problem in a different way than does matching or special

assumptions about relationships between the ranks of persons in the Y0 and Y1 distribution. This

line of research starts from the analysis of Heckman (1990), Heckman and Smith (1998), Aakvik,

Heckman, and Vytlacil (2005), Carneiro, Hansen, and Heckman (2001, 2003) and Cunha, Heckman,

and Navarro (2005a,c,d). In this chapter we draw on the analysis of Carneiro, Hansen, and Heckman

(2003).125 They start with the marginal distributions of Y1 and of Y0 given X. They allow for

unobservables to generate the joint dependence and do not rely on matching.

The basic idea is to restrict the dependence among the (U0, U1, US) by factor models or other

restrictions (Urzua, 2005). A low dimensional set of random variables generates the dependence

across the unobservables. Such dimension reduction coupled with use of the choice data and mea-

surements that proxy components of the (U0, U1, US), provides enough information to identify the

joint distribution of (Y1, Y0) and of (Y1, Y0, S).

122More generally, one can associate quantiles across distributions more freely. Heckman, Smith, and Clements
(1997) use Markov transition kernels that stochastically map quantiles of one distribution into quantiles of another.
They deÞne a pair of Markov kernels M(y1, y0 | X) and �M(y0, y1 | X) such that

F1(y1 | X) =
Z
M(y1, y0 | X)dF0(y0 | X)

F0(y0 | X) =
Z

�M(y0, y1 | X)dF1(y1 | X).

Allowing these kernels to be degenerate produces a variety of deterministic transformations, including the two previ-
ously presented, as special cases of a general mapping. Different (M, �M) pairs produce different joint distributions.
These stochastic or deterministic transformations supply the missing information needed to construct the joint dis-
tributions.
123See e.g, Heckman, Smith, and Clements (1997).
124However, testing it requires invoking other assumptions. See Cunha, Heckman, and Navarro (2005a,c,d).
125Using the model of equations (19) and (20), under the assumption that (Z,X) ⊥⊥(U0, U1, US) and includ-
ing the condition that (i) μS(Z) is a nontrivial function of Z conditional on X and that (ii) the support as-
sumptions on μ1(X), μ0(X) and μS(Z) matches that of U1, U0, US , they establish nonparametric identiÞcation of
F (U0, US), F (U1, US) up to a scale for US , and full identiÞcation of μ1 (X) , μ0 (X) over their supports and μS(Z)
suitably scaled.
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Assume separability between unobservables and observables and that Y1 and Y0 are scalars:

Y1 = μ1(X) + U1

Y0 = μ0(X) + U0.

Denote S∗ as the latent variable generating schooling choices:

S∗ = μS(Z) + US

S = 1(S∗ ≥ 0).

Recall that we allow any X to be in Z. To motivate the approach, assume that (U0, U1, US) is

normally distributed with mean zero and covariance matrix ΣG (�G� for Generalized Roy). If the

distributions are normal, they can be fully characterized by means and covariances. To simplify the

discussion, we focus our exposition on normal models although that is not essential. We assume

that (U0, U1, US) are statistically independent of (X,Z) .

Under normality, standard results in the selection bias literature show that from data on Y1

given S = 1, and X, and data on Y0 for S = 0 and X, and data on choices of schooling given Z,

one can identify μ1(X), μ0(X) and μS(Z), the latter up to scale σS (where σ
2
S = V ar(US)). See

Heckman (1976) or Cunha, Heckman, and Navarro (2005d). In addition, one can identify the joint

densities of (U0, US/σS) and (U1, US/σS).Without further information, one cannot identify the joint

density of (U0, U1, US/σS).

Recent developments in microeconometrics show that analysts can identify these same objects

without a normality assumption provided that there are variables Z that generate enough variation

in μS(Z). The intuition for why variation identiÞes the model is presented in Heckman and Honoré

(1990), Heckman (1990) and Cunha, Heckman, and Navarro (2005a). If Z has sufficient variation,

there are limit sets where P (Z) = 1 and other sets where P (Z) = 0 so there is no selection

problem in those limit sets.126 Formal proofs and general conditions are given in Carneiro, Hansen,

126We identify F (Y0 | X) in the limit sets where P (Z) = 0 and F (Y1 | X) in the limit sets where P (Z) = 1.
Heckman, Urzua, and Vytlacil (2004) present evidence on the validity of such limit arguments in their empirical
analysis.

95



and Heckman (2003). Normality plays no central role in the analysis of this section. We use it

because it has a familiarity in the economics of education due to the application of the Generalized

Roy model by Willis and Rosen (1979).127

To get the gist of the method underlying recent work, we adopt a factor structure model for the

U0, U1, US. Other restrictions across the unobservables are possible (see Urzua, 2005). One factor

models are extensively developed by Jöreskog and Goldberger (1975). Aakvik, Heckman, and

Vytlacil (2005) and Carneiro, Hansen, and Heckman (2001, 2003) apply their analysis to generate

counterfactuals. For simplicity, we assume a one factor model where θ is the factor that generates

dependence across the unobservables:

U0 = α0θ + ε0

U1 = α1θ + ε1

US = αSθ + εS.

We assume E (U0) = 0, E (U1) = 0, E (US) = 0. In addition, E (θ) = 0, E (ε0) = 0, E (ε1) = 0

and E (εS) = 0. To set the scale of the unobserved factor, we normalize one �loading� (coefficient

on θ) to 1. We assume that θ is a scalar factor (say unmeasured ability) and the (ε0, ε1, εS) are

independent of θ and of each other. All the dependence across the unobservables arises from θ.

Under normality or from the general semiparametric identiÞcation analysis of Carneiro, Hansen,

and Heckman (2003), we can identify

COV (U0,
US
σS
) =

α0αS
σS

σ2θ

COV (U1,
US
σS
) =

α1αS
σS

σ2θ

where σ2S = V ar(εS). From the ratio of the second covariance to the Þrst we obtain
α1
α0
. Thus we

obtain the sign of the dependence between U0, U1 because

COV (U0, U1) = α0α1σ
2
θ.

127Separability can also be relaxed using the methods of Matzkin (2003).
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From the ratio, we obtain α1 if we normalize α0 = 1. Without further information, we can only

identify the variance of US up to scale, which can be normalized to 1. (Alternatively, we could

normalize the variance of εS to 1.) Below, we present a condition that sets the scale of US.

Knowledge of the sign of
α1
α0
is informative on the sign of the correlation between college and high

school skills, a key unanswered question in the analysis of Willis and Rosen (1979). They conjecture

that COV (U0, U1) < 0. The evidence reported in Carneiro, Hansen, and Heckman (2001, 2003) and

Cunha, Heckman, and Navarro (2005a,c,d) supports their conjecture. Those with high levels of U1

have lower levels of U0.128

With additional information, we can identify the full joint distribution. We now present some

examples. Cunha, Heckman, and Navarro (2005d) present a more comprehensive analysis.

Example 1 Access to a single test score

Assume access to data on Y0 given S = 0, X, Z; to data on Y1 given S = 1, X, Z; and data on S

given X, Z. Suppose that the analyst also has access to a single test score T that is a proxy for θ,

T = μT (X) + UT

where UT = αTθ + εT so

T = μT (X) + αTθ + εT ,

where εT is independent of ε0, ε1, εS and (X,Z). We can identify the mean μT (X) from observations

on T and X. We pick up three additional covariance terms, conditional on X,Z :

COV (Y1, T ) = α1αTσ
2
θ,

COV (Y0, T ) = α0αTσ
2
θ,

COV (S∗, T ) =
αS
σS
αTσ

2
θ.
129

128Our terminology is different from that of Willis and Rosen (1979). What they call a �one factor model� is an
efficiency units model where U1 = U0 (or, more generally, that U1 and U0 are perfectly dependent). As our analysis
reveals, it is possible to have (U1, U0) not perfectly dependent and have a one factor representation. U1 and U0 would
be perfectly dependent in a one factor model only when the uniquenesses are identically zero: ε0 = ε1 = 0.
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To simplify the notation we keep the conditioning on X and Z implicit. Suppose that we normalize

the loading on the test score to one (αT = 1). It is no longer necessary to normalize α0 = 1 as in

the preceding section. From the ratio of the covariance of Y1 with S∗ with the covariance of S∗ with

T , we obtain the left hand side of

COV (Y1, S
∗)

COV (S∗, T )
=
α1αSσ

2
θ

αSαTσ2θ
= α1,

because αT = 1 (normalization). From the preceding argument without the test score, we obtain

α0 since
COV (Y1, S

∗)
COV (Y0, S∗)

=
α1αSσ

2
θ

α0αSσ2θ
=
α1
α0
.

From knowledge of α1 and α0 and the normalization for αT , we obtain σ2θ from COV (Y1, T ) or

COV (Y0, T ). We obtain αS (up to scale σS) from COV (S∗, T ) = αSαTσ2θ since we know αT (= 1)

and σ2θ. The model is overidentiÞed. We can set the scale of σS by a standard argument from the

discrete choice literature. See the discussion below.

Observe that if we write out the decision rule for schooling in terms of costs, we can characterize

the latent variable determining schooling choices as:

S∗ = Y1 − Y0 − C,

where C = μC(Z) + UC and UC = αCθ + εC, where εC is independent of θ and the other ε�s.

E (UC) = 0 and UC is independent of (X,Z). Then,

αS = α1 − α0 − αC
εS = ε1 − ε0 − εC

V ar (εS) = V ar (ε1) + V ar (ε0) + V ar (εC) .

IdentiÞcation of α0,α1 and αS implies identiÞcation of αC. IdentiÞcation of the variance of εS

implies identiÞcation of the variance of εC since the variances of ε1 and ε0 are known.

129Conditioning on X,Z, we can remove the dependence of Y1, Y0, T and S∗ on these variables and effectively work
with the residuals Y0 − μ0 (X) = U0, Y1 − μ1 (X) = U1, T − μT (X) = UT , S∗ − μS (Z) = US .
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Observe further that the scale σUS is identiÞed if there are variables in X but not in Z (see

Heckman, 1976, 1979; Heckman and Robb, 1985, 1986; Willis and Rosen, 1979).130 From the

variance of T given X, we obtain V ar (εT ) since we know V ar(T ) (conditional on X) and we know

α2Tσ
2
θ:

V ar(T )− α2Tσ2θ = σ2εT .

(Recall that we keep the conditioning on X implicit.) By similar reasoning, it is possible to iden-

tify V ar (ε0), V ar (ε1) and the fraction of V ar (US) due to εS. We can thus construct the joint

distribution of (Y0,Y1, C) since we know μC(Z) and all of the factor loadings.

We have assumed normality because it is convenient. Carneiro, Hansen, and Heckman (2003)

and Cunha, Heckman, and Navarro (2005a,c,d) show that it is possible to nonparametrically identify

the distributions of θ, ε0, ε1, εS and εT so these results do not hinge on arbitrary distributional

assumptions.

There are other ways to construct the joint distributions that do not require a test score. Access

to panel data on earnings affords identiÞcation. One way, that leads into our analysis of ex ante vs.

ex post returns is discussed next.

Example 2 Two (or more) periods of panel data on earnings

Suppose that for each person we have two periods of earnings data in one counterfactual state or

the other. We write

Y1t = μ1t(X) + α1tθ + ε1t t = 1, 2

Y0t = μ0t(X) + α0tθ + ε0t t = 1, 2.

130The easiest case to understand writes

μC(Z) = Zγ μ1(X) = Xβ1 μ0(X) = Xβ0
μS(Z,X) = X(β1 − β0)− Zγ.

We identify the coefficients of the index μS (Z,X) up to scale σUS , but we know β1−β0 from the earnings functions.
Thus if one X is not in Z and its associated coefficient is not zero, we can identify σUS . See, e.g. Heckman (1976).
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We observe one or the other lifecycle stream of earnings for each person, but never both streams

for the same person. We assume that the interest rate is zero and that agents maximize the present

value of their income. Thus in terms of the index

S∗ = (Y12 + Y11)− (Y02 + Y01)− C

S = 1(S∗ ≥ 0)

where C was deÞned previously. We assume no test score � just two periods of panel data.

Under normality, application of the standard normal selection model allows us to identify μ1t(X)

for t = 1, 2; μ0t(X) for t = 1, 2 and μ11(X) + μ12(X)− μ01(X)− μ02(X)− μC(X), the latter up to
a scalar σS where

US = ε11 + ε12 − ε01 − ε02 − εC.

Following our discussion of Example 1, we can recover the scale if there are variables in (μ11(X) +

μ12(X)− (μ01(X) + μ02(X))) not in μC(Z). For simplicity we assume that this condition holds.131

From normality, we can recover the joint distributions of (S∗, Y11, Y12) and (S∗, Y01, Y02) but

not directly the joint distribution of (S∗, Y11, Y12, Y01, Y02). Thus, conditioning on X and Z we

can recover the joint distribution of (US, U01, U02) and (US, U11, U12) but apparently not that of

(US, U01, U02, U11, U12). However, under our factor structure assumptions this joint distribution can

be recovered as we next show.

From the available data, we can identify the following covariances:

COV (US, U12) = (α12 + α11 − α02 − α01 − αC)α12σ2θ
COV (US, U11) = (α12 + α11 − α02 − α01 − αC)α11σ2θ
COV (US, U01) = (α12 + α11 − α02 − α01 − αC)α01σ2θ
COV (US, U02) = (α12 + α11 − α02 − α01 − αC)α02σ2θ
COV (U11, U12) = α11α12σ

2
θ

COV (U01, U02) = α01α02σ
2
θ.

131If not, then μC(Z), σ
2
US
and εC are identiÞed up to normalizations.
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If we normalize α01 = 1 (recall that one normalization is needed to set the scale of θ), we can

form the ratios
COV (US, U12)

COV (US, U01)
= α12

COV (US, U11)

COV (US, U01)
= α11

COV (US, U02)

COV (US, U01)
= α02.

From these coefficients and the remaining covariances, we identify σ2θ using COV (U11, U12)

and/or COV (U01, U02). Thus if the factor loadings are nonzero,

COV (U11, U12)

α11α12
= σ2θ

and
COV (U01, U02)

α01α02
= σ2θ.

We can recover σ2θ (since we know α11α12 and α01α02) from COV (U11, U12) and COV (U01, U02).

We can also recover αC since we know σ2θ, α12+α11−α02−α01−αC , and α11, α12, α01, α02. We can
form (conditional on X) COV (Y11, Y01) = α11α01σ2θ; COV (Y12, Y01) = α12α01σ

2
θ; COV (Y11, Y02) =

α11α02σ
2
θ andCOV (Y12, Y02) = α12α02σ

2
θ. Thus we can identify the joint distribution of (Y01, Y02, Y11, Y12, C)

since we can identify μC(Z) from the schooling choice equation since we know μ01 (X) , μ02 (X) ,

μ11 (X) , μ12 (X) and we have assumed that there are some Z not in X so that σS is identiÞed.

As in Example 1, this analysis can be generalized to a general nonnormal setting using the

analysis of Carneiro, Hansen, and Heckman (2003). For simplicity, we have worked with a one

factor model. The analyses of Carneiro, Hansen, and Heckman (2003), Cunha, Heckman, and

Navarro (2005a,c,d) and Heckman and Navarro (2005) use multiple factors. We offer an example

in the next section.

The key idea to constructing joint distributions of counterfactuals using the analysis of Cunha,

Heckman, and Navarro (2005a,c,d) is not the factor structure for unobservables although it is

convenient. The motivating idea is the assumption that a low dimensional set of random variables

generates the dependence across outcomes. Other low dimensional representations such as the

ARMA model or the dynamic factor structure model (see Sargent and Sims, 1977) can also be

101



used. Urzua (2005) develops such a model and applies it to estimating rates of returns to schooling.

The factor structure model presented in this section is easy to exposit and has been used to estimate

joint distributions of counterfactuals. We present some examples in the next section. That section

reviews recent work that generalizes the analysis of this section to derive ex ante and ex post

outcome distributions, and measure the fundamental uncertainty facing agents in the labor market.

With these methods it is possible to compute the distributions of both ex ante and ex post rates of

return to schooling.

10 Ex Ante and Ex Post Returns: Distinguishing Hetero-

geneity from Uncertainty

In computing ex ante returns to schooling, it is necessary to characterize what is in the agent�s

information set at the time schooling decisions are made. To do so, the recent literature exploits

the key idea that if agents know something and use that information in making their schooling

decisions, it will affect their schooling choices. With panel data on earnings we can measure realized

outcomes and assess what components of those outcomes were known at the time schooling choices

were made.132

The literature on panel data earnings dynamics (e.g. Lillard and Willis, 1978; MaCurdy, 1982)

is not designed to estimate what is in agent information sets. It estimates earnings equations of the

following type:

Yi,t = Xi,tβ + Siτ + U i,t, (27)

where Yi,t, Xi,t, Si, Ui,t denote (for person i at time t) the realized earnings, observable characteristics,

educational attainment, and unobservable characteristics, respectively, from the point of view of the

observing economist. The variables generating outcomes realized at time t may or may not have

been known to the agents at the time they made their schooling decisions.

The error term Ui,t is usually decomposed into two or more components. For example, it is

132An alternative approach summarized by Manski (2004) is to use survey methods to elicit expectations. We do
not survey that literature in this chapter.
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common to specify that

U i,t = φi + δi,t. (28)

The term φi is a person-speciÞc effect. The error term δi,t is often assumed to follow an ARMA

(p, q) process (see Hause, 1980; MaCurdy, 1982) such as δi,t = ρδi,t−1 +mi,t, where mi,t is a mean

zero innovation independent of Xi,t and the other error components. The components Xi,t, φi, and

δi,t all contribute to measured ex post variability across persons. However, the literature is silent

about the difference between heterogeneity and uncertainty, the unforecastable part of earnings as

of a given age. The literature on income mobility and on inequality measures all variability ex post

as in Chiswick (1974), Mincer (1974) and Chiswick and Mincer (1972).

An alternative speciÞcation of the error process postulates a factor structure for earnings, that

uses the representation introduced in section 9:

U i,t = θiαt + εi,t, (29)

where θi is a vector of skills (e.g., ability, initial human capital, motivation, and the like), αt is a

vector of skill prices, and the εi,t are mutually independent mean zero shocks independent of θi.

Hause (1980) and Heckman and Scheinkman (1987) analyze such earnings models. Any process in

the form of equation (28) can be written in terms of (29). The latter speciÞcation is more directly

interpretable as a pricing equation than (28).

Depending on the available market arrangements for coping with risk, the predictable compo-

nents of Ui,t will have a different effect on choices and economic welfare than the unpredictable

components, if people are risk averse and cannot fully insure against uncertainty. Statistical de-

compositions based on (27), (28), and (29) or versions of them describe ex post variability but tell us

nothing about which components of (27) or (29) are forecastable by agents ex ante. Is φi unknown

to the agent? δi,t? Or φi+ δi,t? Or mi,t? In representation (29), the entire vector θi, components of

the θi, the εi,t, or all of these may or may not be known to the agent at the time schooling choices

are made.

The methodology developed in Carneiro, Hansen, and Heckman (2003) and Cunha, Heckman,

and Navarro (2005b,c,d) provides a framework within which it is possible to identify components
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of life cycle outcomes that are forecastable and acted on at the time decisions are taken from ones

that are not. In order to choose between high school and college, agents forecast future earnings

(and other returns and costs) for each schooling level. Using information about educational choices

at the time the choice is made, together with the ex post realization of earnings and costs that are

observed at later ages, it is possible to estimate and test which components of future earnings and

costs are forecast by the agent. This can be done provided we know, or can estimate, the earnings of

agents under both schooling choices and provided we specify the market environment under which

they operate as well as their preferences over outcomes.

For certain market environments where separation theorems are valid, so that consumption de-

cisions are made independently of wealth maximizing decisions, it is not necessary to know agent

preferences to decompose realized earnings outcomes in this fashion. Carneiro, Hansen, and Heck-

man (2003) and Cunha, Heckman, and Navarro (2005b,c,d) use choice information to extract ex

ante or forecast components of earnings and to distinguish them from realized earnings under dif-

ferent market environments. The difference between forecast and realized earnings allows them to

identify the distributions of the components of uncertainty facing agents at the time they make

their schooling decisions.

10.1 A Generalized Roy Model

To state these issues more precisely, consider a version of the generalized Roy (1951) economy with

two sectors.133 This builds on the second example of section 9. Let Si denote different schooling

levels. Si = 0 denotes choice of the high school sector for person i, and Si = 1 denotes choice of the

college sector. Each person chooses to be in one or the other sector but cannot be in both. Let the

two potential outcomes be represented by the pair (Y0,i, Y1,i), only one of which is observed by the

analyst for any agent. Denote by Ci the direct cost of choosing sector 1, which is associated with

choosing the college sector (e.g., tuition and non-pecuniary costs of attending college expressed in

monetary values). We have used this framework throughout this chapter.

Y1,i is the ex post present value of earnings in the college sector, discounted over horizon T for

133See Heckman (1990) and Heckman and Smith (1998) for discussions of the generalized Roy model. In this chapter
we assume only two schooling levels for expositional simplicity, although our methods apply more generally.

104



a person choosing at a Þxed age, assumed for convenience to be zero,

Y1,i =
TX
t=0

Y1,i,t

(1 + r)t
,

and Y0,i is the ex post present value of earnings in the high school sector at age zero,

Y0,i =
TX
t=0

Y0,i,t

(1 + r)t
,

where r is the one-period risk-free interest rate. Y1,i and Y0,i can be constructed from time se-

ries of ex post potential earnings streams in the two states: (Y0,i,0, . . . , Y0,i,T ) for high school and

(Y1,i,0, . . . , Y1,i,T ) for college. A practical problem is that we only observe one or the other of these

streams. This partial observability creates a fundamental identiÞcation problem which can be solved

using the methods described in section 9 and the references cited.

The variables Y1,i, Y0,i, and Ci are ex post realizations of returns and costs, respectively. At the

time agents make their schooling choices, these may be only partially known to the agent, if at all.

Let Ii,0 denote the information set of agent i at the time the schooling choice is made, which is time
period t = 0 in our notation. Under a complete markets assumption with all risks diversiÞable (so

that there is risk-neutral pricing) or under a perfect foresight model with unrestricted borrowing or

lending but full repayment, the decision rule governing sectoral choices at decision time �0� is

Si =

⎧⎪⎨⎪⎩ 1, if E (Y1,i − Y0,i − Ci | Ii,0) ≥ 0
0, otherwise.134

(30)

Under perfect foresight, the postulated information set would include Y1,i, Y0,i, and Ci. Under either

model of information, the decision rule is simple: one attends school if the expected gains from

schooling are greater than or equal to the expected costs. Thus under either set of assumptions,

a separation theorem governs choices. Agents maximize expected wealth independently of their

consumption decisions over time.

The decision rule is more complicated in the absence of full risk diversiÞability and depends

134If there are aggregate sources of risk, full insurance would require a linear utility function.
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on the curvature of utility functions, the availability of markets to spread risk, and possibilities

for storage. (See Cunha, Heckman, and Navarro, 2005c, and Navarro, 2004, for a more extensive

discussion.) In these more realistic economic settings, the components of earnings and costs required

to forecast the gain to schooling depend on higher moments than the mean. In this chapter we

use a model with a simple market setting to motivate the identiÞcation analysis of a more general

environment analyzed elsewhere (Carneiro, Hansen, and Heckman, 2003, and Cunha, Heckman,

and Navarro, 2005b).

Suppose that we seek to determine Ii,0. This is a difficult task. Typically we can only partially
identify Ii,0 and generate a list of candidate variables that belong in the information set. We
can usually only estimate the distributions of the unobservables in Ii,0 (from the standpoint of

the econometrician) and not individual person-speciÞc information sets. Before describing their

analysis, we consider how this question might be addressed in the linear-in-the-parameters Card

model.

10.2 Identifying Information Sets in the Card Model

We seek to decompose the �returns� coefficient or the gross gains from schooling in an earnings-

schooling model into components that are known at the time schooling choices are made and com-

ponents that are not known. For simplicity assume that, for person i, returns are the same at all

levels of schooling. Write discounted lifetime earnings of person i as

Yi = α+ ρiSi + U i, (31)

where ρi is the person-speciÞc ex post return, Si is years of schooling, and Ui is a mean zero

unobservable. We seek to decompose ρi into two components ρi = ηi+ νi, where ηi is a component

known to the agent when he/she makes schooling decisions and νi is revealed after the choice

is made. Schooling choices are assumed to depend on what is known to the agent at the time

decisions are made, Si = λ (ηi, Zi, τ i), where the Zi are other observed determinants of schooling

and τ i represents additional factors unobserved by the analyst but known to the agent. Both of

these variables are in the agent�s information set at the time schooling choices are made. We seek

106



to determine what components of ex post lifetime earnings Yi enter the schooling choice equation.

If ηi is known to the agent and acted on, it enters the schooling choice equation. Otherwise it

does not. Component νi and any measurement errors in Y1,i or Y0,i should not be determinants

of schooling choices. Neither should future skill prices that are unknown at the time agents make

their decisions. If agents do not use ηi in making their schooling choices, even if they know it, ηi

would not enter the schooling choice equation. Determining the correlation between realized Yi and

schooling choices based on ex ante forecasts enables economists to identify components known to

agents and acted on in making their schooling decisions. Even if we cannot identify ρi, ηi, or νi for

each person, under conditions speciÞed in this chapter we can identify their distributions.

If we correctly specify theX and the Z that are known to the agent at the time schooling choices

are made, local instrumental variable estimates of theMTE as described in section 8 identify ex ante

gross gains. Any dependence between US and Y1−Y0 arises from information known to the agent at
the time schooling choices are made. If the conditioning set is misspeciÞed by using information on

X and Z that accumulates after schooling choices are made and that predicts realized earnings (but

not ex ante earnings), the estimated MTE identiÞes an ex post return relative to that information

set. Thus, it is important to specify the conditioning set correctly to obtain the appropriate ex ante

return. How to pick the information set?

Suppose that the model for schooling can be written in linear in parameters form, as in the Card

model exposited in section 7:

Si = λ0 + λ1ηi + λ2νi + λ3Zi + τ i, (32)

where τ i has mean zero and is assumed to be independent of Zi. The Zi and the τ i proxy costs and

may also be correlated with Ui and ηi and νi in (31). In this framework, the goal of the analysis is

to determine the ηi and νi components. By deÞnition, λ2 = 0 if νi is not known when agents make

their schooling choices.

As a simple example, consider the model of section 7.1. We observe the cost of funds, ri, and

assume ri ⊥⊥ (ρi, αi). This assumes that the costs of schooling are independent of the �return�

ρi and the payment to raw ability, αi. We established identiÞcation of ρ̄. (If there are observed
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regressors X determining the mean of ρ̄, we identify ρ̄ (X) , the conditional mean of ρi).

Suppose that agents do not know ρi at the time they make their schooling decisions but instead

know E (ρi) = ρ̄.
135 If agents act on this expected return to schooling, decisions are given by

Si =
ρ̄− ri
k

and ex post earnings observed after schooling are

Yi = ᾱ+ ρ̄Si + {(αi − ᾱ) + (ρi − ρ̄)Si} .

In the notation introduced in the Card model, ηi = ρ̄ and νi = ρi − ρ̄.
In this case,

COV (Y, S) = ρ̄V ar (S)

because (ρi − ρ̄) is independent of Si. Note further that (ᾱ, ρ̄) can be identiÞed by least squares
because Si ⊥⊥ [(αi − ᾱ) , (ρi − ρ̄)Si] .
If, on the other hand, agents know ρi at the time they make their schooling decisions, OLS breaks

down for identifying ρ̄ because ρi is correlated with Si.We can identify ρ̄ and the distribution of ρi

using the method of instrumental variables presented in section 7.1. Under our assumptions, ri is

a valid instrument for Si.

In this case

COV (Yi, S) = ρ̄V ar (S) + COV (S, (ρ− ρ̄)S) .

Since we observe S, can identify ρ̄ and can construct (ρ− ρ̄) for each S, we can form both terms

on the right hand side. Under the assumption that agents do not know ρ but forecast it by ρ̄, ρ

is independent of S so we can test for independence directly. In this case the second term on the

right hand side is zero and does not contribute to the explanation of COV (ln y, S) . Note further

that a Durbin (1954) � Wu (1973) � Hausman (1978) test can be used to compare the OLS and

IV estimates, which should be the same under the model that assumes that ρi is not known at the

135This is a rational expectations assumption. Under rational expectations with the currently speciÞed information
set, the mean ex ante return is the same as the mean ex post return, but the distributions of these returns may be
very different.
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time schooling decisions are made and that agents base their choice of schooling on E (ρi) = ρ̄. If

the economist does not observe ri, but instead observes determinants Li satisfying the conditions

in section 7.2, then we can still conduct the Durbin-Wu-Hausman test to discriminate between the

two hypotheses, but we cannot form COV (ρ, S) directly.

If we add selection bias to the Card model (so E (α | S) depends on S), we can identify ρ̄ by IV
as shown in section 7.3 but OLS is no longer consistent even if, in making their schooling decisions,

agents forecast ρi using ρ̄. Selection bias can occur, for example, if fellowship aid is given on the

basis of raw ability. Thus the Durbin-Wu-Hausman test is not helpful in assessing what is in the

agent�s information set.

Even ignoring selection bias, if we misspecify the information set, in the case where ri is not

observed, the proposed testing approach based on the Durbin-Wu-Hausman test breaks down. Thus

if we include in L variables that predict ex post gains (ρi − ρ̄) and are correlated with Si, we do not
identify ρ̄. The Durbin-Wu-Hausman test is not informative on the stated question. For example,

if local labor market variables proxy the opportunity cost of school (the ri), and also predict the

evolution of ex post earnings (ρi − ρ̄) , they are invalid. The question of determining the appropriate
information set is front and center and cannot in general be inferred using IV methods.

The method developed by Cunha, Heckman, and Navarro (2005a,c,d) exploits the covariance

between S and the realized Yt to determine which components of Yt are known at the time schooling

decisions are made. It explicitly models selection bias and allows for measurement error in earnings.

It does not rely on linearity of the schooling relationship in terms of ρ− r. Their method recognizes
the discrete nature of the schooling decision. It builds on the modern literature on constructing

counterfactual schooling models discussed in section 8.

10.3 Identifying Information Sets

Cunha, Heckman, and Navarro (2005a,c,d) henceforth CHN, exploit covariances between schooling

and realized earnings that arise under different information structures to test which information

structure characterizes the data. To see how the method works, simplify the model to two schooling

levels. Heckman and Navarro (2005) extend their analysis to multiple schooling levels.
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Suppose, contrary to what is possible, that the analyst observes Y0,i, Y1,i, and Ci. Such infor-

mation would come from an ideal data set in which we could observe two different lifetime earnings

streams for the same person in high school and in college as well as the costs they pay for attending

college. From such information, we could construct Y1,i − Y0,i −Ci. If we knew the information set
Ii,0 of the agent that governs schooling choices, we could also construct E (Y1,i − Y0,i − Ci | Ii,0).
Under the correct model of expectations, we could form the residual

VIi,0 = (Y1,i − Y0,i − Ci)−E (Y1,i − Y0,i − Ci | Ii,0) ,

and from the ex ante college choice decision, we could determine whether Si depends on VIi,0. It

should not if we have speciÞed Ii,0 correctly. In terms of the model of equations (31) and (32), if
there are no direct costs of schooling, E (Y1,i − Y0,i | Ii,0) = ηi, and VIi,0 = νi.
A test for correct speciÞcation of candidate information set eIi,0 is a test of whether Si depends

on V!Ii,0 , where V!Ii,0 = (Y1,i − Y0,i − Ci)−E
³
Y1,i − Y0,i − Ci | eIi,0´. More precisely, the information

set is valid if Si ⊥⊥ V!Ii,0 | eIi,0. In terms of the simple linear schooling model of equations (31) and
(32), this condition says that νi should not enter the schooling choice equation (λ2 = 0). A test of

misspeciÞcation of eIi,0 is a test of whether the coefficient of V!Ii,0 is statistically signiÞcantly different
from zero in the schooling choice equation.

More generally, eIi,0 is the correct information set if V!Ii,0 does not help to predict schooling. One
can search among candidate information sets eIi,0 to determine which ones satisfy the requirement
that the generated V!Ii,0 does not predict Si and what components of Y1,i−Y0,i−Ci (and Y1,i−Y0,i)
are predictable at the age schooling decisions are made for the speciÞed information set.136 There

may be several information sets that satisfy this property.137 For a properly speciÞed eIi,0, V!Ii,0
should not cause (predict) schooling choices. The components of V!Ii,0 that are unpredictable are
called intrinsic components of uncertainty, as deÞned in this chapter.

It is difficult to determine the exact content of Ii,0 known to each agent. If we could, we would
perfectly predict Si given our decision rule. More realistically, we might Þnd variables that proxy Ii,0
136This procedure is a Sims (1972) version of a Wiener-Granger causality test.
137Thus different combinations of variables may contain the same information. The issue of the existence of a
smallest information set is a technical one concerning a minimum σ−algebra that satisÞes the condition on Ii,0.
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or their distribution. Thus, in the example of equations (31) and (32) we would seek to determine

the distribution of νi and the allocation of the variance of ρi to ηi and νi rather than trying to

estimate ρi, ηi, or νi for each person. This strategy is pursued in Cunha, Heckman, and Navarro

(2005a,d) for a two-choice model of schooling, and generalized by Cunha, Heckman, and Navarro

(2005c).

10.4 An Approach Based on Factor Structures

The essence of the idea underlying the method of testing for what is in an agent�s information

set at the time schooling decisions are made is communicated by adapting Example 2 presented

in section 9. Suppose that at the time they make their schooling decisions, agents do not know

θ or the future ε1t, ε0t, t = 1, 2. (Recall that period 1 is the initial period in that example). θ is

realized after schooling choices are made. The agents know X,Z and εC . Thus Ii,0 = {Xi, Zi, εC}.
Suppose that θ is independent of X,Z, εC and E (θ | X,Z, εC) = 0. Under rational expectations

US is independent of all future earnings disturbances so that COV (US, U12) = 0, COV (US, U01) =

0, COV (US, U02) = 0. However realized earnings are correlated with each other through the realized

θ.

Under the assumptions of Example 2, we can test for the zero covariances. If nonzero covariances

are found, then θ is a component of heterogeneity. Otherwise θ contributes to ex ante uncertainty.

By design, this example is overly simplistic. It is more likely that there are multiple sources of

unobserved heterogeneity (θ is a vector) and that they may only partially know the X that are

realized after schooling decisions are made (e.g. macro shocks or new trends in skill prices). A more

general procedure is required to account for those possibilities which we now describe.

Consider the following linear in parameters model for a full T periods. This analysis generalizes

the example just presented. Write earnings in each counterfactual state as

Y0,i,t = Xi,tβ0,t + U0,i,t,

Y1,i,t = Xi,tβ1,t + U1,i,t. t = 0, . . . , T.

111



We let costs of college be deÞned as

Ci = Ziγ + Ui,C .

Assume that the life cycle of the agent ends after period T . Linearity of outcomes in terms of

parameters is convenient but not essential to the method of CHN.

Suppose that there exists a vector of factors θi = (θi,1, θi,2, . . . , θi,L) such that θi,k and θi,j are

mutually independent random variables for k, j = 1, . . . , L, k 6= j. They represent the error term in
earnings at age t for agent i in the following manner:

U0,i,t = θiα0,t + ε0,i,t,

U1,i,t = θiα1,t + ε1,i,t,

where α0,t and α1,t are vectors and θi is a vector distributed independently across persons. The ε0,i,t

and ε1,i,t are mutually independent of each other and independent of the θi. We can also decompose

the cost function Ci in a similar fashion:

Ci = Ziγ + θiαC + εi,C .

All of the statistical dependence across potential outcomes and costs is generated by θ, X, and Z.

Thus, if we could match on θi (as well as X and Z), we could use matching to infer the distribution

of counterfactuals and capture all of the dependence across the counterfactual states through the

θi. Thus we could use θ as the Q in section 9 if we could observe it. However, in general, CHN

allow for the possibility that not all of the required elements of θi are observed.

The parameters αC and αs,t for s = 0, 1, and t = 0, . . . , T are the factor loadings. εi,C is

independent of the θi and the other ε components. In this notation, the choice equation can be

written as:

S∗i = E

Ã
TX
t=0

¡
Xi,tβ1,t + θiα1,t + ε1,i,t

¢− ¡Xi,tβ0,t + θiα0,t + ε0,i,t¢
(1 + r)t

− (Ziγ + θiαC + εiC)
¯̄̄̄
¯ Ii,0

!
Si = 1 if S∗ ≥ 0; Si = 0 otherwise. (33)
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The sum inside the parentheses is the discounted earnings of agent i in college minus the discounted

earnings of the agent in high school. The second term is the cost of college.

Constructing (33) entails making a counterfactual comparison. Even if the earnings of one

schooling level are observed over the lifetime using panel data, the earnings in the counterfactual

state are not. After the schooling choice is made, some components of the Xi,t, the θi, and the εi,t

may be revealed (e.g., unemployment rates, macro shocks) to both the observing economist and

the agent, although different components may be revealed to each and at different times. For this

reason, application of IV even in the linear schooling model is problematic. If the wrong information

set is used, the IV method will not identify the true ex ante returns.

Examining alternative information sets, one can determine which ones produce models for out-

comes that Þt the data best in terms of producing a model that predicts date t = 0 schooling

choices and at the same time passes the CHN test for misspeciÞcation of predicted earnings and

costs. Some components of the error terms may be known or not known at the date schooling

choices are made. The unforecastable components are intrinsic uncertainty as CHN deÞne it. The

forecastable information is called heterogeneity.138

To formally characterize the CHN empirical procedure, it is useful to introduce some additional

notation. Let¯ denote the Hadamard product (a¯b = (a1b1, . . . ,aLbL)) for vectors a and b of length
L. This is a componentwise multiplication of vectors to produce a vector. Let ∆Xt, t = 0, . . . , T ,

∆Z, ∆θ, ∆εt, ∆εC , denote coefficient vectors associated with the Xt, t = 0, . . . , T , the Z, the θ, the

ε1,t− ε0,t, and the εC , respectively. These coefficients will be estimated to be nonzero in a schooling
choice equation if a proposed information set is not the actual information set used by agents. For

a proposed information set eIi,0 which may or may not be the true information set on which agents
138The term �heterogeneity� is somewhat unfortunate. Under this term, CHN include trends common across all peo-
ple (e.g., macrotrends). The real distinction they are making is between components of realized earnings forecastable
by agents at the time they make their schooling choices vs. components that are not forecastable.
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act, CHN deÞne the proposed choice index �S∗i in the following way:

�S∗i =
TX
t=0

E
³
Xi,t | eIi,0´
(1 + r)t

¡
β1,t − β0,t

¢
+

TX
t=0

h
Xi,t −E

³
Xi,t | eIi,0´i

(1 + r)t
¡
β1,t − β0,t

¢¯∆Xt (34)

+E(θi | eIi,0)" TX
t=0

(α1,t − α0,t)
(1 + r)t

− αC
#
+
h
θi −E

³
θi | eIi,0´i(" TX

t=0

(α1,t − α0,t)
(1 + r)t

− αC
#
¯∆θ

)

+
TX
t=0

E
³
ε1,i,t − ε0,i,t | eIi,0´
(1 + r)t

+
TX
t=0

h
(ε1,i,t − ε0,i,t)−E

³
ε1,i,t − ε0,i,t | eIi,0´i

(1 + r)t
∆εt

−E
³
Zi | eIi,0´ γ − hZi −E ³Zi | eIi,0´i γ ¯∆Z −E ³εiC | eIi,0´− hεiC −E ³εiC | eIi,0´i∆εC .

To conduct their test, CHN Þt a schooling choice model based on the proposed model (34). They

estimate the parameters of the model including the ∆ parameters. This decomposition for �S∗i

assumes that agents know the β, the γ, and the α.139 If it is not correct, the presence of additional

unforecastable components due to unknown coefficients affects the interpretation of the estimates.

A test of no misspeciÞcation of information set eIi,0 is a joint test of the hypothesis that the ∆ are

all zero. That is, when eIi,0 = Ii,0 then the proposed choice index eS∗i = S∗i .
In a correctly speciÞed model, the components associated with zero ∆j are the unforecastable

elements or the elements which, even if known to the agent, are not acted on in making schooling

choices. To illustrate the application of the method of CHN, we elaborate on the example coefficients

based on Example 2 of section 9, previously discussed, and assume for simplicity that the Xi,t, the

Zi, the εi,C , the β1,t, β0,t, the α1,t, α0,t, and αC are known to the agent, and the εj,i,t are unknown

and are set at their mean zero values. We can infer which components of the θi are known and acted

on in making schooling decisions if we postulate that some components of θi are known perfectly

at date t = 0 while others are not known at all, and their forecast values have mean zero given Ii,0.
If there is an element of the vector θi, say θi,2 (factor 2), that has nonzero loadings (coefficients)

in the schooling choice equation and a nonzero loading on one or more potential future earnings, then

one can say that at the time the schooling choice is made, the agent knows the unobservable captured

by factor 2 that affects future earnings. If θi,2 does not enter the choice equation but explains future

earnings, then θi,2 is unknown (not predictable by the agent) at the age schooling decisions are made.

139Cunha, Heckman, and Navarro (2005b,c,d) relax this assumption.
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An alternative interpretation is that the second component of
hPT

t=0
(α1,t−α0,t)
(1+r)t

− αC
i
is zero, i.e.,

that even if the component is known, it is not acted on. CHN can only test for what the agent

knows and acts on.

One plausible scenario case is that for their model εi,C is known (since schooling costs are

incurred up front), but the future ε1,i,t and ε0,i,t are not, have mean zero, and are insurable. If there

are components of the εj,i,t that are predictable at age t = 0, they will induce additional dependence

between Si and future earnings that will pick up additional factors beyond those initially speciÞed.

The CHN procedure can be generalized to consider all components of (34). With it, the analyst

can test the predictive power of each subset of the overall possible information set at the date the

schooling decision is being made.140 ,141

In the context of the factor structure representation for earnings and costs, the contrast between

the CHN approach to identifying components of intrinsic uncertainty and the approach followed in

the literature is as follows. The traditional approach as exempliÞed by Keane and Wolpin (1997)

assumes that the θi are known to the agent while the {ε0,i,t, ε1,i,t}Tt=0 are not.142 The CHN approach
allows the analyst to determine which components of θi and {ε0,i,t, ε1,i,t}Tt=0 are known and acted
on at the time schooling decisions are made.

Statistical decompositions do not tell us which components of (29) are known at the time agents

make their schooling decisions. A model of expectations and schooling is needed. If some of the

components of {ε0,i,t, ε1,i,t}Tt=0 are known to the agent at the date schooling decisions are made and
140This test has been extended to a nonlinear setting, allowing for credit constraints, preferences for risk, and the
like. See Cunha, Heckman, and Navarro (2005b) and Navarro (2004).
141A similar but distinct idea motivates the Flavin (1981) test of the permanent income hypothesis and her measure-
ment of unforecastable income innovations. She picks a particular information set eIi,0 (permanent income constructed
from an assumed ARMA (p, q) time series process for income, where she estimates the coefficients given a speciÞed
order of the AR and MA components) and tests if V!Ii,0 (our notation) predicts consumption. Her test of �excess
sensitivity� can be interpreted as a test of the correct speciÞcation of the ARMA process that she assumes generateseIi,0 which is unobserved (by the economist), although she does not state it that way. Blundell and Preston (1998)
and Blundell, Pistaferri, and Preston (2004) extend her analysis but, like her, maintain an a priori speciÞcation of
the stochastic process generating Ii,0. Blundell, Pistaferri, and Preston (2004) claim to test for �partial insurance.�
In fact their procedure can be viewed as a test of their speciÞcation of the stochastic process generating the agent�s
information set. More closely related to our work is the analysis of Pistaferri (2001), who uses the distinction between
expected starting wages (to measure expected returns) and realized wages (to measure innovations) in a consumption
analysis.
142Keane and Wolpin assume one factor where the θ is a discrete variable and they assume all factor loadings are
identical across periods. However, their speciÞcation of the uniquenesses or innovations is more general than that
used in factor analysis. See our discussion of their model in Section 10.8. The analysis of Hartog and Vijverberg
(2002) is another example and uses variances of ex post income to proxy ex ante variability, removing �Þxed effects�
(person speciÞc θ).
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enter (34), then additional dependence between Si and future Y1,i − Y0,i due to the {ε0,i,t, ε1,i,t}Tt=0,
beyond that due to θi, would be estimated.

It is helpful to contrast the dependence between Si and future Y0,i,t, Y1,i,t arising from θi and

the dependence between Si and the {ε0,i,t, ε1,i,t}Tt=0. Some of the θi in the ex post earnings equation
may not appear in the choice equation. Under other information sets, some additional dependence

between Si and {ε0,i,t, ε1,i,t}Tt=0 may arise. The contrast between the sources generating realized
earnings outcomes and the sources generating dependence between Si and realized earnings is the

essential idea in the analysis of CHN. The method can be generalized to deal with nonlinear prefer-

ences and imperfect market environments.143 A central issue, discussed next, is how far one can go

in identifying income information processes without specifying preferences, insurance, and market

environments.

10.5 More general preferences and market settings

To focus on the main ideas in the literature, we have used the simple market structures of complete

contingent claims markets. What can be identiÞed in more general environments? In the absence

of perfect certainty or perfect risk sharing, preferences and market environments also determine

schooling choices. The separation theorem allowing consumption and schooling decisions to be

analyzed in isolation that has been used thus far breaks down.

If we postulate information processes a priori, and assume that preferences are known up to

143In a model with complete autarky with preferences Ψ, ignoring costs,

Ii =
TX
t=0

E

"
Ψ
¡
Xi,tβ1,t + θiα1,t + ε1,i,t

¢−Ψ ¡Xi,tβ0,t + θiα0,t + ε0,i,t¢
(1 + ρ)

t

¯̄̄̄
¯ eIi,0

#
,

where ρ is the time rate of discount, we can make a similar decomposition but it is more complicated given the
nonlinearity in Ψ. For this model we could do a Sims noncausality test where

V!Ii,0 =
TX
t=0

Ψ
¡
Xi,tβ1,t + θiα1,t + ε1,i,t

¢−Ψ ¡Xi,tβ0,t + θiα0,t + ε0,i,t¢
(1 + ρ)t

−

TX
t=0

E

"
Ψ
¡
Xi,tβ1,t + θiα1,t + ε1,i,t

¢−Ψ ¡Xi,tβ0,t + θiα0,t + ε0,i,t¢
(1 + ρ)

t

¯̄̄̄
¯ eIi,0

#
.

This requires some speciÞcation of Ψ. See Carneiro, Hansen, and Heckman (2003), who assume Ψ(Y ) = lnY and that
the equation for lnY is linear in parameters. Cunha, Heckman, and Navarro (2005b) and Navarro (2004) generalize
that framework to a model with imperfect capital markets where some lending and borrowing is possible.
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some unknown parameters as in Flavin (1981), Blundell and Preston (1998) and Blundell, Pista-

ferri, and Preston (2004), we can identify departures from speciÞed market structures. Cunha,

Heckman, and Navarro (2005b) postulate an Aiyagari (1994) � Laitner (1992) economy with one

asset and parametric preferences to identify the information processes in the agent�s information

set. They take a parametric position on preferences and a nonparametric position on the economic

environment and the information set.

An open question, not yet fully resolved in the literature, is how far one can go in nonparametri-

cally jointly identifying preferences, market structures and information sets. Cunha, Heckman, and

Navarro (2005b) add consumption data to the schooling choice and earnings data to secure identiÞ-

cation of risk preference parameters (within a parametric family) and information sets, and to test

among alternative models for market environments. Alternative assumptions about what analysts

know produce different interpretations of the same evidence. The lack of full insurance interpre-

tation given to the empirical results by Flavin (1981) and Blundell, Pistaferri, and Preston (2004)

may be a consequence of their misspeciÞcation of the agent�s information set generating process.

We now present some evidence on ex ante vs. ex post returns presented by Cunha, Heckman, and

Navarro (2005c).

10.6 Evidence on Uncertainty and Heterogeneity of Returns

Few data sets contain the full life cycle of earnings along with the test scores and schooling choices

needed to directly estimate the CHN model and extract components of uncertainty. It is necessary

to pool data sets. See CHN who combine NLSY and PSID data sets. We summarize the analysis

of Cunha, Heckman, and Navarro (2005c) in this subsection. See their paper for their exclusions

and identiÞcation conditions.

Following the preceding theoretical analysis, they consider only two schooling choices: high

school and college graduation.144 For simplicity and familiarity, we focus on their results based on

complete contingent claims markets. Because they assume that all shocks are idiosyncratic and the

operation of complete markets, schooling choices are made on the basis of expected present value

income maximization. Carneiro, Hansen, and Heckman (2003) assume the absence of any credit
144Heckman and Navarro (2005) present a model with multiple schooling levels.
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markets or insurance. Cunha, Heckman, and Navarro (2005b) check whether their empirical Þndings

about components of income inequality are robust to different assumptions about the availability

of credit markets and insurance markets. They estimate an Aiyagari-Laitner economy with a single

asset and borrowing constraints and discuss risk aversion and the relative importance of uncertainty.

We summarize the evidence from alternative assumptions about market structures below.

10.6.1 Identifying Joint Distributions of Counterfactuals and the Role of Costs and

Ability as Determinants of Schooling

Suppose that the error term for Ys,t is generated by a two factor model,

Ys,t = Xβs,t + θ1αs,t,1 + θ2αs,t,2 + εs,t. (35)

We omit the �i� subscripts to eliminate notational burden. Cunha, Heckman, and Navarro (2005c)

report that two factors are all that is required to Þt the data.

They use a test score system of K ability tests:

TjT = XTωjT + θ1αjT + εjT . j = 1, . . . ,K (36)

Thus factor 1 is identiÞed as an ability component. The cost function C is speciÞed by:

C = Zγ + θ1αC,1 + θ2αC,2 + εC . (37)

They assume that agents know the model coefficients andX, Z, εC and some, but not necessarily

all, components of θ. Let the components known to the agent be θ̄. The decision rule for attending

college is based on:

S∗ = E

µ
Y1,0 +

Y1,1
1 + r

− Y0,0 − Y0,1
1 + r

| X, θ̄
¶
−E ¡C | Z,X, θ̄, εC¢ (38)

S = 1 (S∗ ≥ 0) . (39)
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Cunha, Heckman, and Navarro (2005c) report evidence that the estimated factors are highly non-

normal.145

Table 15 presents the conditional distribution of ex post potential college earnings given ex

post potential high school earnings, decile by decile, as reported by Cunha, Heckman, and Navarro

(2005c). The table displays a strong positive dependence between the relative positions of indi-

viduals in the two distributions. In particular, for all high school deciles more than 50% of the

individuals located at any decile in the high school earnings distribution will be within one decile

of their original position in the college earnings distribution. However, the dependence is far from

perfect. For example, almost 10% of those who are at the sixth decile of the high school distrib-

ution would be in the eighth decile of the college distribution. Note that this comparison is not

being made in terms of positions in the overall distribution of earnings. CHN can determine where

individuals are located in the distribution of population potential high school earnings and the dis-

tribution of potential college earnings although in the data we only observe them in either one or the

other state. Their evidence shows that the assumption of perfect dependence across components of

counterfactual distributions that is maintained in much of the recent literature (e.g. Juhn, Murphy,

and Pierce, 1993) is too strong.

Figure 16 presents the marginal densities of predicted (actual) earnings for college students and

counterfactual college earnings for actual high school students. When we compare the densities of

present value of earnings in the college sector for persons who choose college against the counter-

factual densities of college earnings for high school graduates, the density of the present value of

earnings for college graduates in college is to the right of the counterfactual density of the present

value of college earnings for high school graduates. Despite the shift, many high school graduates

would earn more as college graduates.

Table 16 from CHN reports the Þtted and counterfactual present value of earnings for agents

who choose high school. The typical high school student would earn $703.78 thousand dollars over

145They assume that each factor k, k ∈ {1, 2}, is generated by a mixture of Jk normal distributions,

θk v
JkX
j=1

pk,jφ
¡
fk | μk,j , τk,j

¢
,

where the pk,j are the weights on the normal components.
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the life cycle. She would earn $1,021.97 thousand if she had chosen to be a college graduate.146 This

implies a return of 46% to a college education over the whole life cycle (i.e., a monetary gain of

318.19 thousand dollars). In table 17, CHN note that the typical college graduate earns $1,122.69

thousand dollars (above the counterfactual earnings of what a typical high school student would

earn in college), and would make only $756.13 thousand dollars over her lifetime if she chose to be

a high school graduate instead. The returns to college education for the typical college graduate

(which in the literature on program evaluation is referred to as the effect of Treatment on the

Treated) is 50% above that of the return for a high school graduate. In monetary terms a college

graduate has a gain of going to college almost 50,000 dollars higher over her lifetime than does the

typical high school graduate.

Figure 17 plots the density of ex post gross returns to education excluding direct costs and

psychic costs for agents who are high school graduates (the solid curve), and the density of returns

to education for agents who are college graduates (the dashed curve). In reporting our estimated

returns, CHN follow convention in the literature and actually present growth rates in terms of

present values, and not true rates of return (ignoring option values).147 Thus these Þgures report

the growth rates in present values
³
PV (1)−PV (0)

PV (0)

´
where �1� and �0� refer to college and high school

and all present values are discounted to a common benchmark level. Tuition and psychic costs are

ignored. College graduates have returns distributed somewhat to the right of high school graduates,

so the difference is not only a difference for the mean individual but is actually present over the

entire distribution. An economic interpretation of Þgure 17 is that agents who choose a college

education are the ones who tend to gain more from it.

With their methodology, CHN can also determine returns to the marginal student. This could

also be estimated by the MTE method discussed in section 8. Table 18 reveals that the average

individual who is just indifferent between a college education and a high school diploma earns

$743.40 thousand dollars as a high school graduate or $1,089.97 thousand dollars as a college

graduate. This implies a return of 48%. The returns to people at the margin are above those of the

typical high school graduate, but below those for the typical college graduate. Since persons at the

146These numbers may appear to be large but are a consequence of using a 3% discount rate.
147Recall our discussion in section 8.2
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margin are more likely to be affected by a policy that encourages college attendance, their returns

are the ones that should be used in order to compute the marginal beneÞt of policies that induce

people into schooling.

A major question that emerges from the CHN analysis is, why, if high school graduates have

such positive returns to attending college, don�t all attend? People do not pick schooling levels

based only on monetary returns. Recall that their choice criterion (equation 38) includes also the

pecuniary and non-pecuniary costs of actually attending college. Figure 18 shows the estimated

density of the monetary value of this cost both overall and by schooling level. While almost no

high school graduate perceives a negative cost (i.e., a beneÞt) of attending college; around one

third of college graduates actually perceive it as a beneÞt. Table 19 explores this point in more

detail by presenting the mean total cost of attending college (Þrst row) and the mean cost that is

due to ability (i.e., factor 1), given in the second row. While in both cases the cost of attending

college is positive for both the average college graduate and the average high school graduate, costs

on average are smaller for college graduates. We know that college graduates have higher ability.

The average contribution of ability to costs is positive for high school graduates (a true cost). It

is negative for college graduates, so it is perceived as a beneÞt. This is the answer to the puzzle:

people do not only (or even mainly) make their schooling decisions by looking at their monetary

returns in terms of earnings. Psychic costs play a very important role. More able people have lower

psychic costs of attending college. The high estimated psychic cost is one reason why the rates of

return that ignore psychic costs (and tuition) discussed in section 4 are so high. This high psychic

cost is one explanation why the college attendance rate is so low when the monetary returns are so

high. One convention in the classical human capital literature � that tuition and psychic costs are

negligible is at odds with this evidence.148 Explanations based on psychic costs are not intrinsically

satisfactory. One can rationalize any economic choice data by an appeal to psychic costs. Thus

the high monetary returns to schooling and the relatively low take up rates in schooling can be

explained in this way. �Psychic costs� may be a stand in for credit constraints and risk aversion.

148�Psychic costs� can stand in for expectational errors and attitudes towards risk. We do not distinguish among
these explanations in this chapter. The estimated costs are too large to be due to tuition alone. As noted below, given
that returns are strongly forecastable, an important role for expectational errors seems unlikely. See the discussion
in Cunha, Heckman, and Navarro (2005d).

121



However, the evidence on psychic costs is more sturdy than this. Carneiro, Hansen, and Heckman

(2003) obtain similar conclusions from a model where people are not allowed to borrow or lend. In

Cunha, Heckman, and Navarro (2005d), on the other hand, there are no constraints on borrowing

or lending. Cunha, Heckman, and Navarro (2005d) present additional evidence on the importance

of psychic costs. Navarro (2004) reports high estimations of psychic costs in an Aiyagari-Laitner

economy where trades are restricted.

10.6.2 Ex ante and Ex post Returns: Heterogeneity versus Uncertainty

Figures 19 through 21, from Cunha, Heckman, and Navarro (2005c) separate the effect of het-

erogeneity from uncertainty in earnings. The Þgures plot the distribution of ex ante and ex post

outcomes. The information set of the agent is I = {X,Z,XT , εC ,Θ}, Θ contains some or all of the
factors. In their papers, the various information sets consist of different components of θ. We Þrst

consider Þgure 19. It presents results for a variety of information sets. First assume that agents

do not know their factors; consequently, Θ = ∅. This is the ex post or realized distribution of the

variation that is observed in the data. If the agents learn about factor 1,149 so that, Θ = {θ1}, the
reduction in the forecast variance is very small. Factor 1, which is associated with cognitive ability,

is important for forecasting educational choices, but does not do a very good job in forecasting

earnings. If the agent is given knowledge of factor 2, but not factor 1, so that Θ = {θ2}, then the
agent is able to substantially reduce the forecast variance of earnings in high school. Factor 2 does

not greatly affect college choices, but it greatly informs the agent about his future earnings. When

the agent is given knowledge of both factors 1 and 2, that is, Θ = {θ1, θ2} , he can forecast earnings
marginally better. Figure 20 reveals much the same story about the college earnings distribution.

These results suggest that selection into college is not based primarily on expected economic returns

to education. Cost factors play an important role.

Table 20 presents the variance of potential earnings in each state, and returns under different

information sets available to the agent. Cunha, Heckman, and Navarro (2005c) conduct this exercise

for the forecast of period 1, period 2, and lifetime earnings. They report baseline variances and

covariances without conditioning and state the remaining uncertainty as a fraction of the baseline

149As opposed to the econometrician who never gets to observe either θ1 or θ2.
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no-information state variance when different components of θ are known to the agents. Note that

knowledge of factor 2 is fundamentally important in reducing forecast variance for period 2 earnings.

CHN show that both θ1 and θ2 are known to the agents at the time they make their schooling

decisions.

This discussion sheds light on the issue of distinguishing predictable heterogeneity from uncer-

tainty. CHN demonstrate that there is a large dispersion in the distribution of the present value of

earnings. This dispersion is largely due to heterogeneity, which is forecastable by the agents at the

time they are making their schooling choices. CHN provide tests that determine that agents know

θ1 and θ2. The remaining dispersion is due to luck, or uncertainty or unforecastable factors as of

age 17. Its contribution is smaller.

It is interesting to note that knowledge of the factors enables agents to make better forecasts.

Figure 21 presents an exercise for returns to college (Y1 − Y0) similar to that presented in Þgures 19
and 20 regarding information sets available to the agent. Knowledge of factor 2 also greatly improves

the forecastability of returns. 80% of the variability in returns is forecastable at age 17. The levels

are even more predictable (94% for high school; 97% for college). Most variability across people is

due to heterogeneity and not uncertainty. However there is still a lot of variability in agent earnings

after accounting for what is in the agent�s information set. This is intrinsic uncertainty at the time

agents make their schooling choices.

10.6.3 Ex Ante versus Ex Post

Once the distinction between heterogeneity and uncertainty is made, it is possible to be precise about

the distinction between ex ante and ex post decision making. From their analysis, CHN conclude

that, at the time agents pick their schooling, the ε�s in their earnings equations are unknown to

them. These are the components that correspond to �luck.� It is clear that decision making would

be different, at least for some individuals, if the agent knew these chance components when choosing

schooling levels, since the decision rule would now be

S∗ = Y1,0 +
Y1,1
1 + r

− Y0,0 − Y0,1
1 + r

− C > 0

S = 1 if S∗ > 0; S = 0 otherwise,
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where no expectation is taken to calculate V since ex post all terms on the right hand side of the

top equation are known with certainty by the agent.

In their empirical model, if individuals could pick their schooling level using their ex post in-

formation (i.e., after learning their luck components in earnings) 13.81% of high school graduates

would rather be college graduates and 17.15% of college graduates would have stopped their school-

ing at the high school level. Using the estimated counterfactual distributions, it is possible to

consider a variety of policy counterfactuals on distributions of outcomes locating persons in pre-

and post-policy distributions. They analyze for example, how tuition subsidies move people from

one quantile of a Y0 distribution to another quantile of a Y1 distribution. See Carneiro, Hansen,

and Heckman (2001, 2003) and Cunha, Heckman, and Navarro (2005a,c,d).

10.7 Extensions and Alternative SpeciÞcations

Carneiro, Hansen, and Heckman (2003) estimate a version of this model with complete autarky.

Individuals have to live within their means each period. Cunha, Heckman, and Navarro (2005b)

estimate a version of this model with restriction on intertemporal trade as in the Aiyagari-Laitner

economy. Different assumptions about credit markets and preferences produce a range of estimates

of the proportion of the total variability of returns to schooling that are unforecastable, ranging

from 37% (Carneiro, Hansen, and Heckman, 2003) for complete autarky and log preferences, to

53% (Cunha, Heckman, and Navarro, 2005b,d) for complete markets, to 6% (Cunha, Heckman, and

Navarro, 2005c) for another complete market economy.150

This line of work has just begun. It shows what is possible with rich panel data. The empirical

evidence on the importance of uncertainty is not yet settled. Yet most of the papers suggest a

substantial role for uncertainty in producing returns. Accounting for uncertainty and psychic costs

may help to explain the high ex post rates of return presented in section 4. It may also account for

the sluggish response of schooling enrollment rates to rising returns to schooling that is documented

in Ellwood and Kane (2000) and Card and Lemieux (2001) because of the wedge between utility

and money returns.

150The 6% is a lower bound because in Cunha, Heckman, and Navarro (2005c) some of the data are smoothed.
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10.8 Models with Sequential Updating of Information

We have thus far discussed one shot models of schooling choice. In truth, schooling is a sequential

decision process made with increasingly richer information sets at later stages of the choice process.

We have discussed simple models of dynamic sequential decision making in section 5. We established

that with independent shocks across schooling levels, dynamic selection leads to a downward bias

of OLS estimators for rates of return because people with good shocks to their earnings at lower

levels of schooling drop out of school. We also established that the internal rate of return is not, in

general, a valid guide to rational economic decision making.

Keane and Wolpin (1997) and Eckstein and Wolpin (1999) pioneered the estimation of dynamic

discrete choice models for analyzing schooling choices. They assume a complete market environment

and do not entertain a range of alternative market structures facing agents. In the notation of this

chapter, they assume a one (discrete) factor model with factor loadings that are different across

different counterfactual states, but are constant over time (αs,t = αs, s = 1, . . . , S̄ where there

are S̄ states).151 At a point in time, t, εs,t, s = 1, . . . , S̄ are assumed to be multivariate normal

random variables. Over time the εt = (ε1,t, . . . , εs,t) are assumed to be independent and identically

distributed. They assume agents know θ but not the εt, t = 0, . . . , T . The unobservables are thus

equicorrelated over time (age) because the factor loadings are assumed equal over time and εt is

independent and identically distributed over time. They make parametric normality assumptions

in estimating their models. They impose and do not test the particular information structure that

they use.152 In their model, about 90% of the variance in lifetime returns is predictable at age 16.

Their estimate is at the extreme boundary of the estimates produced from the CHN analysis.

Heckman and Navarro (2005) formulate, estimate and identify semiparametric sequential school-

ing models based on the factor structures exposited in sections 9 and 10 of this chapter. Like Keane

and Wolpin, they assume that a complete contingent claims market governs the data. They report

substantial effects on empirical estimates from relaxing normality assumptions. Instead of assuming

a particular information structure, they test among alternative information structures about the

151Thus instead of assuming that θ is continuous, as do CHN, they impose that θ is a discrete-valued random
variable that assumes a Þnite, known number of values.
152Keane and Wolpin (1997) impose their discrete factor in the schooling choice and outcome equations rather than
testing for whether or not the factor appears in both sets of equations in the fashion of CHN as previously described.
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arrival of information on the components of vector θ at different stages of the lifecycle. Their work

supports the analysis of CHN in Þnding a sizable role for heterogeneity (predictable variability)

in accounting for measured variability. They estimate the sequential reduction of uncertainty as

information is acquired. Their analysis shows that estimated option values for attending college

are relatively small (at most 2% of the total return). This is consistent with a lot of information

known about future returns at the time schooling decisions are being made. If their results hold up

in subsequent analyses and replications, they imply that the theoretical possibilities that arise from

accounting for option values as discussed in section 5 may be empirically unimportant in computing

rates of return.153

11 Summary and Conclusions

Since the seminal work of Becker (1964), economists have sought to estimate the rate of return to

schooling to determine whether there is underinvestment or overinvestment in education. The quest

continues to this day, and the data available to estimate it have greatly improved. This chapter

reviews the body of literature that has emerged on estimating returns to schooling over the past 40

years, and how access to better data has improved estimates of the rate of return.

Mincer�s early efforts suggested one way of estimating mean rates of return and distributions of

rates of return on widely available Census and CPS cross section data. Mincer�s earnings equation

still serves as the point of departure for most empirical studies of the returns to school. His analysis

provides a basic theoretical underpinning for estimating the internal rate of return to education

using regressions of log earnings on schooling and a separable quadratic function in experience.

A number of strong assumptions must hold in order to interpret the �Mincer coefficient� (i.e.,

the coefficient on schooling in a log earnings equation) as an internal rate of return. While many

of these assumptions turn out to hold in the 1960 data for the U.S. labor market that he analyzed

(e.g. separability in education and experience, log-linearity of earnings in schooling, negligible tuition

costs of school, and negligible taxes), this chapter shows that in recent U.S. data they no longer

hold. After documenting evidence against Mincer�s assumptions, section 4 considers alternative
153Assuming that initial conditions are known by agents, the estimates of Keane and Wolpin (1997) are consistent
with small option values although they do not report the option values implicit in their estimates.
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approaches to estimating the marginal internal rate of return to schooling across different schooling

levels.

We estimate general nonparametric earnings functions and generate from themmarginal internal

rates of return that account for taxes and tuition. The levels and time series patterns of marginal

internal rates of return differ dramatically from those produced by a Mincer model. Deviations from

parallelism and linearity in schooling in log earnings equations�keystones of the Mincer approach�

are quantitatively important in determining internal rates of return, as are the effects of taxes and

tuition. Economists cannot continue to pretend that violations of the required assumptions are

innocuous when using Mincer regressions to estimate �returns to schooling�. Although we report

estimates based on U.S. data, we conjecture that similar problems with Mincer�s assumptions apply

to many other countries. Replication of our study on data from other countries would be highly

desirable.

Our analysis shows how to use nonparametric earnings proÞles reported in the recent literature

to estimate rates of return. The recent literature surveyed in Katz and Autor (1999) establishes

that the payment to college graduates has gone up relative to that of high school graduates in the

past two decades. It does not determine whether rates of return have increased. We show that using

the Mincer estimate of the rate of return misrepresents trends in actual rates of return, because of

misspeciÞcation of the earnings-schooling-experience relationship and because of neglecting compo-

nents of the return such as tuition costs and taxes. It also leads to inaccurate estimates of earnings

associated with different schooling levels.

The standard representative agent income maximizing model that serves as the foundation for

many analyses of returns to schooling motivated by economic theory suggests that marginal internal

rates of return should be the same across observed schooling choices and should equal the common

real interest rate faced by students. Yet, our reported estimates of the return to high school and

college completion for recent years are substantially larger than the real interest rates faced by

consumers, even on credit card debt.

One possible explanation for this disparity is the failure of the income maximizing concept, rather

than the utility maximizing concept, to represent schooling decisions. Psychic costs or distaste for

schooling may explain whymore than Þfteen percent of new cohorts of American youth do not receive
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a high school degree despite its high estimated Þnancial return. Results from Carneiro, Hansen, and

Heckman (2003) and Cunha, Heckman, and Navarro (2005a,b,c,d) discussed in section 10 show high

psychic cost components estimated under different assumptions about the economic environments

facing agents. Although in theory substantial credit constraints could explain the patterns of college-

going decisions, recent research Þnds them to be quantitatively unimportant in the U.S. economy

(see the survey by Cunha, Heckman, Lochner, and Masterov, 2005).

Mincer and many other researchers use cross sections of earnings to estimate life-cycle earnings

of the various cohorts sampled in the cross-section, the so-called synthetic cohort approach. This

practice is problematic when labor markets are nonstationary as in recent years. The use of repeated

cross-section or panel data that follow the experience of actual cohorts is essential for accurately

measuring rates of return to schooling. However, use of repeated cross section data does not produce

lower estimated returns. If anything, the return from repeated cross section data is higher, leaving

the puzzle of high estimated returns to schooling in place.

If analysts seek to estimate ex post returns, a cohort analysis is clearly preferred to a cross-section

approach. However, if analysts are interested in estimating ex ante returns in a changing economic

environment, the choice is less clear cut. Expectations about the future need to be speciÞed or,

better, estimated or measured.154

We summarize an emerging literature that moves beyond estimating mean growth rates of

earnings with schooling or treatment effects to estimate distributions of growth rates and rates of

return. This approach is based on the principle that dependence across counterfactual distributions

is generated by low dimensional unobservables. The new methods can be implemented using panel

data on earnings and schooling. Access to test scores facilitates identiÞcation of the distribution of

rates of return.

Application of the new methods to rich panel data allows analysts to disentangle uncertainty

from measured variability. We review evidence from Cunha, Heckman, and Navarro (2005a,b,c,d),

who develop and implement an approach for empirically distinguishing ex ante from ex post returns

to schooling using rich panel data. They Þnd that uncertainty about the future is empirically

important for understanding schooling decisions. To the extent that individuals are risk averse, the

154Manski (2004) presents a comprehensive survey of recent research on measuring expectations.
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evidence on uncertainty helps to explain some of the high estimated returns to schooling reported

in section 4 and in the entire literature (see Navarro, 2004; Cunha, Heckman, and Navarro, 2005b).

At the same time, a substantial amount of observed variability in earnings is predictable at the date

schooling decisions are made.

In a dynamic setting, uncertainty about future earnings and schooling outcomes creates a wedge

between ex post average rates of return and real interest rates due to the option value of continuing

on in school and updating information. For example, some individuals may attend college, knowing

that the expected returns to only a few years of college are low but the expected returns from

Þnishing college are quite high. Even if college graduation is not certain, many individuals may

be willing to take the gamble of attending with the hope that they will Þnish successfully. Our

estimates of low returns to college attendance and high returns to college completion are consistent

with this story.

Our analysis of option values raises questions about the internal rate of return�a pillar of classi-

cal human capital theory�as a useful measure of returns to schooling. In a model with uncertainty

and sequential decision making, there may be many discount rates that equate theoretically correct

value functions across different schooling choices. The validity of internal rate of return measures

depends crucially on the amount of uncertainty in future earnings associated with different edu-

cation levels. The recent literature Þnds a high amount of predictability in future earnings and

empirical estimates of option values that are relatively small. This mitigates concerns about using

internal rates of return as a criterion for evaluating educational policy. However, work on this

topic has just begun, so any conclusion about the empirical importance of option values has to be

tempered with caution.

The most common criticism directed against the Mincerian approach questions the strong

assumption that individuals making different schooling choices are ex ante identical (see, e.g.

Griliches, 1977; Willis, 1986; Willis and Rosen, 1979; Card, 1995, 1999; Heckman and Vytlacil,

1999, 2005b; Carneiro, Hansen, and Heckman, 2003; Carneiro, Heckman, and Vytlacil, 2005). The

recent literature that attempts to address the consequences of heterogeneity on estimated rates of

return focuses on mean growth rates of earnings with schooling and not on true rates of return.

Card�s (1995, 1999) version of Becker�s Woytinsky lecture offers a useful framework for analyzing
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growth rates in earnings in a heterogeneous world. Under strong assumptions that schooling choice

equations are linear in growth rates and in costs of schooling, instrumental variable methods can

be used to identify the average effect of schooling on earnings.

However, researchers are often interested in other treatment parameters that can be directly

linked to the effects of a particular policy intervention. These parameters are not typically estimated

by instrumental variable estimators. Since schooling is a discrete outcome, traditional instrumental

variables methods produce parameters that are instrument-dependent and are rarely economically

interpretable.

The empirical debate on the importance of accounting for the endogeneity of schooling in esti-

mating rates of return is far from settled. Much of this literature does not estimate rates of return

but instead focuses on various treatment effects. An entire recent literature has directed attention

away from estimating rates of return, or other economically interpretable parameters, toward esti-

mating the probability limits of IV estimators which often lack any economic interpretation. Many

of the popular instruments are weak and the IV literature has lost sight of estimating distributions

of returns.

Much of the recent literature has focused on the rising returns to college. The estimates pre-

sented in this chapter suggest a substantially greater increase in the returns to high school, raising

the obvious questions: why do so many individuals continue to drop out of high school and why

is the correctly measured high school dropout rate increasing? The answer may rely on high �psy-

chic� costs of school, credit constraints, risk and uncertainty, or unobserved differences in ability

between dropouts and graduates. It remains to be established whether the enormous increase in the

returns to high school in recent decades estimated using the internal rates of return implicit in the

recent Census-CPS literature can be explained by changes in ability differences between high school

dropouts and graduates. The relatively slow growth in high school dropout rates since 1970 and the

continued increase in rates of return to high school (as measured by cross-section or cohort-based

estimates) since that time poses a serious challenge to simple explanations based on this premise.155

The new literature is beginning to sort out these competing explanations. Recent developments

155Recent work by Heckman and LaFontaine (2005) suggests that in recent cohorts dropouts are relatively more
educated than in earlier cohorts so the basic facts work against the hypothesis suggested in the text.
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in the literature employ new methods to take advantage of rich longitudinal microdata in order to

begin distinguishing among the many possibilities.

With better tools and better data, the conventions of 1960s labor economics should no longer

guide estimation of rates of return to schooling in the 21st century. The Mincer model is no longer

a valid guide to estimating the returns to schooling or accounting for heterogeneity in returns.

The modern IV literature aims to recover growth rates of earnings with schooling, allowing for

heterogeneity, but has lost sight of the economic questions posed by Mincer. Recent developments

in econometrics and the economics of education coupled with rich panel data make it possible to

estimate economically interpretable parameters including true ex ante and ex post rates of return

to schooling and their distributions in the population.

131



Appendix A Derivation of the Overtaking Age

Based on the text,

lnY (s, x) = lnPs+x + ln(1− ks+x)

≈ lnPs + ρ0

x−1X
j=0

ks+j − ks+x

Further using the assumption of linearly declining investment yields

lnY (s, x) ≈ lnPs + κ
Ã
ρ0

x−1X
j=0

(1− j/T )− (1− x/T )
!
.

Assuming only initial earnings potential (Ps) and investment levels (κ) vary in the population, the

variance of log earnings is given by

V ar(lnY (s, x)) = V ar(lnPs) +

Ã
ρ0

x−1X
j=0

(1− j/T )− (1− x/T )
!2
V ar(κ)

+ 2

Ã
ρ0

x−1X
j=0

(1− j/T )− (1− x/T )
!
COV (lnPs, κ)

If κ and lnPs are uncorrelated, then earnings are minimized (and equal to V ar(lnPs)) when

ρ0

x−1X
j=0

(1− j/T ) = 1− x/T, or

ρ0

µ
x− x(x− 1)

2T

¶
= 1− x/T

Clearly, lim
t→∞

x∗ = 1
ρ0
, so the variance minimizing age is 1

ρ0
when the work-life is long. More gener-

ally, re-arranging terms and solving for the root of this equation156 yields the variance minimizing

156There is a second root which is greater than T (the maximum working age), so it is ignored.
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experience level of

x∗ = T +
1

2
+
1

ρ0
−
sµ

T +
1

2
+
1

ρ0

¶2
− 2T
ρ0

≈
µ
ρ0 +

ρ0
2T

+
1

T

¶−1
,

where the Þnal approximation comes from a Þrst order Taylor approximation of the square root

term around the squared term inside. The approximation suggests that the variance minimizing

age will generally be less than or equal to 1
ρ0
, with the difference disappearing as T grows large.
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Appendix B Data description

Census Data

The Census samples used in this chapter are taken from the 1940, 1950, 1960, 1970, 1980

and 1990 Public-Use Census Samples. The 1940 sample consists of the self-weighting subsample

which represents 1% of the population. The 1950 sample consists of sample-line persons (for whom

questions regarding earnings were asked) which represent about 0.303% of the population. The 1960

sample is a self-weighting 1% sample. The 1970 sample is taken from two Public-Use A samples:

the 1% State sample (5% form) and the 1% State sample (15% form). It is a self-weighting sample

of 2% of the population. The 1980 and 1990 Census samples are both 5% Public Use A samples.

The 1980 sample is self-weighting but the 1990 sample is not. For 1990, we use person weights to

re-weight the sample back to random proportions.

The following sample restrictions are imposed for each Census year:

age: Sample includes individuals age 16-64. For Census years when a quarter-of-birth variable is

available, we take into account the quarter of birth in calculating the age of each individual

from the year of birth variable provided in the data set.

race: Only individuals reported as being black or white are included in the analysis.

earnings: The earnings measure used is annual earnings, which includes both wage and salary and

business income for the Census years when business income is available. For Census years

when earnings are reported in intervals, we use the midpoint of the interval as the individuals

earnings.

imputations: Individuals with imputed information on age, race, sex, education, weeks worked

or income are excluded. For years when all the imputation ßags are not provided, we omit

individuals on the basis of the available imputation ßags.

The following variables are constructed:

experience: Potential experience is measured by Age − Years of Education − 6.
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years of education: For the 1940-1980 Censuses, years of education are reported as the highest

grade completed. For the 1990 Census, years of education is reported differently: by categories

for Þrst through fourth grade and for Þfth through eighth grade, by year for ninth through

12th grade, and then by degree attained. To maintain comparability with the other Census

samples, we impute the number of years of school associated with each category or degree. For

those with some college but no degree or for those with an associate degree, we assign 14 years

of school. For those with a bachelor�s degree, we assign 16 years of school. For professional

degrees we assign 17 years and for masters degrees and beyond, including doctoral degrees,

we assign 18 years of school.

Current Population Survey (CPS) Data

The CPS samples used in this chapter are taken from the 1964-2000 CPS March Supplements.

The following sample restrictions are used for each year:

age: Sample includes individuals age 18-65.

race: Sample separated into whites and all non-whites.

earnings: Annual wage and salary income (deßated using the CPI-U) is used as the earnings

measure in each year.

The following variables are constructed for our analysis:

experience: Potential experience is measured by Age - Years of Education - 6.

years of education: For 1964-1991, years of education is reported as the highest grade completed.

Categories of schooling include 9-11 years, 12 years, and 16 years. From 1992-2000, years

of education is reported differently. Those completing 12 years of schooling but who do not

receive a high school diploma are assigned 11 years. Only those with 12 years of schooling and

a diploma are assigned 12 years of schooling. For those with a bachelor�s degree, we assign 16

years of school.

Tuition Time Series
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To estimate the private cost of college, we use the time series Total Revenue from Student Fees

and Tuition obtained from Snyder (1993, Table 33). Tables 24 and 33 of this publication provide, for

all institutions, statistics on total educational revenue, total tuition revenue, and total enrollment.

We divide total revenue for all institutions by total enrollment. Supplementing this data with data

from Snyder (2000, Tables 175 and 331), we create a consistent time series of total educational

revenue, total tuition revenue, and total enrollment for 1940-1995.

Tax Rate Time Series

We obtain the average marginal tax rate time series from Barro and Sahasakul (1983) and

Mulligan and Marion (2000, Table 1, column 1). The tax rates used in our progressive tax analysis

are obtained from the federal schedule for a single adult with no dependents. All income is assumed

to be earned income and standard deductions are assumed. To obtain after-tax income for 1960-

90, we use the TAXSIM version 4.0 program available at http://www.nber.org/taxsim/taxsim-

calc4/index.html. For 1940 and 1950, we use the actual federal tax schedules (Form 1040) as

reported in the Statistics of Income.
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Appendix C Local Linear Regression

In estimating the nonparametric matching regressions, we use local linear regression methods. As

discussed in Fan and Gijbels (1996), the local linear estimator for the conditional expectation

E [yi|xi = x0] can be computed from the minimization problem

min
a,b

nX
i=1

(yi − a− b1 (xi − x0))2K
µ
xi − x0
hn

¶
,

whereK(·) is a kernel function and hn > 0 is a bandwidth which converges to zero as n→∞.157 The
estimator of the conditional mean E [yi|xi = x0] is ba. The local linear estimator can be expressed
as a weighted average of the yi observations,

Pn
i=1 yiWi(x0), where the weights are

Wi(x0) =
Ki

Pn
j=1K

2
j −Ki

Pn
k=1KkPn

k=1Kk

Pn
j=1K

2
j − (

Pn
k=1Kk)2

.

Taking advantage of the fact that we have many observations with repeated xi values, our local

regression estimator is given by

�m(x0) =

PNx
i=1 nxiy(xi)Wi(x0)PNX

i nxiWi(x0)
,

where y(xi) represents average log earnings at experience level xi, nxi represents the number of

observations at experience level xi, and NX represents the number of distinct values of potential

experience.158

The asymptotic distribution of the estimator �m(x0) for m(x0) = E(yi|xi = x0) is given by

(nhn)
−1/2( �m(x0)−m(x0)) ∼ N(Bn, Vn) + op(1)

157The kernel function we use in the empirical work is the quartic kernel, given by

K(s) =

½
(15/16)(s2 − 1)2 if |s| < 1
0 otherwise.

The bandwidth used is equal to 5.
158For some of the Census years, there is a problem of non-random sampling with sampling weights provided in the
data. The sampling weights are taken into account when calculating the mean log earnings at each experience level.
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where the bias and variance expressions are given by

Bn = h2n · (0.5m00(x0)) ·
Z ∞

−∞
u2K(u)du

Vn = σ2(x0)

Z ∞

−∞
K2(u)du,

and where σ2(x0) = E({yi −E(yi|xi = x0)}2|xi = x0).159

Tests of Parallelism

In section 3 of this chapter, we perform nonparametric tests of whether the log-earnings-

experience proÞles are parallel across schooling levels. Let s1 and s2 denote two different schooling

levels (16 years and 12 years, for example). We test whether

E(yi|xi, s = s1)−E(yi|xi, s = s2) = constant across xi ∈ {10, 20, 30, 40 years}

We select the experience values at which the hypothesis is tested to be at least 2 bandwidths apart

from the other experience levels, so that the nonparametric estimates are independent from one

another. Let �m(xi, s1) denote the estimator for E(yi|xi, s = s1) for experience level xi and schooling
level s = s1. The test statistic for testing parallelism for two different schooling levels s1 and s2 and

two experience levels xi and xk is given by

( �m(xi, s1)− �m(xi, s2)− ( �m(xk, s1)− �m(xk, s2)) ·

( �V1 + �V2 + �V3 + �V4)
−1 ·

( �m(xi, s1)− �m(xi, s2)− ( �m(xk, s1)− �m(xk, s2)),

where �V1, �V2, �V3, and �V4 are estimators for V1 = V ar( �m(xi, s1)), V1 = V ar( �m(xi, s2)), V3 =

V ar( �m(xk, s1)), V3 = V ar( �m(xk, s2)).

Under the null hypothesis of parallelism, the bias terms cancel out, so that it is not necessary

159See, e.g. Fan and Gijbels (1996), for derivation of these formulae.
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to estimate the bias expressions in performing the test.160 To estimate the variances, we use

V ar( �m(xi, s1)) =

PNX
i=1 nxi�ε(xi, s1)

2Wi(xi)PNX
i nxiWi(xi)

,

where �ε(xi, s1) = y(xi, s1)− �m(xi, s1) is the Þtted residual from the nonparametric regression eval-

uated at experience level xi.161 In Table 1, we report test results based on the test statistic that

straightforwardly generalizes the test statistic given above to four experience levels.

160This cancelling only occurs with the local linear estimator and would not occur if the standard kernel estimator
were used instead to generate the nonparametric estimates.
161Heckman, Ichimura, Smith, and Todd (1998) show that this estimator has better Þnite sample performance than
a �plug-in� estimator based on the asymptotic variance formulae.
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Table 1: Tests of Parallelism in Log Earnings Experience Profiles for Men

Estimated Difference Between College and High
Experience School Log Earnings at Different Experience Levels

Sample Level 1940 1950 1960 1970 1980 1990
Whites 10 0.54 0.30 0.46 0.41 0.37 0.59

20 0.40 0.40 0.43 0.49 0.45 0.54
30 0.54 0.27 0.46 0.48 0.43 0.52
40 0.58 0.21 0.50 0.45 0.27 0.30

p-value 0.32 0.70 <0.001 <0.001 <0.001 <0.001

Blacks 10 0.20 0.58 0.48 0.38 0.70 0.77
20 0.38 0.05 0.25 0.22 0.48 0.69
30 -0.11 0.24 0.08 0.33 0.36 0.53
40 -0.20 0.00 0.73 0.26 0.22 -0.04

p-value 0.46 0.55 0.58 0.91 <0.001 <0.001
Notes: Data taken from 1940-90 Decennial Censuses without adjustment for infla-
tion. Because there are very few blacks in the 1940 and 1950 samples with college
degrees, especially at higher experience levels, the test results for blacks in those
years refer to a test of the difference between earnings for high school graduates
and persons with 8 years of education. See Appendix B for data description. See
Appendix C for the formulae used for the test statistics.



Table 2: Estimated Coefficients from Mincer Log Earnings Regression for Men

Whites Blacks
Coefficient Std. Error Coefficient Std. Error

1940 Intercept 4.4771 0.0096 4.6711 0.0298
Education 0.1250 0.0007 0.0871 0.0022
Experience 0.0904 0.0005 0.0646 0.0018
Experience-Squared -0.0013 0.0000 -0.0009 0.0000

1950 Intercept 5.3120 0.0132 5.0716 0.0409
Education 0.1058 0.0009 0.0998 0.0030
Experience 0.1074 0.0006 0.0933 0.0023
Experience-Squared -0.0017 0.0000 -0.0014 0.0000

1960 Intercept 5.6478 0.0066 5.4107 0.0220
Education 0.1152 0.0005 0.1034 0.0016
Experience 0.1156 0.0003 0.1035 0.0011
Experience-Squared -0.0018 0.0000 -0.0016 0.0000

1970 Intercept 5.9113 0.0045 5.8938 0.0155
Education 0.1179 0.0003 0.1100 0.0012
Experience 0.1323 0.0002 0.1074 0.0007
Experience-Squared -0.0022 0.0000 -0.0016 0.0000

1980 Intercept 6.8913 0.0030 6.4448 0.0120
Education 0.1023 0.0002 0.1176 0.0009
Experience 0.1255 0.0001 0.1075 0.0005
Experience-Squared -0.0022 0.0000 -0.0016 0.0000

1990 Intercept 6.8912 0.0034 6.3474 0.0144
Education 0.1292 0.0002 0.1524 0.0011
Experience 0.1301 0.0001 0.1109 0.0006
Experience-Squared -0.0023 0.0000 -0.0017 0.0000

Notes: Data taken from 1940-90 Decennial Censuses. See Appendix B for data
description.



Table 3a: Internal Rates of Return for White Men: Earnings Function Assumptions
(Specifications Assume Work Lives of 47 Years)

Schooling Comparisons
6-8 8-10 10-12 12-14 12-16 14-16

1940
Mincer Specification 13 13 13 13 13 13
Relax Linearity in S 16 14 15 10 15 21
Relax Linearity in S & Quad. in Exp. 16 14 17 10 15 20
Relax Lin. in S & Parallelism 12 14 24 11 18 26

1950
Mincer Specification 11 11 11 11 11 11
Relax Linearity in S 13 13 18 0 8 16
Relax Linearity in S & Quad. in Exp. 14 12 16 3 8 14
Relax Linearity in S & Parallelism 26 28 28 3 8 19

1960
Mincer Specification 12 12 12 12 12 12
Relax Linearity in S 9 7 22 6 13 21
Relax Linearity in S & Quad. in Exp. 10 9 17 8 12 17
Relax Linearity in S & Parallelism 23 29 33 7 13 25

1970
Mincer Specification 13 13 13 13 13 13
Relax Linearity in S 2 3 30 6 13 20
Relax Linearity in S & Quad. in Exp. 5 7 20 10 13 17
Relax Linearity in S & Parallelism 17 29 33 7 13 24

1980
Mincer Specification 11 11 11 11 11 11
Relax Linearity in S 3 -11 36 5 11 18
Relax Linearity in S & Quad. in Exp. 4 -4 28 6 11 16
Relax Linearity in S & Parallelism 16 66 45 5 11 21

1990
Mincer Specification 14 14 14 14 14 14
Relax Linearity in S -7 -7 39 7 15 24
Relax Linearity in S & Quad. in Exp. -3 -3 30 10 15 20
Relax Linearity in S & Parallelism 20 20 50 10 16 26

Notes: Data taken from 1940-90 Decennial Censuses. In 1990, comparisons of 6 vs. 8 and 8
vs. 10 cannot be made given data restrictions. Therefore, those columns report calculations
based on a comparison of 6 and 10 years of schooling. See Appendix B for data description.



Table 3b: Internal Rates of Return for Black Men: Earnings Function Assumptions
(Specifications Assume Work Lives of 47 Years)

Schooling Comparisons
6-8 8-10 10-12 12-14 12-16 14-16

1940
Mincer Specification 9 9 9 9 9 9
Relax Linearity in S 18 7 5 3 11 18
Relax Linearity in S & Quad. in Exp. 18 8 6 2 10 19
Relax Linearity in S & Parallelism 11 0 10 5 12 20

1950
Mincer Specification 10 10 10 10 10 10
Relax Linearity in S 16 14 18 -2 4 9
Relax Linearity in S & Quad. in Exp. 16 14 18 0 3 6
Relax Linearity in S & Parallelism 35 15 48 -3 6 34

1960
Mincer Specification 11 11 11 11 11 11
Relax Linearity in S 13 12 18 5 8 11
Relax Linearity in S & Quad. in Exp. 13 11 18 5 7 10
Relax Linearity in S & Parallelism 22 15 38 5 11 25

1970
Mincer Specification 12 12 12 12 12 12
Relax Linearity in S 5 11 30 7 10 14
Relax Linearity in S & Quad. in Exp. 6 11 24 10 11 12
Relax Linearity in S & Parallelism 15 27 44 9 14 23

1980
Mincer Specification 12 12 12 12 12 12
Relax Linearity in S -4 1 35 10 15 19
Relax Linearity in S & Quad. in Exp. -4 6 29 11 14 17
Relax Linearity in S & Parallelism 10 44 48 8 16 31

1990
Mincer Specification 16 16 16 16 16 16
Relax Linearity in S -5 -5 41 15 20 25
Relax Linearity in S & Quad. in Exp. -3 -3 35 17 19 22
Relax Linearity in S & Parallelism 16 16 58 18 25 35

Notes: Data taken from 1940-90 Decennial Censuses. In 1990, comparisons of 6 vs. 8 and 8
vs. 10 cannot be made given data restrictions. Therefore, those columns report calculations
based on a comparison of 6 and 10 years of schooling. See Appendix B for data description.



Table 4: Internal Rates of Return for White & Black Men: Accounting for Taxes and Tuition
(General Non-Parametric Specification Assuming Work Lives of 47 Years)

Schooling Comparisons
Whites Blacks

12-14 12-16 14-16 12-14 12-16 14-16
1940 No Taxes or Tuition 11 18 26 5 12 20

Including Tuition Costs 9 15 21 4 10 16
Including Tuition & Flat Taxes 8 15 21 4 9 16
Including Tuition & Prog. Taxes 8 15 21 4 10 16

1950 No Taxes or Tuition 3 8 19 -3 6 34
Including Tuition Costs 3 8 16 -3 5 25
Including Tuition & Flat Taxes 3 8 16 -3 5 24
Including Tuition & Prog. Taxes 3 7 15 -3 5 21

1960 No Taxes or Tuition 7 13 25 5 11 25
Including Tuition Costs 6 11 21 5 9 18
Including Tuition & Flat Taxes 6 11 20 4 8 17
Including Tuition & Prog. Taxes 6 10 19 4 8 15

1970 No Taxes or Tuition 7 13 24 9 14 23
Including Tuition Costs 6 12 20 7 12 18
Including Tuition & Flat Taxes 6 11 20 7 11 17
Including Tuition & Prog. Taxes 5 10 18 7 10 16

1980 No Taxes or Tuition 5 11 21 8 16 31
Including Tuition Costs 4 10 18 7 13 24
Including Tuition & Flat Taxes 4 9 17 6 12 21
Including Tuition & Prog. Taxes 4 8 15 6 11 20

1990 No Taxes or Tuition 10 16 26 18 25 35
Including Tuition Costs 9 14 20 14 18 25
Including Tuition & Flat Taxes 8 13 19 13 17 22
Including Tuition & Prog. Taxes 8 12 18 13 17 22

Notes: Data taken from 1940-90 Decennial Censuses. See discussion in text and Appendix B
for a description of tuition and tax amounts.



Table 5: Internal Rates of Return for White & Black Men: Residual Adjustment
(General Non-Parametric Specification Accounting for Tuition and Progressive Taxes)

Schooling Comparisons
6-8 8-10 10-12 12-14 12-16 14-16

a. Whites
1940 Unadjusted 12 14 24 8 15 21

Adjusted 2 2 8 9 13 16
1950 Unadjusted 25 26 26 3 7 15

Adjusted 17 19 14 5 8 14
1960 Unadjusted 21 27 29 6 10 19

Adjusted 13 19 16 7 11 16
1970 Unadjusted 16 27 29 5 10 18

Adjusted 11 18 16 6 10 16
1980 Unadjusted 14 64 41 4 8 15

Adjusted 9 28 24 5 8 13
1990 Unadjusted 19 19 47 8 12 18

Adjusted 11 11 31 8 12 17
b. Blacks

1940 Unadjusted 11 0 10 4 10 16
Adjusted 3 0 -8 4 6 7

1950 Unadjusted 33 14 44 -3 5 21
Adjusted 53 8 21 1 9 15

1960 Unadjusted 20 14 34 4 8 15
Adjusted 14 12 16 6 6 8

1970 Unadjusted 14 25 39 7 10 16
Adjusted 12 16 22 7 10 12

1980 Unadjusted 9 43 46 6 11 20
Adjusted 7 21 29 6 9 15

1990 Unadjusted 16 16 57 13 17 22
Adjusted 8 8 42 11 15 20

Notes: Data taken from 1940-90 Decennial Censuses. In 1990, comparisons of 6 vs. 8 and 8
vs. 10 cannot be made given data restrictions. Therefore, those columns report calculations
based on a comparison of 6 and 10 years of schooling. See discussion in text and Appendix
B for a description of tuition and tax amounts. Unadjusted sets the residual from the
earnings equation to be the same for everyone (= 0). Adjusted uses mean earnings within
each age-schooling cell.
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Table 8a: Internal Rates of Return for White Men: Best Census and CPS Estimates

Census Data: CPS Data:
General Spec. General Spec.

Schooling (No Residual (Residual
Comparison Year Mincer Adjustment) Adjustment) Cross Section Cohort
10 vs. 12 1940 13 24 8 - -

1950 11 26 14 - 3
1960 12 29 16 - 7
1970 13 29 16 29 34
1980 11 41 24 38 38
1990 14 47 31 50 -

12 vs. 16 1940 13 15 13 - -
1950 11 7 8 - 14
1960 12 10 11 - 8
1970 13 10 10 12 10
1980 11 8 8 8 14
1990 14 12 12 14 -

Notes: Mincer estimates make no adjustment for taxes or tuition. Census General Specifi-
cation estimates account for tuition and progressive taxes with fully non-parametric wage
specification. CPS Cross Section Estimates use cross sectional data and a general wage
specification accounting for tuition and flat taxes. CPS Cohort estimates follow a cohort
turning age 18 in the reported year, using a general wage specification accounting for tuition
and flat taxes. See Appendix B for data description.



Table 8b: Internal Rates of Return for Black Men: Best Census and CPS Estimates

Census Data: CPS Data:
General Spec. General Spec.

Schooling (No Residual (Residual
Comparison Year Mincer Adjustment) Adjustment) Cross Section Cohort
10 vs. 12 1940 9 10 -8 - -

1950 10 44 21 - 4
1960 11 34 16 - 18
1970 12 39 22 32 49
1980 12 46 29 55 70
1990 16 57 42 64 -

12 vs. 16 1940 9 10 6 - -
1950 10 5 9 - 15
1960 11 8 6 - 6
1970 12 10 10 12 14
1980 12 11 9 14 17
1990 16 17 15 16 -

Notes: Mincer estimates make no adjustment for taxes or tuition. Census General Specifi-
cation estimates account for tuition and progressive taxes with fully non-parametric wage
specification. CPS Cross Section Estimates use cross sectional data and a general wage
specification accounting for tuition and flat taxes. CPS Cohort estimates follow a cohort
turning age 18 in the reported year, using a general wage specification accounting for tuition
and flat taxes. Each CPS estimate is based on three adjoining years/cohorts worth of data.
See Appendix B for data description.



Table 9a: Treatment Effects and Estimands as Weighted Averages
of the Marginal Treatment Effect

ATE(x) =
∫ 1
0 MTE(x, uS)duS (Average Treatment Effect)

TT (x) =
∫ 1
0 MTE(x, uS)hTT (x, uS)duS (Treatment on the Treated)

TUT (x) =
∫ 1
0 MTE(x, uS)hTUT (x, uS)duS (Treatment on the Untreated)

PRTE(x)=
∫ 1
0 MTE(x, uS)hPRT (x, uS)duS (Policy Relevant Treatment Effect)

IV(x) =
∫ 1
0 MTE(x, uS)hIV (x, uS)duS

OLS(x) =
∫ 1
0 MTE(x, uS)hOLS(x, uS)duS

Source: Heckman and Vytlacil (2001a,b; 2005a,b)

Table 9b: Weights∗

hTT (x, uS) =
[∫ 1

uS
f(p | X = x)dp

]
1

E(P |X=x)

hTUT (x, uS) =
[∫ uS

0 f(p | X = x)dp
]
· 1

E((1−P )|X=x)

hPRT (x, uS) =
[

FP∗,X(uS)−FP,X(uS)

∆P

]
hIV (x, uS) =

[∫ 1
uS

(p−E(P | X = x))f(p | X = x)dp
]

1
V ar(P |X=x)

hOLS = E(U1|X=x,US=uS)h1(x,uD)−E(U0|X=x,US=uS)h0(x,uS)
MTE(x,uS)

h1(x, uS) =
[∫ 1

uS
f(p | X = x)dp

]
1

E(P |X=x)

h0(x, uS) =
[∫ uS

0 f(p | X = x)dp
]

1
E((1−P )|X=x)

∗ f(p|X = x) is the density of P (Z) given X = x.
Source: Heckman and Vytlacil (2001a,b; 2005a,b)



Table 10: Treatment Parameters in the
Generalized Roy Example

Ordinary Least Squares 0.1735
Treatment on the Treated 0.2442
Treatment on the Untreated 0.1570
Average Treatment Effect 0.2003
Sorting Gain∗ 0.0402
Selection Bias† -0.0708
Linear Instrumental Variables‡ 0.2017

∗E[U1 − U0 | S = 1] = TT − ATE
†E[U0 | S = 1] − E[U0 | S = 0] = OLS − TT
‡Using propensity score as the instrument.



Table 11: Estimates of Various Returns to One Year of College
Family Background is Exclusion Family Background is not Exclusion

0.07 < P < 0.98 0.07 < P < 0.98
Average Treatment Effect 0.2124 0.1638

(0.0648) (0.0916)
[0.0069;0.2641] [-0.0074;0.2955]

Treatment on the Treated 0.3202 0.2279
(0.1103) (0.1171)

[0.0045;0.4094] [-0.0036;0.3820]
Treatment on the Untreated 0.1042 0.0897

(0.0802) (0.1285)
[-0.0027;0.2522] [-0.1400;0.3024]

Policy Relevant Treatment Effect 0.2489 0.1905
($500 Tuition Subsidy) (0.0854) (0.1651)

[0.0024;0.3520] [-0.1037;0.3602]
Ordinary Least Squares 0.0788 0.0796

(0.0091) (0.0114)
[0.0654;0.0955] [0.0614;0.0983]

Instrumental Variables 0.1649 0.1530
(0.0389) (0.0758)

[0.0888;0.2166] [0.0036;0.2479]
Notes: Bootstrapped 5-95% standard errors (in parenthesis) and confidence intervals (in brackets) are
presented below the corresponding coefficients (250 replications).
Source: Carneiro, Heckman and Vytlacil (2005).
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Table 13: Treatment Parameter Estimates
NLSY - HS Graduates and Four-Year College Graduates

Males at Age 30∗

Treatment Parameter† Parametric‡ Polynomial‡ Nonparametric§

Treatment on the Treated 0.362 0.758 0.696
(0.123) (0.201) (0.181)

Treatment on the Untreated 0.509 0.687 0.652
(0.149) (0.142) (0.167)

Average Treatment Effect 0.455 0.713 0.668
(0.127) (0.153) (0.151)

LATE (0.62, 0.38) 0.483 0.59 0.659
(0.138) (0.185) (0.192)

LATE (0.79, 0.55) 0.555 1.04 0.792
(0.175) (0.269) (0.245)

LATE (0.45, 0.21) 0.412 0.157 0.383
(0.120) (0.184) (0.159)

∗We excluded the oversample of poor whites and the military sample. †The
treatment parameters are estimated by taking the weighted sum of the MTE es-
timated using a polynomial of degree 4 to approximate E(Y |P ). ‡The treatment
parameters were estimated by taking the weighted sum of the MTE estimated
using the parametric approach. §The treatment parameters were estimated by
taking the weighted sum of the MTE estimated using the nonparametric ap-
proach. The standard deviations (in parentheses) are computed using boot-
strapping (100 draws).
Source: Heckman, Urzua and Vytlacil (2004)



Table 14a: Regression of Instrumental Variables (Z) on
Schooling (S) and AFQT (A)

Instrumental Variable βS,Z βA,Z F-Stat
Number of Siblings -0.0302 -0.0468 15.04

(0.0078) (0.0141)
Mother’s Education 0.0760 0.1286 157.56

(0.0060) (0.0110)
Father’s Education 0.0582 0.0986 201.33

(0.0041) (0.0075)
Average County Tuition at 17 -0.0062 -0.0044 13.32

(0.0017) (0.0031)
Distance to College at 14 -0.0038 -0.0081 8.56

(0.0013) (0.0023)
State Unemployment Rate at 17 -0.0052 -0.0038 0.42

(0.0081) (0.0148)
Source: Carneiro, Heckman and Vytlacil (2005).

Table 14b: Residualized Regression of Instrumental Variables (Z)
on Schooling (S) and AFQT (A)

Instrumental Variable βS,Z βA,Z F-Stat
Average County Tuition at 17 -0.0041 -0.0009 6.81

(0.0015) (0.0029)
Distance to College at 14 -0.0008 -0.0032 0.53

(0.0012) (0.0022)
State Unemployment Rate at 17 -0.0027 0.0005 0.13

(0.0075) (0.0138)
Source: Carneiro, Heckman and Vytlacil (2005).



 
 

Table 15 
Ex-post Conditional Distribution (College Earnings Conditional on High School Earnings)  

Pr(di <Yc <di + 1 |dj < Yh < dj+1)* 
 College 

High 
School 

1 2 3 4 5 6 7 8 9 10 

1 0.6980 0.2534 0.0444 0.0032 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.2270 0.4150 0.2470 0.0890 0.0180 0.0040 0.0000 0.0000 0.0000 0.0000 
3 0.0450 0.2160 0.3420 0.2610 0.1070 0.0260 0.0030 0.0000 0.0000 0.0000 
4 0.0140 0.0950 0.2120 0.2930 0.2390 0.1090 0.0370 0.0010 0.0000 0.0000 
5 0.0000 0.0300 0.1130 0.2190 0.2940 0.2170 0.1100 0.0170 0.0000 0.0000 
6 0.0000 0.0040 0.0340 0.0980 0.2030 0.3080 0.2470 0.0990 0.0070 0.0000 
7 0.0000 0.0000 0.0100 0.0340 0.1130 0.2390 0.3190 0.2350 0.0500 0.0000 
8 0.0000 0.0000 0.0000 0.0030 0.0240 0.0910 0.2360 0.4010 0.2320 0.0130 
9 0.0000 0.0000 0.0000 0.0000 0.0010 0.0060 0.0470 0.2360 0.5400 0.1700 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0110 0.1710 0.8170 
*di is the ith decile of the College Lifetime Earnings Distribution and dj is the jth decile of the High School Lifetime 
Earnings Distribution. 
 
Source: Cunha, Heckman and Navarro (2005c) 



 
Table 16 

Average present value of earnings1 for high school graduates 
Fitted and Counterfactual 

White males from NLSY79 
 High School (fitted) College (counterfactual) 

High School 703.780 1021.970 
Std. Err. 14.626 78.214 
Random2 726.590 1065.900 
Std. Err. 20.513 43.054 

   
Average returns3 for high school graduates 

 High School vs Some College 
High School 0.4600 

Std. Err. 0.1401 
 

1Thousands of dollars. Discounted using a 3% interest rate. 
2It defines the result of taking a person at random from the population regardless of his schooling choice. 
3As a fraction of the base state, i.e., (PVEarnings(Col)-PVEarnings(HS))/PVEarnings(HS). 
Source: Cunha, Heckman and Navarro (2005c) 

 



Table 17 
Average present value of earnings1 for college graduates 

Fitted and Counterfactual 
White males from NLSY79 

 High School (counterfactual) College (fitted) 
College 756.13 1122.69 
Std. Err. 40.571 25.891 
Random2 726.59 1065.90 
Std. Err. 20.513 43.054 

   
Average returns3 for college graduates 

 High School vs Some College 
College 0.50 
Std. Err. 0.0805 
 
1Thousands of dollars. Discounted using a 3% interest rate. 
2It defines the result of taking a person at random from the population regardless of his schooling choice. 
3As a fraction of the base state, i.e., (PVearnings(Col)-PVearnings(HS))/PVearnings(HS). 
Source: Cunha, Heckman and Navarro (2005c) 



 
Table 18 

Average present value of earnings1 for people indifferent between high school and college
Conditional on education level 

White males from NLSY79 
 High School College 

Average 743.400 1089.970 
Std. Err. 24.152 33.255 

   
Average returns2 for people indifferent between high school and college 

 High School vs Some College 
Average 0.4800 
Std. Err. 0.0853 

 

1Thousands of dollars. Discounted using a 3% interest rate. 
2As a fraction of the base state, i.e., (PVearnings(Col)-PVearnings(HS))/PVearnings(HS). 
Source: Cunha, Heckman and Navarro (2005c) 



 
Table 19 

Mean monetary value of total cost of attending college 
High School College Overall 

488.24 232.56 375.27 
   

Mean monetary value of cost of attending college due to ability 
High School College Overall 

40.97 -51.27 0.0 
 
Values in thousands of dollars (2000).  Let C denote the monetary value of psychic 
costs. Then C is given by: 

C = Zγ + θ1αC1 + θ2αC2 + εC 
The contribution of ability to the costs of attending college in monetary value is θ1αC1. 
Recall that, on average, the ability is different between those who attend college and 
those who attend high school. 
 
Source: Cunha, Heckman and Navarro (2005c) 

 



Table 20 
Agent's Forecast Variance of Present Value of Earnings 
Under Different Information Sets: I = { X,Z,XT ,εC ,Θ } 

(as a fraction of the variance when no information is available) 
 Var(Yc) Var(Yh) Var(Yc - Yh) Cov(Yc  , Yh) 

For time period 1:+     
Variance when Θ = Ø 7167.20 5090.46 3073.94 4591.86 
Percentage of variance remaining after 
controlling for the indicated factor: 

    

Θ = {θ1} 97.50% 98.34% 99.43% 97.33% 
Θ = {θ2} 18.50% 32.83% 89.52% 2.67% 

Θ = {θ1,θ2} 16.01% 31.17% 88.94% 0.00% 
     

For time period 2:++     
Variance when Θ = Ø 49690.64 167786.87 41137.80 88169.85 
Percentage of variance remaining after 
controlling for the indicated factor: 

    

Θ = {θ1} 97.18% 97.54% 98.25% 97.28% 
Θ = {θ2} 7.39% 4.73% 16.55% 2.72% 

Θ = {θ1,θ2} 4.57% 2.27% 14.80% 0.00% 
     

For lifetime:+++     
Variance when Θ = Ø 56857.84 172877.33 44211.74 92761.72 
Percentage of variance remaining after 
controlling for the indicated factor: 

    

Θ = {θ1} 97.22% 97.57% 98.33% 97.28% 
Θ = {θ2} 8.79% 5.56% 21.62% 2.72% 

Θ = {θ1,θ2} 6.01% 3.13% 19.95% 0.00% 
We use an interest rate of 3% to calculate the present value of earnings. In all cases, the information set of the agent is  
I = { X,Z,XT,εC ,Θ } and we change the contents of Θ. 
+Variance of the unpredictable component of earnings between age 17 and 28 as predicted at age 17. 
++Variance of the unpredictable component of earnings between age 29 and 65 as predicted at age 17. 
+++Variance of the unpredictable component of earnings between age 17 and 65 as predicted at age 17. 
So we would say that the variance of the unpredictable component of period 1 college earnings when using factor 1 in the prediction is 
97.5% of the variance when no information is available (i.e., 0.975*7167.2). 

Source: Cunha, Heckman and Navarro (2005c) 
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Figure 1a: Experience-Earnings Profiles, 1940-1960
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Figure 1b: Experience-Earnings Profiles, 1970-1990
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Figure 2: Age-Earnings Profiles, 1940,1960,1980
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Figure 3: Experience-Variance Log Earnings



Figure 4b: Marginal Tax Rates 
(from Barro & Sahasakul, 1983, Mulligan & Marion, 2000)
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Figure 4a: Average College Tuition Paid (in 2000 dollars)
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Figure 5: IRR for High School Completion (White and Black Men)
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Figure 6: IRR for College Completion (White and Black Men)
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Figure 7a: IRR for 10 vs. 12 Years of Education for White Men (1964−2000 CPS)
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Figure 10a

Weights for the Marginal Treatment Effect for Different Parameters
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Figure 10b

Marginal Treatment Effect vs. Linear Instrumental Variables 

and Ordinary Least Squares Weights

Roy Example

Source: Heckman and Vytlacil (2005b).

lnY1 = α + β̄ + U1

lnY0 = α + U0

S = 1 if Z − US > 0

α = 0.67

β̄ = 0.2

U1 = σ1ε

U0 = σ0ε

US = σSε

σ1 = 0.012

σ0 = −0.050

σS = −1

ε ∼ N(0, 1)

Z ∼ N(−0.0026, 0.2700)
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Figure 11 − Density of P given S=0 and S=1 (Estimated Probability of Enrolling in College)

P

S=0
S=1

Note: P is the estimated probability of going to college. It is estimated from a logit regression of college
attendance on corrected AFQT, father’s education, mother’s education, number of siblings, tuition, distance
to college and local unemployment.
Source: Carneiro, Heckman and Vytlacil (2005)
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Note: To estimate the function in this figure (E (Y1 − Y0|X, US)) we use a two step procedure. We first
estimate µ0 (X) and µ1 (X) from a regression of log wages on polynomials in X , interactions of polynomials
in X and P , and a nonparametric function of P (where P is the predicted probability of attending college).
We use Robinson’s (1988) method for estimating partially linear models. X includes experience, corrected
AFQT and local unemployment. Then we compute the residual of this regression by subtracting µ0 (X) +
P ∗ [µ1 (X) − µ0 (X)] from log wages. Finally we estimate the nonlinear function in the figure by running
a local quadratic regression of this residual on P and taking the coefficients on the linear term. Then we
add a constant term to this function which is simply the average of µ1 (X) − µ0 (X). E(Y1 − Y0|X, US) is
divided by 3.5 to account for the fact that individuals that attend college have on average 3.5 more years of
schooling than those who do not. Therefore these correspond to estimates of returns to one year of college.
The confidence interval bands are bootstrapped (250 replications).
Source: Carneiro, Heckman and Vytlacil (2005)



−
.5

0
.5

1
1.

5
2

M
TE

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
v

MTE CI(0.025,0.975)

Source: Heckman, Urzua and Vytlacil (2004).
The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave−one−out cross−validation method. In the 
second step, following Heckman, Ichimura and Todd (1998), we set the bandwidth to 0.3. We use biweight kernel functions.

          Sample of HS Graduates and Four Year College Graduates − Males at age 30 − Nonparametric 
Figure 14. MTE with Confidence Interval
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Four year college tuition Propensity Score

Source: Heckman, Urzua and Vytlacil (2004). 
The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave−one−out cross−validation method. In the 
second step, following Heckman, Ichimura and Todd (1998), we set the bandwidth to 0.3. We use biweight kernel functions.

Propensity Score vs Four year college tuition as the Instrument
NLSY − Sample of HS Graduates and Four Year College Graduates − Males at age 30

Figure 15a. IV Weights 
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Two year college tuition Propensity Score

Source: Heckman, Urzua and Vytlacil (2004). 
The dependent variable in the outcome equation is hourly earnings at age 30. The controls in the outcome equations are tenure, tenure squared, experience,
corrected AFQT, black (dummy), hispanic (dummy), marital status, and years of schooling. Let D=0 denote dropout status, and D=1 denote GED status. The model
for D (choice model) includes as controls the corrected AFQT, number of siblings, father’s education, mother’s education, family income at age 17, local GED
costs, broken home at age 14, average local wage at age 17 for dropouts and high school graduates, local unemployment rate at age 17 for dropouts and high
school graduates, the dummy variables black and hispanics,  and a set of dummy variables controlling for the year of birth. The choice model is estimated
using a probit model. In computing the MTE, the bandwidth in the first step is selected using the leave−one−out cross−validation method. In the 
second step, following Heckman, Ichimura and Todd (1998), we set the bandwidth to 0.3. We use biweight kernel functions.

Propensity Score vs Two year college tuition as the Instrument
NLSY − Sample of HS Graduates and Four Year College Graduates − Males at age 30

Figure 15b. IV Weights 



Figure 16
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Let Y1 denote present value of earnings (discounted at a 3% interest rate) in the college sector. Let
f(y1) denote its density function. The dashed line plots the predicted Y1 density conditioned on
choosing college, that is, f(y1|S = 1), while the solid line shows the counterfactual density function
of Y1 for those agents that are actually high school graduates, that is, f(y1|S = 0).
Source: Cunha, Heckman and Navarro (2005c)



Figure 17
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Let Y0, Y1 denote the present value of earnings in high school and college sectors, respectively.
Define ex post returns to college as the ratio R = (Y1−Y0)

Y0
. Let f(r) denote the density function of

the random variable R. The solid line is the density of ex post returns to college for high school
graduates, that is, f(r|S = 0). The dashed line is the density of ex post returns to college for
college graduates, that is, f(r|S = 1).
Source: Cunha, Heckman and Navarro (2005c)
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In this figure we plot the monetary value of psychic costs. Let C denote the monetary value of
psychic costs. The monetary value of psychic costs is given by:

C = Zγ + θ1αC1 + θ2αC2 + εC

The contribution of ability to the costs of attending college, in monetary value, is θ1αC1.
Source: Cunha, Heckman and Navarro (2005c)
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Density of agent's forecast of the present value of high school earnings
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Θ = Ø*
Θ = {θ1}**
Θ = {θ2}***
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Let Y0 denote the agent’s forecast of present value of earnings in the high school sector. These are
formed over the whole population, not just the subpopulation who go to high school. We assume
that agents know all coefficients. Let I = {X,Z,XT , εC ,Θ} denote the agent’s information set.
Let f(y0|I) denote the density of the agent’s forecast of present value of earnings in high school
conditioned on the information set I. Then:
∗Plot of f(y0|I) under no element θ in the information set, i.e., Θ = ∅.
∗∗Plot of f(y0|I) when only factor 1 is in the information set, i.e., Θ = {θ1}.
∗∗∗Plot of f(y0|I) when only factor 2 is in the information set, i.e.,Θ = {θ2}.
∗∗∗∗Plot of f(y0|I) when both factors are in the information set, i.e., Θ = {θ1, θ2}.
Source: Cunha, Heckman and Navarro (2005c)
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0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Density of agent's forecast of the present value of college earnings  
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under different information sets: I = {X,Z,X
T
,ε
C
,Θ}

Let Y1 denote the agent’s forecast of present value of earnings in the college sector. These are
formed over the whole population, not just the subpopulation who go to college. We assume that
agents know all coefficients. Let I = {X,Z,XT , εC ,Θ} denote the agent’s information set. Let
f(y1|I) denote the density of the agent’s forecast of present value of earnings in college conditioned
on the information set I. Then:
∗Plot of f(y1|I) under no element θ in the information set, i.e., Θ = ∅.
∗∗Plot of f(y1|I) when only factor 1 is in the information set, i.e., Θ = {θ1}.
∗∗∗Plot of f(y1|I) when only factor 2 is in the information set, i.e.,Θ = {θ2}.
∗∗∗∗Plot of f(y1|I) when both factors are in the information set, i.e., Θ = {θ1, θ2}.
Source: Cunha, Heckman and Navarro (2005c)
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Let Y0, Y1 denote the agent’s forecast of present value of earnings in the high school and college sectors,
respectively. We define the difference in present value of earnings as ∆ = Y1 − Y0. We assume that
agents know all coefficients. Let I = {X,Z,XT , εC ,Θ}, f(∆|I) denote the agent’s information set and the
density of the agent’s forecast of gains in present value of earnings in choosing college, conditioned on the
information set I. These are defined over the entire population. Then:
∗Plot of f(∆|I) under no element θ in the information set, i.e., Θ = ∅.
∗∗Plot of f(∆|I) when only factor 1 is in the information set, i.e., Θ = {θ1}.
∗∗∗Plot of f(∆|I) when only factor 2 is in the information set, i.e.,Θ = {θ2}.
∗∗∗∗Plot of f(∆|I) when both factors are in the information set, i.e., Θ = {θ1, θ2}.
Source: Cunha, Heckman and Navarro (2005c)




