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ABSTRACT

This paper develops an infinite horizon model of public spending and taxation in which policy

decisions are determined by legislative bargaining. The policy space incorporates both productive

and distributive public spending and distortionary taxation. The productive spending is investing in

a public good that benefits all citizens (e.g., national defense or air quality) and the distributive

spending is district-specific transfers (e.g., pork barrel spending). Investment in the public good

creates a dynamic linkage across policy-making periods. The analysis explores the dynamics of

legislative policy choices, focusing on the efficiency of the steady state level of taxation and

allocation of tax revenues. The model sheds new light on the efficiency of legislative policy-making

and has a number of novel positive implications.
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1 Introduction

It has long been argued that legislatures in which representatives are elected by geographically

defined districts will make inefficient decisions. According to conventional wisdom, legislators will

try to benefit their constituents at the expense of the general community through pork barrel

spending and other distributive policies (e.g., cotton or tobacco subsidies). This leads to both

excessive spending and a misallocation of government revenues between distributive policies and

important national public goods.

Despite this widely held view, formal political theory tells us little about the dynamics of

legislative policy choices. Will legislative policy-making result in a long run size of government

that is too large? What will be the time path of investment in national public goods and the

long run levels of these goods? What features of the environment determine the magnitude of

the distortions arising from legislative policy-making? This paper analyzes these questions in a

novel infinite horizon model of legislative policy-making. The model is of an economy in which

policy choices are made by a legislature comprised of representatives elected by single-member,

geographically defined districts. In each period, the legislature chooses the level of a distortionary

income tax and decides how to allocate tax revenues between investment in a public good that

benefits all citizens (national defense or air quality) and district-specific unproductive transfers

(pork barrel spending). Thus the model incorporates both productive and distributive public

spending and distortionary taxation. The dynamic linkage across periods is created by the public

good which is the state variable. Legislative policy-making in each period is modelled using the

legislative bargaining approach of Baron and Ferejohn (1989).

The results of the model provide a rigorous formal underpinning for the conventional wisdom

described above by showing conditions under which the steady state size of government (as mea-

sured by the tax rate) is too large and the level of public goods is too low. However, we also

show that this conventional view needs qualification. When the economy’s taxable capacity is

small relative to its public good needs, legislative decisions will actually be efficient in the long

run, despite the fact that legislators can benefit their districts via distributive policies. Moreover,

the nature of the inefficiency emerging from legislative choice could be quite different from that

which the conventional wisdom assumes. In particular, legislators could hold back on public good

spending recognizing that creating too large a stock of these goods could lead future legislators to
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start engaging in pork barrel spending. This means that the overall size of government could be

below optimal and revenues could be allocated to their most productive uses - namely, maintaining

public good levels.

The model also generates a number of novel positive implications. First, it suggests that the

size of the legislative coalitions passing budgets may decline over time as a country builds up its

stock of public goods. Second, the model suggests that societies in which citizens have a more

elastic labor supply will enjoy better quality government. A higher elasticity of labor supply,

reduces pork barrel spending but not the long run levels of public goods. Finally, the model

suggests that the quality of government as measured by the proportion of revenues devoted to

distributive policies is inversely correlated with the productivity of the private sector. The model

yields these clean comparative statics results because we fully characterize the set of equilibria

and, in particular, the conditions for a unique equilibrium.

In studying the efficiency of politically determined policy choices, our paper contributes to the

literature on the theory of political failure.1 A number of works have explored the efficiency of

legislative decision-making from a static perspective. In a well-known paper, Weingast, Shepsle and

Johnsen (1981) argue that distributive policy-making will lead to excessive government spending.

However, they do not model the process of passing legislation, assuming instead that legislative

policy-making is governed by a “norm of universalism”.2 In a legislative bargaining model in

which proposals need to be approved by a qualified majority, Baron (1991) shows that legislators

may propose projects whose aggregate benefits are less than their costs, when these benefits can be

targeted to particular districts. Related models of legislative bargaining are elaborated by Persson

and Tabellini (2000) and Austen-Smith and Banks (2005). An interesting dynamic analysis of

the problem is provided by LeBlanc, Snyder and Tripathi (2000) who argue that majority-rule

legislatures will under-invest in public goods.3 They make their argument in the context of a finite

1 This literature seeks to develop an understanding of the performance of political institutions in allocating public
resources that matches our understanding of the performance of markets in the allocation of private resources. It
includes the papers by Acemoglu (2004), Acemoglu and Robinson (2001), Besley and Coate (1998), Coate and
Morris (1995), (1999), Lizzeri and Persico (2001), Persson and Svensson (1989), Tabellini and Alesina (1990), and
Wittman (1989).

2 Under this norm, each legislator unilaterally decides on the level of spending he would like on projects in his
own district and the aggregate level of taxation is determined by the need to balance the budget. Distributive
policy-making then becomes a pure common pool problem.

3 Velasco (1999) develops an analysis of the accumulation of public debt that models public decision-making as
a dynamic common pool problem. The key assumption of this approach is that (as in the static model of Weingast,
Shepsle and Johnsen (1981)) legislators can all choose the amount of spending they want for their constituents.
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horizon model in which in each period a legislature allocates a pool of exogenously given resources

between targeted transfers and a public investment that serves to increase the amount of revenue

available in the next period. Like us, they employ the bargaining approach to model legislative

policy-making. Our model differs from theirs in that it is infinite horizon, taxation is distortionary

and investment in public goods yields benefits for more than one period. These features explain

our more nuanced set of conclusions concerning the efficiency of legislative policy-making.

In solving a dynamic political bargaining model, our paper also contributes to the literature

on the legislative bargaining approach.4 While most papers in this literature focus on the

choices made for a single policy period, a few have explored dynamic decision making. Baron

(1996), Baron and Herron (2003), and Kalandrakis (2004) all study dynamic models in which a

legislature makes policy choices in each period.5 In these models, the dynamic linkage across

periods is created by the assumption that today’s policy choice determines tomorrow’s default

outcome should the legislature not come to agreement. This creates complex interactions as

today’s policy-makers choose policy, taking into account the implications of shifting next period’s

status quo.6 However, in these models the policy choices in each period are purely distributive so

there are no implications for efficiency except in so far as citizens are risk averse.7 Our analysis

also differs from these papers in that the dynamic linkage is created by the accumulation of the

stock of public goods.

Finally, our paper contributes to a small literature trying to develop infinite horizon political

economy models of policy-making that incorporate rational, forward-looking decision makers. It

Thus, there is no voting on spending bills and hence no need for legislators to build coalitions to pass them.

4 This literature seeks to understand how legislatures choose policies in multi-dimensional policy-making en-
vironments where the median voter theorem cannot be applied and party attachments are weak. The approach
stems from the seminal work of Baron and Ferejohn (1989) and includes the papers by Banks and Duggan (2000),
Eraslan (2002) and Eraslan and Merlo (2002). An alternative “demand bargaining” approach to the problem is
developed by Morelli (1999).

5 A recent paper related to this literature is Gomes and Jehiel (2004). They present a general model of infinitely
repeated coalitional bargaining that can be interpreted as legislative bargaining. Their environment, however,
differs from the rest of the literature because they assume that there are no restrictions in monetary transfers
among players, so the proposer can extract all the expected continuation values from the other players with no
limit. This assumption does not seem to fit with the realities of legislative bargaining where pork transfers are
restricted to be positive and is key to their results. Moreover they study results for the asymptotic case when δ → 1.
With respect to our model, they do not study the growth path of the public good or the type of inefficiencies that
prevail when this condition for efficiency is not satisfied.

6 Epple and Riordan (1987) present a related analysis in which legislators take turns in being the proposer as
opposed to the proposer being randomly drawn each period. They also consider non-stationary equilibria.

7 Baron (1996) studies a one-dimensional policy space, Baron and Herron (2003) a two-dimensional policy space,
and Kalandrakis (2004) a divide-the-dollar game.
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has been well recognized in the political economy literature that many interesting issues arise

from recognizing the dynamic linkage of policies across periods. Such linkages either arise directly

as with public investment or debt, or indirectly because today’s policy choices impact citizens’

private investment decisions. However, extending standard static models to understand fully dy-

namic policy-making has proved difficult, even in the case of one-dimensional policy environments.

Accordingly, most dynamic analyses employ two period models. While these have yielded many

useful insights, they do not permit the development of predictions about the dynamics of policy

choices or steady state policy levels and this has spawned the recent research effort on infinite

horizon models. Krusell and Rios-Rull (1999) embed a negative income tax system into the neo-

classical growth model and assume that the rate of taxation is determined by the median voter

in each period. They are able to solve their model numerically and use it to make predictions

concerning the long run size of government. Using a simpler underlying economic model, Hassler,

Rodriguez Mora, Storesletten and Zilibotti (2003) develop an overlapping generations model of

the welfare state where in each period the level of welfare benefits is determined by majority

voting. They are able to provide analytical solutions of their model. Hassler, Krusell, Storesletten

and Zilibotti (2004) extend this approach to a richer economic environment in which the welfare

state provides an insurance role.8 These models differ from ours in that the policy space is one-

dimensional and the dynamic linkage occurs by impacting private investment decisions. Closer to

our paper is Azzimonti Renzo (2005) who studies policy-making in an infinite horizon model in

which in each period the winning political party allocates revenue between targeted group-specific

public goods and a public infrastructure good that serves to make the economy more productive

in the future. The major difference is that the winning political party is a policy dictator, and

therefore there is no need to build legislative coalitions as in our model.9

The organization of the remainder of the paper is as follows. Section 2 describes the model.

Section 3 creates a benchmark for comparison by solving for the efficient solution. The heart

of the paper is Section 4 which solves for equilibrium policy choices. Section 5 develops the

model’s implications for the efficiency of legislative decision-making and points out some of its

more interesting positive implications. A brief conclusion is offered in Section 6. An Appendix

8 Hassler, Storesletten and Zilibotti (2003) develop a related model where tax revenues are used to finance public
goods.

9 In addition, Azzimonti Renzo is primarily interested in understanding the implications of asymmetries in the
popularity of political parties for the time path of government spending and investment.
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contains proofs of some of the more technical results.

2 The model

A continuum of infinitely lived citizens live in n identical districts indexed by i = 1, ..., n. The size

of the population in each district is normalized to be one. There are three goods - a public good

g; consumption z; and labor l. The consumption good is produced from labor according to the

technology z = wl. The public good can be produced from the consumption good according to

the technology g = z/p. The public good is an investment good in the sense that units produced

in the current period yield benefits in future periods.10 Specifically, if the level of the public good

at time t is gt and It new units are produced in period t, then the level in period t+ 1 is

gt+1 = (1− d)gt + It.

The parameter d is the depreciation rate of the public good.

Each citizen’s per period utility function is

z +Agα − l
(1+ 1

ε )

ε+ 1
.

where α ∈ (0, 1). The parameter A measures the relative importance of the public good to the

citizens. Citizens discount future per period utilities at rate δ.

The assumptions on technology imply that the price of the public good is p and the wage rate

is w. Moreover, the quasi-linear utility specification implies that the interest rate is ρ = 1/δ − 1.

At this interest rate, citizens have no incentive to save or borrow. At wage rate w, each citizen

will work an amount l∗(w) = (εw)ε, so that ε is the elasticity of labor supply. The associated per

period indirect utility function is given by

u(w, g;A) =
εεwε+1

ε+ 1
+Agα.

Public decisions are made by a legislature consisting of representatives from each of the n

districts. One citizen from each district is selected to be that district’s representative. Since all

citizens are the same, the identity of the representative is immaterial and hence the selection

process can be ignored. The legislature meets at the beginning of each period. These meetings

10 Many public goods have this feature. Important examples are national defense activities, such as building
tanks and training troops; scientific knowledge, such as cancer research; and environmental clean ups.
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take only an insignificant amount of time, and representatives undertake private sector work in

the rest of the period just like everybody else. The affirmative votes of q < n representatives are

required to enact any legislation. The only way the legislature can raise funds is via a proportional

tax on labor income.11 Tax revenues can be used to finance investment in the public good, but

can also be diverted to finance targeted district-specific transfers, which are interpreted as (non-

distortionary) pork barrel spending.12

To describe how legislative decision-making works, suppose the legislature is meeting at the

beginning of a period in which the current level of the public good is g. One of the legislators

is randomly selected to make the first policy proposal, with each representative having an equal

chance of being recognized. A proposal is described by an n + 2-tuple {r, s1, ...., sn, x}, where r

is the income tax rate; si is the proposed transfer to district i’s residents; and x is the proposed

new level of the public good. The tax revenues raised under the proposal are given by R(r) =

nrwl∗(w(1 − r)) and the proposal must satisfy the budget constraint that
X

i
si ≤ B(r, x; g)

where B(r, x; g) denotes the difference between tax revenues and investment spending; i.e.,

B(r, x; g) = R(r)− p [x− (1− d) g] .

The set of constraints is completed by the non-negativity constraints that si ≥ 0 for each district

i (which rules out financing public investment via district specific lump sum taxes).13

If the proposal is accepted by q legislators, then the plan is implemented and the legislature

adjourns until the beginning of the next period. At that time, the legislature meets again with

the only difference being that the initial level of public capital is x. If, on the other hand, the first

proposal is not accepted, another legislator is chosen to make a proposal. There are T ≥ 2 such

proposal rounds, each of which takes a negligible amount of time. If the process continues until

proposal round T , and the proposal made at that stage is rejected, then a legislator is appointed to

choose a default policy. The legislator is required to choose a policy that treats districts uniformly,

meaning that if he chooses transfers, he must choose a uniform transfer that goes to all districts.14

11 For simplicity and to focus on the legislative investment decision, we abstract from the possibility of financing
expenditures with public debt. In the conclusion, we discuss a way in which the model may be adapted to explore
the implications of government borrowing.

12 The district-specific transfers could be either direct grants to particular localities or earmarks for specific public
projects that the districts would undertake anyway. In the latter case, the earmarks would be non-distortionary
and equivalent to a direct transfer.

13 For analytical convenience, we do not impose the constraint that investment is non-negative; i.e., x ≥ (1−d)g.
Thus, we are assuming, effectively, that investment is reversible.
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3 The social planner’s solution

To create a normative benchmark with which to compare the political equilibrium, we begin by

describing the policies that would be chosen by a social planner whose objective was to maximize

aggregate utility. In a period in which the current level of the public good is g, the planner’s

problem is to choose a new level of the public good x, a vector of transfers (s1, ...., sn), and a tax

rate r to solve the problem

maxnu(w(1− r), g) +
X

i
si + δV (x)

s.t. si ≥ 0 for all i and
X

i
si ≤ B(r, x; g),

where V (x) denotes the planner’s value function.

This problem can be simplified by observing that if B(r, x; g) were positive, the planner would

want to use all the available surplus revenues to finance transfers and hence
X

i
si = B(r, x; g).

Moreover, aggregate utility is independent of how the planner allocates this surplus across the

districts because citizens’ utilities are linear in consumption. Thus, we can eliminate the choice

variables (s1, ...., sn) and reformulate the problem as that of choosing a new level of the public

good x and a tax rate r to solve

maxnu(w(1− r), g) +B(r, x; g) + δV (x)

s.t. B(r, x; g) ≥ 0.

The problem in this form is fairly standard. The social planner’s value function must satisfy the

functional equation

V (g) = max
{r,x}

{nu(w(1− r), g) +B(r, x; g) + δV (x) : B(r, x; g) ≥ 0} ,

and familiar arguments can be applied to show that it exists and is differentiable, increasing and

strictly concave. From this, the properties of the optimal policy may readily be deduced.

14 This assumption guarantees that if the legislature is unable to agree on a policy proposal, the default outcome
will be efficient in the sense of maximizing the legislators’ average utility, and so independent from the identity of
the last proposer. The assumption helps keep the model tractable. Nonetheless, it is important to note that when
the number of proposal rounds T is large, the particular default policy that is chosen has only a small effect on
equilibrium payoffs, which vanishes as T →∞.
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To understand the optimal policy, note first that the revenue maximizing tax rate is given by

r = 1/(1 + ε) and hence the maximum level of revenue that can be raised during the period is

R(1/(1+ε)). The levels of the public good x that the planner can implement with an initial level g

are therefore given by the interval [0, (1−d)g+R(1/(1+ε))/p]. If the planner would like to invest

in the public good (i.e., x ≥ (1− d)g) he will choose an income tax rate just sufficient to finance

this investment. Raising surplus revenues to finance pork barrel spending will never be optimal

because taxation is distortionary. Thus, the tax rate is r = r(x, g) where the function r(x, g) is

implicitly defined by the equality B(r, x; g) = 0. On the other hand, if the planner would like to

disinvest in the public good (i.e., x < (1 − d)g) he will redistribute the proceeds through pork

rather than through an earnings subsidy. This means that the tax rate will equal 0 (as opposed

to being negative) and B(r, x; g) > 0.

Given the properties of the value function, there will exist some critical level of the public good

bg such that for all g ≤ bg the planner will want to invest and for all g > bg he will want to disinvest.
Accordingly, the optimal policy functions must be such that

xo(g) =

⎧⎪⎪⎨⎪⎪⎩
argmax{nu(w(1− r(x, g)), g) + δV (x)} if g ≤ bg

(1− d)bg if g > bg
and

ro(g) =

⎧⎪⎪⎨⎪⎪⎩
r(xo(g), g) if g ≤ bg

0 if g > bg .

Moreover, on the interval [0, bg], the optimal public good level xo(g) must satisfy the first order
condition:

δV 0(x) = nw
∂u(w(1− r(x, g)), g)

∂w

∂r(x, g)

∂x
.

After computing the derivatives on the right hand side, this can be rewritten as

δV 0(x) = [
1− r(x, g)

1− r(x, g)(1 + ε)
] · p.

This is the Euler equation for the planner’s problem. The term on the left hand side is the social

marginal benefit of the public good and the term on the right is the social marginal cost. The

social marginal cost is the product of the price of the public good p and the marginal cost of public

funds. The latter always exceeds 1 and is higher the more elastic is the supply of labor and the
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greater is the tax rate.15

The planner’s solution converges to a unique steady state (ro, xo). To compute this, we first

need to find an expression for the social marginal benefit of the public good. We have that

V (x) =

⎧⎪⎪⎨⎪⎪⎩
maxz{nu(w(1− r(z, x)), x) + δV (z)} if x ≤ bg

nu(w, x) + p(1− d)(x− bg) + δV ((1− d)bg) if x > bg .

Using the Envelope Theorem and computing the derivative ∂r/∂x, we have that

V 0(x) =

⎧⎪⎪⎨⎪⎪⎩
nAαxα−1 + 1−r(xo(x),x)

1−r(xo(x),x)(1+ε)p(1− d) if x ≤ bg
nAαxα−1 + p(1− d) if x > bg .

To understand this note that there are two future benefits of investing more in the public good.

First, public good consumption is higher in the next period. Second, less investment will be

necessary next period or, if x > bg, more disinvestment will be possible. The first term in the

expression measures the former effect and the second term the latter. The size of the latter effect

depends on whether x is larger or smaller than bg. If less investment is necessary next period, this
will mean a lower tax rate. If more disinvestment is possible, this will mean a larger transfer. The

value of a tax rate reduction is greater than an equally costly transfer increase because taxation

is distortionary. While the expressions differ, however, it is important to note that the social

marginal benefit of the public good is continuous at x = bg because r(xo(bg), bg) = 0.
At a steady state, we have that xo = xo(xo) which must mean that xo < bg. Substituting in

the expression for the social marginal benefit of the public good into the Euler equation, it follows

that at a steady state

δ[nAα(xo)α−1 +
1− r(xo, xo)

1− r(xo, xo)(1 + ε)
p(1− d)] = 1− r(xo, xo)

1− r(xo, xo)(1 + ε)
· p. (1)

It is easy to verify that this equation has a unique solution and this is the planner’s steady state

level of the public good. The steady state tax rate is given by ro = r(xo, xo).

Although the analysis of the planner’s problem is relatively standard, it is useful to have a

graphical representation of the solution. This will set the stage for the more complicated political

equilibrium. Figure 1.a shows the Euler equation. The decreasing function is the social marginal

15 The “marginal cost of public funds” represents the social cost of raising an additional $1 of tax revenue. The
difference between the marginal cost of public funds and $1 is a measure of the distortions taxation is creating.
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benefit of the public good δV 0(x). The increasing functions are the social marginal costs evaluated

at different initial public capital levels. Note that these curves are always above p since r(x, g) ≥

0. The intersection of these two loci gives us the planner’s investment choice xo(g), which is

represented in Figure 1.b. This curve is increasing on [0, bg] and constant thereafter. It can be
shown to have a slope less than 1 and hence intersects the 45o line once. This intersection identifies

the steady state level xo. It is apparent from the Figure that from any initial level the equilibrium

level of the public good converges monotonically to the steady state xo. The tax rate can be shown

to be monotonically decreasing if, as seems natural, the economy starts out with a public good

level lower than the steady state level.

4 Political equilibrium

We look for stationary equilibria in which any representative selected to propose at proposal round

τ ∈ {1, ..., T} of the meeting at some time t uses a proposal strategy that depends only on the

current level of the public good. We focus on symmetric equilibria in which each representative

use the same proposal strategy and treats the other representatives anonymously. Such equilibria

are characterized by a collection of functions: {rτ (g), sτ (g), xτ (g)}Tτ=1. Here rτ (g) is the income

tax rate that is proposed at round τ when the initial level of the public good is g and xτ (g) is

the new level of public good. The proposer also offers a transfer of sτ (g) to the districts of q − 1

randomly selected representatives where q is the size of a minimum winning coalition.16 Any

remaining tax revenues are used to provide pork for his own district. As standard in the literature

on legislative bargaining, we assume that legislators do not use weakly dominated strategies when

voting for a policy proposal: so they vote in favor if and only if their utility under the proposal is

at least as large as their continuation value in the event it is rejected. We focus, without loss of

generality, on equilibria in which at each round τ proposals are immediately accepted by at least

q legislators, so that on the equilibrium path, no meeting lasts more than one proposal round.17

Accordingly, the policies that are actually implemented in equilibrium are described by {r1(g),

16 In our model, while the proposer is free to offer transfers to more than q − 1 representatives, there is no loss
in generality in considering only minimal winning coalitions since in no stationary equilibrium would the proposer
find it optimal to offer transfers to more than q − 1 representatives.
17 Since there is no discounting within bargaining stages, there are equilibria in which, in correspondence to

some state, a proposal may be rejected at some stage τ and accepted at a later stage τ 0 ≤ T . Without loss
of generality, however, we can ignore these equilibria, since they would be payoff equivalent to equilibria with
immediate agreement.
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s1(g), x1(g)}.

To be more precise, {rτ (g), sτ (g), xτ (g)}Tτ=1 is an equilibrium if at each proposal round τ and

all public good levels g ≥ 0, the equilibrium proposal maximizes the proposer’s payoff subject

to the incentive constraint of getting the required number of affirmative votes and the feasibility

constraint that transfers be non-negative. Formally, (rτ (g), sτ (g), xτ (g)) must solve the problem

max
(r,s,x)

u(w(1− r), g) +B(r, x; g)− (q − 1) s+ δv1(x)

subject to

u(w(1− r), g) + s+ δv1(x) ≥ vτ+1(g),

B(r, x; g) ≥ (q − 1)s, and s ≥ 0,

where v1(x) is the legislators’ round one value function (which describes the expected future

payoff of a legislator at the beginning of a period in which the current level of public good is x)

and vτ+1(g) is the expected future payoff of a legislator in the out-of-equilibrium event that the

proposal at round τ is rejected. The first constraint is the incentive constraint and the latter two

are the feasibility constraints.

The legislators’ round one value function is defined recursively by

v1(g) = u(w(1− r1(g)), g) +
B(r1(g), x1(g); g)

n
+ δv1(x1(g)). (2)

To understand this recall that a legislator is chosen to propose in round one with probability 1/n.

If chosen to propose, he obtains a payoff in that period of

u(w(1− r1(g)), g) +B(r1(g), x1(g); g)− (q − 1)s1(g).

If he is not chosen to propose, but is included in the minimum winning coalition, he obtains a payoff

of u(w(1− r1(g)), g)+ s1(g) and if he is not included he obtains a payoff of just u(w(1− r1(g)), g).

The probability that he will be included in the minimum winning coalition, conditional on not

being chosen to propose, is (q − 1)/(n− 1). Taking expectations, the pork barrel transfers s1(g)

cancel and the period payoff is as described in (2).

For all proposal rounds τ = 1, .., T − 1 the expected future payoff of a legislator if the round τ

proposal is rejected is

vτ+1(g) = u(w(1− rτ+1(g)), g) +
B(rτ+1(g), xτ+1(g); g)

n
+ δv1(xτ+1(g)).

12



This reflects the assumption that the round τ + 1 proposal will be accepted. Recall that if the

round T proposal is rejected, the assumption is that a legislator is appointed to choose policy and

that he must choose a uniform policy which, if it involves transfers, must make the same transfer

to all districts. Thus,

vT+1(g) = max
(r,x)

{u(w(1− r), g) + B(r, x; g)
n

+ δv1(x) : B(r, x; g) ≥ 0}.

An equilibrium {rτ (g), sτ (g), xτ (g)}Tτ=1 is said to be concave if the associated round one

legislators’ value function v1(g) is strictly concave. We will restrict attention to concave equilibria

in what follows and henceforth when we refer to an equilibrium it should be understood to be

concave.18 Note also that economy-wide aggregate utility in an equilibrium is given by nv1(g).

This follows from the fact that each district has a population of size 1 and citizens obtain the

same payoffs as their representatives.

Our analysis of political equilibrium is divided into three parts. We begin by assuming that an

equilibrium exists and characterize what the equilibrium policy proposals must look like. We then

show that there are three possible types of equilibrium, each of which has distinct dynamics and

a different steady state. Finally, we will establish the conditions under which each of these three

types of equilibrium exists. Throughout the analysis, we will maintain the following assumption:

Assumption 1:

R( 1−q/n
1+ε−q/n)

p
< (

δqAα

p(1− q
nδ(1− d))

)
1

1−α .

Basically, this requires that the tax base of the economy be not so large that a minimum winning

coalition of legislators could accumulate their desired level of the public good in a single period.

The role this assumption plays will become apparent shortly.

4.1 The equilibrium policy proposals

The basic structure of the equilibrium policy proposals is easily understood. To get support for

his proposal, the proposer must obtain the votes of q − 1 other representatives. Accordingly,

given that utility is transferable, he is effectively making decisions to maximize the utility of q

legislators. The optimal policy will depend on the state variable g. If the stock of the public good

18 As we will prove, a concave equilibrium always exists in our model. Although we could not find an example
of a non-concave equilibrium, we have not formally proven that such an equilibrium can not exist.
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is sufficiently low, then even though the proposer is only taking into account the well-being of q

legislators, he will still not want to divert resources to transfers. Transfers require either reduced

public investment or increased taxation and when the stock of the public good is low, the marginal

benefit of public investment and the marginal cost of taxation are both too high to make transfers

attractive. The proposer will therefore choose the tax rate - public investment pair that maximizes

collective utility and the outcome will be as if he is maximizing the utility of the legislature as a

whole. Once the stock of the public good becomes sufficiently large, then the opportunity cost of

transfers is lessened and the collective utility of the q legislators will be maximized by diverting

some resources to pork. Accordingly, the proposer will propose pork for the districts associated

with his minimum winning coalition.

In any equilibrium, therefore, there will exists a threshold level of the public good that divides

the state space into two ranges. In the lower range, in every proposal round, the proposer will

propose a unanimous coalition solution in which the policy proposal maximizes aggregate legislator

utility implying that no revenues are devoted to pork. These proposals will be supported by the

entire legislature. In the upper range, in every proposal round the proposer chooses a minimum

winning coalition solution in which the proposer provides pork for his own district and those

of a minimum winning coalition of representatives. The tax rate-investment pair maximizes the

aggregate utility of q legislators, given that they appropriate all the surplus revenues. The transfer

paid out to coalition members is just sufficient to make them in favor of accepting the proposal.

Thus, only those legislators whose districts receive pork vote for these proposals.

This discussion motivates:

Proposition 1: Let {rτ (g), sτ (g), xτ (g)}Tτ=1 be an equilibrium with associated value function

v1(g). Then there exists g
∗(v1) > 0 such that: (i) if g ∈ [0, g∗(v1)]

(rτ (g), sτ (g), xτ (g)) = (r(x
∗(g; v1), g), 0, x

∗(g; v1)) for all τ = 1, ..., T,

where r(x, g) is the tax rate function from the analysis of the planner’s problem and

x∗(g; v1) = argmax
x
{u(w(1− r(x, g)), g) + δv1(x)};

and (ii) if g ∈ (g∗(v1),∞)

(rτ (g), xτ (g)) = (r
∗, x∗(v1)) for all τ = 1, ..., T,

14



where

(r∗, x∗(v1)) = argmax
(r,x)

q[u(w(1− r), g) + δv1(x)] +B(r, x; g),

and

sτ (g) =

⎧⎪⎪⎨⎪⎪⎩
B(r∗,x∗(v1);g)

n for all τ = 1, ..., T − 1

vT+1(g)− u(w(1− r∗), g)− δv1(x
∗(v1)) for τ = T

The threshold level of the public good is g∗(v1) and the Proposition tells us that the tax rate -

public investment pair proposed in each proposal round will maximize aggregate legislator utility

when g ≤ g∗(v1) and the utility of q legislators when g > g∗(v1). It is straightforward to verify

that

r∗ =
1− q/n

1 + ε− q/n

and that

x∗(v1) = argmax
x
{δqv1(x)− px}.

Thus, both the tax rate and level of the public good proposed in the minimum winning coalition

range are independent of the existing level of the public good and, furthermore, the tax rate is

independent of the value function. Another useful fact is that at g = g∗(v1), the unanimous and

minimum winning coalition solutions coincide so that

(r(x∗(g∗(v1); v1), g
∗(v1)), 0, x

∗(g∗(v1); v1)) = (r
∗, 0, x∗(v1)). (3)

This implies that B(x∗(v1), r
∗; g∗(v1)) = 0, an observation that permits the computation of the

threshold value g∗(v1) once x
∗(v1) is known.

Proposition 1 provides us with the basic picture of what the equilibrium proposals look like.

The next step is to obtain more information about the function x∗(g; v1) and the public good level

x∗(v1). Since these obviously depend upon the nature of the equilibrium value function, we must

investigate this first. Proposition 1 allows us to write

v1(x) =

⎧⎪⎪⎨⎪⎪⎩
maxy{u(w(1− r(y, x)), x) + δv1(y)} if x ≤ g∗(v1)

u(w(1− r∗), x) + B(r∗,x∗(v1);x)
n + δv1(x

∗(v1)) if x > g∗(v1)

.
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As we will see, this value function is differentiable everywhere except at g = g∗(v1).
19 Thus, by

the Envelope Theorem we have that:

v01(x) =

⎧⎪⎪⎨⎪⎪⎩
Aαxα−1 + ( 1−r(x∗(x;v1),x)

1−r(x∗(x;v1),x)(1+ε) )(
p(1−d)
n ) if x < g∗(v1)

Aαxα−1 + p(1−d)
n if x > g∗(v1)

.

The equilibrium value function has a kink at g∗(v1) in the sense that the left hand derivative

limx%g∗(v1) v
0
1(x) exceeds the right hand derivative limx&g∗(v1) v

0
1(x). This reflects the fact that

the value of an additional unit of public good is lower in the minimum winning coalition range.

As in the planner’s problem, there are two sources of future benefits from investing more in the

public good. First, public good consumption is higher in the next period. Second, less investment

will be necessary next period. The benefits from the first effect are the same whether or not the

legislature is choosing to make transfers in the next period, but the benefits of the second effect

do depend on this choice. In the unanimous coalition case, the lower investment translates into

a lower tax rate. With minimum winning coalitions, it means higher transfers. But the value of

a tax rate reduction is greater than the value of an equally expensive transfer increase because

taxes are distortionary and hence the kink.

We can now use the expression for the slope of the value function to characterize the function

x∗(g; v1). If v1(x) is differentiable at the solution, then x
∗(g; v1) satisfies the first order condition

δv01(x) = (
1− r(x, g)

1− r(x, g)(1 + ε)
)(
p

n
).

This first order condition reflects the fact that any increase in public good investment must

be financed by an increase in taxes. Thus, the increase is worthwhile if and only if the per

capita benefit of an additional unit of public good δv01(x) exceeds the per capita tax cost which is

( 1−r
1−r(1+ε) )(

p
n). The latter is the product of the per capita cost of the public good and the marginal

cost of public funds.

There are three cases to be considered. The first is that at g∗(v1) the discounted right hand

derivative of the value function exceeds the per capita tax cost. In this case, δv01(x) must equal

the per capita tax cost in the minimum winning coalition range. Accordingly, x∗(g; v1) exceeds

19 As it will be clear from the proof of Proposition 4, this follows by standard arguments (see Stokey, Lucas and
Prescott [1989]).
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g∗(v1) and satisfies the first order condition

δ[Aαxα−1 +
p(1− d)
n

] = (
1− r(x, g)

1− r(x, g)(1 + ε)
)(
p

n
). (4)

The second case is that at g∗(v1) the left hand derivative of the value function is less than the tax

cost. In this case, δv01(x) must equal the tax cost in the unanimous coalition range. Accordingly,

x∗(g; v1) is smaller than g
∗(v1) and satisfies the first order condition

δ[Aαxα−1 + (
1− r(x∗(x; v1), x)

1− r(x∗(x; v1), x)(1 + ε)
)(
p(1− d)
n

)] = (
1− r(x, g)

1− r(x, g)(1 + ε)
)(
p

n
). (5)

The third case is that the tax cost lies between the left and right hand derivatives of the value

function at g∗(v1). In this case, we must have that x
∗(g; v1) = g

∗(v1).

Turning to x∗(v1), if v1(x) is differentiable at the solution, then x
∗(v1) satisfies the first order

condition

δv01(x) =
p

q
.

This first order condition reflects the fact that any increase in public good investment simply

reduces the amount of transfers received by the q representatives in the minimum winning coalition.

Thus, the increase is worthwhile if and only if the per capita benefit of an additional unit of public

good δv01(x) exceeds the per capita transfer cost to coalition members which is p/q.

There are again three cases. The first is that at g∗(v1) the discounted right hand derivative

of the value function exceeds the transfer cost p/q. In this case, δv01(x) must equal p/q in the

minimum winning coalition range. Accordingly, x∗(v1) exceeds g
∗(v1) and satisfies the first order

condition

δ[Aαxα−1 +
p(1− d)
n

] =
p

q
. (6)

The second possibility is that the left hand derivative at g∗(v1) is less than p/q. In this case,

δv01(x) must equal the transfer cost in the unanimity range. Accordingly, x
∗(v1) must be smaller

than g∗(v1) and must satisfy the first order condition

δ[Aαxα−1 + (
1− r(x∗(x, v1), x)

1− r(x∗(x, v1), x)(1 + ε)
)(
p(1− d)
n

)] =
p

q
. (7)

The third possibility is that p/q lies between the left and right hand derivatives of the value

function at g∗(v1). In which case we must have that x
∗(v1) = g

∗(v1).
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4.2 The three types of equilibrium

We can now bring the information just obtained about the function x∗(g; v1) and the public good

level x∗(v1) together with Proposition 1 to get a picture of how equilibrium plays out. There

are three possibilities to be considered. In a Type I equilibrium, x∗(v1) exceeds g
∗(v1), so that if

the current level of the public good is in the minimum winning coalition range, the equilibrium

investment decision will be such as to keep it there. In a Type II equilibrium, x∗(v1) is less than

g∗(v1), so that in the minimum winning coalition range, the equilibrium investment decision will

be such as to put the public good level back in the interior of the unanimity range. In a Type III

equilibrium, x∗(v1) is equal to g
∗(v1) so that the equilibrium investment decision will be such as

to put the public good level back at the boundary of the two ranges. We consider each in turn.

4.2.1 Type I equilibrium

In this case, x∗(v1) must satisfy the first order condition (6). Solving this implies that

x∗(v1) = (
δqAα

p(1− q
nδ(1− d))

)
1

1−α .

Furthermore, since B(x∗(v1), r
∗; g∗(v1)) = 0, this implies that

g∗(v1) =
px∗(v1)−R(r∗)

p(1− d) .

This gives us closed form solutions for x∗(v1) and g
∗(v1). For this equilibrium to exist, the

parameters of the model must be such as to imply that x∗(v1) is indeed greater than g
∗(v1) and

we will give a condition for this below.

It remains to describe the behavior of x∗(g; v1). From (3) we know that at g = g∗(v1) it must

be the case that x∗(g; v1) = x
∗(v1). This implies that the marginal cost curve for the unanimity

case ( 1−r(x,g∗(v1))
1−r(x,g∗(v1))(1+ε) )(

p
n) will equal p/q at x equal to x

∗(v1). Now define the public good levelsbg and g0 from the equations

δ[Aαg∗(v1)
α−1 +

p(1− d)
n

] = (
1− r(g∗(v1), bg)

1− r(g∗(v1), bg)(1 + ε)
)(
p

n
)

and

δ[Aαg∗(v1)
α−1 + (

1− r(x∗(v1), g∗(v1))
1− r(x∗(v1), g∗(v1))(1 + ε)

)(
p(1− d)
n

)] = (
1− r(g∗(v1), g0)

1− r(g∗(v1), g0)(1 + ε)
)(
p

n
).

Observe that g0 < bg < g∗(v1).
18
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Figure 2: Type I equilibrium: x∗(v1) > g
∗(v1)
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On the interval [bg, g∗(v1)], x∗(g; v1) is implicitly defined by the first order condition (4). It
is increasing in g and exceeds g∗(v1). Effectively in this part of the unanimity range, the public

good is sufficiently valuable that the aggregate utility of the legislators is maximized by choosing

a level of investment that will induce pork to be distributed in the next period. On the interval

[g0, bg], x∗(g; v1) is constant and equal to g∗(v1). Here the proposer is deterred from investing more
than g∗(v1) because it will result in a minimum winning coalition solution in the next period.

Finally, on the interval [0, g0], x∗(g; v1) is implicitly defined by the first order condition (5) and

is less than g∗(v1). In this range, the proposer chooses the level of investment that maximizes

aggregate legislator utility knowing that in the next period the proposer will do the same.

The situation is illustrated in Figure 2. In panel (a) the vertical axis measures units of consump-

tion and the horizontal axis measures units of x. The downward sloping line with the discontinuity

at g∗(v1) is δv
0
1(x) and hence represents the per capita benefit of an additional unit of the public

good. The horizontal line p/q represents the per capita marginal cost in the minimum winning

coalition range. The upward sloping convex lines ( 1−r(x,g)
1−r(x,g)(1+ε) )(

p
n) represent the per capita mar-

ginal cost of the public good in the unanimity range. Lower initial levels of the public good shift

these lines to the left.

The minimum winning coalition public good level is determined by the intersection of the

marginal benefit curve and the curve p/q. Given that x∗(v1) exceeds g
∗(v1), the intersection

must occur to the right of g∗(v1) as illustrated. The function x
∗(g; v1) is determined by the

intersection of the marginal benefit and marginal tax cost curve ( 1−r(x,g)
1−r(x,g)(1+ε) )(

p
n). At g = g

∗(v1),

this intersection occurs at x∗(v1). As we lower g the marginal cost curve shifts leftward and we

trace out successively lower levels of x. In the interval [g0, bg], lowering g has no impact on the
level of the public good that is chosen. On the interval [0, g0], the marginal cost curve intersects

the upper branch of the marginal benefit curve and x∗(g; v1) once again decreases as we lower the

initial level of the public good.

Panel (b) of Figure 2 uses this information about x∗(g; v1) and x
∗(v1) to graph the equilibrium

level of x as a function of the state variable g. This curve intersects the 45o line at x∗(v1). It is

apparent from this Figure that from any initial condition the equilibrium level of the public good

converges monotonically to the steady state x∗(v1). The steady state tax rate is r
∗. In the steady

state, the proposer raises more revenue than necessary to maintain the public good level at x∗(v1)

and this revenue is used to finance pork. Thus we have:
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Proposition 2: Let {rτ (g), sτ (g), xτ (g)}Tτ=1 be a Type I equilibrium. Then, the equilibrium level

of the public good and tax rate converge monotonically to the steady state (r∗, ( δqAα
p(1− q

n δ(1−d))
)

1
1−α ).

In this steady state, in each period the districts of a minimum winning coalition of representatives

receive pork.

4.2.2 Type II equilibrium

If x∗(v1) is less than g
∗(v1), it must be the case that x

∗(v1) satisfies the first order condition (7).

This is not a closed form solution for x∗(v1), since it depends upon x
∗(x∗(v1), v1). Turning to

x∗(g; v1), we know from (3) that at g = g
∗(v1) it must be the case that x

∗(g; v1) = x
∗(v1). On the

interval [0, g∗(v1)], x
∗(g; v1) is implicitly defined by the first order condition (5). It is increasing

over this range and thus less than g∗(v1). Accordingly, the proposer chooses the optimal level

of investment knowing that in the next period the proposer will also be maximizing aggregate

legislator utility.

The situation is illustrated in Figure 3. The interpretation of the various curves in panel (a)

are as for Figure 2(a). Given that x∗(v1) is less than g
∗(v1), the intersection of the marginal

benefit curve and the curve p/q must occur to the left of g∗(v1) as illustrated. The function

x∗(g; v1) is determined by the intersection of the marginal benefit curve and the marginal cost

curve ( 1−r(x,g)
1−r(x,g)(1+ε) )(

p
n). At g = g∗(v1), this intersection occurs at x

∗(v1). As we lower g the

marginal cost curve shifts leftward and we trace out successively lower levels of x.

Panel (b) of Figure 3 uses this information about x∗(g; v1) and x
∗(v1) to graph the equilibrium

level of x as a function of the initial public good level g. This curve intersects the 45o line at

bx. It is apparent from this Figure that from any initial level of the public good the equilibrium

converges monotonically to the steady state bx. The steady state tax rate is br = r(bx, bx). The
steady state (br, bx) involves no pork and satisfies:

δ[Aαbxα−1 + ( 1− br
1− br(1 + ε)

)(
p(1− d)
n

)] = (
1− br

1− br(1 + ε)
)(
p

n
).

It follows from (1) that (br, bx) must equal the planner’s steady state. This yields:
Proposition 3: Let {rτ (g), sτ (g), xτ (g)}Tτ=1 be a Type II equilibrium. Then, the equilibrium

level of the public good and tax rate converge monotonically to the planner’s steady state (ro, xo).
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Figure 3: Type II equilibrium: x∗(v1) < g
∗(v1)
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4.2.3 Type III equilibrium

If x∗(v1) is equal to g
∗(v1), it must be the case that

lim
x%g∗(v1)

δv01(x) ≥
p

q
≥ lim

x&g∗(v1)
δv01(x).

Moreover, since B(x∗(v1), r
∗; g∗(v1)) = 0, we can solve the budget equation to obtain

x∗(v1) = g
∗(v1) =

R(r∗)

pd
.

Turning to x∗(g; v1), we know that at g = g
∗(v1) it must be the case that x

∗(g; v1) = g
∗(v1).

Now define the public good level g0 from the equation

δ[Aαg∗(v1)
α−1 + (

1− r(g∗(v1), g∗(v1))
1− r(g∗(v1), g∗(v1))(1 + ε)

)(
p(1− d)
n

)] = (
1− r(g∗(v1), g0)

1− r(g∗(v1), g0)(1 + ε)
)(
p

n
).

It is the case that g0 < g∗(v1). On the interval [g
0, g∗(v1)], x

∗(g; v1) is constant and equal to

g∗(v1). Here the proposer is deterred from investing more than g∗(v1) because it will result in

a minimum winning coalition solution being selected in the next period. On the interval [0, g0],

x∗(g; v1) is implicitly defined by the first order condition (5) and is less than g
∗(v1). In this range,

the proposer chooses the optimal level of investment knowing that in the next period the proposer

will also be maximizing aggregate legislator utility.

The situation is illustrated in Figure 4. Given that x∗(v1) equals g
∗(v1), the curve p/q must

intersect the marginal benefit curve at the point of discontinuity as illustrated in panel (a). The

marginal cost curve for the unanimity case ( 1−r(x,g∗(v1))
1−r(x,g∗(v1))(1+ε) )(

p
n) will equal p/q at x equal to

g∗(v1). As we lower g, the marginal cost curve shifts leftward but on the interval [g
0, g∗(v1)] this

has no impact on the level of the public good that is chosen. On the interval [0, g0], the marginal

cost curve intersects the upper branch of the marginal benefit curve and x∗(g; v1) decreases as the

initial level of the public good is lowered.

Panel (b) of Figure 4 graphs the equilibrium level of x as a function of the initial public good

level g. This curve intersects the 45o line at g∗(v1). It is apparent from this Figure that from any

initial condition the equilibrium converges monotonically to the steady state g∗(v1). The steady

state tax rate is r∗ which also equals r(g∗(v1), g
∗(v1)). This steady state involves no pork, but is

not the planner’s steady state. Thus we have:

Proposition 4: Let {rτ (g), sτ (g), xτ (g)}Tτ=1 be a Type III equilibrium. Then, the equilibrium

levels of the public good and tax rate converge monotonically to the steady state (r∗, R(r
∗)

pd ). In this

steady state, no districts receive pork.
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4.3 Existence, uniqueness and multiplicity of equilibria

The foregoing analysis has provided a complete characterization of equilibrium. It has shown that

there are three possible types of equilibrium and has described the dynamics of the equilibrium

policy proposals in each case. Moreover, it solved for the steady state levels of public goods and

taxes in each case. It remains to establish the conditions under which each type of equilibrium

exists. There are two main questions of interest. First, does an equilibrium always exist and,

second, is it possible that two or more types of equilibria can co-exist?

Recall that A parameterizes the value of the public good to the citizens. Define A to be the

value of A that makes the marginal benefit of the public good in the minimum winning coalition

range equal to p/q at R(r∗)/pd; that is,

δ[Aα(
R(r∗)

pd
)α−1 +

p(1− d)
n

] =
p

q
. (8)

Similarly, let A be the value of A that makes the marginal benefit of the public good in the

unanimity range equal to p/q at R(r∗)/pd; that is,

δ[Aα(
R(r∗)

pd
)α−1 + (

1− r∗
1− r∗(1 + ε)

)(
p(1− d)
n

)] =
p

q
. (9)

Notice that A must be less than A since, holding constant preferences, the marginal benefit of the

public good is higher in the unanimity range. Then we have the following result:

Proposition 5: (i) If A ∈ (0, A) there is a unique equilibrium and this equilibrium is a Type

I equilibrium. (ii) If A > A there is a unique equilibrium and this equilibrium is a Type II

equilibrium. (iii) If A ∈ [A,A] there are three equilibria, one of each type.

Thus, there always exists an equilibrium and, for a range of the parameter space, all of the

three types of equilibria discussed above co-exist.20 Multiple equilibria arise because there are

complementarities between the public good decisions of different proposers in different periods.

Consider a proposer deciding whether to use p units of tax revenue to purchase an additional

unit of the public good or to finance pork for the districts of a minimum winning coalition of

representatives. The gain from the latter strategy is p/q. As already noted, the gain from the

20 It should also be noted that for a range of the parameter space ((0, A)∪ (A,∞)) the equilibrium is unique (at
least in the class of symmetric Markov equilibria with concave value functions). Previous research in the legislative
bargaining literature has provided uniqueness results for Baron and Ferejohn’s (1989) static model (Eraslan (2002)).
Uniqueness is perhaps more surprising in a dynamic model where the bargaining process may lead to inefficient
outcomes because of the complementarities discussed above.
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former strategy can be decomposed into two parts. One part is deterministic and directly affects

the proposer’s future utility: investing in an additional unit of public good generates a benefit of

Aαgα−1 in the following period, independently of the behavior of other representatives. But the

other part depends on the strategy used by representatives in the future. If the representatives

in the future are “virtuous,” they respond to the reduced need to invest in the public good by

imposing a lower tax rate. If they are not virtuous, they respond by increasing pork barrel

spending. Virtuous behavior increases the incentives to invest in the public good and, in this way,

is self-reinforcing.

5 Implications of the model

The results of the previous section provide a complete picture of what political equilibrium looks

like. In this section, we draw out some of the implications of the model. We first discuss what

it tells us about the efficiency of legislative decision-making and then turn to some of its positive

implications.

5.1 The efficiency of political equilibrium

To understand the model’s implications concerning efficiency, we will focus on a comparison of the

equilibrium and planner’s steady states. We will refer to the steady state levels of the public good

and tax rate in the planner’s solution as “the efficient levels”. This is motivated by the fact that the

planner’s solution is the unique Pareto efficient policy sequence in the set of policy sequences that

provide all citizens with the same expected payoff. Since all citizens have the same expected payoff

in political equilibrium, divergencies between equilibrium and planner’s steady states represent

Pareto inefficiencies and thereby constitute “political failures” in the sense defined by Besley and

Coate (1998).

We begin by understanding how the equilibrium steady state differs from the planner’s in the

three types of equilibrium. For the Type I equilibrium we can show:

Lemma 1: Let {rτ (g), sτ (g), xτ (g)}Tτ=1 be a Type I equilibrium. Then, the steady state public

good level is below the efficient level. Moreover, the steady state tax rate is above the efficient level

if A ∈ (0, A) and below it if A ∈ (A,A].

Thus, public goods are always under-provided in this type of equilibrium, but the overall size

of government as measured by the tax rate may be below or above the efficient level. When
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A ∈ (0, A) this type of equilibrium reflects well the conventional wisdom concerning legislative

decision-making. Namely, that it results in government being too large in the sense that taxes

are higher than the efficient level and, in addition, that these tax revenues are misallocated, with

public goods being under-provided and pork being over-provided. When A ∈ (A,A] (and we are

in a Type I equilibrium) the picture differs from the conventional one because government is below

its efficient scale, although revenues are still misallocated to pork.

We know from Proposition 2, that for the Type II equilibrium, the equilibrium and efficient

steady states coincide. This just leaves the Type III equilibrium, for which we can establish:

Lemma 2: Let {rτ (g), sτ (g), xτ (g)}Tτ=1 be a Type III equilibrium. Then, the steady state public

good level is below the efficient level.

Since there is no pork in the Type III equilibrium, this result implies that the overall size of

government is below optimal. The nature of the inefficiency therefore differs completely from

that suggested by the conventional wisdom. Government is not only too small, but available tax

revenues are allocated efficiently. The legislature is not willing to choose a public good level higher

than g∗(v1) because they know that the public good level will go back down to g
∗(v1) the next

period, so there will be only one period of additional public good consumption. Moreover, the

extra revenues that will be saved by not having to purchase as much public good in the next

period will just be spent on transfers rather than reducing taxes. Spending on transfers is less

efficient in an ex-ante sense than reducing taxes because of the deadweight cost of taxation.

Combining the results of Lemmas 1 and 2 and Propositions 2-5, the efficiency implications of

the model can be summarized as follows:

Proposition 6: If A < A then the steady state equilibrium tax rate is too high and the steady

state equilibrium level of public goods is too low. If A > A, then the steady state equilibrium is

efficient. If A ∈ [A,A] then the steady state equilibrium could be efficient or inefficient. If it is

inefficient, there are two possibilities. In the first, the tax rate will be too low but revenues will be

allocated efficiently. In the second, the tax rate will also be too low and some revenues will be used

to finance pork.

What are the basic reasons for the inefficiencies in policy-making that can arise in the model?

Four factors are crucial in the sense that, without them, the equilibrium policy choices would

be Pareto efficient. The first is majoritarian decision making. With unanimity (i.e., q = n), it
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is the case that A = A = 0 which implies that the political equilibrium is always efficient.21

Majoritarian decision making allows legislative coalitions to benefit their districts at the expense

of non-coalition members. The second is the availability of distributive policies; i.e., policies

whose benefits can be targeted narrowly and whose costs are financed centrally. If there were no

such policies, there would be no way for majoritarian coalitions to transfer wealth to themselves.

The third factor is political uncertainty arising from the random allocation of proposal power.

If the proposer was constant over time, the political equilibrium would certainly differ from the

planner’s solution, but it would be Pareto efficient. In particular, it would not be possible to

make the citizens in the proposer’s district better off. The final factor is lack of commitment.

The inefficiencies in both the Type I and III equilibria could be resolved by Coasian bargaining

between present and future legislators. However, such Coasian bargains are not possible because

the identity of future legislators is not clear and even if it were, future promises would not be

credible.

In interpreting Proposition 6, it is important not to over-simplify the conclusions concerning

the role of the public good taste parameter A. It may seem unsurprising that when A is high

enough, the political equilibrium is efficient. After all, the higher is the benefit of the public good,

the higher is the incentive to invest in it, independently of the decision making process. In our

model, however, the consequences of A for efficiency are indirect and more subtle than this. In a

static model, the marginal benefit of the public good necessarily depends only on the exogenous

parameters such as A: a high enough level of A would imply that the marginal benefit of g is higher

than the marginal benefit of pork transfers, and therefore that all tax revenues would be used for

g. But in our dynamic model, the marginal benefit of investing in the public good is endogenous

because it depends on the level accumulated in previous periods. As A becomes higher, the long

run level of the public good increases as more accumulation takes place: this compensates for the

higher level of A by reducing the marginal benefit of investment. For this reason, a high absolute

value of A is not sufficient to guarantee the equilibrium level of the public good is efficient. For

example, as the depreciation rate d converges to 0, both A and A converge to infinity (see the

proof of Proposition 7). Thus, the equilibrium is inefficient when d is very small, irrespective of

the level of A. This reflects the fact that when d is very small, if the equilibrium were efficient,

there would be almost no investment in g and therefore close to zero taxes in the steady state. But

21 Indeed, generally there will exist some critical eq < n such that if q ≥ eq, legislative policy-making is efficient.
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this cannot happen because when taxes are close to zero the marginal deadweight cost of taxation

is close to zero, so it would always be optimal to raise taxes to fund pork barrel transfers. In the

steady state, therefore, we have an efficient equilibrium only when the long run level of investment

is high enough to imply that the (endogenous) deadweight cost of taxation is higher than the

marginal benefit of pork transfers. This suggests that we should expect efficient equilibria not

only when the depreciation of public goods is high, but also when there is sustained technological

progress that favors high long run levels of public good investments.

Under what circumstances is the political equilibrium more likely to be inefficient? Proposition

6 suggests that a feel for this can be obtained by studying how the critical public good preference

thresholds A and A depend upon the underlying parameters. Ceteris paribus, factors that serve to

raise A and A make inefficiency more likely. The relevant parameters of interest are the discount

rate δ, the price of the public good p, the rate of depreciation d and the size of the majority

required to pass legislation q. Also of interest is the elasticity of labor supply ε. When analyzing

this, however, one must recognize that the laissez-faire national income at wage w is nw(εw)ε and

hence raising the elasticity of labor supply ε increases the size of the tax base. To circumvent this,

we consider compensated changes in the elasticity; i.e., changes in ε compensated by changes in w

that leave the size of the tax base constant. We now have:

Proposition 7: An increase in the price of the public good p or the economy’s wage rate w induces

an increase in A and A, while an increase in either the discount rate δ or the required majority

q induces a decrease in A and A. A compensated increase in the elasticity of labor supply ε also

induces a decrease in A and A.

Thus, political equilibrium is more likely to be inefficient when citizens are more impatient,

public goods are more expensive and the private sector is more productive. On the other hand,

equilibrium is more likely to be efficient when super-majorities are required to pass tax and

spending bills and when the elasticity of labor supply is high. The latter result is particularly

interesting and reflects the logic that when tax revenues are more costly to raise, they will be less

likely to be squandered on pork.

The proposition does not speak to the impact of an increase in the depreciation rate because

it is ambiguous. While A and A are decreasing in d for sufficiently small d, the derivatives may

switch sign at larger d. However, there are two interesting facts to note about the depreciation
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rate. First, as noted above, as d converges to 0, both A and A converge to infinity. Thus, the

equilibrium must be inefficient when d is very small and the inefficiency takes the conventional

form in which the steady state tax rate is too high and revenues are misallocated to pork. Second,

when d = 1, A = A and the third type of equilibrium cannot arise. This reflects the fact that

there is no difference between the marginal benefit of investment in the unanimity and minimum

winning coalition ranges when depreciation is 100%. In particular, investing more in the public

good leads to no tax or transfer changes in the next period, because none of the extra investment

carries over to the next period. Moreover, Assumption 1 implies that when d = 1, A > A, meaning

that the equilibrium must be efficient.22

5.2 Some positive implications

The first interesting positive implication of the model concerns the dynamics of legislative coali-

tions. Consider the case in which A < A so that the steady state involves under-provision of the

public good and over-taxation. In the steady state, budgets will be approved only by a minimum

winning coalition of representatives. However, assuming that the economy started out with a

sufficiently low level of the public good, in the early phases of governance as the public good was

accumulated, the legislature would not have engaged in distributive policy-making and budgets

would have been approved unanimously. Thus, the model suggests that we might observe a decline

over time in both the quality of government and the degree of consensus in the legislature. Re-

latedly, starting from a steady state in which budgets are passed by minimum winning coalitions,

if the value of the public good increases very dramatically (for example, as result of a new mili-

tary threat), we would expect to see a shift to unanimous coalitions as the legislature ramps up

investment in the public good.

A second interesting implication concerns the elasticity of labor supply. Consider two societies

that differ only in the elasticity of their citizens’ labor supply (ε0 and ε1) and their wage levels

(w0 and w1). Suppose the wage levels across the two communities are such as to make the size of

the laissez-faire national income the same (i.e., w0(ε0w0)
ε0 equals w1(ε1w1)

ε1). Finally, suppose

that in both societies, the steady state involves under-provision of the public good and excessive

22 In assuming that public investment increases the revenue available for redistribution in the next period,
Leblanc, Snyder and Tripathi (2000) effectively assume that d = 1. Moreover, their assumption that the pool
of available revenue the legislature has available is always sufficient to finance the surplus maximizing level of
investment (p.29) is the exact opposite of Assumption 1. This explains why their model has a unique inefficient
equilibrium.
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taxation (i.e., A < min{A0, A1}). Then, the steady state level of public goods will be the same in

both societies, but the tax rate will be lower in the society with a higher elasticity of labor supply.

Thus, the citizens in the society with the low elasticity would be better off with the public good

- tax rate pair that arises in the society with the high elasticity.23 In this sense, societies where

citizens have a high elasticity of labor supply will have better quality governments.

Finally, consider the implications of an increase in the productivity of the private sector as

measured by the wage rate w. Assuming that the steady state involves pork, an increase in w has

no impact on the size of government as measured by the tax rate nor on the steady state level

of the public good. However, because tax revenues are higher, the amount of pork is increased

and the quality of government is lower. Compare this with the implications of an increase in the

productivity of public spending as measured by A. Again, assuming that the steady state involves

pork, a small increase in A has no impact on the size of government but does increase the quality

of government by raising the level of the public good. Thus, increases in private productivity

worsen the quality of government, while increases in public productivity improve it.

6 Conclusion

This paper has presented an infinite horizon model of public spending and taxation in which

policy decisions are made by a legislature consisting of representatives from geographically defined

districts. In each period, policies are determined by legislative bargaining. The model incorporates

both productive and distributive public spending and distortionary taxation. The dynamic linkage

across policy-making periods is created by the fact that the productive spending has long run

benefits. Despite the fact that the policy space is quite rich, the model is tractable. Key to

this tractability is that, distributive policies not withstanding, all citizens are ex ante identical at

the beginning of each period so equilibrium can be summarized by a single value function. This

permits a particularly clean analysis of the welfare properties of equilibrium.

The welfare analysis sheds new light on the efficiency of politically determined policy choices.

First, it provides a rigorous formal underpinning for the conventional wisdom that legislatures in

which representatives are elected by geographically defined districts will produce a long run size

of government that is too large and long run levels of national public goods that are too low.

23 The public good - tax rate pair in the high elasticity society will necessarily be feasible for the low elasticity
society, because the tax rate will yield more tax revenues in the low elasticity society.
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Proposition 7 provides conditions under which this is the unique outcome. Roughly speaking,

these conditions require that the taxable capacity of the economy is large enough to easily meet

the needs of maintaining an adequate level of public goods.

However, the analysis also shows that the conventional wisdom needs qualification. When

the economy’s taxable capacity is small relative to its public good needs, legislative decisions will

actually be efficient in the long run. Legislators will not choose to redistribute to their districts

when maintaining public good levels requires a level of taxation that creates significant distortions

in the economy. Moreover, the direction of the distortions emerging from legislative choice could

be the opposite from that suggested by the conventional wisdom. Specifically, legislators can hold

back on public good spending in the belief that accumulating too large a stock of these goods

will lead future legislators to start engaging in pork barrel spending. This behavior yields an

equilibrium with no distributive policy-making and an overall size of government that is below

optimal.

The model also yields some interesting positive implications. First, it suggests that when the

need for public goods is acute, then the legislature will approve its budgets by unanimity, but as the

need for public investment is saturated, the political equilibrium will shift to a regime of minimal

winning coalitions. Thus, the size of the legislative coalitions passing budgets may decline over

time as a country builds up its stock of public goods. Second, the model suggests that societies

in which citizens have a more elastic labor supply will enjoy better quality governments. A

higher elasticity of labor supply, reduces distributive policies but not the long run levels of public

goods. Finally, the model suggests that the quality of government as measured by the proportion

of revenues devoted to distributive policies is inversely correlated with the productivity of the

private sector.

There are many ways in which the model might usefully be developed.24 Perhaps the most

important task is to incorporate government borrowing. To maintain tractability, one could sim-

plify the model by assuming that the public good was not durable but allow the legislature to

finance spending by a combination of taxation and issuing public debt. Debt would then form the

dynamic linkage across periods. In this context, it would be natural to assume that the per period

value of public goods was stochastic (reflecting, for example, wars or terrorist threats) and study

24 It might also be interesting to incorporate into the framework the alternative “demand bargaining” approach
to legislative policy-making suggested by Morelli (1999).
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how debt, spending and taxation responded to shocks. This would facilitate a political economy

investigation of the normative theory of debt and taxation suggested by Barro (1979).
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7 Appendix

Proof of Proposition 1: To prove the result, we will need some additional notation. For any

strictly concave function v(x) consider the problem for all µ ∈ [0,∞)

max{r,x} µ[u(w(1− r), g) + δv(x)] +B(r, x; g)

s.t. B(r, x; g) ≥ 0
(10)

Interpreting v(x) as the expected payoff with x units of the public good, the problem is to maximize

the aggregate utility of µ legislators under the assumption that any revenue that is not used for

investment in the public good is used to finance pork in these legislators’ districts. Under the

assumption that v is strictly concave, there is a unique solution to this problem given by r(g;µ, v)

and x(g;µ, v).

Note the following facts about this problem. First, for µ sufficiently small, the solution will

involve a positive budget surplus (i.e., B(r, x; g) > 0). Second, for µ sufficiently large, the optimal

tax rate will be such that all tax revenues are used to finance investment in the public good and

hence B(r, x; g) = 0. Third, if it is the case that for some eµ it is optimal to select a tax rate-public
good pair such that all revenues are used for investment (i.e., B(r, x; g) = 0), then this must also

be optimal for all µ > eµ.
Now define µ(g; v) to be the size of the smallest group of legislators who would choose to devote

all revenues to investment. Formally,

µ(g; v) = min{µ ∈ [0,∞) : B(r(g;µ, v), x(g;µ, v); g) = 0}.

Then all groups of legislators of size less than µ(g; v) would devote some revenues to pork and all

larger groups would devote all revenues to investment. It should be noted that µ(g; v) exists and

is unique for all g. We now have:

Lemma A.1: Let {rτ (g), sτ (g), xτ (g)}Tτ=1 be an equilibrium with associated payoff function

v1(g). (i) If µ(g; v1) ≤ q, then

(rτ (g), sτ (g), xτ (g)) = (r(g;n, v1), 0, x(g;n, v1)) for all τ = 1, ..., T.

(ii) If µ(g; v1) > q, then

(rτ (g), xτ (g)) = (r(g; q, v1), x(g; q, v1)) for all τ = 1, ..., T,
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and

sτ (g) =

⎧⎪⎪⎨⎪⎪⎩
B(r(g;q,v1),x(g;q,v1);g)

n for all τ = 1, ..., T − 1

vT+1(g)− u(w(1− r(g; q, v1)), g)− δv1(x(g; q, v1)) for τ = T

.

Proof of Lemma A.1: We begin by considering the problem of the proposer in the final round

T . From the discussion in the text, we know that (rT (g), sT (g), xT (g)) must solve the round T

proposer’s problem

max
(r,s,x)

[u(w(1− r), g) +B(r, x; g)− (q − 1) s+ δv1(x)]

subject to

u(w(1− r), g) + s+ δv1(x) ≥ vT+1(g),

B(r, x; g) ≥ (q − 1)s, and s ≥ 0,

where

vT+1(g) = max
(r,x)

{u(w(1− r), g) + B(r, x; g)
n

+ δv1(x) : B(r, x; g) ≥ 0}.

We now establish:

Claim A.1: Let (rT , sT , xT ) solve the round T proposer’s problem. Then (rT , xT ) solves problem

(10) with µ = q and

sT = vT+1(g)− δv1(xT )− u(w(1− rT ), g).

Proof of Claim A.1: It is easy to see that

sT = vT+1(g)− δv1(xT )− u(w(1− rT ), g).

For if this were not the case it would follow from the definition of vT+1(g) that either the incentive

constraint is violated or sT > 0 and we could create a preferred proposal by just reducing sT . It

follows that we can write the proposer’s payoff as

q [u(w(1− rT ), gT ) + δv1(xT )] +B(rT , xT ; g).

Now suppose that (rT , xT ) does not solve problem (10) with µ = q. Let (r0, x0) solve problem

(10) with µ = q and

s0 = vT+1(g)− δv1(x
0)− u(w(1− r0), g).

Then, the proposer’s payoff under the proposal (r0, s0, x0) is

q [u(w(1− r0), g0) + δv1(x
0)] +B(r0, x0; g0).
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By construction, the incentive constraint is satisfied and, by definition of vT+1(g), s
0 ≥ 0. Note

also that

B(r0, x0; g0)− (q − 1)s0 = (q − 1)[u(w(1− r0), g0) + δv1(x
0)] +B(r0, x0; g0)− (q − 1)vT+1(g)

= q[u(w(1− r0), g0) + δv1(x
0)] +B(r0, x0; g0)

−[u(w(1− r0), g0) + δv1(x
0) + (q − 1)vT+1(g)]

≥ q[u(w(1− r0), g0) + δv1(x
0)] +B(r0, x0; g0)− qvT+1(g),

where the last inequality follows by definition of vT+1(g). The difference on the right hand side

must be non-negative. To see this, note that

vT+1(g) = u(w(1− r∗), g) + δv1(x
∗) +B(r∗, x∗; g)/n

for some (r∗, x∗) such that B(r∗, x∗; g) ≥ 0 and hence

q[u(w(1− r0); g0) + δv1(x
0)] +B(r0, x0; g0) ≥ q[u(w(1− r∗); g) + δv1(x

∗)] +B(r∗, x∗; g)

≥ qvT+1(g).

Thus, (r0, s0, x0) is feasible for the proposer’s problem and yields a higher payoff than (rT , sT , xT )

- a contradiction. This completes the proof of Claim A.1. ¥

It follows from Claim A.1 that if µ(g; v1) ≤ q, then (rT (g), sT (g), xT (g)) equals (r(g;n, v1), 0, x(g;n, v1)),

while if µ(g; v1) > q, then (rT (g), sT (g), xT (g)) equals

(r(g; q, v1), vT+1(g)− u(w(1− r(g; q, v1)), g)− δv1(x(g; q, v1)), x(g; q, v1)).

Now consider the round T − 1 proposer’s problem

max
(r,s,x)

[u(w(1− r), g) +B(r, x; g)− (q − 1) s+ δv1(x)]

subject to

u(w(1− r), g) + s+ δv1(x) ≥ vT (g),

B(r, x; g) ≥ (q − 1)s, and s ≥ 0.

If µ(g; v1) ≤ q then we know that

vT (g) = u(w(1− r(g;n, v1)), g) + δv1(x(g;n, v1)) = vT+1(g)
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so applying the exact same logic as above implies that the solution to the round T − 1 proposer’s

problem is (r(g;n, v1), 0, x(g;n, v1)). Repeated application of the same logic implies that the

solution to the proposer’s problem is (r(g;n, v1), 0, x(g;n, v1)) in all earlier proposal rounds.

On the other hand, if µ(g; v1) > q then we know that

vT (g) = u(w(1− r(g; q, v1)), g) + δv1(x(g; q, v1)) +
B(r(g; q, v1), x(g; q, v1); g)

n
.

So we need to show that the solution to the round T − 1 proposer’s problem with this level of

reservation utility is

(r(g; q, v1),
B(r(g; q, v1), x(g; q, v1); g)

n
, x(g; q, v1))

Let (rT−1, sT−1, xT−1) denote the solution. It is straightforward to show the desired result if

sT−1 > 0, so we need only rule out the possibility that sT−1 = 0. If sT−1 = 0, it must be the case

that B(rT−1, xT−1; g) > 0 and that (rT−1, xT−1) solves the problem

maxu(w(1− r), g) + δv1(x) +B(r, x; g)

s.t. u(w(1− r), g) + δv1(x) ≥ vT (g)
.

Now consider the proposal

(r0, s0, x0) = (r(g; q, v1),
B(r(g; q, v1), x(g; q, v1); g)

n
, x(g; q, v1))

The payoff to the proposer under the policy (r0, s0, x0) is

q[u(w(1− r0), g) + δv1(x
0)] +B(r0, x0; g)− (q − 1)vT (g) (11)

But we know that u(w(1− rT−1), g) + δv1(xT−1) ≥ vT (g), and hence a lower bound of (11) is:

q[u(w(1− r0), g) + δv1(x
0)] +B(r0, x0; g)− (q − 1)[u(w(1− rT−1), g) + δv1(xT−1)].

The payoff to the proposer under the optimal policy (rT−1, 0, xT−1) is given by:

u(w(1− rT−1), g) + δv1(xT−1) +B(rT−1, xT−1; g).

It must be the case that

u(w(1− rT−1), g) + δv1(xT−1) +B(rT−1, xT−1; g)

> q[u(w(1− r0), g) + δv1(x
0)] +B(r0, x0; g)− (q − 1)[u(w(1− rT−1), g) + δv1(xT−1)]
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which implies that

q[u(w(1− rT−1), g) + δv1(xT−1)] +B(rT−1, xT−1; g)

> q[u(w(1− r0), g) + δv1(x
0)] +B(r0, x0; g).

This contradicts the fact that (r0, x0) = (r(g; q, v1), x(g; q, v1)).

Repeated application of the same logic implies that the solution to the proposer’s problem is

(r(g; q, v1),
B(r(g; q, v1), x(g; q, v1); g)

n
, x(g; q, v1)).

in all earlier proposal rounds. This completes the proof of Lemma A.1. ¥

Lemma A.1 tells us what equilibrium proposals must look like. The next step is to develop

expressions for (r(g;n, v1), x(g;n, v1)) and (r(g; q, v1), x(g; q, v1)). If µ(g; v1) ≤ q, then it must be

the case that B(r(g;n, v1), x(g;n, v1); g) = 0. It follows that we can write

(r(g;n, v1), x(g;n, v1)) = (r(x
∗(g; v1), g), x

∗(g; v1)),

where r(x, g) is the tax rate function from the analysis of the planner’s problem, and

x∗(g; v1) = argmax
x
{u(w(1− r(x, g)), g) + δv1(x)}.

If µ(g; v1) > q, then B(r(g; q, v1), x(g; q, v1); g) > 0 and hence (r(g; q, v1), x(g; q, v1)) must solve

the unconstrained problem

max
(r,x)

q[u(w(1− r), g) + δv1(x)] +B(r, x; g). (12)

Notice that the solutions to this problem are independent of g and, moreover, the tax rate is

independent of the value function. Thus, we may write the solutions as (r∗, x∗(v1)).

To complete the proof of the Proposition, it only remains to show that there exists a unique

g∗(v1) > 0 such that µ(g; v1) ≤ q for all g ≤ g∗(v1) and µ(g; v1) > q for all g > g∗(v1). We begin

with the following useful observation.

Claim A.2: For any strictly concave function v(x), g ≥ 0 and µ ∈ [0,∞), let (br(g;µ, v), bx(g;µ, v))
be the solution of the problem

max
{r,x}

µ[u(w(1− r), g) + δv(x)] +B(r, x; g) (13)

and define bµ(g; v) as
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bµ(g; v) = min{µ ∈ (0,∞) : B(br(g;µ, v), bx(g;µ, v); g) = 0}.
Then, it is the case that bµ(g; v) = µ(g; v).
Proof of Claim A.2: Assume first that bµ(g; v) < µ(g; v), then for any µ ∈ (bµ(g; v), µ(g; v)) the
unconstrained solution (br(g;µ, v), bx(g;µ, v)) would violate the budget constraint:

B(br(g;µ, v), bx(g;µ, v); g) < 0
(note thatB(br(g;µ, v), bx(g;µ, v); g) is strictly in decreasing in µ since br(g;µ, v) is strictly decreasing
and bx(g;µ, v) is non decreasing in µ). This implies that the constrained solution (r(g;µ, v), x(g;µ, v))
to problem (10) satisfies the budget constraint with equality: i.e.,

B(r(g;µ, v), x(g;µ, v); g) = 0.

This implies that µ(g; v) ≤ µ, a contradiction.

Assume now that bµ(g; v) > µ(g; v), then for any µ ∈ (µ(g; v), bµ(g; v)), since µ < bµ(g; v), it
must be B(br(g;µ, v), bx(g;µ, v); g) > 0. In this case the solution of the unconstrained problem

is the same as the constrained solution r(g;µ, v), x(g;µ, v) (since the constraint is not binding):

so B(r(g;µ, v), x(g;µ, v); g) > 0. However, since µ > µ(g; v) at the the solution of the con-

strained problem, the constraint must be satisfied as equality, B(r(g;µ, v), x(g;µ, v); g) = 0, a

contradiction. This completes the proof of Claim A.2. ¥

We can now show that µ(·; v1) is an increasing and continuous function. For monotonicity, let

g0 > g, µ0 = µ(g0; v1) and µ = µ (g; v1). We need to show that µ
0 > µ. Suppose, to the contrary,

that µ0 ≤ µ. By Claim A.2, we know that (r(g;µ, v1), x(g;µ, v1)) solves the problem

max
(r,x)

µ[u(w(1− r), g) + δv1(x)] +B(r, x; g),

while (r(g0;µ0, v1), x(g
0;µ0, v1)) solves the problem

max
(r,x)

µ0[u(w(1− r), g0) + δv1(x)] +B(r, x; g
0).

It can easily verified that r(g0;µ0, v1) ≥ r(g;µ, v1) and x(g0;µ0, v1) ≤ x(g;µ, v1). Thus, since g0 > g

B (r(g0;µ0, v1), x(g
0;µ0, v1); g

0) > B (r(g;µ, v1), x(g;µ, v1); g) = 0
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which contradicts the definition of µ0.

For continuity, let g ≥ 0 and consider a sequence gn → g. Letting µn = µ (gn; v1), we need

to show that µn → µ(g; v1). Note first that for any g there is an upperbound M such that

µ (gn; v1) ∈ [0,M ] (at least for n large enough): so we can assume, without loss of generality, that

the limit µ∞ = limn→∞ µn exists. Since B(r, x; g) is continuous in all its arguments and since

r(g;µ, v1) and x(g;µ, v1) are continuous in g and µ by the Theorem of the Maximum, we have

that

lim
n→∞

B (r(gn;µn; v1), x(gn;µn; v1), v1); gn) = B (r(g;µ
∞, v1), x(g;µ

∞, v1); g) .

Moreover, since B (r(gn;µn; v1), v1), x(gn;µn; v1), v1); gn) = 0 for all gn we have that

B (r(g;µ∞, v1), x(g;µ
∞, v1); g) = 0.

Clearly, it can not be that µ∞ < µ (g; v1), because this would violate the definition of µ(g; v1).

Assume then that µ∞ > µ(g; v1). In this case, we must have that x(g;µ
∞, v1) ≥ x(g;µ (g; v1) , v1)

and r(g;µ∞, v1) < r(g;µ (g; v1) , v1), but this would imply

B (r(g;µ∞, v1), x(g;µ
∞, v1), v1); g) < B (r(g;µ(g; v1), v1), x(g;µ(g; v1), v1); g) = 0

which is a contradiction.

The final step is to show that µ(0; v1) < q while for g large enough µ(g; v1) > q. The latter is

obvious, and the former is implied by Assumption 1. To see this, suppose to the contrary, that

µ(0; v1) ≥ q. Then it would follow that µ(g; v1) > q for all g > 0. This would imply that for all

g > 0

(r1(g), s1(g), x1(g)) = (r
∗,
B(r∗, x∗(v1); g)

n
, x∗(v1)),

and hence that

v1(g) = u(w(1− r∗), g) +
B(r∗, x∗(v1); g)

n
+ δv1(x

∗(v1))

This in turn implies that

v01(g) = Aαg
α−1 +

p(1− d)
n

and hence that

x∗(v1) = (
δqAα

p(1− q
nδ(1− d))

)
1

1−α .

But then, since µ(0; v1) ≥ q it must be the case that

B(br(0; q, v1), bx(0; q, v1); 0) = B(r∗, x∗(v1); 0) ≥ 0
42



or, equivalently,
R(r∗)

p
≥ ( δqAα

p(1− q
nδ(1− d))

)
1

1−α

which violates Assumption 1 (since r∗ = (1− q/n)/(1 + ε− q/n)).

It now follows that there exists a unique g∗(v1) > 0 such that µ(g∗(v1); v1) = q. Because

µ(·; v1) is increasing, this g∗(v1) will have the property that for all g ≤ g∗(v1), µ(g; v1) ≤ q and

for all g > g∗(v1), µ(g; v1) > q. Thus, the proof of the Proposition is complete. QED

Proof of Proposition 5: The proof will proceed in two parts. First, we develop necessary and

sufficient conditions for the existence of an equilibrium of each of the three types. Then we analyze

when these conditions will be satisfied, relating them to A and A.

Existence of a Type I equilibrium

From the analysis preceding Proposition 2 in this case we have that

x∗(v1) = (
δqAα

p(1− q
nδ(1− d))

)
1

1−α ≡ x∗

and that

g∗(v1) =
px∗ −R(r∗)
p(1− d) ≡ g∗.

It then follows that x∗ > g∗ if and only if

R(r∗)

pd
> [

δqAα

p(1− q
nδ(1− d))

]
1

1−α . (14)

This inequality is therefore a necessary condition for the existence of a Type I equilibrium.

In such an equilibrium, if g > g∗ then the legislature will choose the public good level x∗ and

tax rate r∗ that period and every period thereafter. It must therefore be the case that the value

function v1(g) satisfies:

v1(g) =

⎧⎪⎪⎨⎪⎪⎩
maxx {u(w(1− r(x, g)), g) + δv1(x)} g ≤ g∗

u(w(1− r∗), g) + B(r∗,x∗;g)
n + δ

1−δ (u(w(1− r∗), x∗) +
B(r∗,x∗;x∗)

n ) g > g∗
.

(15)

The question is whether there exists a strictly concave value function that satisfies this re-

lationship when inequality (14) is satisfied. If so, there will exist an associated equilibrium

{(rτ (g), sτ (g), xτ (g))}Tτ=1 in which if g ∈ [0, g∗]

(rτ (g), sτ (g), xτ (g)) = (r(x
∗(g; v1), g), 0, x

∗(g; v1)) for all τ = 1, ..., T,

43



and if g ∈ (g∗,∞)

(rτ (g), xτ (g)) = (r
∗, x∗) for all τ = 1, ..., T,

and

sτ (g) =

⎧⎪⎪⎨⎪⎪⎩
B(r∗,x∗;g)

n for all τ = 1, ..., T − 1

vT+1(g)− u(w(1− r∗), g)− δv1(x
∗) for τ = T

The proof of the following Lemma establishes not only that there does exist such a function but

also that it is unique.

Lemma A.2: There exists a Type I equilibrium if and only if inequality (14) is satisfied. Moreover,

there is a unique such equilibrium.

Proof of Lemma A.2: Let g > x∗ be an arbitrarily large but bounded scalar. We will first

restrict the range of public good levels to [0, g] and prove the existence of a unique v1(g) that

satisfies (15) when this assumption is satisfied. Then we will extend the solution for g > g. Define

for g ∈ [g∗, g] the function

v(g) = u(w(1− r∗), g) + B(r
∗, x∗; g)

n
+

δ

1− δ
(u(w(1− r∗), x∗) + B(r

∗, x∗;x∗)

n
)

This function v(g) is continuous, bounded and strictly concave on [g∗, g]. Then let F denote the

set of continuous, bounded, weakly concave functions v : <+ → < such that v(g) = v(g) for all

g ∈ [g∗, g]. This set is non empty, closed, bounded, and convex. Finally, define the functional Ψ

on F as follows:

Ψ (v) (g) =

⎧⎪⎪⎨⎪⎪⎩
maxx {u(w(1− r(x, g)), g) + δv(x)} g ∈ [0, g∗]

u(w(1− r∗), g) + B(r∗,x∗;g)
n + δv(x∗) g ∈ (g∗, g]

. (16)

For a given expected continuation value function v at time t+1, Ψ (v) provides the expected value

function of a legislator at time t in an equilibrium with x∗(v1) > g
∗(v1).

We will now prove that there exists a unique v1 ∈ F such that v1 = Ψ (v1). The first step is to

show that Ψ maps F into itself; i.e., that Ψ (v) ∈ F . It is immediate that Ψ (v) (g) = v(g) for all

g ∈ [g∗, g], and that Ψ(v) is bounded on [0, g]. However, we need to prove that Ψ(v) is continuous

and (strictly) concave.

Continuity. The function Ψ (v) is continuous on [0, g∗) by the Theorem of the Maximum, and

on (g∗, g] by definition. We just need to show that it is continuous at g = g∗. Since B(r∗, x∗; g∗) =
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0, we have that

lim
g&g∗

Ψ (v) (g) = u(w(1− r∗), g∗) + B(r
∗, x∗; g∗)

n
+ δv(x∗)

= u(w(1− r∗), g∗) + δv(x∗).

Next note that (r∗, x∗) = (r(x∗(g∗; v), g∗), x∗(g∗; v)). To see this, suppose the converse. Then,

since B(r∗, x∗; g∗) = 0, it must be that:

u(w(1− r(x∗(g∗; v), g∗)), g∗) + δv(x∗(g∗; v)) > u(w(1− r∗), g∗) + δv(x∗),

which implies that

q [u(w(1− r(x∗(g∗; v), g∗)), g∗) + δv(x∗(g∗; v))] +B(r(x∗(g∗; v), g∗), x∗(g∗; v); g∗)

> q [u(w(1− r∗), g∗) + δv(x∗)] +B(r∗, x∗; g∗).

But this is a contradiction since (r∗, x∗) solves the problem

max
(r,x)

q[u(w(1− r), g) + δv(x)] +B(r, x; g).

To see the latter, note that given that x∗ > g∗, we know that v(x∗) = v(x∗) and, by construction,

δqv0(x∗) = p. It follows, therefore, that

lim
g%g∗

Ψ (v) (g) = u(w(1− r(x∗(g∗; v), g∗)), g∗) + δv(x∗(g∗; v))

= u(w(1− r∗), g∗) + δv(x∗) = lim
g&g∗

Ψ (v) (g) .

Strict Concavity. We proceed in three steps.

Step 1. Ψ(v) is strictly concave on [0, g∗]. In this case the budget constraint is binding and

the value function is:

Ψ(v)(g) = max
(r,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g) + B(r,x;g)

n + δv (x)

B(r, x; g) ≥ 0

⎫⎪⎪⎬⎪⎪⎭ . (17)

Take two points g1 and g2 with 0 ≤ g1 < g2 ≤ g∗, and a scalar φ ∈ [0, 1]. Define ri and xi to be the

optimal policies with public good level gi i = 1, 2. Let gφ = φg1+(1− φ) g2, rφ = φr1+(1− φ) r2,

and xφ = φx1+(1− φ)x2. Since v (x) is concave, the function u(w(1−r), g)+B(r, x; g)/n+δv(x)
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is concave in (r, x, g). Thus, we have that

φΨ(v)(g1) + (1− φ)Ψ(v)(g2) = φ[u(w(1− r1), g1) +
B(r1, x1; g1)

n
+ δv (x1)]

+(1− φ)[u(w(1− r2), g2) +
B(r2, x2; g2)

n
+ δv (x2)]

< u(w(1− rφ), gφ) +
B(rφ, xφ; gφ)

n
+ δv (xφ) .

Since B(r, x; g) is concave in (r, x, g), we have that B(rφ, xφ; gφ) ≥ 0, so that

u(w(1− rφ), gφ) +
B(rφ, xφ; gφ)

n
+ δv (xφ) ≤ max

(r,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), gφ) + B(r,x;gφ)

n + δv (x)

B(r, x; gφ) ≥ 0

⎫⎪⎪⎬⎪⎪⎭
= Ψ(v)(gφ).

Therefore φΨ(v)(g1) + (1− φ)Ψ(v)(g2) < Ψ(v)(gφ) as required.

Step 2. Ψ(v) is strictly concave on (g∗, g]. This is immediate from the definition of Ψ (v) (g).

Step 3. Ψ(v) is strictly concave on [0, g]. Let g1 and g2 be such that 0 ≤ g1 ≤ g∗ < g2 ≤ g.

We have two possible cases. First it may be that gφ ≤ g∗. For all g ∈ [0, g], let (r0(g; v), x0(g; v))

be the solution to the problem

max(r,x) u(w(1− r), g) + B(r,x;g)
n + δv (x)

B(r, x; g) ≥ 0
,

and let

Ξ (v) (g) = u(w(1− r0 (g; v)), g) + B(r
0(g; v), x0(g; v); g)

n
+ δv (x0(g; v)) .

We have that Ξ (v) (g) ≥ Ψ(v)(g) for all g ∈ [0, g]. Indeed, the two functionals are equivalent for

g ∈ [0, g∗] but, if g > g∗, Ψ(v)(g) is less than Ξ (v) (g). Therefore we have:

φΨ(v)(g1) + (1− φ)Ψ(v)(g2) ≤ φΞ(v)(g1) + (1− φ)Ξ(v)(g2)

< u(w(1− r0φ), gφ) +
B(r0φ, x

0
φ; gφ)

n
+ δv

¡
x0φ
¢

where r0φ = φr0(g1; v)+(1−φ)r0(g2; v) and x0φ = φx0(g1; v)+(1−φ)x0(g2; v). Moreover, B(r0φ, x0φ; gφ) ≥
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0, implying:

Ψ(v)(gφ) = max
(r,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), gφ) +B(r, x; gφ)/n+ δv (x)

B(r, x; gφ) ≥ 0

⎫⎪⎪⎬⎪⎪⎭
≥ u(w(1− r0φ), gφ) +

B(r0φ, x
0
φ; gφ)

n
+ δv

¡
x0φ
¢

> φΨ(v)(g1) + (1− φ)Ψ(v)(g2).

The second case arises when gφ > g
∗. Let ψ ∈ [0, 1] be such that g∗ = ψg1+(1− ψ) g2; by the

previous step, we have that Ψ(v)(g∗) > ψΨ(v)(g1)+(1−ψ)Ψ(v)(g2) (since obviously g∗ ∈ [0, g∗]).

Take now a scalar η ∈ [0, 1] such that ηg∗ + (1− η) g2 = gφ. Since Ψ (v) is strictly concave and

continuous in g ≥ g∗, it must be that Ψ(v)(gφ) > ηΨ(v)(g∗)+(1−η)Ψ(v)(g2). Therefore we have:

Ψ(v)(gφ) > ηΨ(v)(g∗) + (1− η)Ψ(v)(g2) > ηψΨ(v)(g1) + (1− ηψ)Ψ(v)(g2)

= φΨ(v)(g1) + (1− φ)Ψ(v)(g2)

where the second inequality follows from Ψ(v)(g∗) > ψΨ(v)(g1) + (1 − ψ)Ψ(v)(g2), and the last

equality follows from the definitions of η and ψ: φg1 + (1− φ) g2 = gφ = ηg∗ + (1− η) g2 =

ηψg1 + (1− ηψ) g2, implying φ = ηψ.

Given that Ψ (v) ∈ F , to prove existence and uniqueness of a fixpoint of Ψ in F , it is sufficient

to prove that Ψ (·) is a contraction in F . Let ω1,ω2 ∈ F be such that ω1 (g) ≤ ω2 (g) for all

g ∈ [0, g]. Define xωi(g) as a solution of maxx {u(w(1− r(x, g)), g) + δωi(x)} ∀i = 1, 2. For

g ∈ [0, g∗] , we have:

Ψ(ω2)(g) = max
x
{u(w(1− r(x, g)), g) + δω2(x)} ≥ u(w(1− r(xω1(g), g)), g) + δω2(xω1(g))

≥ u(w(1− r(xω1(g), g)), g) + δω1(xω1(g))

= Ψ(ω1)(g)

and, by definition, Ψ(ω2)(g) = Ψ(ω1)(g) for g ∈ (g∗, g]. So Ψ (·) satisfies Blackwell’s monotonicity

condition (cf. Blackwell (1965)). Let a be a weakly positive scalar, then for any g ∈ [0, g∗] and

v ∈ F we have:

Ψ(v + a)(g) = max
x
{u(w(1− r(x, g)), g) + δv(x)}+ δa = Ψ(v)(g) + δa

and Ψ(v+a)(g) = Ψ(v)(g) if g ∈ (g∗, g]. Since δ ∈ (0, 1), we conclude that Blackwell’s discounting

condition is satisfied as well (cf. Blackwell (1965)). It follows that Blackwell’s sufficient conditions
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are satisfied and, by Theorem 5 in Blackwell (1965), Ψ (·) is a contraction with modulus δ. From

all these properties, it follows that there exists a unique continuous, bounded, strictly concave

value function v1 that satisfies (15).

To see that the equilibrium value function can be extended for g > g, note that we can define

v(g) = v(g) for g > g. The resulting value function is continuous, concave and continues to be a

fixpoint of (16). This completes the proof of Lemma A.2. ¥

Existence of a Type II equilibrium

In this case, Proposition 3 tells us that the equilibrium converges monotonically to the planner’s

steady state. Thus, it must be the case that for all g ≤ g∗(v1), v1(g) = V (g)/n where V (g) is the

planner’s value function. This means that x∗(v1) = x
∗∗ where

δ
V 0(x∗∗)

n
=
p

q
.

This in turn implies that

g∗(v1) =
px∗∗ −R(r∗)
p(1− d) ≡ g∗∗.

It turns out that x∗∗ < g∗∗ if and only if the marginal cost of public funds at the planner’s steady

state exceeds the ratio n/q; that is,

(
1− r(xo, xo)

1− r(xo, xo)(1 + ε)
) >

n

q
. (18)

To see this, note from the Euler equation for the planner’s problem, that at the planner’s steady

state

δV 0(xo) = p(
1− r(xo, xo)

1− r(xo, xo)(1 + ε)
).

Thus, if the condition is satisfied then it must be the case that V 0(xo) > V 0(x∗∗) which by the

concavity of the planner’s value function implies that x∗∗ > xo. But since the condition implies

that ro = r(xo, xo) > r∗, this means that

xo =
pxo −R(ro)
p(1− d) <

px∗∗ −R(r∗)
p(1− d) ≡ g∗∗

From Figure 3(b) it is clear that this implies that xo(g∗∗) = x∗∗ < g∗∗.

For g > g∗∗, we know that the legislature selects the public good level x∗∗ which puts proposals

back into the no-pork region in one period. Accordingly, it must be the case that

v1 (g) =

⎧⎪⎪⎨⎪⎪⎩
V (g)
n g ≤ g∗∗

u(w(1− r∗), g) + 1
nB(r

∗, x∗∗; g) + δ V (x
∗∗)
n g > g∗∗
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It is now straightforward to show that this is indeed an equilibrium value function and is strictly

concave. The associated equilibrium policy proposals {(rτ (g), sτ (g), xτ (g))}Tτ=1 are such that if

g ∈ [0, g∗∗]

(rτ (g), sτ (g), xτ (g)) = (r(x
∗(g; v1), g), 0, x

∗(g; v1)) for all τ = 1, ..., T,

and if g ∈ (g∗∗,∞)

(rτ (g), xτ (g)) = (r
∗, x∗∗) for all τ = 1, ..., T,

and

sτ (g) =

⎧⎪⎪⎨⎪⎪⎩
B(r∗,x∗∗;g)

n for all τ = 1, ..., T − 1

vT+1(g)− u(w(1− r∗), g)− δv1(x
∗∗) for τ = T

.

Thus we have:

Lemma A.3: There exists a Type II equilibrium if and only if inequality (18) is satisfied. More-

over, there is a unique such equilibrium.

Existence of a Type III equilibrium

In this case, we know that

x∗(v1) = g
∗(v1) =

R(r∗)

pd
≡ ex.

Further, we know that it must be the case that

δ[Aαexα−1 + p(1− d)
n

] ≤ p
q
≤ δ[Aαexα−1 + ( 1− r∗

1− r∗(1 + ε)
)(
p(1− d)
n

)]. (19)

In such an equilibrium, if g > ex then the legislature will choose the public good level ex and tax
rate r∗ that period and every period thereafter. It must therefore be the case that the value

function v1(g) satisfies

v1(g) =

⎧⎪⎪⎨⎪⎪⎩
maxx {u(w(1− r(x, g)), g) + δv1(x)} g ≤ ex

u(w(1− r∗), g) + B(r∗,ex;g)
n + δ

1−δu(w(1− r∗), ex) g > ex . (20)

The question is whether there exists a strictly concave value function which satisfies this rela-

tionship when inequalities (19) are satisfied. If so, there will exist an associated equilibrium

{(rτ (g), sτ (g), xτ (g))}Tτ=1 in which if g ∈ [0, ex]
(rτ (g), sτ (g), xτ (g)) = (r(x

∗(g; v1), g), 0, x
∗(g; v1)) for all τ = 1, ..., T,
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and if g ∈ (ex,∞)
(rτ (g), xτ (g)) = (r

∗, ex) for all τ = 1, ..., T,
and

sτ (g) =

⎧⎪⎪⎨⎪⎪⎩
B(r∗,ex;g)

n for all τ = 1, ..., T − 1

vT+1(g)− u(w(1− r∗), g)− δv1(ex) for τ = T
The following Lemma shows that the answer is yes.

Lemma A.4: There exists a Type III equilibrium if and only if inequality (19) is satisfied. More-

over, there is a unique such equilibrium.

Proof of Lemma A.4: The proof is similar to the proof of Lemma A.2. Let g > ex be an
arbitrarily large but bounded scalar. We will first restrict the range of public good levels to [0, g]

and prove the existence of a unique v1(g) that satisfies (20) when this assumption is satisfied, then

we will extend the solution for g > g. Define for g ∈ [ex, g] the function
ev(g) = u(w(1− r∗), g) + B(r∗, ex; g)

n
+

δ

1− δ
u(w(1− r∗), ex).

Then let eF denote the set of continuous, bounded, weakly concave functions v : <+ → < such

that v(g) = ev(g) for all g ∈ [ex, g]. Finally, define the functional eΨ on eF as follows:
eΨ (v) (g) =

⎧⎪⎪⎨⎪⎪⎩
maxx {u(w(1− r(x, g)), g) + δv(x)} g ∈ [0, ex]
u(w(1− r∗), g) + 1

nB(r
∗, ex; g) + δev(ex) g ∈ (ex, g] .

It can be shown that eΨ (v) ∈ eF and, further, that eΨ (v) is strictly concave. It can also be

shown that eΨ (v) is a contraction mapping which implies that there exists a unique function v1
such that v1 = eΨ (v1). This function is strictly concave and satisfies (20). As in the case with
x∗(v1) > g

∗(v1), the value function can be extended in (g,∞) by defining v(g) = ev(g) for g > g.
The resulting value function is continuous, concave and continues to be a fixpoint of (20). This

completes the proof of Lemma A.4. ¥

When are the conditions satisfied?

Define A to be the value of A that would be such as to make the discounted marginal benefit

of the public good in the minimum winning coalition range equal to p/q at the public good level

R(r∗)/pd; that is,

δ[Aα(
R(r∗)

pd
)α−1 +

p(1− d)
n

] =
p

q
.
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Similarly, let A be the value of A that would be such as to make the discounted marginal benefit

of the public good in the unanimity range equal to p/q at the public good level ex; that is,
δ[Aα(

R(r∗)

pd
)α−1 + (

1− r∗
1− r∗(1 + ε)

)(
p(1− d)
n

)] =
p

q
.

Notice that A must be less than A since, holding constant public good preferences, the value of

an additional unit is higher in the unanimity range.

Now we have the following convenient result.

Lemma A.5: (i) Condition (14) is satisfied if and only if A ∈ (0, A). (ii) Condition (18) is

satisfied if and only if A > A. (iii) Condition (19) is satisfied if and only if A ∈ [A,A].

Proof of Lemma A.5: (i) Let

x∗(A) = (
δqAα

p(1− q
nδ(1− d))

)
1

1−α

Then, we know that condition (14) is satisfied if and only if x∗(A) < R(r∗)
pd or equivalently if only

if A ∈ (0, bA) where
x∗( bA) = R(r∗)

pd
.

But note that

x∗( bA) =
R(r∗)

pd
⇔ (

δq bAα
p(1− q

nδ(1− d))
)

1
1−α =

R(r∗)

pd

⇔ δ[ bAα(R(r∗)
pd

)α−1 +
p(1− d)
n

] =
p

q

which implies that bA = A.
(ii) Condition (18) is that

(
1− r(xo, xo)

1− r(xo, xo)(1 + ε)
) >

n

q
.

Let xo(A) denote the planner’s steady state public good level with public good preference pa-

rameter A and ro(A) = r(xo(A), xo(A)) the associated tax rate. Clearly, xo(A) and ro(A) are

increasing in A. Letting eA be such that
(

1− ro(A)
1− ro(A)(1 + ε)

) =
n

q
,

it is clear that condition (18) is satisfied if and only if A > eA. But note that ro( eA) = r∗ and that
δn eAαxo( eA)α−1 = p[1− δ(1− d)]

∙
1− r∗

1− r∗(1 + ε)

¸
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or, equivalently,

δ[Aαxo( eA)α−1 + ( 1− r∗
1− r∗(1 + ε)

)(
p(1− d)
n

)] =
p

q
.

Furthermore, B(xo( eA), r∗;xo( eA)) = 0 which implies that
xo( eA) = R(r∗)

pd

and hence that eA = A as required.
(iii) This is immediate.

This completes the proof of Lemma A.5. ¥

The proposition now follows by combining Lemmas A.2 - A.5. QED

Proof of Lemma 1: We know from Proposition 2 that the equilibrium steady state is

(r∗, (
δqAα

p(1− q
nδ(1− d))

)
1

1−α ).

The planner’s steady state is given by:

δ[nAα(xo)α−1 + (
1− ro

1− ro(1 + ε)
)p(1− d)] = 1− ro

1− ro(1 + ε)
· p.

and

R(ro) = pdxo

which means that

δ[Aα(
R(ro)

pd
)α−1 + (

1− ro
1− ro(1 + ε)

)
p(1− d)
n

] =
1− ro

1− ro(1 + ε)
· p
n

The equilibrium steady state satisfies

δ[Aαxα−1 +
p(1− d)
n

] =
p

q
.

We know that

δ[Aα(
R(r∗)

pd
)α−1 + (

1− r∗
1− r∗(1 + ε)

)(
p(1− d)
n

)] =
p

q
=

1− r∗
1− r∗(1 + ε)

· p
n
.

Thus, if A < A we have that

δ[Aα(
R(r∗)

pd
)α−1 + (

1− r∗
1− r∗(1 + ε)

)(
p(1− d)
n

)] <
1− r∗

1− r∗(1 + ε)
· p
n
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This implies that r∗ > ro - the equilibrium tax rate is higher than the planner’s tax rate. On the

other hand, if A ∈ (A,A] we have that

δ[Aα(
R(r∗)

pd
)α−1 + (

1− r∗
1− r∗(1 + ε)

)(
p(1− d)
n

)] >
1− r∗

1− r∗(1 + ε)
· p
n

which implies that r∗ < ro.

What about the level of public goods? The level of public goods at the equilibrium satisfies

δ[Aαxα−1 +
p(1− d)
n

] =
1− r∗

1− r∗(1 + ε)
· p
n
>

1− ro
1− ro(1 + ε)

· p
n

Thus, it is clear that the level of public goods is below that at the planner’s solution, because the

marginal cost is higher and the marginal benefit is lower. QED

Proof of Lemma 2: It suffices to show that r∗ < ro. But we know from the proof of Lemma

1 that this follows if A ∈ (A,A]. But we also know that when this type of equilibrium exists it

must be the case that A ∈ [A,A]. QED

Proof of Proposition 7: Solving (8) and (9) for A and A yields

A =
p(1− δ(1− d))(R(r

∗)
pd )1−α

qδα

and

A =
p(1− q

nδ(1− d))(
R(r∗)
pd )1−α

qδα
.

Moreover, we have that

R(r∗) = nr∗(1− r∗)εwε+1εε =
(n− q)ε2εwε+1

(1 + ε− q/n)ε+1 .

From these expressions it is clear that A and A are decreasing in δ and q and increasing in p

and w. For the claims about the impact of increasing the elasticity of labor supply ε, define the

function w(ε) from the equality

nwε+1εε = K,

for some constant K. Then let eR(ε) be the function that equals R(r∗) when the elasticity is ε and
the wage is w(ε); that is,

eR(ε) = (n− q)ε2εw(ε)ε+1
(1 + ε− q/n)ε+1 =

(1− q/n)εε
(1 + ε− q/n)ε+1 .
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We need to show that eR(ε) is decreasing in ε. Taking logs, we have that

lnR(ε) = ln(1− q/n)εε − ln(1 + ε− q/n)ε+1

= ln(1− q/n) + ε ln ε− (ε+ 1) ln(1 + ε− q/n)

Thus,
d lnR(ε)

dε
= ln ε− ln(1 + ε− q/n) + 1− ( ε+ 1

ε+ 1− q/n ) < 0

which implies the result. QED
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