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ABSTRACT

Surveys do! We examine the forecasting power of four alternative methods of forecasting U.S.

inflation out-of-sample: time series ARIMA models; regressions using real activity measures

motivated from the Phillips curve; term structure models that include linear, non-linear, and

arbitrage-free specifications; and survey-based measures. We also investigate several optimal

methods of combining forecasts. Our results show that surveys outperform the other forecasting

methods and that the term structure specifications perform relatively poorly. We find little evidence

that combining forecasts using means or medians, or using optimal weights with prior information

produces superior forecasts to survey information alone. When combining forecasts, the data

consistently places the highest weights on survey information.
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1 Introduction

Obtaining reliable and accurate forecasts of future inflation is crucial for policymakers con-

ducting monetary and fiscal policy; for investors hedging the risk of nominal assets; for firms

making investment decisions and setting prices; and for labor and management negotiating

wage contracts. Consequently, it is no surprise that a considerable academic literature evalu-

ates different inflation forecasts and forecasting methods. In particular, econometricians use

four main methods to forecast inflation. First, forecasts from benchmark time-series models

of the ARIMA variety are used. Second, we can forecast inflation using information filtered

through theoretical models of economic causation, such as regression models motivated from

the Phillips curve that use real activity measures. Third, forecasts can be made using term

structure models, where the econometrician uses information filtered indirectly through asset

prices. Finally, we can forecast inflation using information filtered directly through agents by

employing survey-based measures.

In this article, we comprehensively compare and contrast the ability of these four methods

to forecast inflation out of sample. Our approach makes four main contributions to the litera-

ture. First, our analysis is the first to comprehensively compare time-series forecasts, forecasts

based on the Phillips curve, forecasts from the yield curve, and survey data (from three different

surveys). The previous literature has concentrated on only one or two of these different fore-

casting methodologies. For example, Stockton and Glassman (1987) show that pure time-series

models out-perform more sophisticated macro models, but do not consider term structure mod-

els or surveys. Fama and Gibbons (1984) compare term structure forecasts with the Livingston

survey, but they do not consider forecasts from macro factors. Whereas Grant and Thomas

(1999), Thomas (1999) and Mehra (2002) show that surveys out-perform simple time-series

benchmarks for forecasting inflation, all these studies do not compare the performance of sur-

vey measures with forecasts from Phillips curve models or term structure models.

The lack of a study comparing these four methods of inflation forecasting implies that there

is no well-accepted set of findings regarding the superiority of a particular forecasting method.

The most comprehensive study to date, Stock and Watson (1999) finds that Phillips curve-based

forecasts produce the most accurate out-of-sample forecasts of U.S. inflation compared with

other macro series and asset prices, using data up to 1996. However, Stock and Watson only

briefly compare the Phillips-curve forecasts to the Michigan survey and to simple regressions

using term structure information. Stock and Watson do not consider no-arbitrage term struc-

ture models, non-linear forecasting models, or combined forecasts from all four forecasting
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methods. Recent work also casts doubts on the robustness of the Stock-Watson findings. In

particular, Atkeson and Ohanian (2001), Sims (2002), and Cecchetti, Chu and Steindel (2000)

show that the accuracy of Phillips curve-based forecasts depends crucially on the sample period

and Clark and McCracken (2003) address the issue of how instability in the output gap coef-

ficients of the Phillips curve affects forecasting power. To assess the stability of the inflation

forecasts across different samples, we specifically consider the out-of-sample forecasts over

post-1985 and post-1995 U.S. data.

Our second contribution is to evaluate inflation forecasts implied by arbitrage-free asset

pricing models. Previous studies employing term structure data mostly use only the term spread

in simple OLS regressions and usually do not use all available term structure data (see, for

example, Mishkin (1990, 1991), Jorion and Mishkin (1991), and Stock and Watson (2003)).

Frankel and Lown (1994) use a simple weighted average of different term spreads, but they do

not impose no-arbitrage restrictions. In contrast to these approaches, we develop forecasting

models that use all available data and impose no-arbitrage restrictions. Our no-arbitrage term

structure models also incorporate inflation as a state variable because inflation is an integral

component of nominal yields. Importantly, the no-arbitrage framework allows us to extract

forecasts of inflation jointly from inflation and asset prices by taking into account time-varying

risk premia.

No-arbitrage constraints are reasonable in a world where hedge funds and investment banks

routinely eliminate arbitrage opportunities from fixed income prices. Imposing theoretical no-

arbitrage restrictions may also lead to more efficient estimation. Just as Ang, Piazzesi and Wei

(2004) show that no-arbitrage models produce superior forecasts of GDP growth, no-arbitrage

restrictions may also produce more accurate forecasts of inflation. In addition, this is the first ar-

ticle to investigate non-linear, no-arbitrage models of inflation. We investigate both an empirical

regime-switching model incorporating term structure information and a no-arbitrage, non-linear

term structure model following Ang and Bekaert (2004) with inflation as a state variable.

Our third contribution is that we thoroughly investigate combined forecasts. Stock and Wat-

son (2002a, 2003), among others, show that the use of aggregate indices of many macro series

measuring real activity produces better forecasts of inflation than individual macro series. To

investigate this further, we also include the (Phillips curve-based) index of real activity con-

structed by Bernanke, Boivin and Eliasz (2005) from 65 macroeconomic series. In addition,

several authors (see, for example, Stock and Watson (1999) and Wright (2004)) advocate com-

bining several alternative models to forecast inflation. We investigate five different methods

of combining forecasts: simple means or medians, OLS based combinations, and Bayesian
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estimators with equal or unit weight priors.

Finally, our main focus is forecasting inflation rates. While a long-standing debate in

macroeconomics focuses on whether inflation rates are stationary or non-stationary. Econom-

ically, non-stationary inflation is hard to interpret and the recent working paper version of Bai

and Ng (2004) very strongly rejects the null of a unit root in inflation data. Nevertheless, we ex-

plicitly contrast the predictive power of some non-stationary models with stationary models and

consider whether forecasting inflation changes alters the relative forecasting ability of different

models.

Our major empirical results can be summarized as follows. The first major result is that

survey forecasts outperform the other three methods in forecasting inflation. That the median

Livingston and SPF survey forecasts do well is perhaps not surprising, because presumably

many of the best analysts use time-series and Phillips Curve models. But, even participants

in the Michigan survey who are consumers, not professionals, produce accurate out-of-sample

forecasts in line with the professionals in the Livingston and SPF surveys. We also find that

the best survey forecasts are the unadjusted survey median forecast themselves; adjustments to

take into account both linear and non-linear bias yield worse out-of-sample forecasts than raw

survey forecasts.

Second, term structure information does not generally lead to better forecasts and often leads

to inferior forecasts than models using only aggregate activity measures. Whereas this confirms

the results in Stock and Watson (1999), our investigation of term structure models is much

more comprehensive. The relatively poor forecasting performance of term structure models

extends to simple regression specifications, iterated long-horizon VAR forecasts, no-arbitrage

affine models, and non-linear no-arbitrage models. These results point to the conclusion that

while inflation is very important for explaining the dynamics of the term structure (see, for

example, Ang and Bekaert (2004)), yield curve information is less important for forecasting

future inflation.

Our third major finding is that combining forecasts does not generally lead to better out-

of-sample forecasting performance than single forecasting models. In particular, simple aver-

aging, like using the mean or median of a number of forecasts, does not necessarily improve

the forecast performance, whereas linear combinations of forecasts with optimal weights com-

puted based on past performance and prior information generate the biggest gains. We find

that even the use of the Bernanke, Boivin and Eliasz (2005) forward-looking aggregate mea-

sure of real activity does not perform well relative to simpler Phillips curve models and survey

forecasts. The strong success of the surveys in forecasting inflation out-of-sample extends to
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surveys dominating other models in forecast combining methods. The data consistently place

the highest weights on the survey forecasts and little weight on other forecasting methods.

The rest of this paper is organized as follows. Section 2 describes the data set. In Section

3, we describe the time-series models, predictive macro regressions, term structure models,

and forecasts from survey data, and detail the forecasting methodology. Section 4 contains the

empirical out-of-sample results. We examine the robustness of our results to a non-stationary

inflation specification in Section 5. Finally, Section 6 concludes.

2 Data

2.1 Inflation

We consider four different measures of inflation. The first three are consumer price index (CPI)

measures, including CPI-U for All Urban Consumers, All Items (PUNEW), CPI for All Urban

Consumers, All Items Less Shelter (PUXHS) and CPI for All Urban Consumers, All Items Less

Food and Energy (PUXX), which is also called core CPI. The fourth measure is the Personal

Consumption Expenditure deflator (PCE). All measures are seasonally adjusted and obtained

from the Bureau of Labor Statistics website. The sample period is 1952:Q2 to 2002:Q4 for

PUNEW and PUXHS, 1958:Q2 to 2002:Q4 for PUXX, and 1960:Q2 to 2002:Q4 for PCE.

We define the quarterly inflation rate,πt, from t− 1 to t as:

πt = log

(
Pt

Pt−1

)
, (1)

wherePt is the level of one of the four inflation indices at timet. We use the terms “inflation”

and “inflation rate” interchangeably as defined in equation (1). We take one quarter to be our

base unit.

In our main analysis, we assume that the inflation rate is stationary. Economically, it is hard

to interpret non-stationary inflation and difficult to generate non-stationary inflation in standard

rational models. In particular, non-stationary inflation can only arise in standard overlapping

contract models of inflation by the presence of non-stationary excess demand (see, for example,

comments by Fuhrer and Moore (1995)). The empirical work on inflation forecasting has either

assumed that inflation is stationary (see Bryan and Cecchetti (1993)), or that inflation has a unit

root (see, for example, Quah and Vahey (1995) and Stock and Watson (1999)). In finance, there

is also a tradition of assuming that inflation is non-stationary (see, for instance, Nelson and

Schwert (1977)). While standard unit root tests sometimes fail to reject the null of a unit root
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for inflation, more powerful tests like those developed by Bai and Ng (2004) strongly reject the

null that the inflation rate is a unit root process and conclude that it is stationary. Even using

standard unit root tests, Stock and Watson (1999) reject the null of a unit root for inflation pre-

1982. Nevertheless, we also consider the robustness of our results to considering non-stationary

inflation in Section 5.

Table 1 reports summary statistics for all four measures of inflation for the full sample in

Panel A, and the post-1985 sample and the post-1995 sample in Panels B and C, respectively.

The inflation rate data are annual horizon but at a quarterly frequency. We report the fourth

quarterly autocorrelation, which corresponds to the annual horizon. Table 1 shows that all four

inflation measures are lower and more stable during the last two decades, in common with

many other macroeconomic series, including output (see Kim and Nelson (1999), McConnell

and Perez-Quiros (2000), and Stock and Watson (2002b)). Core CPI (PUXX) has the lowest

volatility of all the inflation measures. PUXX volatility ranges from 2.56% per annum over the

full sample to only 0.24% per annum post-1996, dramatically showcasing the fall in food and

energy shocks in the later part of the sample. As is well known, PCE inflation is, on average,

lower than CPI inflation, particularly in the later sample periods, because it uses chain weighting

in contrast to the other CPI measures which use a fixed basket (see Stock and Watson (1999)).

Inflation is somewhat persistent (0.79% for PUNEW over the full sample), but its persistence

decreases over time, as can be seen from the lower autocorrelation coefficients for the PUNEW

and the PUXHS measures after 1986, and for all measures after 1995. The correlations of

the four measures of inflation with each other are all over 75% over the full sample. The

comovement can be clearly seen in the top panel of Figure 1. Inflation is lower prior to 1969 and

after 1983, but reaches a high of around 14% during the oil crisis of 1973–1983. PUXX tracks

both PUNEW and PUXHS closely, except during the 1973–1975 period, where it is about 2%

lower than the other two measures, and after 1985, where it appears to be more stable than the

other two measures. During the periods when inflation is decelerating, such as in 1955–1956,

1987–1988, 1998–2000 and most recently 2002–2003, PUNEW declines more gradually than

PUXHS, suggesting that housing prices are less volatile than the prices of other consumption

goods during these periods.

2.2 Real Activity Measures

We consider six individual series for real activity along with one composite real activity factor.

We compute GDP growth (GDPG) using the seasonally adjusted data on real GDP in billions

of chained 2000 dollars. The unemployment rate (UNEMP) is also seasonally adjusted and
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computed for the civilian labor force aged 16 years and over. Both real GDP and the unem-

ployment rate are from the Federal Reserve Economic Data (FRED) database. We compute

the GDP gap either as the detrended log real GDP by removing a quadratic trend as in Gali

and Gertler (1999), which we termGAP1, or by using the Hodrick-Prescott (1997) filter (with

the standard smoothness parameter of 1,600), which we termGAP2. At time t, both measures

are constructed using only current and past GDP values, so the filters are run recursively. We

also use the labor income share (LSHR), defined as the ratio of nominal compensation to total

nominal output in the U.S. nonfarm business sector. For forward-looking indicators, we take

the Stock-Watson (1989) Experimental Leading Index (XLI) and the Alternative Nonfinancial

Experimental Leading Index-2 (XLI-2).

Motivated from studies like Stock and Watson (2002a), who show that aggregating the infor-

mation from many factors has good forecasting power, we also use a single factor aggregating

the information from 65 individual series. This single real activity series, which we termFAC,

aggregates real output and income, employment and hours, consumption, housing starts and

sales, real inventories, and average hourly earnings, and is constructed by Bernanke, Boivin and

Eliasz (2005). The sample period for all the real activity measures is from 1952:Q2 to 2001:Q4,

except the Bernanke-Boivin-Eliasz real activity factor, which spans 1959:Q1 to 2001:Q3. We

use the composite real activity factor at the end of each quarter for forecasting inflation over the

next year.

The real activity measures have the disadvantage that they may be using information that is

not actually available at the time of the forecast, either through data revisions, or because of full

sample estimation in the case of the Bernanke-Boivin-Eliasz measure. This biases the forecasts

from Phillips curve models to be better than what could be actually forecasted using a real-time

data set. Orphanides and van Norden (2001) show that real-time economic activity measures

provide much less accurate forecasts of inflation than revised economic series. Bernanke and

Boivin (2003) also find that forecasts from factors extracted from many macro economic series

are clearly inferior to forecasts based on macro factors using revised series. Thus, our forecast

errors using real activity measures are biased downwards.

2.3 Term Structure Data

The term structure variables are zero-coupon yields for the maturities of 1, 4, 8, 12, 16, and 20

quarters from CRSP spanning 1952:Q2 to 2001:Q4. The 1-quarter rate is from the CRSP Fama

risk-free rate file, while all other bond yields are from the CRSP Fama-Bliss discount bond file.

All yields are continuously compounded and expressed at a quarterly frequency. We define the
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short rate (RATE) to be the 1-quarter yield and define the term spread (SPD) to be the difference

between the 20-quarter yield and the short rate. Some of our term structure models also use

4-quarter and 12-quarter yields for estimation.

2.4 Surveys

We examine three inflation expectation surveys: the Livingston survey, the Survey of Profes-

sional Forecasters (SPF), and the Michigan survey.1 There are some reporting lags between

the time the surveys are taken and the public dissemination of their results. For the Livingston

and the SPF surveys, there is a lag of up to four and three weeks, respectively, between the

time the survey is conducted and their publication. For the Michigan survey, the lag is up to

three weeks. This reporting delay does not mean that using survey information entails the use

of forward-looking information not in the current information set. Indeed, because of the time

taken to conduct the surveys, survey forecasts must use less up-to-date information than either

macroeconomic or term structure forecasts. Together with the slight data advantages present

in revised, fitted macro data, we are in fact biasing the results against survey forecasts. The

information contained in survey data can be collected in real time with sufficient resources.

However, the reporting lag for the Livingston, SPF, and Michigan surveys does mean that fore-

casts for the next year from these surveys are only available with a small delay of, at most, four

weeks already into the year.

The Livingston survey is conducted twice a year, in June and in December, and polls

economists from industry, government, and academia. The Livingston survey records partic-

ipants’ forecasts of non-seasonally-adjusted CPI levels 6 and 12 months in the future and is

usually conducted in the middle of the month. Unlike the Livingston survey, participants in

the SPF and the Michigan survey forecast inflation rates. Participants in the SPF are drawn

primarily from business, and forecast changes in the quarterly average of seasonally-adjusted

CPI-U levels. The SPF is conducted in the middle of every quarter and the sample period for

the SPF median forecasts is from 1981:Q3 to 2002:Q4. In contrast to the Livingston survey

and SPF, the Michigan survey is conducted monthly and asks households (consumers), rather

1 We obtain data for the Livingston survey and SPF data from the Philadelphia Fed website (http://www.phil.frb.

org/econ/liv and http://www.phil.frb.org/econ/spf, respectively). We take the Michigan survey data from the St.

Louis Federal Reserve FRED database (http://research.stlouisfed.org/fred2/series/MICH/). Median Michigan sur-

vey data is also available from the University of Michigan’s website (http://www.sca.isr.umich.edu/main.php.

However, there are small discrepancies between the two sources before September 1996. We choose to use data

from the FRED because it is consistent with the values reported in Curtin (1996).
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than professionals, to estimate expected price changes over the next twelve months. We use the

median Michigan survey forecast from 1978:Q1 to 2002:Q4.

The Livingston survey is the only survey available for our full sample. In the top panel of

Figure 1, which graphs the full sample of inflation data, we also include the unadjusted median

Livingston forecasts. We plot the survey forecast lagged one year, so that in December 1990,

we plot inflation from December 1989 to December 1990 together with the survey forecasts at

December 1989. The Livingston forecasts broadly track the movements of inflation, but there

are several large movements that the Livingston survey fails to track, for example the pickup in

inflation in 1956–1959, 1967–1971, 1972–1975, and 1978–1981. In the bottom panel of Fig-

ure 1, we graph all three survey forecasts of future one-year inflation together with the annual

PUNEW inflation, where the survey forecasts are lagged one year for direct comparison. After

1981, all survey forecasts move reasonably closely together and track inflation movements rel-

atively well. Nevertheless, there are still some notable failures, like the slowdowns in inflation

in the early 1980s and in 1996.

3 Forecasting Models and Methodology

In this section, we describe the forecasting models and describe our statistical tests. In all

our out-of-sample forecasting exercises, we forecast future annual inflation. Hence, for all our

models, we compute annual inflation forecasts of:

Et(πt+4,4) = Et

(
4∑

i=1

πt+i

)
, (2)

whereπt is the quarterly inflation rate defined in equation (1) andπt+4,4 is annual inflation from

t to t + 4:

πt+4,4 = πt+1 + πt+2 + πt+3 + πt+4 (3)

In Sections 3.1 to 3.4, we describe the forecasting models. Table 2 contains a full nomen-

clature of these 38 forecasting models. Section 3.1 focuses on time-series models of inflation,

which serve as our benchmark forecasts; Section 3.2 summarizes our OLS regression models

using real activity macro variables; Section 3.3 describes the term structure models incorpo-

rating inflation data; and finally, Section 3.4 describes our survey forecasts. In Section 3.5,

we define the out-of-sample periods and list the criteria that we use to assess the performance

of out-of-sample forecasts. Finally, Section 3.6 describes our methodology to combine model

forecasts.
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For all models except OLS regressions, we compute implied long-horizon forecasts from

single-period (quarterly) models, as Marcellino, Stock and Watson (2004) show that iterated

forecasts are superior to direct forecasts from horizon-specific models. For OLS regressions,

we compute the forecasts directly from the long-horizon regression estimates since the OLS

models do not specify a unique, underlying single-period model.

3.1 Time-Series Models

ARIMA Models

If inflation is stationary, the Wold theorem suggests that a parsimonious ARMA(p, q) model

may perform well in forecasting. We consider two ARMA(p, q) models: an ARMA(1,1) model

and a pure autoregressive model withp lags, AR(p). The optimal lag length for the AR model

is selected for each forecasting period using the Schwartz criterion (BIC) on the in-sample data.

The motivation for the ARMA(1,1) model derives from a long tradition in rational expectations

macroeconomics (see Hamilton (1985)) and finance (see Fama (1975)) that models inflation as

the sum of expected inflation and noise. If expected inflation follows an AR(1) process, then the

reduced-form model for inflation is given by an ARMA(1,1) model. The ARMA(1,1) model

also nicely fits the slowly decaying autocorrelogram of inflation.

The specifications of the ARMA(1,1) model,

πt+1 = µ + φπt + ψεt + εt+1, (4)

and the AR(p) model,

πt+1 = µ + φ1πt + φ2πt−1 + . . . + φpπt−p+1 + εt+1, (5)

are entirely standard. The ARMA(1,1) model is estimated by maximum likelihood, conditional

on a zero initial residual. We compute the implied inflation level forecast over the next year

expressed at a quarterly frequency. For the ARMA(1,1) model, the forecast is:

Et(πt+4,4) =
1

1− φ

[
1− φ (1− φ4)

(1− φ)

]
µ +

φ (1− φ4)

(1− φ)
πt +

(1− φ4) ψ

(1− φ)
εt,

while the forecast for the AR(p) model is:

Et(πt+4,4) = e′1 (I − Φ)−1 (
I − Φ (I − Φ)−1 (

I − Φ4
))

A + e′1Φ (I − Φ)−1 (
I − Φ4

)
Xt,

wheree1 is ap× 1 selection vector containing a one in the first row and zeros elsewhere, andA

andΦ represent the companion form representation of the AR(p) process:

Xt+1 = A + ΦXt + Ut+1,
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in which

Xt =




πt

πt−1

...

πt−p+1




, A =




µ

0
...

0




, Φ =




φ1 φ2 ... φp

1 0 ... 0
...

...
. ..

...

0 0 ... 0




andUt =




εt

0
...

0




.

Since inflation is persistent, our third ARIMA benchmark is a random walk (RW) forecast

whereπt+1 = πt + εt+1, andEt(πt+4,4) = 4πt. We also comment on the forecasting results of

a random walk model on annual inflation, where the forecast is given byEt(πt+4,4) = πt,4.

A Regime-Switching Model

Evans and Wachtel (1993), Evans and Lewis (1995), and Ang and Bekaert (2004), among oth-

ers, document regime-switching behavior in inflation. A regime-switching model may poten-

tially account for non-linearities and structural changes, where, for example, a change in regime

may occur from a sudden shift in inflation expectations after a supply shock.

We estimate a univariate regime-switching model in inflation, which we termRGM:

πt+1 = µ (st+1) + φ (st+1) πt + σ (st+1) εt+1 (6)

The regime variablest = 1, 2 follows a Markov chain with constant transition probabilities

P = Pr(st+1 = 1|st = 1) andQ = Pr(st+1 = 2|st = 2). The model can be estimated using

the Bayesian filter algorithms of Hamilton (1989) and Gray (1996). We compute the implied

annual horizon forecasts of inflation from equation (6), assuming that the current regime is the

regime that maximizes the probabilityPr(st|It). This is a byproduct of the Hamilton-Gray

estimation algorithm.

3.2 Regression Forecasts Based on the Phillips Curve

In standard Phillips curve models of inflation, expected inflation is linked to some measure

of the output gap. There are both forward- and backward-looking Phillips curve models, but

ultimately even forward-looking models link expected inflation to the current information set.

According to the Phillips curve, measures of real activity should be an important part of this

information set. We avoid the debate regarding regarding the actual measure of the output

gap (see, for instance, Gali and Gertler (1999)) by taking an empirical approach and use a

large number of real activity measures. We choose not to estimate structural models because

the BIC criterion is likely to choose the empirical model best suitable for forecasting. Previous
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work often finds that models with the clearest theoretical justification often have poor predictive

content (see the literature summary by Stock and Watson (2003)).

The empirical specification we estimate is:

πt+4,4 = α + β(L)′Xt + εt+4,4 (7)

whereXt combinesπt and one or two real activity measures. The lag length in the lag poly-

nomialβ(L) is selected by BIC for each forecasting period and is set to be equal across all the

regressors inXt. The chosen specification tends to have two or three lags in our forecasting

exercises. We list the complete set of real activity regressors in Table 2 asPC1to PC10.

In our next section, we extend the information set to include term structure information.

Regression models where term structure information is included inXt along with inflation

and real activity are potentially consistent with a forward-looking Phillips curve that includes

inflation and real activity measures in the information set. Such models can proxy the reduced

form of a more sophisticated, forward-looking rational expectations Phillips curve model of

inflation (see, for instance, Bekaert, Cho and Moreno (2005)).

3.3 Models Using Term Structure Data

We consider a variety of term structure forecasts, including augmenting the simple Phillips

Curve OLS regressions with short rate and term spread variables; long-horizon VAR forecasts;

a regime-switching specification; affine term structure models; and term structure models in-

corporating regime switches. We outline each of these specifications in turn.

Linear Non-Structural Models

We begin by augmenting the OLS Phillips Curve models in equation (7) with the short rate,

RATE, and the term spread, SPD, as regressors inXt. SpecificationsTS1–TS8add RATE to

the Phillips Curve Curve specificationsPC1–PC8. TS9andTS10only use inflation and term

structure variables as predictors.TS9uses inflation and the lagged term spread, producing a

forecasting model similar to the specification in Mishkin (1990, 1991).TS10adds the short rate

to this specification. Finally,TS11adds GDP growth to theTS10specification.

We also consider forecasts with a VAR(1) inXt, whereXt contains RATE, SPD, GDPG,

andπt:

Xt+1 = µ + ΦXt + εt+1. (8)

Although the VAR is specified at a quarterly frequency, we compute the annual horizon fore-

cast of inflation implied by the VAR. We denote this forecasting specification asVAR. As Ang,
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Piazzesi and Wei (2004) and Cochrane and Piazzesi (2005) note, a VAR specification can be

economically motivated from the fact that a reduced from VAR is equivalent to a Gaussian

term structure model where the term structure factors are observable yields and certain assump-

tions on risk premia apply. Under these restrictions, a VAR coincides with a no-arbitrage term

structure model only for those yields included in the VAR. However, the VAR does not impose

over-identifying restrictions generated by the term structure model for yields not included as

factors in the VAR.

An Empirical Non-Linear Regime-Switching Model

A large empirical literature has documented the presence of regime switches in interest rates

(see, among others, Hamilton (1988), Gray (1996), and Bekaert, Hodrick and Marshall (2001)).

In particular, Ang and Bekaert (2002) show that regime-switching models forecast interest rates

better than linear models. Thus, capturing the regime-switching behavior in interest rates may

help in forecasting potentially regime-switching dynamics of inflation.

We estimate a regime-switching VAR:

Xt+1 = µ(st+1) + ΦXt + Σ(st+1)εt+1, (9)

whereXt contains RATE, SPD andπt. Similar to the time-series univariate regime-switching

model in equation (6), we also use two regimesst = 1, 2 that follow a Markov chain with con-

stant transition probabilities. We compute out-of-sample forecasts from equation (9) assuming

that the current regime is the regime with the highest probabilityPr(st|It). We denote the

regime-switching VAR in equation (9) asRGMVAR.

No-Arbitrage Term Structure Models

We estimate two no-arbitrage term structure models. Because such models have implications

for the complete yield curve, it is straightforward to incorporate additional information from

the yield curve into the estimation. Such additional information is absent in the empirical VAR

specified in equation (8). Concretely, both no-arbitrage models have two latent variables and

quarterly inflation as factors inXt. We estimate the models by maximum likelihood, and fol-

lowing Chen and Scott (1993), assume that the 1- and 20-quarter yields are measured without

error, and the other 4- and 12-quarter yields are measured with error. The estimated models

build on Ang and Bekaert (2004), who formulate a real pricing kernel as:

M̂t+1 = exp (−rt + λ′tλt − λtεt+1) , (10)
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and model the real short rate as an affine function of the state variables. The nominal pricing

kernel is defined in the standard way asMt+1 = M̂t+1Pt/Pt+1. Bonds are priced using the

recursion:

exp(−nyn
t ) = Et[Mt+1 exp(−(n− 1)yn−1

t+1 )],

whereyn
t is the n-quarter zero-coupon bond yield.

The first no-arbitrage model (MDL1) is an affine model from the class of Duffie and Kan

(1996) with affine, time-varying risk premia (see Dai and Singleton (2002) and Duffee (2002)).

The real price of risk vector,λt, is modelled as:

λt = λ0 + λ1Xt. (11)

whereλ0 is a3× 1 vector andλ1 a3× 3 diagonal matrix, and the state variables follow a linear

VAR:

Xt = µ + ΦXt−1 + Σεt+1. (12)

The second model (MDL2) incorporates regime switches and represents Model IV of Ang

and Bekaert (2004). Ang and Bekaert show that this model has an amazing fit to the moments

of yields and inflation and almost exactly matches the autocorrelogram of inflation. MDL2

replaces equation (12) with the regime-switching VAR:

Xt = µ(st+1) + ΦXt−1 + Σ(st+1)εt+1, (13)

and also incorporates regime switches in the prices of risk, replacing equation (11) with

λt = λ0(st+1) + λ1Xt. (14)

In estimatingMDL1 andMDL2, we impose the same parameter restrictions necessary for

identification as Ang and Bekaert (2004) do. For bothMDL1 andMDL2, we compute recursive

out-of-sample forecasts of annual inflation, but the models are estimated and specified using

quarterly data.

3.4 Survey Forecasts

We produce estimates ofEt(πt+4,4) from the Livingston survey, SPF, and the Michigan survey.

We denote the actual forecasts from the SPF, Livingston and Michigan surveys asSPF1, LIV1,

andMCH1, respectively.
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Producing Forecasts from Survey Data

Participants in the Livingston survey are asked to forecast a CPI level (not an inflation rate).

Given the timing of the survey, Carlson (1977) carefully studies the forecasts of individual

participants in the Livingston survey and finds that the participants generally forecast inflation

over the next 14 months. We follow Thomas (1999) and Mehra (2002) and derive the implied

12-month inflation forecast, assuming that inflation is expected to stay constant during the 14-

month forecasting interval. That is, the raw Livingston forecasts are adjusted by a factor of

12/14.

Participants in both the SPF and the Michigan survey do not forecast log year-on-year CPI

levels according to the definition of inflation in equation (1). Instead, the surveys record simple

expected inflation changes,Et(Pt+4/Pt − 1). This differs fromEt(log Pt+4/Pt) by a Jensen’s

term. In addition, the SPF participants are asked to forecast changes in the quarterly average of

seasonally-adjusted PUNEW (CPI-U), as opposed to end-of-quarter changes. In both the SPF

and the Michigan survey, we cannot directly recover forecasts of expected log changes in CPI

levels. Instead, we directly use the SPF and Michigan survey forecasts to represent forecasts

of future annual inflation as defined in equation (2). We expect that the effects of the Jensen’s

term and the use of changes in quarterly averages in the SPF, as opposed to changes in end

of quarter CPI levels, are small. In any case, the presence of the small Jensen’s term biases

our survey forecasts upwards and, thus, imparts a conservative upward bias to our Root Mean

Squared Error (RMSE) statistics.2

Adjusting Surveys for Bias

Several authors, including Thomas (1999) and Mehra (2002), document that survey forecasts

are biased. We take into account the survey bias by estimatingα1 andβ1 in the regressions:

πt+4,4 = α1 + β1f
S
t + εt+4,4, (15)

wherefS
t is the forecast from the candidate surveyS. A test of an unbiased forecasting model

is α1 = 0 andβ1 = 1. We denote survey forecasts that are adjusted this way asSPF2, LIV2, and

2 In the data, the correlation between log CPI changes,log(Pt+4/Pt) and simple inflation,Pt+4/Pt − 1 is

1.000 for all four measures of inflation across our full sample period. The correlation between end-of-quarter log

CPI changes and quarterly average CPI changes is also above 0.994. The differences in log CPI changes, simple

inflation, and changes in quarterly average CPI are very small, and an order of magnitude smaller than the forecast

RMSEs. As an illustration, for PUNEW, the means oflog(Pt+4/Pt), Pt+4/Pt − 1, and changes in quarterly

average CPI-U are 3.83%, 3.82%, and 3.86%, respectively, while the volatilities are 2.87%, 2.86%, and 2.91%,

respectively.
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MCH2 for the SPF, Livingston, and Michigan surveys, respectively. The bias adjustment occurs

recursively, that is, we update the regression with new data points each quarter and re-estimate

the coefficients.

Table 3 provides empirical evidence regarding these biases using the full sample. For each

inflation measure, the first three rows report the results from regression (15). The SPF and

Livingston survey forecasts produceβ1s that are smaller than 1 for all inflation measures, and

in the case of the SPF forecasts significantly so. However, the point estimates ofα1 are also

positive, although mostly not significant, which implies that at low levels of inflation, the sur-

veys under-predict future inflation and at high levels of inflation the surveys over-predict future

inflation. For the Livingston measure, the turning point is rather high in the3 to 4% annual

inflation range, but for the SPF measure, the turning point is at most2.75%, so that it mostly

over-predicts future inflation. The Michigan survey produces largely unbiased forecasts because

the slope coefficients are insignificantly different from one and the constants are insignificantly

different from zero.

Thomas (1999) and Mehra (2002) suggest that the bias in the survey forecasts may vary

across accelerating versus decelerating inflation environments, or across the business cycle. To

take account of this possible asymmetry in the bias, we augment the survey forecasts in equation

(15) with a dummy variable if current inflation is greater than a two-year moving average of past

inflation:

πt+4,4 = α1 + α2Dt + β1f
S
t + β2

(
Dtf

S
t

)
+ εt+4,4. (16)

The dummy variableDt equals one if inflation at timet exceeds its past two-year average,

πt − 1

8

7∑
j=0

πt−j > 0,

otherwiseDt is set equal to zero. We denote the survey forecasts that are non-linearly bias-

adjusted using equation (16) asSPF3, LIV3, andMCH3 for the SPF, Livingston, and Michigan

surveys, respectively.

The bottom three rows of each panel in Table 3 report results from regression (16). There

is little evidence of asymmetric bias for forecasting PUXX or PCE. When we use the SPF or

the Michigan survey forecasts, for all inflation measures, there is only weak evidence of non-

linearity in the coefficients. In contrast, for the Livingston survey forecasts and the PUNEW

and PUXHS inflation measures, theβ2 estimates are significantly positive, implying quite dif-

ferent biases depending on whether inflation is rising or falling relative to a moving average.

Note that overall theα2 coefficients are negative and theβ2 coefficients are positive. Hence,
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the SPF and Livingston forecasts are closer to being unbiased when inflation is rising. For the

Michigan survey, the economic magnitudes of bothα2 andβ2 are large (except for PUXX) and

imply very different behavior of the forecasts in rising inflation environments relative to other

periods. When inflation has increased recently, the Michigan survey over- (under-) estimates fu-

ture inflation at low (high) inflation levels, whereas the opposite occurs in decelerating inflation

environments.

3.5 Assessing Forecasting Models

Out-of-Sample Periods

We select two starting dates for our out-of-sample forecasts, 1985:Q4 and 1995:Q4. All our out-

of-sample forecasts use all the data available at timet to forecast annual future inflation fromt to

t + 4. Hence, the windows used for estimation lengthen through time. All our annual forecasts

are computed at a quarterly frequency, with the exception of forecasts from the Livingston

survey, where forecasts are only available for the second and fourth quarter each year. The out-

of-sample periods end in 2002:Q4, except for forecasts with the composite real activity factor,

which end in 2001:Q3.

Measuring Forecast Accuracy

We assess forecast accuracy with the Root Mean Squared Error (RMSE) of the forecasts pro-

duced by each model and also report the ratio of RMSEs relative to a time-series ARMA(1,1)

benchmark that uses only information in the past series of inflation. We show below that the

ARMA(1,1) model produces the lowest RMSE among all of the ARIMA time-series models

that we examine.

To compare the out-of-sample forecasting performance of the various models, we perform

a forecast comparison regression, following Stock and Watson (1999):

πt+4,4 = λfARMA
t + (1− λ)fx

t + εt+4,4, (17)

wherefARMA
t is the forecast ofπt+4,4 from the ARMA(1,1) time-series model,fx

t is the fore-

cast from the candidate modelx, and εt+4,4 is the forecast error associated with the com-

bined forecast. The forecast error follows an MA(3) process because of the overlapping an-

nual observations taken at a quarterly frequency. Therefore, we compute Hansen and Hodrick

(1980) standard errors. Ifλ = 0, then forecasts from the ARMA(1,1) model add nothing to

the forecasts from candidate modelx, and we thus conclude that modelx out-performs the
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ARMA(1,1) benchmark. Ifλ = 1, then forecasts from modelx add nothing to forecasts from

the ARMA(1,1) time-series benchmark.

3.6 Combining Models

A long statistics literature has often found that forecast combinations typically provide bet-

ter forecasts than individual forecasting models.3 In particular, Stock and Watson (1999) and

Wright (2004), among others, show that combined forecasts of future inflation using real ac-

tivity and financial indicators are usually more accurate than individual forecasts. To examine

if combining the information in different forecasts lead to gains in out-of-sample forecasting

accuracy, we examine five different methods of combining forecasts. All these methods involve

placing different weights overn individual forecasting models. The five model combining

methods can be summarized as follows:

Combination Methods Post-1985 sample Post-1995 sample

1. Mean ex-ante ex-ante

2. Median ex-ante ex-ante

3. OLS ex-post ex-post/ex-ante

4. Equal Weight Prior ex-post ex-post/ex-ante

5. Unit Weight Prior ex-post ex-post/ex-ante

We distinguish betweenex-anteandex-postmodel combinations. Ex-ante optimal weights

are computed using the history of out-of-sample forecasts up to timet. For example, the weights

used to construct the ex-ante combined forecast in 2000:Q4 is based on a regression of realized

annual inflation over 1985:Q4 to 2000:Q4 on the constructed out-of-sample forecasts for the

same period. We examine ex-ante model combinations for the 1995:Q4 to 2002:Q4 period.

Hence, the ex-ante method assesses actual out-of-sample forecasting power of combination

methods.

We also ask the question whether ex-post, a particular combination of models would have

performed better than individual forecasts. In the ex-post exercise, we use all the information in

the sample to construct a single set of optimal weights. The ex-post analysis cannot be used for

actual forecasting, but it provides us a picture of which models would have been most successful

ex-post forecasting inflation out-of-sample. We examine ex-post model combinations for the

3 See the literature reviews by, among others, Clemen (1989), Diebold and Lopez (1996), and more recently

Timmermann (2004).
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two samples 1985:Q4 to 2002:Q4 and 1995:Q4 to 2002:Q4.

In the first two model combining methods, we simply look at the overall mean and median,

respectively, overn different forecasting models. These are simple ex-ante forecasts with fixed

weights. Equal weighting of many forecasts has been used as early as Bates and Granger (1969)

and, in practice, simple equal-weighting forecasting schemes are hard to beat. In particular,

Stock and Watson (2003) show that this method produces superior out-of-sample forecasts of

inflation. In the last three combination methods, we compute different individual model weights

that vary over time. These weights are estimated as slope coefficients in a regression of realized

inflation on model forecasts

πt+4,4 =
n∑

i=1

ωi
tf

i
t + εt,t+4, t = 1, . . . , T, (18)

wheref i
s is thei-th model forecast at times. Then × 1 weight vectorωt = {ωi

t} is estimated

either by OLS, as in our third combining model specification, or using the mixed regressor

method proposed by Theil and Goldberger (1961) and Theil (1963), as in Combination Methods

4 and 5.

To describe the last two combination methods, we set up some notation. Suppose we have

T forecast observations withn individual models. LetF be theT × n matrix of forecasts and

π theT × 1 vector of actual future inflation levels that are being forecast. Consequently, the

s-th row ofF is given byFs = {f 1
s , ...fn

s }. The mixed regression estimator can be viewed as a

Bayesian estimator with the priorω ∼ N (µ, σ2
ωI), whereσ2

ω is a scalar andI then×n identity

matrix. The estimator can be derived as:

ω̂ = (F ′F + γI)−1 (F ′π + γµ) , (19)

where the parameterγ controls the amount of shrinkage towards the prior. In particular, when

γ = 0, the estimator simplifies to standard OLS, and whenγ → ∞, the estimator approaches

the prior. It is instructive to re-write the estimator as a weighted average of the OLS estimator

and the prior:

ω̂ = θOLS ωOLS + θprior µ

with θOLS = (F ′F + γI)−1 (F ′F ) andθprior = (F ′F + γI)−1 (γI), so that the weights add up

to the identity matrix.

We use empirical Bayes and estimate the shrinkage parameter as:

γ̂ = σ̂2/σ̂2
ω, (20)
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where

σ̂2 =
1

T
π′

[
I − F (F ′F )

−1
F ′

]
π

and

σ̂2
ω =

π′π − T σ̂2

trace (F ′F )
.

To interpret the shrinkage parameter, observe thatσ̂2 is simply the residual variance of the

regression; the numerator ofσ̂2
ω is the fitted variance of the regression and the denominator is the

average variance of the independent variables (the forecasts) in the regression. Consequently,

the shrinkage parameter,γ, in equation (20) increases when the variance of the independent

variables becomes larger, and decreases as theR2 of the regression increases. In other words,

if forecasts are (not) very variable and the regressionR2 is small (large), we trust the prior (the

regression).

We examine the effect of two priors. In Model Combination 4, we use an equal-weight prior

where each element ofµ, µi = 1/n, i = 1, . . . , n, which leads to the Ridge regressor used by

Stock and Watson (1999). In the second prior (Model Combination 5), we assign unit weight

to one type of forecast, for example,µ = {0 . . . 1 . . . 0}′. One natural choice for a unit weight

prior would be to choose the best performing univariate forecast model.

When we compute the model weights, we impose the constraint that the weight on each

model is positive and the weights sum to one. This has the natural interpretation that the weights

represent the best combination of models that give good forecasts in their own right, rather

than placing negative weights on models that give consistently wrong forecasts. This is also

very similar to shrinkage methods of forecasting (see Stock and Watson (2005)). For example,

Bayesian Model Averaging uses posterior probabilities as weights (which are, by construction,

positive and sum to one).4 The positivity constraint is imposed by minimizing the usual loss

function,L, associated with OLS:

L = (π − Fω)′ (π − Fω) ,

and a loss function for the mixed regressor estimations:

L =
(π − Fω)′ (π − Fω)

σ̂2
+

(ω − µ)′ (ω − µ)

σ̂2
ω

,

subject to the positivity constraints.

4 Diebold (1988) shows that when the target is persistent, as in the case of inflation, the forecast error from the

combination regression will typically be serially correlated and hence predictable, unless the constraint that the

weights sum to one is imposed.

19



4 Empirical Results

Section 4.1 lays out our main empirical results for the forecasts of time-series models, OLS

Phillips curve regressions, term structure models, and survey forecasts. We provide interpreta-

tions of our results in Section 4.2. In Section 4.3, we examine forecast combinations.

4.1 Forecast Accuracy

Time-Series Models

In Table 4, we report RMSE statistics, in annual percentage terms, for the ARIMA model out-

of-sample forecasts over the the post-1985 and post-1995 periods. The RMSEs generally range

from around 0.6-0.7% for PUXX to around 1.5% for PUXHS. Among the ARIMA models,

the ARMA(1,1) model generates the lowest RMSE in forecasting all inflation series except

PUNEW and core inflation (PUXX) post-1995. The random walk model also outperforms the

ARMA model for PUXX because this measure is less variable than the other inflation measures

over this sample period (see Table 1).5 In the remainder of the paper, we use the ARMA(1,1)

model as the benchmark model.

Table 4 also reports the results of the non-linear regime-switching model, RGM. Over the

post-1985 period, RGM generally performs in line with, and slightly worse than, a standard

ARMA model. There is some evidence that non-linearities are important for forecasting in

the post-1995 sample, where the regime-switching model outperforms the ARIMA models in

forecasting PUNEW and PUXHS. Both these inflation series become much less persistent post-

1995, and the RGM model captures this by transitioning to a regime of less persistent inflation.

However, the Hamilton (1989) RGM model performs worse than a linear ARMA model for

forecasting PUXX and PCE.

OLS Phillips Curve Forecasts

Table 5 reports the out-of-sample RMSEs and the model comparison regression estimates (equa-

tion (17)) for the Phillips curve models described in Section 3.2, relative to the benchmark of

5 We find that a random walk model on annual inflation performs better than the random walk model on quarterly

inflation for all measures. However, this model still fails to beat the best time-series models for PUNEW and

PUXHS, and still fails to beat the surveys for all three of the CPI inflation measures, PUNEW, PUXHS and PUXX

(see below). It performs best when forecasting PCE inflation, generating lower RMSEs than the best quarterly

models in both samples.
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the ARMA(1,1) model. The overall picture in Table 5 is that the ARMA(1,1) model typically

outperforms any Phillips curve forecast. Of the 80 comparisons (10 models, 2 out-samples,

and 4 inflation measures), the model comparison regression coefficient(1 − λ) is significantly

positive in only 9 out of 80 cases. A Phillips curve forecast also beats the ARMA(1,1) model

in terms of RMSE in only 9 out of 80 cases. Hence, the predictive ability of the Phillips curve

models is generally weak, relative to the time-series forecasts.

The OLS Phillips curve regressions are most successful in forecasting core inflation, PUXX.

Of the 9 cases where the Phillips curve beats the ARMA(1,1) model, 5 occur for PUXX. The

best model forecasting PUXX inflation uses the composite Bernanke-Boivin-Eliasz aggregate

real activity factor (PC8), which strongly rejects the null that forecasts from the Phillips curve

add nothing to the ARMA(1,1) benchmark. However, the aggregate macro-economic factor

(constructed with look-ahead bias!) fares rather poorly in forecasting the other inflation mea-

sures (PUNEW, PUXHS, and PCE).

Another relatively successful Phillips curve specification is the PC7 model that uses the

Stock-Watson nonfinancial Experimental Leading Index-2. This index does not embed asset

pricing information. PC7 generates significantly positive(1 − λ) coefficients for PUNEW,

PUXHS, and PCE in the post-1985 sample, but does not produce significant(1−λ) coefficients

in the post-1995 sample. For the post-1985 sample, the RMSEs of PC7 are also all higher

than the RMSE of an ARMA(1,1) model. In contrast, the PC1 model, which simply uses past

inflation and past GDP growth, delivers 5 of the 9 relative RMSEs below one and beats PC7 in

all but one case.

Term Structure Forecasts

In Table 6, we report the out-of-sample forecasting results for the various term structure models

(see Section 3.3). Generally, the term structure based forecasts perform worse than the Phillips-

curve based forecasts. Over a total of 120 statistics (15 models, 4 inflation measures, 2 sample

periods), term structure based-models beat the ARMA(1,1) model in only 10 cases in terms of

producing smaller RMSE statistics.

The coefficient(1 − λ) is significantly positive in 16 out of 120 horse race regressions. Of

these 16 cases, 10 occur for forecasting core inflation, PUXX, which is the inflation measure

most successfully forecasted by the term structure models. In particular, the model TS1 that

includes inflation, GDP growth, and the short rate beats an ARMA(1,1) and has a very positive

(1 − λ) coefficient in both the post-1985 and post-1995 samples. The other models with term

structure information that are successful at forecasting PUXX are TS6 and TS8, both of which
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also include short rate information. The performance of TS6 is also impressive as it succeeds

in beating the RMSE of a random walk in both out-samples.

The finance literature has instead typically used term spreads, not short rates, to predict fu-

ture inflation changes (see, for example, Mishkin (1990, 1991)). In contrast to the relative suc-

cess of the models with short rate information, models TS9-TS11 that incorporate information

from the term spread perform badly and produce higher RMSE statistics than the benchmark

ARMA(1,1) model. In fact, using term spreads in unconstrained regressions leads to poor fore-

casting performance for all four inflation measures. The poor inflation forecasts for the term

spread is consistent with Estrella and Mishkin (1997) and Kozicki (1997), who find that the

forecasting ability of the term spread is diminished after controlling for lagged inflation. Af-

ter controlling for lagged inflation, the short rate still contains modest predictive power. Thus,

the short rate, not the term spread, contains the most predictive power in simple forecasting

regressions.

Table 6 shows that the performance for iterated VAR forecasts is mixed. VARs perform

well, in producing lower RMSE than an ARMA(1,1), for PUNEW and PUXHS over the post-

1995 sample, but otherwise deliver worse RMSEs than an ARMA(1,1). The relatively poor

performance of long-horizon VAR forecasts for inflation contrasts with the good performance

for VARs in forecasting GDP (see Ang, Piazzesi and Wei (2004)) and for forecasting other

macroeconomic time series (see Marcellino, Stock and Watson (2004)). The non-linear empiri-

cal regime-switching VAR (RGMVAR) fares much worse than the VAR and is always beaten by

an ARMA(1,1). This result stands in contrast to the relatively strong performance of the univari-

ate regime-switching model using only inflation data (RGM in Table 4) for forecasting PUNEW

and PUXX. This implies that the non-linearities in term structure data have no marginal value

for forecasting inflation above the non-linearities already present in inflation itself.

The last two lines of each panel in Table 6 shows that there is some evidence that no-

arbitrage forecasts (MDL1-2) are useful for forecasting PUXX by their significant(1 − λ)

coefficients. However, disappointingly, both no-arbitrage term structure models always fail

to beat the ARMA(1,1) forecasts in terms of RMSE. While the finance literature shows that

inflation is a very important determinant of yield curve movements, our results show that the

no-arbitrage cross-section of yields appears to provide little marginal forecasting ability for the

dynamics of future inflation over simple time-series models.

Surveys

Table 7 reports the results for the survey forecasts, and shows several notable results. First,
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surveys perform very well in forecasting PUNEW, PUXHS, and PUXX. With only one ex-

ception, the unadulterated survey forecasts SPF1, LIV1 and MICH1 have lower RMSEs than

ARMA(1,1) forecasts over both the post-1985 and the post-1995 samples (the exception is

MICH1 for PUXX over the post-1985 sample). For example, for the post-1985 (post-1995)

sample, the RMSE ratio of the raw SPF forecasts relative to an ARMA(1,1) is 0.779 (0.861)

when predicting PUNEW. For PUNEW, PUXHS, and PUXX, the horse races always assign

large, positive(1 − λ) weights to the pure survey forecasts (the lowest one is 0.383) in both

out-of-sample periods. In none of the cases can we reject the hypothesis that the ARMA(1,1)

time-series model adds nothing to the predictive power of the raw survey forecasts.

Second, while the SPF and Livingston surveys do a good job at forecasting all three mea-

sures of CPI inflation (PUNEW, PUXHS, and PUXX) out-of-sample, the Michigan survey is

relatively unsuccessful at forecasting core inflation, PUXX. It is not surprising that consumers

in the Michigan survey fail to forecast PUXX, since PUXX excludes food and energy which

are integral components of the consumer’s basket of goods. Note that while the PUNEW and

PUXHS measures have the highest correlations with each other, (over 98% in both out-samples

and over 95% over the full sample), core inflation is less correlated with the other CPI measures.

In particular, post-1995, the correlation of PUXX with PUNEW (PUXHS) is only 36% (26%).

Third, surveys do less well at forecasting PCE inflation, although there are a few significant

positive coefficients on the SPF survey forecasts in the horse races. For PCE inflation, surveys

almost always produce worse forecasts in terms of RMSE than an ARMA(1,1). This result is

expected because the survey participants are asked to forecast CPI inflation, not the consump-

tion deflator PCE. The PCE series is a deflator index, which is quite different to the fixed basket

CPI index.

Fourth, the raw survey forecasts outperform the linear or non-linear bias adjusted forecasts

(with the only notable exception being the bias-adjusted forecasts for PCE). As a specific ex-

ample, for PUNEW, the relative RMSE ratios are always higher for the models with suffix 2

(linear bias adjustment) or the models with suffix 3 (non-linear bias adjustment) compared to

the raw survey forecasts across all three surveys. This result is perhaps surprising due to the

evidence of non-linear survey bias, but consistent with the weak evidence of linear bias, in the

entire 1952-2002 sample (see Table 3). This implies the non-linear bias in survey forecasts is

small, relative to the total amount of forecast error in predicting inflation.

Finally, we might expect that the Livingston and SPF surveys produce good forecasts be-

cause they are conducted among professionals. In contrast, participants in the Michigan survey

are consumers, not professionals, yet the Michigan forecasts are of the same order of magnitude
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as the Livingston and SPF surveys. For example, for PUNEW over the post-1995 sample, the

Michigan RMSE ratio is 0.862, just slightly above the SPF RMSE ratio of 0.861. Hence, infor-

mation aggregated over non-professionals also produces accurate forecasts that beats ARIMA

time-series models!

The Livingston survey is the only survey available over our full sample, from 1952-2002.

As McConnell and Perez-Quiros (2000) and Stock and Watson (2002b), among others, note,

a notable feature of the post-1985 period is declining macro-economic volatility. Campbell

(2004) finds that professionals were considerably more adept at forecasting GDP prior to 1985

relative to a simple AR(1) model than after 1985. In fact, post-1985, SPF forecasts of GDP

perform worse than an AR(1) model. Thus, Campbell attributes a significant proportion of the

total decline in the volatility of GDP to a decline in predictability as well as uncertainty. To

see if the predictable components in inflation exhibit lower volatility than simple time-series

models, we compute the RMSE ratio of the out-of-sample forecasts for the Livingston survey

relative to an ARMA(1,1) model for 1960-1985 and 1986-2002, where the first 8 years are

used as an in-sample estimation period for the ARMA(1,1) model. Over the pre-1985 sample,

the Livingston RMSE ratio is 1.046 (with a RMSE level of 2.324), while over the post-1985

sample, the RMSE ratio is 0.789 (with a RMSE level of 0.896). In contrast to GDP forecasts,

professionals are more adept at forecasting inflation in the post-1985 period.

4.2 Summary and Interpretation

Let us summarize the results so far. First, the ARMA (1,1) model is the overall best ARIMA

time-series model and is relatively hard to beat across all the models. Nevertheless, quite often,

some models that incorporate real activity information, term structure information, or, espe-

cially, survey information beat the ARMA(1,1) model, even when ARMA(1,1) forecasts are

put in a forecast comparison regression. Second, the simplest Phillips curve model using only

past inflation and GDP growth is a good performer. Third, adding term structure information

often leads to an improvement in inflation forecasts, but generally only for core inflation. No-

arbitrage restrictions actually generally lead to deterioration in fit. Fourth, the survey forecasts

do very well in forecasting all inflation measures except PCE.

To get an overall picture of the relative forecasting power of the various models, Table 8

reports the relative RMSE ratios of the best models from each of the first three categories (pure

time-series, Phillips-curve, and term structure models) and of each raw survey forecast. The

most remarkable result in Table 8 is that for CPI inflation (PUNEW, PUXHS, and PUXX), the

survey forecasts completely dominate the Phillips curve or term structure models in both out-of-
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sample periods. For the post-1985 sample, the RMSEs are around 20% smaller for the survey

forecasts compared to forecasts from Phillips-curve or term structure models. The exception is

PCE inflation, which is hard to forecast. In fact, the best model for PCE in both out-samples is

just the ARMA(1,1)!

With the exception of PCE, the surveys consistently deliver the RMSEs that are among

the lowest for both the post-1985 and post-1995 periods. For the post-1985 sample, the best

forecast is always a survey. The performance of the survey forecasts remains impressive in the

post-1995 sample, but the Hamilton (1989) regime-switching model (RGM) has a slightly lower

RMSE for PUNEW and PUXHS. Nevertheless, the survey RMSE are very similar to this best

model. Impressively, the Livingston survey continues to deliver the most accurate forecast of

PUXX post-1995.

Among the Phillips curve and term structure forecasts, the most simple PC1 and TS1 regres-

sions frequently outperform more complicated models, especially for PUNEW. These regres-

sions only use standard GDP growth. Other measures of economic growth are more successful

at forecasting other measures of inflation. For PUXX inflation, PC8 produces forecasts that

beat an ARMA(1,1) model for both the post-1985 and post-1995 sample. The PC8 forecast-

ing model uses the Bernanke et al. (2005) composite indicator. More structured no-arbitrage

approaches deliver better forecasts than unrestricted OLS regressions with term structure data

only for MDL2 for PUXHS in the post-1985 sample. But, this specification still fails to beat

an ARMA(1,1) model. The final important result in Table 8 is that non-linearities are impor-

tant in forecasting inflation. For PUNEW and PUXHS, the univariate regime-switching model

(RGM) delivers the best individual performance across all models, including surveys, over the

post-1995 sample.

4.3 Combining Model Forecasts

Table 9 investigates how we can improve our forecasts by combining different models. We first

combine models within each of the four categories (time-series, Phillips curve, term structure,

and survey models), and then combine across all the models in the last column labelled “All

Models.” The models in the survey category are only the SPF and Michigan survey because the

Livingston survey is conducted at a semiannual frequency, as opposed to a quarterly frequency

for all the other models. Since Table 7 shows the Livingston forecasts to be very similar to

the SPF and Michigan surveys for PUNEW and PUXHS, and the best single forecaster for

PUXX, excluding the Livingston survey places a conservative higher bound on our RMSEs for

the forecast combinations involving surveys.
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We use four methods of model combination: means or medians over all the models, and

linear combinations using weights that are recursively computed using OLS or the mixed com-

bination regression with an equal-weight prior. We start the model combination regressions

at 1995:Q4 using realized inflation and the out-of-sample forecasts over 1985:Q4 to 1995:Q4.

At each subsequent period, we advance the data sample by one quarter and re-run the model

combination regression to obtain the slope coefficient estimates. We do not include the unit

prior as it requires finding the best model at each step. Below, we will show that even if we

pretend to know the best model (using look-ahead biased, full sample information), the unit

weight regressions do not significantly improve on the regressions reported here.

There are three main findings in Table 9. First, using mean or median forecasts mostly does

not improve the forecast performance relative to the best individual model. Taking the mean

only improves out-of-sample forecasts for the term structure models for PUNEW, PUXHS, and

PCE, but even here the improvements are tiny. Thus, simple methods of combining forecasts

provide little additional predictive power relative to the best model (observed ex-post). But, ex-

ante, model combinations can produce lower RMSEs than simple ARMA(1,1) models, as seen

by the simple means of all model forecasts for PUNEW and PUXHS, which produce RMSE

ratios less than one.

Second, updating the model weights based on previous model performance does not always

lead to superior performance. For the term structure models, OLS model combinations outper-

form means and medians for all inflation measures except for PUXHS inflation. However, only

for the PCE measure is using an OLS-based combination forecast better than the best individ-

ual model when all models are considered. Finally, the mixed equal-weight prior combination

generally outperforms the OLS forecast combination, but, it when it outperforms, its RMSE is

very close to the RMSE of the OLS forecast combination. Nevertheless, the performance of

the best model is still better, sometimes substantially better, than all the model combinations.

When all models are combined, the OLS and equal-weight combination methods only beat the

best individual model for PCE inflation.

To help interpret the results, we investigate the ex-ante OLS weights on some selected mod-

els. In Figure 2, we plot the OLS slope estimates of regression (18) for various inflation mea-

sures over the period of 1995:Q4 to 2002:Q4. For clarity, rather than showing the weights on

all models, we combine only the ex-post best model within each category (time-series, Phillips

Curve, and term structure) with the SPF in the regression. Note that by choosing the best mod-

els, we handicap the survey forecasts. We compute the weights in the regression recursively like

the forecasts in Table 9; that is, we start in 1995:Q4, and recursively compute forecasts from
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1985:Q4 to 1995:Q4. This is a quasi out-of-sample exercise in the sense that all regressors in

this regression are prior information, but we choose the best model to combine in each category

based on information from a full-sample comparison.

Figure 2 shows that when forecasting all the CPI inflation measures (PUNEW, PUXHS, and

PUXX), the data consistently places the highest ex-ante weights on survey forecasts and very

little weight on the other models. The weights on the SPF1 forecasts are generally constant

and around 0.8 for PUNEW and PUXX, and 0.9 for PUXHS. While the best time-series model,

RGM, is the single best forecaster over all models for PUNEW and PUXHS over the post-1995

sample (see Table 8), the weights on RGM are almost zero. The highest weights for RGM occur

over 1998-1999 for PUXHS where inflation started to increase. The weights on the Phillips

curve and term structure forecasts are also close to zero and in fact become less important over

time for PUXX.

For PCE inflation, surveys contain little information. The weights on the SPF1 start at 0.2

in 1995 but decline quickly and remain close to zero after 1997. Among the other categories

of models, the ARMA(1,1) forecast stands out, with weights ranging from 0.4 to 0.7. The

Phillips curve forecast also receives a relatively high weight of 0.4, but always smaller than the

ARMA(1,1) model. These results are consistent with the poor forecasting performance of all

the models in Table 8, where individual models or combinations of models barely improve on,

and usually do worse than, an ARMA(1,1) forecast.

We can also ask the question whether ex-post, combinations of models would have per-

formed better than individual forecasts. In this exercise, we run the regression over the full

sample so that the weights are not recursively updated. This exercise shows which combination

of models would have provided the best forecasts ex-post. Apart from combining models within

each category and across all models, we also look at combining the ex-post best models from

each category listed in Table 8. Table 10 reports the results.

Table 10 shows that using future information to compute the ex-post weights often does not

beat the best individual forecasting model in terms of RMSE. The best performance of ex-post

model combination across all models occurs for forecasting PUNEW in the post-1995 sample,

where OLS (equal-weight priors) produce a RMSE ratio relative to an ARMA(1,1) of 0.722

(0.726), while the best individual model (RGM) produces a RMSE ratio of 0.764. In all other

cases, the combined forecast does not beat the best individual model forecast, and where the

combined forecast does beat the best individual model, the RMSEs are very similar. This is

strong evidence that combining forecasts, at least with the techniques explored here, is not a
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very useful forecasting tool.6 We also find that imposing a unit prior on the best forecasting

model also does not necessarily lead to lower RMSEs, even when ex-post information is used.

In fact, for many cases, like PUNEW for the post-1995 sample, the unit prior underperforms an

OLS or an equal-weight prior in terms of lower RMSEs.

5 Robustness to Non-Stationary Inflation

5.1 Definition and Models

In this section we investigate the robustness of our results to the alternative assumption that

quarterly inflation is difference stationary. Our exercise is now to forecast four-quarter ahead

inflation changes:

Et (πt+4,4 − πt,4) = Et

[
3∑

i=−3

(4− |i|)∆πt+1+i

]

= Et

[
3∑

i=0

(4− i)∆πt+1+i

]
+ 4πt − πt,4, (21)

whereπt+4,4 is annual inflation defined in equation (3).

We now replace quarterly inflation,πt, by quarterly inflation changes,∆πt+1 = πt+1 − πt

in all the models considered in Sections 3.1 to 3.3. For example, we estimate an ARMA(1,1)

on first differences of inflation:

∆πt+1 = µ + φ∆πt + ψεt + εt+1

and an AR(p) on first differences of inflation:

∆πt+1 = µ + φ1∆πt + φ2∆πt−1 + . . . + φp∆πt−p+1 + εt+1.

The OLS Phillips Curve and term structure regressions are performed by including quarterly

inflation changes rather than quarterly inflation as one of the regressors. From the models

estimated on∆πt, we compute forecasts of inflation changes over the next year,Et(πt+4,4−πt,4).

There are three models for which we do not estimate a counterpart using quarterly inflation

differences: We do not consider a random walk model for inflation changes and do not specify

6 In unreported results, we also consider unconstrained regressions, that is, regression where the weights are not

constrained to lie between 0 and 1. Given the poor performance of the forecasting models in the recent period,

it is not surprising that some of the combined models with full-sample information significantly outperform the

best single model forecasts in cases where many models (particularly term structure forecasts) have significantly

negative weights.
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the no-arbitrage term structure models to have non-stationary inflation dynamics (MLD1-2),

although we still consider the forecasts of annual inflation changes implied by the original sta-

tionary models. In all other cases, we examine the forecasts of both the original stationary

models and the new non-stationary models that use first differences of inflation. Note that the

original models estimated on inflation levels generate RMSEs for forecasting annual inflation

changes that are identical to the RMSEs for forecasting annual inflation levels. Hence, the ques-

tion is whether models estimated on differences provide superior forecasts to models estimated

on levels. We maintain the ARMA(1,1) model estimated on inflation rate levels as a benchmark.

5.2 Performance of Individual Models

Over both the post-1985 and post-1995 out-samples, the RMSE statistics are very similar for the

models specified in inflation levels or inflation changes. For example, post-1985 for PUNEW,

the RMSE of forecasting annual inflation changes by an ARMA(1,1) model estimated on infla-

tion levels is 1.136%, compared to the RMSE of 1.217% for forecasting inflation differences for

the ARMA(1,1) estimated on inflation differences. The RMSEs for the other inflation measures

are also similar for inflation levels or differences. Thus, the magnitudes of the errors are similar

for forecasting in levels or differences.

Table 11 reports the RMSE ratios of the best performing models on levels or differences

within each category for forecasting inflation changes. Table 11 shows that with the excep-

tion of PUXX, time-series models estimated on levels provide lower RMSEs than time-series

models estimated on differences. For the PUNEW and PUXHS measures, the best time-series

model estimated on levels (the ARMA(1,1) model over the post-1985 sample and the regime-

switching model (RGM) over the post-1995 sample) also out-performs the more complicated

Phillips Curve and term structure models in all cases but one. However, for the PUXX and PCE

measures, Phillips curve and term structure regressions using past inflation changes are slightly

more accurate than regressions with past inflation levels.

Our major finding that surveys generally out-perform other model forecasts is robust to spec-

ifying the models in inflation differences. For the CPI inflation measures (PUNEW, PUXHS,

PUXX) over the post-1985 sample, surveys deliver lower RMSEs than the best time-series,

Phillips curve, and term structure forecasts. First difference models help the most for lowering

RMSEs for PUXX over the post-1995 sample, where the best term structure model estimated

on differences (TS6) produces a relative RMSE ratio of 0.655. This is still beaten by the raw

Livingston survey, with a RMSE ratio of 0.557.

In unreported results available upon request, we find that in the model comparison regression
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(17) against a stationary ARMA(1,1) model and with annual inflation changes on the LHS,

models specified in differences do not fare any better than models specified in levels. For

example, over the post-1985 sample for PUNEW, only one Phillips curve model (PC7) and two

term structure models (RGMVAR and MDL1), all estimated on differences, provide additional

information about future inflation over a stationary ARMA(1,1) model. For PUXX post-1985,

we can reject the null that the models add nothing to the ARMA(1,1) forecast only for three

Phillips curve models (PC2, PC4, and PC9) and two term structure models (TS2 and VAR)

estimated on differences. In contrast, surveys consistently provide significant improvement in

forecasting inflation changes above an ARMA(1,1) model, especially for PUNEW, PUXHS,

and PUXX in the post-1985 sample period.

5.3 Performance of Combining Models

Similar to Section 3.6, we also run forecast combination regressions to determine both ex-ante

and ex-post the best combination of models to forecast inflation changes. The model weights

are computed from the regression:

πs+4,4 − πs,4 =
n∑

i=1

ωi
sf

i
s + εs,s+4, s = 1, . . . , t. (22)

We repeat the exercise of Table 9 and compute ex-ante recursive weights over 1995:Q4-2002:Q4

using the best forecasting models over the full-sample in each category. In unreported results

available upon request, we find that our original results for forecasting inflation levels also

extends to forecasting inflation changes. Specifically, there is generally no improvement in

combining model forecasts, or when model combinations result in out-performance, the im-

provement is small. Specifically, for PUNEW and PUXHS, using means, medians, OLS, or an

equal-weight prior produces higher RMSEs than the best individual model. For these inflation

measures, all model combinations produce RMSEs that are higher than the survey forecasts.

This result is robust to both combining models in levels and also combining models in differ-

ences. There are some improvements for forecasting PCE inflation using models in differences,

but the forecasting gains are very small.

In Figures 3 and 4, we plot the OLS coefficient estimates of equation (22) for the mod-

els specified in differences and the models specified in levels, respectively, together with the

raw SPF forecast. Similar to Figure 2, we compute the OLS ex-ante weights recursively over

1995:Q4 to 2004:Q4, but choose the best performing time-series, Phillips Curve, and term struc-

ture models from full-sample information. Both Figures 3 and 4 confirm the robustness of our

findings of the superior survey forecasts of inflation changes.

30



In Figure 3 the weight on the SPF survey for PUNEW and PUXHS changes is above or

around 0.8. The surveys clearly dominate the I(1) time-series, Phillips Curve, and term struc-

ture models. For PUXX changes, the model combinations still place the largest weight on the

SPF survey, but the weight is around 0.5. In contrast, for forecasting PUXX inflation levels,

the weights on SPF1 range from 0.6 to above 0.9. Thus, there is now additional information

in the other models for forecasting PUXX changes, most particularly the Phillips Curve PC1

model. Nevertheless, surveys still have the highest weight on model combination regressions.

Consistent with the results of forecasting inflation levels, surveys provide little information to

forecast PCE changes. For PCE changes, the largest ex-ante weight in the forecast combination

regression is for the ARMA(1,1) estimated on differences.

Like Figure 3, Figure 4 examines the performance of the SPF combined with other models in

forecasting inflation changes, except that it considers stationary models. While Table 11 shows

that the RGM model on levels gives the lowest RMSE over the post-1995 sample for PUNEW

and PUXHS differences, there appears to be little additional value in the RGM forecast once

surveys are included. Figure 4 shows that the forecast combination regression has almost zero

ex-ante weight on the RGM model. The weights on the other I(0) models are also low, whereas

the SPF weights are around 0.8 or higher. Compared to the other stationary model categories,

the SPF also has an edge at forecasting PUXX inflation. Again, surveys do not perform well

relative to I(0) models for forecasting PCE changes.

6 Conclusion

We have conducted a very comprehensive analysis of different inflation forecasting methods us-

ing four inflation measures and two different out-of-sample periods (post-1985 and post-1995).

We investigated forecasts based on time-series models, Phillips curve inspired forecasts, and

forecasts embedding information from the term structure, through linear regressions, non-linear

regime switching models or filtered through arbitrage-free term structure models. We also in-

vestigated the forecasting performance of three different survey measures (the SPF, Livingston,

and Michigan surveys), examining both raw and bias-adjusted survey measures.

Our results can be summarized as follows. First, the best time series model is mostly a sim-

ple ARMA(1,1) model, which can be motivated by thinking of inflation comprising stochas-

tic expected inflation following an AR(1) process, and shocks to inflation. Second, while

the ARMA(1,1) model is hard to beat in terms of RMSE forecast accuracy, it is never the

best model. For CPI measures, the survey measures consistently deliver better forecasts than
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ARMA(1,1) models, and in fact, much better forecasts than Phillips curve-based regressions, or

term structure models. However, surveys do a relatively poor job at forecasting PCE inflation,

as do all the inflation forecasting models.

Third, term structure information does not generally lead to better forecasts and often leads

to inferior forecasts than models using only aggregate activity measures. This result extends to

simple term structure models that are based on unrestricted OLS regressions, non-linear models,

iterated VAR forecasts, and also no-arbitrage term structure models that use information from

the entire cross-section of yields. Whereas this seems to confirm the results in Stock and Watson

(1999), our investigation of term structure models is much more comprehensive.

Finally, we also examined forecasts that combine information from various models or from

various data sources. Our real activity measures included the Bernanke et al. (2005) mea-

sure of aggregate activity based on 65 separate time-series of various macro factors measuring

real activity. This forecast is dominated by surveys. We find that model combinations do not

generally lead to better performance. Simple means or medians of forecasts, or forecast com-

bination regressions that use prior information often produce inferior forecasts than, and when

they out-perform, their performance is similar to, the best individual performing forecasts. In

both ex-ante and ex-post model combination exercises, almost all the weight is placed on survey

forecasts for forecasting CPI inflation.

Two conclusions stand out from these results and provide a clear suggestion for future re-

search. First, survey forecasts have at times provided very high quality forecasts that beat simple

economic models, suggesting that the surveys have information absent in extant models. Since

surveys aggregate information from many different sources, the superior information in median

survey forecasts may be due to an effect similar to Bayesian Model Averaging, or averaging

across potentially hundreds of different individual forecasts and taking common components

(see Stock and Watson (2002a) and Timmermann (2004)). While the Michigan survey, which

is conducted among relatively unsophisticated consumers, produces aggregate forecasts of CPI

inflation that are worse than the Livingston and SPF surveys, which are conducted among pro-

fessionals. But, the Michigan survey also generally betas time-series, Phillips curve, and term

structure forecasts with errors similar in magnitude to the Livingston and SPF surveys.

Surveys may be capturing information that is orthogonal to information that can be obtained

by averaging across large numbers of models. Hence, one avenue for future research is to

investigate whether alternative techniques for combining forecasts perform better (see Inoue

and Killian (2005) for a survey and study of one promising technique). At the very least, our

results strongly suggest that there would be additional information in including survey forecasts
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in the large datasets used to construct a small number of composite factors, which are designed

to summarize aggregate macroeconomic dynamics (see Bernanke et. al. (2005) and Stock and

Watson (2005), among others.)

Second, extant sophisticated no-arbitrage term structure models, while performing well in

sample, seem to provide relatively poor forecasts relative to simpler term structure or Phillips

curve models out-of-sample. A potential solution is to introduce the information present in the

surveys as additional state variables in the term structure models. Pennacchi (1991) was an

early attempt in that direction and Kim (2004) is a recent attempt to build survey expectations

into a no-arbitrage quadratic term structure model.
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Table 1: Summary Statistics

PUNEW PUXHS PUXX PCE

Panel A: 1952:Q2 – 2002:Q4∗

Mean 3.84 3.60 4.24 3.84
(0.20) (0.20) (0.19) (0.19)

Standard Deviation 2.86 2.78 2.56 2.45
(0.14) (0.14) (0.14) (0.13)

Autocorrelation 0.79 0.76 0.79 0.80
(0.10) (0.10) (0.11) 0.11)

Correlations
PUXHS 0.99
PUXX 0.94 0.91
PCE 0.98 0.98 0.93

Panel B: 1986:Q1–2002:Q4

Mean 3.09 2.87 3.21 2.58
(0.14) (0.17) 0.12) (0.14)

Standard Deviation 1.12 1.37 0.97 1.08
(0.10) (0.12) (0.09) (0.10)

Autocorrelation 0.51 0.41 0.81 0.69
(0.10) (0.13) (0.09) (0.09)

Correlations
PUXHS 0.99
PUXX 0.85 0.79
PCE 0.95 0.93 0.90

Panel C: 1996:Q1–2002:Q4

Mean 2.27 1.84 2.32 1.70
(0.17) (0.25) (0.05) (0.13)

Standard Deviation 0.81 1.19 0.24 0.62
(0.12) (0.17) (0.03) (0.09)

Autocorrelation −0.03 0.07 −0.15 −0.01
(0.22) (0.21) (0.23) (0.19)

Correlations
PUXHS 0.99
PUXX 0.33 0.21
PCE 0.89 0.88 0.19

This table reports various moments of different measures of annual inflation at a quarterly frequency for different
sample periods. PUNEW is CPI-U All Items; PUXHS is CPI-U Less Shelter; PUXX is CPI-U All Items Less
Food and Energy, also called core CPI; and PCE is the Personal Consumption Expenditure deflator. All measures
are in annual percentage terms. Standard errors reported in parentheses are computed by GMM.

∗ For PUXX, the start date is 1958:Q2 and for PCE, the start date is 1960:Q2.
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Table 2: Forecasting Models

Abbreviation Specification

Time-Series Models ARMA ARMA(1,1)
AR Autoregressive model
RW Random Walk
RGM Univariate regime-switching model

Phillips Curve (OLS) PC1 INFL + GDPG
PC2 INFL + GAP1
PC3 INFL + GAP2
PC4 INFL + LSHR
PC5 INFL + UNEMP
PC6 INFL + XLI
PC7 INFL + XLI-2
PC8 INFL + FAC
PC9 INFL + GAP1 + LSHR
PC10 INFL + GAP2 + LSHR

OLS Term TS1 INFL + GDPG + RATE
Structure Models TS2 INFL + GAP1 + RATE

TS3 INFL + GAP2 + RATE
TS4 INFL + LSHR + RATE
TS5 INFL + UNEMP + RATE
TS6 INFL + XLI + RATE
TS7 INFL + XLI-2 + RATE
TS8 INFL + FAC + RATE
TS9 INFL + SPD
TS10 INFL + RATE + SPD
TS11 INFL + GDPG + RATE + SPD

Empirical Term VAR VAR(1) on RATE, SPD, INFL, GDPG
Structure Models RGMVAR Regime-switching model on RATE, SPD, INFL

No-Arbitrage Term MDL1 Three-factor affine model
Structure Models MDL2 General three-factor regime-switching model

Inflation Surveys SPF1 Survey of Professional Forecasters
SPF2 Linear bias-corrected SPF
SPF3 Non-linear bias-corrected SPF

LIV1 Livingston Survey
LIV2 Linear bias-corrected Livingston
LIV3 Non-linear bias-corrected Livingston

MICH1 Michigan Survey
MICH2 Linear bias-corrected Michigan
MICH3 Non-linear bias-corrected Michigan

INFL refers to the inflation rate over the previous quarter; GDPG to GDP growth; GAP1 to detrended log real
GDP using a quadratic trend; GAP2 to detrended log real GDP using the Hodrick-Prescott filter; LSHR to the
labor income share; UNEMP to the unemployment rate; XLI to the Stock-Watson Experimental Leading Index;
XLI-2 to the Stock-Watson Experimental Leading Index-2; FAC to an aggregate composite real activity factor
constructed by Bernanke, Boivin and Eliasz (2004); RATE to the 1-quarter yield; and SPD to the difference
between the 20-quarter and the 1-quarter yield.
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Table 3: Bias of Survey Forecasts

α1 α2 β1 β2

PUNEW SPF 0.330 0.482∗∗
(0.173) (0.190)

Livingston 0.159 0.993
(0.094) (0.161)

Michigan -0.206 1.276
(0.164) (0.205)

SPF 0.359∗ -0.047 0.414∗∗ 0.128
(0.168) (0.146) (0.180) (0.140)

Livingston 0.147∗∗ -0.074 0.806∗∗ 0.461∗∗
(0.044) (0.126) (0.067) (0.153)

Michigan 0.010 -0.315 0.959 0.482
(0.107) (0.206) (0.099) (0.249)

PUXHS SPF 0.160 0.601∗
(0.201) (0.199)

Livingston 0.140 0.942
(0.084) (0.130)

Michigan -0.185 1.167
(0.155) (0.166)

SPF 0.153 -0.067 0.580∗ 0.147
(0.179) (0.271) (0.164) (0.279)

Livingston 0.142∗∗ -0.048 0.765∗∗ 0.389∗∗
(0.051) (0.144) (0.070) (0.129)

Michigan -0.067 -0.181 1.002 0.262∗
(0.153) (0.143) (0.143) (0.132)

PUXX SPF 0.213 0.694
(0.153) (0.179)

Livingston 0.095 1.055
(0.107) (0.133)

Michigan -0.070 1.194
(0.117) (0.124)

SPF 0.242 -0.050 0.643 0.100
(0.166) (0.124) (0.192) (0.123)

Livingston 0.108 0.031 0.931 0.165
(0.077) (0.133) (0.106) (0.118)

Michigan -0.040 -0.011 1.137 0.059
(0.145) (0.210) (0.146) (0.245)

PCE SPF 0.010 0.728∗
(0.125) (0.125)

Livingston 0.059 0.949
(0.120) (0.136)

Michigan -0.137 1.058
(0.130) (0.139)

SPF 0.031 -0.143 0.689∗∗ 0.213
(0.120) (0.188) (0.108) (0.187)

Livingston 0.070 -0.023 0.785∗ 0.399∗∗
(0.113) (0.120) (0.087) (0.085)

Michigan -0.015 -0.172 0.900 0.228
(0.145) (0.140) (0.145) (0.117)

This table reports the coefficient estimates in equations (15) and (16). Numbers in the drift columns (α1 andα2)
are reported in quarterly percentages. We denote values ofα1, α2 andβ2 that are different from zero, and values
of β1 that are different from one at the 95% and 99% level by∗ and∗∗, respectively, based on Hansen and Hodrick
(1980) standard errors (reported in parentheses). For the SPF survey, the sample is 1981:Q3 to 2002:Q4; for the
Livingston survey, the sample is 1952:Q2 to 2002:Q4 for PUNEW and PUXHS, 1958:Q2 to 2002:Q4 for PUXX,
and 1960:Q2 to 2002:Q4 for PCE; and for the Michigan survey, the sample is 1978:Q1 to 2002:Q4.
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Table 4: Time-Series Forecasts of Annual Inflation

Post-1985 Sample Post-1995 Sample

RMSE ARMA=1 RMSE ARMA=1

PUNEW ARMA 1.136 1.000 1.144 1.000
AR 1.140 1.003 1.130 0.988
RW 1.626 1.431 1.529 1.337
RGM 1.420 1.250 0.873 0.764

PUXHS ARMA 1.490 1.000 1.626 1.000
AR 1.515 1.017 1.634 1.005
RW 2.172 1.458 2.146 1.320
RGM 1.591 1.068 1.355 0.833

PUXX ARMA 0.630 1.000 0.600 1.000
AR 0.644 1.023 0.593 0.988
RW 0.675 1.072 0.549 0.915
RGM 0.677 1.075 0.727 1.211

PCE ARMA 0.878 1.000 0.944 1.000
AR 0.942 1.073 1.014 1.074
RW 1.140 1.298 1.215 1.288
RGM 0.945 1.077 1.081 1.146

We forecast annual inflation out-of-sample over 1985:Q4 to 2002:Q4 and from 1995:Q4 to 2002:Q4 at a quarterly
frequency. Table 2 contains full details of the time-series models. Numbers in the RMSE columns are reported in
annual percentage terms. The column labeled ARMA = 1 reports the ratio of the RMSE relative to the ARMA(1,1)
specification.
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Table 5: OLS Phillips Curve Forecasts of Annual Inflation

Post-1985 Sample Post-1995 Sample

Relative Relative
RMSE 1− λ SE RMSE 1− λ SE

PUNEW PC1 0.979 0.638 0.392 0.977 0.673 0.624
PC2 1.472 0.066 0.145 1.956 -0.117 0.199
PC3 1.166 0.269 0.233 1.295 0.171 0.349
PC4 1.078 -1.043 0.632 1.025 0.046 0.890
PC5 1.032 0.354 0.288 1.115 -0.174 0.222
PC6 1.103 -0.304 0.575 1.086 -0.633 0.488
PC7 1.022 0.460∗∗ 0.161 1.040 0.367 0.406
PC8 1.039 0.319 0.477 0.993 0.468 0.793
PC9 1.576 0.006 0.119 1.994 -0.121 0.174
PC10 1.264 0.146 0.205 1.426 0.119 0.246

PUXHS PC1 1.000 0.497 0.458 0.992 0.616 0.814
PC2 1.328 -0.022 0.218 1.586 -0.192 0.317
PC3 1.113 0.200 0.310 1.105 0.238 0.522
PC4 1.096 -0.989∗ 0.497 1.029 0.006 0.745
PC5 1.083 -0.080 0.299 1.077 -0.412 0.357
PC6 1.131 -1.074∗ 0.519 1.061 -1.317∗∗ 0.510
PC7 1.001 0.498∗∗ 0.186 1.070 0.084 0.529
PC8 1.094 -0.325 0.466 1.007 0.100 1.258
PC9 1.394 -0.056 0.186 1.624 -0.204 0.290
PC10 1.165 0.125 0.273 1.202 0.150 0.340

PUXX PC1 0.866 1.432∗∗ 0.340 0.825 1.182∗∗ 0.120
PC2 2.463 -0.120 0.072 3.257 -0.227∗ 0.093
PC3 1.664 0.054 0.213 2.076 -0.063 0.275
PC4 1.234 0.126 0.143 1.330 0.187 0.214
PC5 1.024 0.460∗ 0.207 1.185 0.134 0.445
PC6 1.005 0.479 0.477 0.916 1.009∗∗ 0.277
PC7 1.074 0.381 0.277 1.089 0.293 0.500
PC8 0.862 0.809∗∗ 0.297 0.767 1.127∗∗ 0.275
PC9 2.485 -0.076 0.069 3.262 -0.168∗ 0.069
PC10 1.873 0.079 0.136 2.562 0.038 0.150

PCE PC1 1.053 0.029 0.469 1.088 -0.240 0.434
PC2 1.698 -0.136 0.141 1.997 -0.240 0.223
PC3 1.274 -0.031 0.280 1.407 -0.239 0.354
PC4 1.027 0.343 0.392 1.031 0.339 0.535
PC5 1.125 -0.080 0.327 1.215 -0.635 0.389
PC6 1.053 0.035 0.484 1.020 0.272 0.508
PC7 1.033 0.436∗ 0.175 1.116 0.033 0.334
PC8 1.040 0.269 0.476 1.044 0.043 1.100
PC9 1.518 -0.100 0.166 1.786 -0.282 0.258
PC10 1.247 0.120 0.201 1.432 -0.069 0.235

We forecast annual inflation out-of-sample over 1985:Q4 to 2002:Q4 and over 1995:Q4 to 2002:Q4 at a quarterly
frequency. Table 2 contains full details of the Phillips Curve models. The column labelled “Relative RMSE”
reports the ratio of the RMSE relative to the ARMA(1,1) specification. The columns titled “1-λ” and “SE” report
the coefficient(1 − λ) and its standard error, respectively, from equation (17). We denote values of(1 − λ)
significantly different from zero at the 95% (99%) level by∗ (∗∗), based on Hansen and Hodrick (1980) standard
errors.
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Table 6: Term Structure Forecasts of Annual Inflation

Post-1985 Sample Post-1995 Sample

Relative Relative
RMSE 1− λ SE RMSE 1− λ SE

PUNEW TS1 1.096 0.137 0.332 1.030 0.362 0.410
TS2 1.444 0.019 0.145 1.826 -0.147 0.229
TS3 1.176 0.193 0.229 1.226 0.156 0.335
TS4 1.166 -0.108 0.249 1.018 0.370 0.474
TS5 1.134 0.088 0.186 1.122 0.006 0.187
TS6 1.194 -0.241 0.326 1.112 -0.162 0.406
TS7 1.091 0.308 0.252 1.039 0.373 0.434
TS8 1.119 0.116 0.332 1.010 0.380 0.816
TS9 1.363 0.086 0.085 1.229 -0.008 0.083
TS10 1.196 -0.024 0.143 1.043 0.132 0.557
TS11 1.198 -0.124 0.431 1.052 0.286 0.318
VAR 1.415 0.287∗∗ 0.108 0.913 0.584∗∗ 0.202
RGMVAR 1.647 0.050 0.050 1.518 -0.170 0.198
MDL1 1.323 0.161∗ 0.064 1.345 -0.088 0.174
MDL2 1.192 0.225 0.117 1.329 -0.118 0.251

PUXHS TS1 1.080 -0.025 0.413 1.014 0.373 0.553
TS2 1.345 -0.017 0.205 1.584 -0.197 0.328
TS3 1.116 0.186 0.278 1.118 0.195 0.435
TS4 1.085 -0.276 0.499 0.996 0.541 0.593
TS5 1.113 -0.082 0.214 1.094 -0.191 0.264
TS6 1.140 -0.566 0.342 1.069 -0.361 0.419
TS7 1.081 0.161 0.298 1.070 0.088 0.409
TS8 1.083 -0.054 0.411 0.975 0.558 1.057
TS9 1.173 0.114 0.105 1.130 -0.123 0.211
TS10 1.140 -0.595 0.468 1.032 -0.036 0.082
TS11 1.102 -0.121 0.423 1.049 0.092 0.163
VAR 1.802 0.175 0.096 0.973 0.523∗ 0.250
RGMVAR 1.363 0.070 0.085 1.285 -0.149 0.366
MDL1 1.225 0.127 0.081 1.186 -0.048 0.247
MDL2 1.047 0.395 0.203 1.156 0.000 0.406

PUXX TS1 0.945 0.667∗ 0.322 0.945 0.665∗ 0.317
TS2 2.262 -0.092 0.084 2.982 -0.225∗ 0.099
TS3 1.399 0.121 0.260 1.698 -0.057 0.344
TS4 1.232 0.260 0.156 1.268 0.319 0.225
TS5 1.081 0.392 0.203 1.258 0.085 0.407
TS6 0.969 0.567 0.294 0.866 0.788∗∗ 0.078
TS7 1.068 0.419∗ 0.203 1.118 0.342 0.289
TS8 0.948 0.568∗∗ 0.197 0.958 0.520∗ 0.253
TS9 1.372 0.050 0.239 1.282 -0.101 0.457
TS10 1.034 0.433 0.284 1.208 -0.048 0.548
TS11 1.017 0.474 0.246 1.192 0.099 0.502
VAR 1.379 0.301∗ 0.123 1.762 -0.119 0.274
RGMVAR 1.572 0.120 0.138 1.622 -0.211 0.340
MDL1 1.506 0.253∗∗ 0.091 1.593 -0.004 0.280
MDL2 1.833 0.262∗∗ 0.039 1.329 0.355∗∗ 0.069
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Table 6 Continued

Post-1985 Sample Post-1995 Sample

Relative Relative
Model RMSE 1− λ SE RMSE 1− λ SE

PCE TS1 1.075 -0.073 0.453 1.078 -0.208 0.432
TS2 1.670 -0.149 0.145 1.966 -0.247 0.226
TS3 1.279 -0.053 0.288 1.374 -0.245 0.376
TS4 1.075 0.017 0.372 1.059 0.234 0.442
TS5 1.126 -0.115 0.331 1.202 -0.645 0.383
TS6 1.094 -0.149 0.428 1.100 -0.359 0.397
TS7 1.018 0.443 0.272 1.106 0.033 0.303
TS8 1.027 0.373 0.414 1.025 0.345 1.056
TS9 1.141 -0.024 0.192 1.121 -0.825 0.584
TS10 1.087 -0.569 0.549 1.110 -0.851 0.639
TS11 1.086 0.006 0.418 1.132 -0.396 0.288
VAR 2.083 0.195∗ 0.080 1.095 0.440∗∗ 0.155
RGMVAR 1.507 -0.242 0.131 1.461 -0.356 0.233
MDL1 1.169 0.143 0.235 1.271 -0.374 0.284
MDL2 1.314 -0.205 0.159 1.339 -0.331∗∗ 0.120

We forecast annual inflation out-of-sample over 1985:Q4 to 2002:Q4 and over 1995:Q4 to 2002:Q4 at a quarterly
frequency. Table 2 contains full details of the term structure models. The column labelled “Relative RMSE” reports
the ratio of the RMSE relative to the ARMA(1,1) specification. The remaining columns report the coefficient
(1− λ) in equation (17) together with its standard error. We denote values of(1− λ) significantly different from
zero at the 95% (99%) level by∗ (∗∗), based on Hansen and Hodrick (1980) standard errors.
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Table 7: Survey Forecasts of Annual Inflation

Post-1985 Sample Post-1995 Sample

Relative Relative
RMSE 1− λ SE RMSE 1− λ SE

PUNEW SPF1 0.779 1.051∗∗ 0.177 0.861 0.869∗ 0.407
SPF2 0.964 0.564∗∗ 0.216 0.902 0.745∗ 0.377
SPF3 0.976 0.541∗∗ 0.207 0.915 0.728 0.414
LIV1 0.789 1.164∗∗ 0.102 0.792 1.140∗∗ 0.203
LIV2 1.180 0.335 0.177 1.092 0.403 0.437
LIV3 1.299 0.251 0.163 1.152 0.275 0.517
MICH1 0.902 0.771∗ 0.324 0.862 1.113∗ 0.520
MICH2 0.961 0.674∗ 0.327 0.930 0.861 0.644
MICH3 0.968 0.655 0.347 0.947 0.776 0.653

PUXHS SPF1 0.819 0.939∗∗ 0.171 0.914 0.772∗ 0.394
SPF2 0.924 0.666∗∗ 0.227 0.888 0.825∗ 0.357
SPF3 1.348 0.103 0.183 0.958 0.582 0.323
LIV1 0.844 1.098∗∗ 0.099 0.856 1.072∗∗ 0.214
LIV2 1.054 0.554∗∗ 0.176 1.031 0.550 0.366
LIV3 1.299 0.327∗ 0.157 1.152 0.502 0.444
MICH1 0.881 0.876∗∗ 0.273 0.937 0.749 0.434
MICH2 0.918 0.814∗∗ 0.290 0.932 0.813 0.516
MICH3 0.970 0.607∗ 0.251 0.953 0.684 0.492

PUXX SPF1 0.691 0.968∗∗ 0.140 0.699 1.260∗∗ 0.225
SPF2 1.145 0.125 0.362 1.104 0.091 0.852
SPF3 1.179 0.035 0.373 1.180 -0.358 0.956
LIV1 0.655 0.803∗∗ 0.193 0.557 1.227∗∗ 0.134
LIV2 1.355 -0.185 0.177 1.387 -0.423 0.415
LIV3 1.289 -0.095 0.259 1.278 -0.496 0.735
MICH1 1.185 0.383∗ 0.159 0.822 1.041∗∗ 0.208
MICH2 1.343 -0.153 0.248 1.566 -0.385 0.286
MICH3 1.360 -0.242 0.253 1.617 -0.493 0.273

PCE SPF1 1.199 0.147 0.267 1.250 0.090 0.395
SPF2 0.980 0.537∗∗ 0.206 0.924 0.655∗ 0.325
SPF3 1.034 0.453∗ 0.180 1.040 0.453 0.234
LIV1 1.082 0.175 0.325 1.101 0.132 0.412
LIV2 1.397 -0.050 0.189 1.303 -0.027 0.265
LIV3 1.380 -0.123 0.149 1.341 -0.191 0.272
MICH1 1.217 0.108 0.216 1.338 -0.030 0.327
MICH2 1.194 0.039 0.253 1.205 0.055 0.415
MICH3 1.248 -0.022 0.239 1.255 -0.003 0.399

We forecast annual inflation out-of-sample over 1985:Q4 to 2002:Q4 and from 1995:Q4 to 2002:Q4 at a quarterly
frequency for the SPF survey (SPF1-3) and the Michigan survey (MICH1-3). The frequency of the Livingston
survey (LIV1-3) is biannual and forecasts are made at the end of the second and end of the fourth quarter. Table 2
contains full details of the survey models. The column labelled “Relative RMSE” reports the ratio of the RMSE
relative to the ARMA(1,1) specification. The remaining columns report the coefficient(1 − λ) in equation (17)
together with its standard error. We denote values of(1 − λ) significantly different from zero at the 95% (99%)
level by∗ (∗∗), based on Hansen and Hodrick (1980) standard errors.
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Table 8: Best Models in Forecasting Annual Inflation

PUNEW PUXHS PUXX PCE

Panel A: Post-1985 Sample

Best Time-Series Model ARMA 1.000 ARMA 1.000 ARMA 1.000 ARMA 1.000∗
Best Phillips-Curve Model PC1 0.979 PC1 1.000 PC8 0.862 PC4 1.027
Best Term-Structure Model TS7 1.091 MDL2 1.047 TS1 0.945 TS7 1.018

Raw Survey Forecasts SPF1 0.779∗ SPF1 0.819∗ SPF1 0.691 SPF1 1.199
LIV1 0.789 LIV1 0.844 LIV1 0.655∗ LIV1 1.082
MICH1 0.902 MICH1 0.881 MICH1 1.185 MICH1 1.217

Panel B: Post-1995 Sample

Best Time-Series Model RGM 0.764∗ RGM 0.833∗ RW 0.915 ARMA 1.000∗
Best Phillips-Curve Model PC1 0.977 PC1 0.992 PC8 0.767 PC6 1.020
Best Term-Structure Model VAR 0.913 VAR 0.973 TS6 0.866 TS8 1.025

Raw Survey Forecasts SPF1 0.861 SPF1 0.914 SPF1 0.699 SPF1 1.250
LIV1 0.792 LIV1 0.856 LIV1 0.557∗ LIV1 1.101
MICH1 0.862 MICH1 0.937 MICH1 0.822 MICH1 1.338

The table reports the best time-series model, the best OLS Phillips Curve model, the best model using term structure
data, along with SPF1, LIV1, and MCH1 forecasts for out-of-sample forecasting of annual inflation at a quarterly
frequency. Each entry reports the ratio of the model RMSE to the RMSE of an ARMA(1,1) forecast. Models with
the smallest RMSEs are marked with an asterisk.
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Table 9: Ex-Ante Combined Forecasts of Annual Inflation

Pure Time- Phillips Term
Model Combination Method Series Curve Structure Surveys All Models

PUNEW Mean 0.888 1.123 0.991 0.851 0.973
Median 0.907 1.093 1.047 0.851 1.031
OLS 0.971 1.007 0.858 0.858 0.827
Equal Weight Prior 0.955 1.007 0.862 0.858 0.820
Best Individual Model 0.764 0.977 0.913 0.861 0.764

PUXHS Mean 0.947 1.065 0.951 0.921 0.966
Median 0.935 1.083 1.040 0.921 1.036
OLS 0.962 1.001 0.937 0.917 0.859
Equal Weight Prior 0.950 1.008 0.931 0.918 0.867
Best Individual Model 0.833 0.992 0.973 0.914 0.833

PUXX Mean 0.926 1.547 1.289 0.719 1.252
Median 0.985 1.167 1.215 0.719 1.078
OLS 0.881 0.885 1.104 0.699 0.821
Equal Weight Prior 0.845 0.878 1.092 0.699 0.789
Best Individual Model 0.915 0.767 0.866 0.699 0.699

PCE Mean 1.012 1.160 1.031 1.285 1.070
Median 1.020 1.136 1.106 1.285 1.114
OLS 1.028 0.974 0.988 1.288 0.955
Equal Weight Prior 1.035 0.984 0.983 1.287 0.961
Best Individual Model 1.000 1.020 1.025 1.250 1.000

The table reports the relative RMSEs for forecasting annual inflation at a quarterly frequency out-of-sample from
1995:Q4 to 2002:Q4 by combining models within each category or over all models. Forecasts reported include the
mean and median forecasts, and linear combinations of forecasts using recursively-computed weights computed
from OLS, or model combination regressions using equally-weighted priors. We consider unadjusted SPF and
Michigan survey forecasts only in the survey category. For comparison, the last row in each panel reports the
relative RMSE of the best performing single forecast model (see Table 8).
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Table 10: Ex-Post Combined Forecasts of Annual Inflation

Time- Phillips Term Best All
Model Combination Method Series Curve Structure Surveys Models Models

Panel A: Post-1985 Sample

PUNEW OLS 0.969 0.937 0.834 0.775 0.773 0.873
Equal Weight Prior 0.968 0.940 0.835 0.775 0.773 0.873
Unit Weight Prior 0.973 0.943 0.847 0.775 0.772 0.874
Best Individual Model 1.000 0.979 1.091 0.779 0.779 0.779

PUXHS OLS 0.965 0.946 0.883 0.816 0.809 0.864
Equal Weight Prior 0.965 0.953 0.885 0.816 0.810 0.865
Unit Weight Prior 0.972 0.954 0.903 0.816 0.809 0.864
Best Individual Model 1.000 1.000 1.047 0.819 0.819 0.819

PUXX OLS 0.914 0.834 0.857 0.691 0.698 0.819
Equal Weight Prior 0.911 0.832 0.856 0.692 0.698 0.819
Unit Weight Prior 0.921 0.835 0.860 0.691 0.697 0.820
Best Individual Model 1.000 0.862 0.945 0.691 0.691 0.691

PCE OLS 0.978 0.924 0.852 1.157 0.937 0.962
Equal Weight Prior 0.979 0.930 0.853 1.157 0.937 0.960
Unit Weight Prior 0.979 0.932 0.861 1.158 0.938 0.962
Best Individual Model 1.000 1.027 1.018 1.199 1.000 1.000

Panel B: Post-1995 Sample

PUNEW OLS 0.743 0.931 0.676 0.862 0.725 0.722
Equal Weight Prior 0.746 0.934 0.676 0.851 0.730 0.726
Unit Weight Prior 0.743 0.933 0.679 0.855 0.747 0.735
Best Individual Model 0.764 0.977 0.913 0.861 0.764 0.764

PUXHS OLS 0.833 0.934 0.698 0.914 0.735 0.735
Equal Weight Prior 0.843 0.943 0.714 0.919 0.743 0.743
Unit Weight Prior 0.833 0.940 0.712 0.914 0.767 0.759
Best Individual Model 0.833 0.992 0.973 0.914 0.833 0.833

PUXX OLS 0.801 0.786 0.802 0.695 0.659 0.702
Equal Weight Prior 0.793 0.781 0.787 0.696 0.658 0.692
Unit Weight Prior 0.794 0.767 0.788 0.695 0.656 0.693
Best Individual Model 0.915 0.767 0.866 0.699 0.699 0.699

PCE OLS 1.018 0.949 0.631 1.250 1.005 1.005
Equal Weight Prior 1.007 0.950 0.635 1.257 0.993 0.993
Unit Weight Prior 1.000 0.967 0.687 1.250 1.007 1.006
Best Individual Model 1.000 1.020 1.025 1.250 1.000 1.000

The table reports the relative RMSEs for forecasting annual inflation out-of-sample at a quarterly frequency over
1985:Q4 to 2002:Q4 and 1995:Q4 to 2002:Q4 by combining models within each category (time-series, Phillips
curve, term structure, surveys), using the best models in each category, or over all models. We compute the model
weights using the full sample by OLS, a mixed regression with an equal-weight prior, and a mixed regression with
a unit-weight prior placed on the best model. We consider unadjusted SPF and Michigan survey forecasts only in
the survey category. For comparison, the last row in each panel reports the relative RMSE of the best performing
individual forecasting model (see Table 8).
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In the top panel, we graph the four inflation measuresPUNEW, CPI-U All Items; PUXHS, CPI-U Less Shelter;
PUXX, CPI-U All Items Less Food and Energy, or core CPI; andPCE, the Personal Consumption Expenditure
deflator, together with the Livingston survey forecast. The survey forecast is lagged one year, so that in December
1990, we plot inflation from December 1989 to December 1990 together with the survey forecasts at December
1989. In the bottom panel, we plot all three survey forecasts (SPF, Livingston, and the Michigan surveys), together
with PUNEW inflation. The survey forecasts are also lagged one year for comparison.

Figure 1: Annual Inflation and Survey Forecasts
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We graph the ex-ante OLS weights on models from regression (18) over the period 1995:Q4 to 2002:Q4. We
combine the best model within each category (time-series, Phillips Curve, term structure, and survey) from Table
9. The ex-ante weights are computed recursively through the sample.

Figure 2: Ex-Ante Weights on Best Models for Forecasting Annual Inflation
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We graph the ex-ante OLS weights on models from regression (22) over the period 1995:Q4 to 2002:Q4. We
combine the best non-stationary model within the time-series, Phillips Curve, and term structure classes together
with the raw SPF forecast. The ex-ante weights are computed recursively through the sample.

Figure 3: Ex-Ante Weights on Best I(1) Models for Forecasting Annual Inflation Changes
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We graph the ex-ante OLS weights on models from regression (22) over the period 1995:Q4 to 2002:Q4. We
combine the best stationary model within the time-series, Phillips Curve, and term structure classes together with
the raw SPF forecast. The ex-ante weights are computed recursively through the sample.

Figure 4: Ex-Ante Weights on Best I(0) Models for Forecasting Annual Inflation Changes
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