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1 Introduction

Applied time series analysts have studied extensively how macroeconomic aggregates respond
in the long run to underlying economic shocks. For instance, Cochrane (1988) used time series
methods to measure the importance of permanent shocks to output and Blanchard and Quah
(1989) advocated using restrictions on long run responses to identify economic shocks and
measure their importance. The unit root contributions measured by macroeconomists are
a source of long-run risk that should be reflected in the valuation of cash flows. Financial
market prices are by nature forward looking, and thus provide information about how risk
averse investors value the stochastic growth components of macroeconomic and financial
time series. This paper develops and applies methods for incorporating the asset valuation
of cash flows with stochastic growth into macroeconomic analyses.

We investigate the valuation of hypothetical and actual financial cash flows with sto-
chastic growth components. We exploit the fact that transient components of cash flows
have negligible contributions to value in the long run. For stochastic growth processes with
payoffs far into the future, valuation turns out to be dominated by a single pricing compo-
nent. We characterize this dominant component by exploiting a formulation developed in
Hansen and Scheinkman (2005). This component isolates value movements due to long-run
cash-flow variability and gives a well defined risk adjustment. By changing growth processes,
and hence long-run risk exposure, we delineate a long-run risk-return tradeoff.

The methods we use to characterize and measure long-run risk are complementary to
those developed by Campbell and Shiller (1988). Our analysis is motivated in part by recent
research seeking to construct cash flow betas, [e.g., see Bansal, Dittmar, and Lundblad
(2005) and Campbell and Vuolteenaho (2003)]; but our interpretation and justification for
such objects is novel. Previous work uses return- or dividend-based measures of long-run
cash-flow risk to isolate risk components of one-period returns. Long-run cash flow risk is
only a partial contributor to one-period risk, however. Our interest in the stochastic growth
components of cash flows leads us naturally to the study of risk exposure extrapolated into
the distant future. We aim to elucidate risk adjustments in present value models and to
characterize formally a long-run notion of the risk-return relation.

The valuation of cash flows reflects expected growth, discounting and riskiness. The
value of cash flows in the distant future declines as the horizon increases at a rate that is
approximately constant. When this decay rate is small, future cash flows have a durable
contribution to current values. A small decay rate in the contribution to value reflects in
part cash flow growth, however. Since dividend growth rates projected far into the future are
approximately constant, there is a well defined adjustment for cash-flow growth. By adding
the dividend growth rate to the value decay rate, we extract a risk-adjusted discount rate.
The risk adjustment comes from two sources. One is the direct random fluctuation in the
growth rates of the cash flow, and the other is the riskiness that is imputed by the valuation
of this cash flow.

Value decompositions of the type just described require a specific economic model and
empirical inputs to characterize the growth and riskiness of cash flows. The calculations in
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this paper are based on a well specified, albeit highly stylized, model. Following Epstein
and Zin (1989b), Weil (1990), Tallarini (1998), Bansal and Yaron (2004) and many others,
we use a recursive utility framework of Kreps and Porteus (1978). For these preferences,
the intertemporal composition of risk matters to the decision maker. Changing the time
of information revelation regarding intertemporal consumption lotteries affects the implied
preference ordering. As emphasized by Epstein and Zin (1989b), these preferences also
offer a convenient and appealing way to break the preference link between risk aversion and
intertemporal substitution. Furthermore, Bansal and Yaron (2004) showed that predictable
components in consumption growth can amplify the risk premia in security market prices.
We study how long-run risk depends on intertemporal substitution, on risk aversion and on
the predictable components to consumption growth.

In addition to an economic model, our value decompositions require statistical inputs that
quantify long-run stochastic growth in macroeconomic variables, particularly in consump-
tion. The decompositions also require knowledge of the long-run link between stochastic
cash flows and the macroeconomic risk variables. These components of financial risk cannot
be fully diversified and hence require nontrivial risk adjustments. The long-run nature of
these risks adds to the statistical challenges just as it does in the related macroeconomic
literature.

As many prior studies have done, we choose to study log linear vector autoregressive
(VAR) models of consumption and cash flows. These models are designed to accommodate
dynamics in a convenient yet flexible way. Our focus on long-run risk deliberately stretches
the VAR methods beyond their ability to capture transient dynamics. This leads us to
explore the resulting empirical challenges. How sensitive are risk-measures to details in the
specification of the time series evolution? How accurately can we measure these components?
When should we expect these components to play a fundamental role in valuation? In
addition to providing a long-run valuation counterpart to the familiar risk-return tradeoff,
this paper examines the sensitivity of the measurements to estimation and model uncertainty.

As we have just described, our paper uses a well posed economic model of valuation in
conjunction with statistical inputs to make valuation assessments that pertain to growth
rate risk. In addition to our substantive interest in such risk, there is a second and per-
haps more speculative for featuring the long run in our analysis. Highly stylized economic
models like the ones we explore here are typically misspecified when examined with full
statistical scrutiny. Behavioral biases or transactions costs, either economically grounded or
metaphorical in nature, challenge the high frequency implications of such models. Valuation
implications over longer horizons may be less sensitive to misspecification, although this
remains to be demonstrated formally.1 Misspecified models continue to be used by applied
economists because of their analytical tractability and conceptual simplicity. Characterizing
valuation implications that dominate over long time horizons helps us understand better
when such models provide useful approximations. For instance, it helps us to determine
when transient implications are important and when long-run implications dominate.

1Analogous reasoning led Daniel and Marshall (1997) to use an alternative frequency decomposition of
the consumption Euler equation.
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In section 2 we use a finite state Markov chain to illustrate our methods. We follow
this with a formal discussion of our methodology in section 3. In section 4 we use the
recursive utility model to show why the intertemporal composition of risk might matter to
an investor. In section 5 we identify important aggregate shocks that affect consumption
in the long run. Section 6 constructs the implied measures of the risk-return relation for
portfolio cash flows. Section 7 explores the valuation sensitivity of alternative specifications
of the long-run statistical relationship between consumption and portfolio cash flows. Section
8 concludes.

2 Markov chain model

In section 3 we develop a general framework for characterizing long-run risk. A feature of
this framework is that multi-period claims are conveniently priced by iterating on valuation
operators, and long-run risk is measured by the limiting behavior of these operators. Prior to
this development, we illustrate our techniques using Markov chains and the associated matrix
operations. In the case of a discrete-state Markov chain, iterating operators is accomplished
by raising appropriately constructed matrices to powers. This naturally leads us to explore
the eigenvalues and eigenvectors of the matrices used in valuation.

At time t, a discounted cash flow is given by:

Pt

Dt

= E

[ ∞∑
j=1

(
j∏

τ=1

St+τ,t+τ−1

)
Dt+j

Dt

|xt

]
(1)

where {Dt+j : j ≥ 0} is a stochastic cash flow process with price Pt at date t and St+1,t is a
stochastic discount factor process between date t and date t+1 and is assumed to be strictly
positive. Since it varies across states, this discount factor provides both a time discount and
a risk adjustment.

Suppose that the dynamics of cash flows and the stochastic discount factor are determined
by an N state Markov chain. State n of this Markov chain is denoted xn, and the probabilities
of transiting from one state to another are given by:2

am,n = Prob(xt+1 = xn|xt = xm) .

To evaluate discounted sum (1), we scale am,n by two objects. The first is the stochastic
or state-dependent discount factor sm,n for the next period’s state xn conditioned on the
current state being xm.3 The specification of this discount factor comes from an underlying
economic model. In section 4 we develop the recursive utility model as an example of a
stochastic discount factor model.

2We assume that the resulting probability matrix is irreducible. That is, for some integer τ , the entries
of Aτ are strictly positive, where A is formed from the am,n’s.

3This transformation of the probabilities is familiar from asset pricing where the “risk-neutral” distrib-
ution is obtained from the pricing model and the objective distribution. We do not, however, rescale the
discount factors to behave as probabilities.
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The second object in our scaling is a stochastic growth factor that captures the long-run
growth in the cash flows. The value of this growth factor between current state xm and
future state xn is dm,n and is assumed to be positive. We study growing cash flows with a
multiplicative representation

Dt+j = D∗
t+jψ(xt+j)

where D∗
t+j is a reference growth process that is initialized at one and an additional term that

is a function of the Markov state. The multiplicative increment D∗
t+1/D

∗
t is a time invariant

positive function of xt+1 and xt and has a constant expectation conditioned on xt denoted
by exp(ε). Given the finite number of states, we represent the value of the reference growth
factor between current state xm and future state xn as the positive number dm,n restricted
so that

∑
m dm,nam,n = exp(ε) is independent of n.4 The level variable ψ(xt) is represented

as an N−dimensional column vector f that gives the values of the function for each of the
N Markov states.

It is critical to our evaluation of the long-run risk of cash flows to consider alternative
stochastic growth specifications. For example, suppose that all of the entries of the matrix
A are positive and consider the specification:

dm,n =

{
exp(ε)−1

a`,n
+ 1 if n = `

1 otherwise
. (2)

This corresponds to a stochastic growth specification that features Markov state `. By
changing ` and ε, we explore changes in the risk exposure of alternative growth trajectories.

The two scaling objects lead us to a new matrix P with entries:

pm,n = am,nsm,ndm,n .

We use this matrix P to compute and decompose the valuation (1) by payoff horizon j.
Term j in the infinite sum is given by:

E

[(
j∏

τ=1

St+τ,t+τ−1

)
Dt+j

Dt

|xt = xm

]
= em(P)jf

where em is an N -dimensional row vector of zeros with a one in the mth column. The
contributions to value at different payoff horizons are determined by the properties of this
matrix raised to the power j and the vector f .

Raising a matrix to a power preserves the eigenvectors. Eigenvalues are altered but in a
straightforward way. The original eigenvalues are raised to the same power as the matrix.
There is principal eigenvalue, exp(−ν), that is positive and a corresponding eigenvector,
f ∗, with positive entries.5 The principal eigenvalue has the largest magnitude among all
eigenvalues of P , and as a consequence it dominates the evaluation of Pj for large values of
j.

4As we will see, this restriction is essentially a convenient normalization.
5This is known from the Frobenius-Perron theory of matrices.
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To illustrate the influence on valuation of the dominate eigenvalue and eigenvector, for
simplicity suppose that P has unique eigenvalues. Let Λ be a diagonal matrix with the
eigenvalues on the diagonal and exp(−ν) as the upper left element. Further let T be a
matrix with the corresponding eigenvectors as columns. Then:

Pj = TΛjT−1 .

In this decomposition, the first column of T is the column eigenvector, f ∗, and the first row
of T−1 is the row eigenvector, g∗, corresponding to the eigenvalue exp(−ν). Since exp(−ν)
is the dominant eigenvalue

lim
j→∞

exp(νj)Λj =




1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ,

and
lim
j→∞

exp(νj)Pj = f ∗g∗ .

Hence for any f
lim
j→∞

exp(νj)(P)jf = (g∗f)f ∗ .

As the valuation horizon gets large, the vector of values are approximately proportional to
f ∗, provided of course that (g∗f) is not zero. The specific choice of f does not alter the
limiting distribution of values. Moreover, when f has nonnegative entries and at least one
strictly positive entry,

lim
j→∞

−1

j
[log(P)jf ] = ν1N

where 1N is an N -dimensional column vector of ones. Thus ν is the asymptotic decay rate
of the valuation series (1).

As is familiar from the Gordon growth model, the decay rate ν is influenced by two factors:
the asymptotic (risk adjusted) discount rates and the asymptotic growth rates in cash flows.
When cash flows grow faster, values decay slower. Thus to produce a risk adjusted discount
rate, we need to adjust ν for dividend growth. To measure this, we form a matrix G with
entries am,ndm,n. By assumption this matrix has one as its dominant eigenvector, and its
dominant eigenvalue is the average growth factor exp(ε). As a consequence, the asymptotic
cash flow growth rate is ε, and the implied discount rate is ε + ν.

This discount rate includes of an adjustment for long-run risk. As we change the sto-
chastic growth specification dm,n, we alter the implied risk-adjusted discount rate giving rise
to a long-run risk return relation. For instance, as we alter ` and ε in example (2) we alter
the long-run risk adjusted discount rates. In the next section we explore a risk-return coun-
terpart for an economy that has normally distributed shocks as building blocks instead of
discrete Markov states.
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3 Long run risk in a log-linear economy

In the remainder of the paper we use linear Markov processes instead of Markov chains. We
do this so that we can explore temporal dependence in a more flexible manner. To support
this application, we extend the approach just described by replacing matrices with operators
that integrate over continuous states.

The state of the economy is given by a vector xt which evolves according to a first-order
vector autoregression:

xt+1 = Gxt + Hwt+1. (3)

The matrix G has strictly stable eigenvalues (eigenvalues with absolute values that are strictly
less than one), and {wt+1 : t = 0, 1, ...} is iid normal with mean zero and covariance matrix
I. The stochastic discount factor is linked to this state vector by:

st+1,t = µs + Usxt + ξ0wt+1 (4)

3.1 Dominant Eigenfunction and Valuation Decay Rate

Consider a reference stochastic growth process modeled as the exponential of a random walk
with drift:

D∗
t = exp

[
ζt +

t∑
j=1

πwj

]
.

Using this growth process we introduce a transient or stationary component to produce the
cash flow:

Dt = D∗
t ψ(xt) . (5)

Pricing of Dt requires valuation of both the transient and growth components. The impli-
cations of the growth component for valuation and risk are invariant to the choice of the
transitory component ψ. This specification allows us to focus on the growth rate risk ex-
posure as parameterized by π. Changes in valuation, as we alter π, give a characterization
of long run risk. In addition to characterizing this risk, we examine how important this
long-run component is to overall value.

The counterpart to the matrix P used in section 2 is the one-period valuation operator
given by:

Pψ(x) = E (exp [st+1,t + ζ + πwt+1] ψ(xt+1)|xt = x) . (6)

We call this a valuation operator because it assigns values to cash flows constructed with
alternative functions ψ but with the same growth component. The function ψ plays the role
of the vector f for the Markov chain economy. Formally, we view this operator as mapping
functions of the Markov state into functions of the Markov state. In particular, it is well
defined for functions that are bounded functions of the Markov state, although it is well
defined for other functions as well.
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Multi-period prices can be inferred from this one-period pricing operator through itera-
tion. The value of a date t + j cash flow (5) is given by:

Dt

[Pjψ(xt)
]
.

The notation Pj denotes the application of the one-period valuation operator j times, which
is the counterpart to raising a matrix to the jth power.

When the cash flow process is a dividend process, the date t price-dividend ratio is:

Pt

Dt

=

∑∞
j=1Pjψ(xt)

ψ(xt)
(7)

provided that ψ(xt) is strictly positive. The term

Pjψ(xt)

ψ(xt)

is the contribution of the date t+ j cash flow to the price-dividend ratio at time t. The price
dividend ratio is given by the sum of these objects.

As in section 2 we study the limiting behavior of these components by constructing dom-
inant eigenfunctions and eigenvalues of the pricing operator P . The dominant eigenfunction
of is a positive function φ that solves the equation:

Pφ = exp(−ν)φ,

where exp(−ν) is the eigenvalue corresponding to φ. The eigenfunction is only well defined up
to scale. A solution exists to this equation of the form φ = exp(−ωx). A simple application
of the formula for the (conditional mean) of a lognormal implies that

(Us − ωG)x + µs + ζ +
| − ωH + π + ξ0|2

2
= −ν − ωx.

Solving for ω and ν results in:

Theorem 1. Suppose that the state of the economy evolves according to (3) and the stochastic
discount factor is given by (4), then

a) the dominant eigenfunction, φ, of the one-period valuation operator (6) is a scale multiple
of exp(−ωx) where

ω
.
= −Us(I −G)−1.

b) the dominant eigenvalue is exp(−ν) where

ν
.
= −µs − ζ − |π − π∗|2

2

and
π∗ .

= −ξ0 − Us(I −G)−1H.
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Recall that the left eigenvector of a matrix is the right eigenvector of its transpose. The
analogue to the left eigenvector of matrix P of section 2 is the eigenfunction of the adjoint
of the operator P , where the adjoint is the operator equivalent of a transpose. In appendix
B we show that this eigenfunction, ϕ, is a scale multiple of exp(−ω∗x). As shown by Hansen
and Scheinkman (2005), whenever E (ψϕ) and E (ϕφ) are well defined and finite:

lim
j→∞

exp(νj)Pjψ(x) =
E(ϕψ)

E(ϕφ)
φ(x) . (8)

Thus when E(ϕψ) > 0,

lim
j→∞

log [Pjψ(x)]

j
= −ν.

This calculation gives us an asymptotic decay rate for the contribution to total value
of the cash flow at time t + j. The decay rate depends on both cash flow growth through
the specification of π and ζ, and on the economic value associated with that growth. It
does not depend on the particular function ψ that dictates the transient contribution to
cash flows. The eigenfunction φ is dominant as it gives the limiting state dependence of
the values as reflected in formula (8). Thus the pair (ν, φ) measures how long-run prospects
about dividends contribute to value. The ψ contribution is transient and does not alter the
asymptotic decay rate or the relative values across states.

Since we are interested in cash flows with transient components, we shall also define
operators to measure the expected cash-flow growth and the resulting limiting behavior. Let

Gψ(x) = E [exp (ζ + πwt+1) ψ(xt+1)|xt = x] .

By iterating on this growth operator, we can study expected cash flow growth over multi-
period horizons. In particular, the expected value of the cash flow (5) is:

Dt

[Gjψ(xt)
]
.

The asymptotic cash-flow growth is characterized by an analogous eigenfunction-eigenvalue
pair. A straightforward calculation shows that the dominant eigenfunction of G is one and
that

Gψ = exp

(
ζ +

|π|2
2

)
ψ

for ψ = 1.6 Thus

ε = ζ +
|π|2
2

. (9)

is the implied asymptotic expected rate of growth for the cash flow.
In what follows we will motivate the study of ε+ ν as a risk adjusted discount rate. This

sum depends on π but not on ζ, the deterministic trend.

6When the martingale approximation for the cash flow has heteroskedastic increments, this calculation
ceases to have a trivial solution.
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3.2 Long-run returns and dominant eigenfunctions

Consider first a security with dividend process of the form (5) where the dominant eigen-
function φ is used in place of ψ. Using the eigenvalue property and (7), this security has a
constant price-dividend ratio given by:

Pt

Dt

=
exp(−ν)

1− exp(−ν)
. (10)

Thus the dividend-price ratio depends directly on the valuation decay rate ν. As in the
Gordon growth model, the factor exp (−ν) includes both a pure discount factor (adjusted
for risk) and a dividend growth factor. The implied asymptotic discount rate is ν + ε since
the asymptotic dividend growth factor for dividends with long-run risk is: exp(ε).

The (gross) return to holding this security from time t to t + 1 is given by:

Rt,t+1 =
Pt+1 + Dt+1

Pt

=
Pt+1

Pt

exp(ν) = exp(ν) exp(ζ + πwt+1)
φ(xt+1)

φ(xt)
. (11)

The logarithm of this return has two components: a cash flow component: ζ + πwt+1 deter-
mined by the reference growth process and a valuation component ν +log φ(xt+1)− log φ(xt)
determined by the dominant eigenvalue and eigenfunction. In what follows we will refer to
this constructed return as a valuation return associated with a cash flow with risk vector π.

The return to buying this security and reinvesting the dividends for k periods is given
by the product of these one-period returns:

Rk
t,t+k = exp(νk) exp

[
ζk + π

k∑
j=1

wt+j

]
φ(xt+k)

φ(xt)
.

Variation in the logarithm of this return will be dominated by direct cash flow contribution
as k gets large because the variance of a random walk grows linearly in k while log φ(xt+k)−
log φ(xt) does not. Moreover, the logarithm of the expected return yields the following
simplification in the limit:7

lim
k→∞

1

k
log E

(
Rk

t,t+k|Ft

)
= ν + lim

k→∞
1

k
log Gkφ(xt) = ν + ε. (12)

In this sense we view ν + ε is an expected rate of return.
We use this result to study the valuation of a more general security with a transient

component of cash flows, ψ, that is different from the dominant eigenfunction. As part
of a valuation decomposition, consider a security with an initial payoff k periods into the
future. Using result (8) the date t value of the payoff to the cash flow (5) at time t + j is
approximately:

exp(−νj) exp

[
ζ(t) + π

t∑
τ=1

wτ

]
E[ϕ(xt)ψ(xt)]

E[ϕ(xt)φ(xt)]
φ(xt).

7Strictly speaking this requires that Eφκ is finite where κ is the eigenfunction of the adjoint of the
operator G.
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for large j. Adding over horizons j ≥ k for some large k gives the price of the constructed
security as:

P̂ k
t =

exp(−νk)

1− exp(−ν)

E[ϕ(xt)ψ(xt)]

E[ϕ(xt)φ(xt)]
exp

[
ζ(t) + π

t∑
τ=1

wτ

]
φ(xt)

Except for a scale factor, the dominant eigenfunction approximates variation in the valuation
over time as a function of the Markov state xt. Changing the transient component changes
the scale factor. The approximate one-period return on this security is:

P̂ k−1
t+1

P̂ k
t

= exp(ν) exp (ζ + πwt+1)
φ(xt+1)

φ(xt)
.

This is equal to (11), the one-period return to holding a claim on cash flows where the
transient component is equal to the dominant eigenfunction.

Characterizing the dependence of ν + ε on π gives a long-run risk return relation. The
vector π dictates how the cash flow weights on the underlying shocks and ν + ε gives the
implied expected rate of return.8

Theorem 2. Suppose that the state of the economy evolves according to (3) and the stochastic
discount factor is given by (4), then the expected rate of return (12) is:

ε + ν = ς∗ + π∗ · π
where

π∗ .
= −ξ0 − Us(I −G)−1H

ς∗ .
= −µs − ζ − π∗ · π∗

2
.

Proof. This result follows immediately from the characterization of ν given in theorem 1 and
of ε in (9).

The term π∗ is the price of exposure to long-run risk of cash flows as measured by π.
The logarithm of a stochastic discount fact over horizon k is

k∑
j=1

st+j,t+j−1.

8By setting π = 0, we obtain a benchmark return that is the long-run counterpart to the riskfree return.
Alvarez and Jermann (2001) study of the holding period returns to long-horizon discount bonds. The
approximate one-period return is:

exp(ν)
φ(xt+1)
φ(xt)

constructed using the π = 0 and ζ = 0 for the associated dominant eigenvalue and function. In this case, ε is
zero by construction. They compare this return to the maximal growth rate return of Bansal and Lehmann
(1997) to infer long run properties of the stochastic discount factor.
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As k gets large the long-run response to the shock vector wt+1 converges to −π∗wt+1. Thus
the long-run risk price vector has a simple characterization in this economy. It is the negative
of the response coefficients for the long-run log stochastic discount factor to the underlying
shocks. Our empirical aim is to measure π∗ and study its consequences. To do this we need
a model for st+1,t. We turn to this task in the next section.

4 Stochastic discount factor

There remains considerable controversy within the asset pricing literature about the con-
struction of an economically meaningful model of a stochastic discount factor. We find it
useful to focus on a recursive utility model that, by design, leads to tractable restrictions on
economic time series. This model is rich enough to help us examine return heterogeneity as
it relates to long-run risk and to understand better the intertemporal values of equity.

4.1 Preferences

We follow Kreps and Porteus (1978), Epstein and Zin (1989b) and Weil (1990) in choosing to
examine recursive preferences. As we will see below, this specification of preferences provides
a simple justification for examining the temporal composition of risk in consumption.

In our specification of these preferences, we use a CES recursion:

Vt =
[
(1− β) (Ct)

1−ρ + βRt(Vt+1)
1−ρ

] 1
1−ρ . (13)

The random variable Vt+1 is the continuation value of a consumption plan from time t + 1
forward. The recursion incorporates the current period consumption Ct and makes a risk
adjustment Rt(Vt+1) to the date t + 1 continuation value. We use a CES specification for
this risk adjustment as well:

Rt(Vt+1)
.
=

[
E (Vt+1)

1−θ |Ft

] 1
1−θ

where Ft is the current period information set. The outcome of the recursion is to assign a
continuation value Vt at date t.

The preferences provide a convenient separation between risk aversion and the elasticity
of intertemporal substitution [see Epstein and Zin (1989b)]. For our purposes, this separation
allows us to examine the effects of changing risk exposure with modest consequences for the
risk-free rate. When there is perfect certainty, the value of 1/ρ determines the elasticity of
intertemporal substitution (EIS). A measure of risk aversion depends on the details of the
gamble being considered. As emphasized by Kreps and Porteus (1978), with preferences like
these intertemporal compound consumption lotteries cannot necessarily be reduced by simply
integrating out future information about the consumption process. Instead the timing of
information can have a direct impact on preferences and hence the intertemporal composition
of risk matters. As we will see, this will be reflected explicitly in the equilibrium asset prices
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that we characterize. On the other hand, the aversion to simple wealth gambles is given by
θ.

To analyze growth, we scale the continuation values in (13) by consumption:

Vt

Ct

=

[
(1− β) + βRt

(
Vt+1

Ct+1

Ct+1

Ct

)1−ρ
] 1

1−ρ

.

Since consumption and continuation values are positive, we find it convenient to work with
logarithms instead. Let vt denote the logarithm of the continuation value relative to the
logarithm of consumption, and let ct denote the logarithm of consumption. We rewrite
recursion (13) as

vt =
1

1− ρ
log ((1− β) + β exp [(1− ρ)Qt(vt+1 + ct+1 − ct)]) , (14)

where Qt is:

Qt(vt+1) =
1

1− θ
log E (exp [(1− θ)vt+1] |Ft) .

We will use this recursion to solve vt from an infinite horizon model.

4.2 Shadow Valuation

Consider the shadow valuation of a given consumption process. The utility recursion gives
rise to a corresponding valuation recursion and implies stochastic discount factors used to
represent this valuation. In light of the intertemporal budget constraint, the valuation of
consumption in equilibrium coincides with wealth.

The first utility recursion (13) is homogeneous of degree one in consumption and the
future continuation utility. Use Euler’s Theorem to write:

Vt = (MCt)Ct + E [(MVt+1)Vt+1|Ft] (15)

where

MCt = (1− β)(Vt)
ρ(Ct)

−ρ

MVt+1 = β(Vt)
ρ [Rt(Vt+1)]

θ−ρ (Vt+1)
−θ

The right-hand side of (15) measures the shadow value of consumption today and the con-
tinuation value of utility tomorrow.

Let consumption be numeraire, and suppose for the moment that we value claims to the
future continuation value Vt+1 as a substitute for future consumption processes. Divide both
sides of (15) by MCt and use marginal rates of substitution to compute shadow values. The
shadow value of a claim to a continuation value is priced using MVt+1

MCt
as a stochastic discount

factor. Thus a claim to next period’s consumption is valued using

St+1,t =
MVt+1MCt+1

MCt

= β

(
Ct+1

Ct

)−ρ (
Vt+1

Rt(Vt+1)

)ρ−θ

(16)
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as a stochastic discount factor. There are two (typically highly correlated) contributions
to the stochastic discount factor in formula (16). One is the direct consumption growth
contribution familiar from the Rubinstein (1976), Lucas (1978) and Breeden (1979) model
of asset pricing. The other is the continuation value relative to its risk adjustment. The
contribution is forward-looking and is present only when ρ and θ differ.

Given the homogeneity in the recursion used to depict preferences, equilibrium wealth
is given by Wt = Vt

MCt
. Substituting for the marginal utility of consumption, the wealth-

consumption ratio is:
Wt

Ct

=
1

1− β

(
Vt

Ct

)1−ρ

.

Taking logarithms, we find that

log Wt − log Ct = − log(1− β) + (1− ρ)vt (17)

When ρ = 1 we obtain the well known result that the wealth consumption ratio is constant.
A challenge in using this model empirically is to measure the continuation value, Vt+1,

which is linked to future consumption via the recursion (13). When ρ 6= 1, one approach
is to use the relationship between wealth and the continuation value, Wt = Vt/MCt to
construct a representation of the stochastic discount factor based on consumption growth
and the return to a claim on future wealth. In general this return is unobservable. An
aggregate stock market return is sometimes used to proxy for this return as in Epstein and
Zin (1989a), for example; or other components can be included such as human capital with
assigned market or shadow values (see Campbell (1994)).

In this investigation, like that of Restoy and Weil (1998) and Bansal and Yaron (2004), we
base the analysis on a well specified stochastic process governing consumption. In contrast to
this literature, we feature the role of continuation values to accommodate ρ = 1. In fact we
begin by studying the case of logarithmic intertemporal preferences (ρ = 1) and then explore
approximations in the parameter ρ. It is well understood that ρ = 1 leads to substantial
simplification in the equilibrium prices and returns [e.g. see Schroder and Skiadas (1999).]

4.3 The special case in which ρ = 1

We use the ρ = 1 specification as a benchmark. Campbell (1996) argues for less intertemporal
substitution and Bansal and Yaron (2004) argue for more. We will explore such deviations
subsequently. The ρ = 1 case is convenient when consumption has a log linear time series
evolution because of the resulting continuation value is linear in the state variables.

The ρ = 1 limit in recursion (14) is:

vt = βQt(vt+1 + ct+1 − ct)

=
β

1− θ
log E (exp [(1− θ)(vt+1 + ct+1 − ct)] |Ft) . (18)
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The stochastic discount factor in this special case is:

St+1,t ≡ β

(
Ct

Ct+1

) [
(Vt+1)

1−θ

Rt(Vt+1)1−θ

]
.

Recursion (18) is used by Tallarini (1998) in his study of risk sensitive business cycles and
asset prices.

Notice that the term of St+1,t associated with the risk-aversion parameter θ satisfies

E

[
(Vt+1)

1−θ

Rt(Vt+1)1−θ
|Ft

]
= 1.

This term can thus be thought of as distorting the probability distribution. The presence
of this distortion reflects a rather different interpretation of the parameter θ. Anderson,
Hansen, and Sargent (2003) argue that this parameter may reflect investor concerns about
not knowing the precise riskiness that investors must confront in the marketplace instead
of incremental risk aversion applied to continuation utilities. Under this view, the original
probability model is viewed as a statistical approximation, but investors are concerned that
this model may be misspecified. This alternative interpretation is germane to our analysis
because we will explore sensitivity of our measurements to the choice of θ. Changing the
interpretation of θ alters what we might view as reasonable values of this parameter. Instead
of focusing on the intertemporal composition of risk as in the Kreps and Porteus (1978) for-
mulation, under this view we are lead to consider potential misspecifications in probabilities
that most challenge investors.

To make our formula for the marginal rate of substitution operational, we need to compute
Vt+1 using the equilibrium consumption process. Suppose that the first-difference of the
logarithm of equilibrium consumption is given by:

ct+1 − ct = µc + Ucxt + γ0wt+1.

This representation implies an impulse response function for consumption where the date t
shock wt adds γjwt to consumption growth at date t + j. The response vector is:

γj =

{
γ0 if j = 0

UcG
j−1H if j > 0

For this lognormal consumption growth process, the solution for the continuation value
is

vt = µv + Uvxt

where

Uv
.
= βUc(I − βG)−1,

µv
.
=

β

1− β

[
µc +

(1− θ)

2
γ(β) · γ(β)

]
,

14



and γ(β) is the discounted impulse response:

γ(β) =
∞∑

j=0

βjγj = γ0 + βUc(I −Gβ)−1H.

The logarithm of the stochastic discount factor is:

st+1,t = µs + Usxt + ξ0wt+1

where

µs = −δ − µc − (1− θ)2γ(β) · γ(β)

2
Us = −Uc

ξ0 = −γ0 + (1− θ)γ(β).

The stochastic discount factor includes both the familiar contribution from contempo-
raneous consumption plus a forward-looking term that discounts the impulse responses for
consumption growth. For instance, the price of payoff φ(wt+1) is given by:

E [exp(st+1)φ(wt+1)|Ft] = E [exp(st+1)|Ft]
E [exp(st+1)φ(wt+1)|Ft]

E [exp(st+1)|Ft]

The first term is a pure discount term and the second is the expectation of φ(wt+1) under
the so-called risk neutral probability distribution. The logarithm of the first term is:

log E [exp(st+1)|Ft] = −δ −
∞∑

j=0

γj+1wt−j − (1− θ)γ(β) · γ0 +
γ0 · γ0

2
,

which is minus the yield on a discount bond. The wt+1 coefficient on the innovation to the
logarithm st+1,t of the stochastic discount factor is

−γ0 + (1− θ)γ(β).

This vector is also the mean of the normally distributed shock wt+1 under the risk-neutral
distribution.

The adjustment −γ0 is familiar from Hansen and Singleton (1983) and the term (1 −
θ)γ(β) is the adjustment for the intertemporal composition of consumption risk implied
by the Kreps and Porteus (1978) specification of recursive utility. Large values of the risk
parameter θ enhance the importance of this component. This latter effect is featured in
the analysis of Bansal and Yaron (2004). Under the alternative interpretation suggested by
Anderson, Hansen, and Sargent (2003), |(1− θ)γ(β)| is a measure of model misspecification
that investors cannot identify because the misspecification is disguised by shocks that impinge
on investment opportunities.
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Our interest is in the long-run consequences for cash flow risk. As we discussed in section
3, consider the valuation of alternative securities that are claims to the cash flows with
permanent components πwt+1. The valuations of these components are dominated by a
single factor. Applying theorem 1 the dominant valuation factor is invariant to both the
risk aversion parameter θ and cash-flow risk exposure parameter π. It is the exponential of
the discounted conditional expectation of consumption growth rates. From theorem 2, the
long-run cash-flow risk price is:

π∗ = γ0 + Uc(I −G)−1H + (θ − 1)γ(β)
= γ(1) + (θ − 1)γ(β)

where γ(1) is the cumulative growth rate response or equivalently the limiting consumption
response in the infinite future. The comparison between one-period and long-run risk prices
is informative. The long-run risk price uses the long run consumption response vector γ(1)
in place of γ0, but the recursive utility contribution remains the same. As the subjective
discount factor β tends to unity, γ(β) converges to γ(1), and hence the long-run risk price
is approximately θγ(1).

Given the unitary EIS, wealth in this economy is proportional to consumption

Wt =
Ct

1− β
.

As noted by Rubinstein (1976) and Gibbons and Ferson (1985), we may use the return on
the wealth portfolio as a proxy for the consumption growth rate. Although these papers do
not study the recursive utility counterpart, the tight link between consumption and wealth
applies without regard to the risk aversion parameter θ. The return on a claim to wealth is:

Rw
t+1 =

Wt+1

βCt

1−β

=
Ct+1

βCt

.

Thus
rw
t+1 = ct+1 − ct − log β.

This leads Campbell and Vuolteenaho (2003) and Campbell, Polk, and Vuolteenaho (2005)
to use a market wealth return as a proxy for consumption growth and to measure γ0 and
γ(β) from impulse response functions of wealth returns to shocks characterize one-period
risk. Although we will directly measure the consumption responses to shocks, an alternative
for us would be to infer γ(1) and γ(β) from wealth return responses.

4.4 Intertemporal substitution (ρ 6= 1)

Approximate characterization of equilibrium pricing for recursive utility have been produced
by Campbell (1994) and Restoy and Weil (1998) based on a log-linear approximation of
budget constraints. In what follows we use a distinct but related approach. We follow
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Kogan and Uppal (2001) by approximating around an explicit equilibrium computed when
ρ = 1 and varying the parameter ρ.

We start with a first-order expansion of the continuation value:

vt ≈ v1
t + (ρ− 1)Dv1

t

where v1
t is the continuation value for the case in which ρ = 1. Recall that the logarithm of

the continuation value/consumption ratio is:

v1
t+1 = Uvxt+1 + µv

= UvHwt+1 + UvGxt + µv.

In appendix A, we show that

Dv1
t+1 = −1

2
xt+1

′Υdvxt+1 + Udvxt+1 + µdv

where formulas for Υdv, Udv and µdv are given in appendix A.
The corresponding expansion for the logarithm of the stochastic discount factor is:

st+1,t ≈ s1
t+1,t + (ρ− 1)Ds1

t+1,t.

where

Ds1
t+1,t =

1

2
wt+1

′Θ0wt+1 + wt+1
′Θ1xt + ϑ0 + ϑ1xt + ϑ2wt+1.

Formulas for Θ0, Θ1, ϑ0, ϑ1 and ϑ2 are also given in appendix A.
Finally we use the stochastic discount factor expansion to determine how the decay rate

ν of the dominant eigenfunction changes with ρ. This calculation makes use of the formula:

dν

dρ
|ρ=1= −E

[
Ds1

t+1,t exp(s1
t+1,t + πwt+1)φ(xt+1)ϕ(xt)

]

exp(−ν)E[φ(xt)ϕ(xt)]

where φ and ϕ are the eigenfunctions for the ρ = 1 valuation operator. The defense and
details of the implementation of these forumlas are given in appendix B. This derivative will
depend on the assumed cash flow growth process. Since the asymptotic growth rate of cash
flows does not depend on ρ this same calculation can be used to study the sensitivity of the
valuation rate of return to changes in ρ.

5 Measuring Long-Run Consumption Risk

As in much of the empirical literature in macroeconomics, we use vector autoregressive (VAR)
models to identify interesting aggregate shocks and estimate γ(z). In our initial model we
let consumption be the first element of yt and corporate earnings be the second element:

yt =

[
ct

et

]
.
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Our use of corporate earnings in the VAR is important for two reasons. First, it is used as a
predictor of consumption and an additional source of aggregate risk.9 For example, changes
in corporate earnings potentially signal changes in aggregate productivity which will have
long-run consequences for consumption. Second, corporate earnings provide a broad-based
measure of the ultimate source of the cash flows to capital. The riskiness of the equity
claims on these cash flows provides a basis of comparison for the riskiness of the cash flows
generated by the portfolios of stocks that we consider in section 6.

The process {yt} is presumed to evolve as a VAR of order `. In the results reported
subsequently, ` = 5. The least restrictive specification we consider is:

A0yt + A1yt−1 + A2yt−2 + ... + A`yt−` + B0 = wt , (19)

The vector B0 two-dimensional, and the square matrices Aj, j = 1, 2, ..., ` are two by two.
The shock vector wt has mean zero and covariance matrix I. We normalize A0 to be lower
triangular with positive entries on the diagonals. Form:

A(z)
.
= A0 + A1z + A2z

2 + ... + A`z
`.

We are interested in a specification in which A(z) is nonsingular for |z| < 1. Given this
model, the discounted response of consumption to shocks is given by:

γ(β) = (1− β)ucA(β)−1

where uc
′ .
=

[
1 0

]
.

For our measure of aggregate consumption we use aggregate consumption of nondurables
and services taken from the National Income and Product Accounts. This measure is quar-
terly from 1947 Q1 to 2002 Q4, is in real terms and is seasonally adjusted. We measure
corporate earnings from NIPA and convert this series to real terms using the implicit price
deflator for nondurables and services.

Following Hansen, Heaton, and Li (2005), we consider two specifications of the evolution
of yt. In one case the model is estimated without additional restrictions, and in the other
we restrict the matrix A(1) to have rank one:

A(1) = α
[
1 −1

]
.

where the column vector α is freely estimated. This parameterization imposes two restric-
tions on the A(1) matrix. We refer to the first specification as the without cointegration
model and second as the with cointegration model.

The second system imposes a unit root in consumption and earnings, but restricts these
series to grow together. In this system both series respond in the same way to shocks in

9Whereas Bansal and Yaron (2004) also consider multivariate specification of consumption risk, they seek
to infer this risk from a single aggregate time series on consumption or aggregate dividends. With flexible
dynamics, such a model is not well identified from time series evidence. On the other hand, while our
shock identification allows for flexible dynamics, it requires that we specify a priori the important sources
of macroeconomic risk.
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the long run. Specifically, the limiting response of consumption and earnings to a shock
at date 0 is the same. Since the cointegration relation we consider is prespecified, the with
cointegration model can be estimated as a vector autoregression in the first-difference of the
log consumption and the difference between the log earnings and log consumption.

In our analysis, we will not be concerned with the usual shock identification familiar from
the literature on structural VAR’s. This literature assigns structural labels to the underlying
shocks and imposes a priori restrictions to make this assignment. While we have restricted A0

to be lower triangular, this is just a normalization. This restriction leads to the identification
of two shocks, but other shock configurations with an identity as a covariance matrix can be
constructed by taking linear combinations of the initial two shocks we identify. Sometimes
we will construct two uncorrelated shocks in a different manner. One is temporary, formed
as a linear combination of shocks that has no long run impact on consumption and corporate
earnings. The second is permanent which effects consumption and earnings equally in the
long run. This construction is much in the same spirit as Blanchard and Quah (1989). Our
primary interest is the intertemporal composition of consumption risk and not the precise
labels attached to individual shocks.

We report impulse responses for estimates of the VAR with and without the cointegra-
tion restriction in figure 1. When cointegration is imposed, corporate earnings relative to
consumption identifies an important long-run response to both shocks. The long-run impact
of the first consumption shock is twice that of the impulse on impact. While the second earn-
ings shock is normalized to have no immediate impact on consumption, its long-run impact
is sizeable. We demonstrated in the recursive utility model, that the geometrically weighted
average response of consumption to the underlying shocks and the limiting response are the
two components of the long-run cash flow risk price π∗. As the subjective discount rate
converges to zero, these two components become equal. Moreover, π∗ is approximately equal
to θ times the long-run consumption response. As we verify below, this rough approximation
is quite accurate for our calculations.

Notice from the impulse responses in figure 1, that when the cointegration restriction is
not imposed, the estimated long-run consumption responses are substantially smaller. The
imposition of the cointegration restriction is critical to locating an important low frequency
component in consumption. Moreover, in the absence of this restriction, the overall feedback
from earnings shocks to consumption is substantially weakened. The earnings shocks have
little impact on consumption for the without cointegration specification.

Using the cointegration specification, we explore the statistical accuracy of the estimated
responses. Following suggestions of Sims and Zha (1999) and Zha (1999), we impose Box-
Tiao priors on the coefficients of each equation and simulate histograms for the parameter
estimates. This provides approximation for Bayesian posteriors with a relatively diffuse (and
improper) prior distribution. These “priors” are chosen for convenience, but they give us a
simple way to depict the sampling uncertainty associated with the estimates.

In the model of Hansen and Singleton (1983), it is the immediate innovation in con-
sumption that matters for pricing one-period securities. Figure 2 gives a histogram for the
standard deviation of this estimate. In other words it gives the histogram for the estimate of
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Impulse Response of Consumption and Earnings
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Figure 1: The impulse responses without imposing cointegration were constructed from a
bivariate VAR with entries ct, et. These responses are given by the dashed lines −−−. Solid
lines are used to depict the impulse responses estimated from a cointegrated system. The
impulse response functions are computed from a VAR with ct−ct−1 and ct−et as time series
components.
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the (1, 1) entry of A0. Recall that it is the long-run response that is of interest for this paper.
Thus we also report the histogram for a long-run response using the permanent-transitory
decomposition just described. Figure 2 also gives a histogram for the long-run consumption
response to a long-run shock. The permanent shock is normalized to have unit standard
deviation, so that we can compare magnitudes across the long-run and short run responses.

As might be expected, the short run response estimate is much more accurate than the
long-run response. Notice that the horizontal scales of histogram differ by a factor of ten.
In particular, while the long-run response is centered at a higher value and it also has a
substantial right tail. Consistent with the estimated impulse response functions, the median
long-run response is about double that of the short-term response. In addition nontrivial
probabilities are given to substantially larger responses.10 Thus from the standpoint of sam-
pling accuracy, the long-run response could be even more than double that of the immediate
consumption response.

The cointegrated specification with a known cointegrating coefficient imposes a restriction
on the VAR. To explore the statistical plausibility of this restriction, we free up the cointe-
gration relation by allowing consumption and earnings to have different long-run responses.
To assess statistical accuracy we simulate the posterior distribution for the cointegrating
coefficient imposing a Box-Tiao prior for each VAR conditioned on the cointegrating coeffi-
cient. The resulting histogram is depicted in figure 3. For sake of computation, we used a
uniform prior over the interval [−2, 2] for the cointegrating coefficient. This figure suggests
that the balanced growth coefficient of unity is plausible.11

Next we use these VAR estimates to measure long-run risk components of aggregate
consumption. In table 1 we report long-run expected rates of return to holding a claim
to aggregate consumption. In this case π and ζ of section 3 are equal to one and zero
respectively. We explore sensitivity as we alter θ, and display derivatives with respect to the
intertemporal substitution parameter ρ. We compare expected rates of return to those of
implied by consumption and those implied by a long-run riskless rate of return (long bond).
This latter return is used as the reference point for computing expected excess returns and
it is the long-run riskless return considered by Alvarez and Jermann (2001).

As is evident from this table, the implied differences in expected returns across securities
are small even when θ is as large as twenty. The derivatives of the returns with respect to ρ
are large while the derivatives of the excess returns are small. According to the derivatives,
increasing ρ by ε adds over three times ε percentage points to the expected rates of return.
While larger values of ρ increase long-run riskless return rate, this increase can be offset

10The accuracy comparison could be anticipated in part from the literature on estimating linear time series
models using a finite autoregressive approximation to an infinite order model (see Berk (1974)). The on
impact response is estimated at the parametric rate, but the long-run response is estimated at a considerably
slower rate that depends on how the approximating lag length increases with sample size. Our histograms do
not confront the specification uncertainty associated with approximating an infinite order autoregressions,
however.

11The model with cointegration imposes two restrictions on the matrix A(1). Twice the likelihood ratio
for the two models is 5.9. The Bayesian information or Schwarz criterion selects the restricted model.
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Approximate Posterior Distributions for Responses
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Figure 2: The top panel gives the approximate posterior for the immediate response to
consumption and the bottom panel the approximate posterior for the long-run response
of consumption to the permanent shock. The histograms have sixty bins with an average
bin height of unity. They were constructed using using Box-Tiao priors for each equation.
Vertical axes are constructed so that on average the histogram height is unity.
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Approximate Probabilities for the Cointegrating Coefficient
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Figure 3: Box-Tiao priors are imposed on the regression coefficients and innovation vari-
ances conditioned on the cointegrating coefficient. Posterior probabilities are computed by
simulating from a Markov chain constructed from the conditional likelihood function.
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Valuation Returns for Aggregate Consumption

Excess Return Excess Return
Portfolio Return Return Derivative Derivative

θ = 1

consumption 6.58 .05 3.51 .00
long bond 6.54 0 3.51 0

θ = 5

consumption 6.58 .19 3.43 -.01
long bond 6.39 0 3.44 0

θ = 20

consumption 6.58 .77 3.13 -.04
long bond 5.81 0 3.17 0

Table 1: The excess returns are measured relative to the return on the long horizon discount
bond. The derivative entries in columns four and five are computed with respect to ρ and
evaluated at ρ = 1.

by simultaneously reducing δ.12 The expected excess returns to valuation are essentially
proportional to θ. Quadrupling θ (θ = 5 to θ = 20), approximately quadruples the numbers
in the “Excess Return” column. This approximation is to be expected. The proportionality
would be exact if β were unity. Overall, the long-run rate of return heterogeneity is small,
even when risk aversion parameter is set to a large number. As we will see this same
conclusion holds when we use aggregate stock market dividends instead of consumption as
the cash flow measure. This should be anticipated from the cointegration of consumption
and corporate cash flows.

12Of course there is a limit to this reduction, when δ is restricted to be positive.
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6 Long-Run Cash Flow Risk in Portfolios

The work of Bansal, Dittmar, and Lundblad (2005) and Campbell and Vuolteenaho (2003)
related measures of long-run cash flow risk to one period returns. Our aim is different, but
complementary to their study. In section 3 we derived the limiting factor risk prices π∗ for
exposure to long-run risk. We also characterized the limiting contribution to price-dividend
ratios for alternative specifications of stochastic growth. These relations in conjunction with
an economic model like that of section 4 allow us to compute the limiting valuation and
risk adjustments. Our task in this section is to measure the long-run risk exposure of the
cash flows from some portfolios familiar from financial economics and to consider the implied
heterogeneity in values and the risk premia of valuation returns.

We consider financial cash flows that may not grow proportionately with consumption as
in Campbell and Cochrane (1999), Bansal, Dittmar, and Lundblad (2005), Lettau, Ludvig-
son, and Wachter (2004), and others. This is germane to our empirical application because
the sorting method we use in constructing portfolios can induce permanent differences in
dividend growth. For this reason we allow cash flows or dividends to risky securities to be
levered claims on consumption in the long run. Consistent with our use of VAR methods,
we consider a log-linear model of cash flow growth:

dt+1 − dt = µd + Udxt + ι0wt+1.

where dt is the logarithm of the cash flow. This growth rate process has a moving-average
form:

dt+1 − dt = µd + ι(L)wt+1.

where

ι(z) =
∞∑

j=0

ιjz
j

and

ιj =

{
ι0 if j = 0

UdG
j−1H if j > 0

6.1 Martingale approximation

In section 3, we considered benchmark growth processes that were geometric random walks
with drift. This leads us to construct a martingale approximation to the cash flow process.
In this approximation, log dividend process is the sum of a martingale and the first difference
of a stationary process. Marginal approximations are commonly used in establishing central
limit approximations (e.g. see Gordin (1969) or Hall and Heyde (1980)), and are not limited
to log-linear processes.13 We write

dt+1 − dt = µd + ι(1)wt+1 + U∗
dxt+1 − U∗

dxt

13For scalar linear time series, it coincides with the decomposition of Beveridge and Nelson, but it is
applicable much more generally.
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where

ι(1) = ι0 + Ud(I −G)−1H
U∗

d = Ud(I −G)−1

Thus dt has a growth rate µd and a martingale component with increment: ι(1)wt. To relate
this to development in section 3, ι(1) = π and µd=ζ. We will fit processes to cash flows to
obtain estimates of ι(1) and µd. The long-run relation between dividends and consumption
is essential in determining valuation returns. For example, if consumption and dividends are
cointegrated then

ι(1) = λγ(1), µd = λµc

where λ is the cointegration coefficient.
So far, we have considered a cash flow process with log-linear dynamics. Suppose instead

we consider a share model as in Santos and Veronesi (2001). The discrete-time version of
such a model can be depicted as:

Dt = CtΨ(xt)

where Ψ(xt) is restricted to be between zero and one and gives the dividend share of aggregate
consumption. Thus

dt − dt−1 = ct − ct−1 + log Ψ(xt)− log Ψ(xt−1)

By construction this share model assumes that log consumption and log dividends share the
same stochastic growth, so that the long-run dividend risk is the same as that of consumption.
The counterpart to ι(1) is the long-run consumption response γ(1). While physical claims to
resources may satisfy balanced growth restrictions, financial claims of the type we investigate
need not. Share models are not attractive models of the cash flows we consider unless the
share process is allowed to have a very pronounced low frequency component.

6.2 Empirical Specification of Dividend Dynamics

We identify dividend dynamics and, in particular, the martingale component ι(1) using
VAR methods. Consider a VAR with three variables: consumption, corporate earnings
and dividends (all in logarithms). Consumption and corporate earnings are modelled as
before in a cointegrated system. We use the cointegrated system because it identifies a long-
run consumption risk component that is distinct from the one-step-ahead forecast error of
consumption. In addition to consumption and earnings, we include in sequence the dividend
series from each of the five book-to-market portfolios and from the market. Thus the same
two shocks as were identified previously remain shocks in this system because consumption
and corporate earnings remain an autonomous system. An additional shock is required to
account for the remaining variation in dividends beyond what is explained by consumption
and corporate earnings.

Formally, we append a dividend equation

A∗
0y
∗
t + A∗

1yt−1 + A∗
2yt−2 + ... + A∗

`yt−` + B∗
0 = w∗

t , (20)
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to equation system (19). In this equation the vector of inputs is

y∗t
.
=

[
yt

dt

]
=




ct

et

dt




and the shock w∗
t is scalar with mean zero and unit variance. This shock is uncorrelated

with the shock wt that enters (19). The third entry of A∗
0 is normalized to be positive. We

refer to (20) as the dividend equation, and the shock w∗
t as the dividend shock. As in our

previous estimation, we set ` = 5. W presume that this additional shock has a permanent
impact on dividends by imposing the linear restriction:

A∗(1) =
[
α∗ −α∗ 0

]
.

In the next section we will explore sensitivity to alternative specifications of long-run sto-
chastic growth in the cash flows.

A stationary counterpart to this log level specification can be written in terms of the
ct − ct−1, et − ct, dt − dt−1. We estimated the VAR using these transformed variables with
four lags of the growth rate variables and five lags of the logarithmic differences between
consumption and earnings.

6.3 Book to Market Portfolios

We use five portfolios constructed based on a measure of book equity to market equity, and
characterize the time series properties of the dividend series as it covaries with consumption
and earnings. We follow Fama and French (1993) and construct portfolios of returns by sort-
ing stocks according to their book-to-market values. We use a coarser sort into 5 portfolios
to make our analysis tractable. In addition we use the value-weighted CRSP return for our
“market” return.

Summary statistics for these portfolios are reported in table 2. In the row labeled “1-
period Exp. Return,” we report the predicted quarterly gross returns to holding each port-
folio in annual units. The expected returns are constructed based on a separate VAR for
each portfolio with inputs:

y∗t =




ct − ct−1

et − ct

rt


 ,

where rt is the logarithm of the gross return of the portfolio. We impose the restriction
that consumption and earnings are not Granger caused by the returns. One-period expected
gross returns are calculated conditional on being at the mean of the state variable implied
by the VAR. In the row labelled “Long-Run Return,” we also report the logarithm of the
dominant eigenvalue of the operator G implied by the VAR and where the compound returns
are used as cash flows. This gives a long-run average rate of return predicted by the VAR,
when dividend proceeds are continually reinvested in the respective portfolios. These results
are also reported in annual units.
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Properties of Portfolios Sorted by Book-to-Market

Portfolio

1 2 3 4 5 Market

1-period Exp. Return (%) 7.91 8.32 9.86 10.61 12.69 8.42

Long-Run Return (%) 8.16 7.97 9.96 10.27 12.15 8.40

Avg. B/M 0.32 0.62 0.84 1.12 2.00 0.79

Avg. P/D 49.8 33.3 27.4 24.3 25.5 33.6

Table 2: Data are quarterly from 1947 Q1 to 2002 Q4 for returns and annual from 1947 to
2001 for B/M ratios. Returns are converted to real units using the implicit price deflator
for nondurable and services consumption. Average returns are converted to annual units
using the natural logarithm of quarterly gross returns multiplied by 4. “Avg. B/M” for each
portfolio is the average portfolio book-to-market over the period computed from COMPU-
STAT. “Avg. P/D” gives the average price-dividend for each portfolio where dividends are
in annual units.

Notice that the portfolios are ordered by average book to market values where portfolio
1 has the lowest book-to-market value and portfolio 5 has the highest. Both one-period and
long-run average returns generally follow this sort. For example, portfolio 1 has much lower
average returns than portfolio 5. It is well documented that the differences in these average
returns are not explained by exposure to contemporaneous covariance with consumption.

In this section we are particularly interested in the behavior of dividends from the con-
structed portfolios. The constructed dividend processes accommodate changes in the classi-
fication of the primitive assets and depend on the relative prices of the new and old asset in
the book-to-market portfolios. Monthly dividend growth for each portfolio are constructed
from the gross returns to holding each portfolio with and without dividends. Using the
initial price-dividend ratio for the series, these growth rates are used to construct monthly
dividend levels. Dividends on a quarterly basis are constructed as an accumulation of the
monthly dividends during the quarter. Our measure of quarterly dividends in quarter t is
then constructed by taking an average of the logarithm of dividends in quarter t and over
the previous three quarters t−3, t−2 and t−1. This last procedure removes the pronounced
seasonal in dividend payments. Details of this construction are given in Hansen, Heaton,
and Li (2005), which follows the work of Bansal, Dittmar, and Lundblad (2005).

We estimate ι(1) from the VAR inclusive of portfolio dividends which gives us a measure of
π. We then explore the limiting valuation and rates of returns using the eigenvector methods
described in section 3. Table 3 gives long-run average rates of return for the five book-to-
market portfolios. Again we explore formally sensitivity to the risk aversion parameter θ
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and report derivatives with respect to the intertemporal elasticity parameter ρ.
Qualitatively, portfolio one has low long-run cash flow covariation with consumption

relative to portfolio five. This results in qualitatively larger risk adjustments for the high
book-to-market portfolios. Complementary to many other asset pricing studies, differences
in the average rates of return on long-run valuation securities are small except for large values
of the risk aversion parameter θ, say θ = 20. In contrast to aggregate securities, the implied
heterogeneity in the valuation returns are now substantial when θ is large. For the reasons
we gave earlier, changing θ alters the expected excess returns almost proportionately.

Recall from table 2 that one-period and long-horizon reinvestment expected returns are
similar for each portfolio. The valuation return rates that we compute only achieve compa-
rable dispersion for large values of θ, say θ = 20. While the valuation return rates in table 3
are lower, common changes in these rates can be achieved by simply altering the subjective
discount factor β. While the three return concepts are distinct, the valuation returns explore
the return heterogeneity attributed to payoffs far into the future. The valuation returns are
the ones that are directly linked to cash flow risk exposure.

As with the aggregate returns, derivatives with respect to ρ are similar across securities
so that modest movements in ρ have little impact on the excess long-run returns.

It is also of interest to study the implied logarithm of the price/dividend ratio decomposed
and scaled by horizon. These are reported in figure 4. The lower panel of this figure depicts
the dividend growth rate by horizon. The figures are computed assuming that the Markov
state is set to its unconditional mean. The limiting values in these plots are inputs into the
valuation return calculations. Thus these figures tell us over what horizons do the limits
become good approximations.

When θ = 1, the risk adjustments are very small and the value decomposition is a direct
reflection of the dividend growth. Moreover, the values for portfolio one are dominated by
those for portfolio five across all horizons. This is in direct conflict with the price/dividend
ratios reported in table 2. It is only with high values of the risk aversion parameter θ that
the value decomposition for the low book to market portfolios eventually exceed those of the
high book to market portfolios.

Relation (10) maps these values of −ν into a corresponding long run or tail notion of a
price-dividend ratio. When θ = 1 the implied tail price-dividend ratios (in annual units) for
portfolios 1 and 5 are 22.5 and 102.2 respectively. When θ = 20, however, these values are
45.1 and 21.2, respectively, which are roughly comparable to the numbers in table 2.14

Finally, it can take many time periods for the valuations to approximate their limiting
values. Even fifteen years (sixty quarters) is not be long enough to approximate well the limit
in some cases. Thus the expected rates of return to valuation do indeed rely on extrapolating
the implied consumption/dividend dynamics very far into the future.

The price-dividend decomposition include expected growth and expected return contri-

14Since these are limiting concepts, they need not match the average in the data even when the model is
empirically pausible.
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Valuation Returns for Portfolios

Excess Return Excess Return
Portfolio Return Return Derivative Derivative

θ = 1

1 6.48 -.06 3.51 .00
2 6.55 .01 3.51 .00
3 6.67 .13 3.52 .01
4 6.71 .17 3.52 .01
5 6.78 .22 3.53 .02

market 6.60 .06 3.52 .00

θ = 5

1 6.11 -.27 3.45 .01
2 6.42 .03 3.43 .00
3 7.01 .61 3.40 -.04
4 7.18 .79 3.41 -.03
5 7.43 1.03 3.40 -.04

market 6.69 .30 3.43 -.01

θ = 20

1 4.74 -1.07 3.23 .07
2 5.94 0.13 3.16 .00
3 8.25 2.44 2.97 -.20
4 8.95 3.14 2.98 -.19
5 9.90 4.09 2.92 -.24

market 7.00 1.19 3.09 -.07

.

Table 3: The excess returns are measured relative to the return on a long horizon discount
bond. The derivative entries in columns four and five are computed with respect to ρ and
evaluated at ρ = 1.
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Value and Growth Decompositions for Two Portfolios
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Figure 4: In the top two panels, the curve is computed using θ = 1, the ·· curve assumes
θ = 5, the −. curve assumes θ = 10 and the −− curve assumes that θ = 20.
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butions. We form the expected excess rate of return by horizon by computing:

400

τ
[log(Pτ1)− log(Pτψ) + log(Gτψ)].

As τ gets arbitrarily large, the limits converge to the corresponding expected excess return
limits given in tables 1 and 3. Figure 5 shows how these expected excess rates of returns
change with θ and with modest movements in ρ for different values of τ . Consistent with
our characterization of the limit points, small changes in ρ have little impact on this decom-
position. We only consider values of ρ close to unity because the approximation we employ
is local to ρ = 1. While expected rates of return for portfolio five and the market increase
with horizon, those of portfolio one eventually decrease. The portfolio excess rates of return
are more responsive to changes in θ than the market return, consistent with the limiting
calculations in tables 1 and 3.

6.4 Statistical Accuracy

We consider sampling uncertainty in some of inputs used for long run risk. Recall that these
inputs are based in part extrapolation of VAR systems fit to match transition dynamics.
As in the related macroeconomics literature, we expect a substantial degree of sampling
uncertainty. We now quantify how substantial this is for our application.

When ρ = 1, the expected excess returns are approximately equal to:

θγ(1) · π.

We now investigate the statistical accuracy of γ(1) · π for the five portfolios, and for the
difference between portfolios one and five. The vector π is measured using ι(1). In table 4
we report the approximate posterior distribution for γ(1) · π computed using an approach
advocated by Sims and Zha (1999) and Zha (1999) based on Box-Tiao priors. While there is
a considerable amount of statistical uncertainty in these risk measures, there are important
differences the expected excess value returns between portfolios one and five.
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Excess Return Decompositions by Horizon
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Figure 5: In the top two panels, the curves impose ρ = 1, the ·· curves impose ρ = .5
and the −. curves impose ρ = 1.5. The curves for ρ 6= 1 were computed using linear
approximation around the point ρ = 1.
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Accuracy of Risk Measures

Portfolio Quantile
.05 .25 .5 .75 .95

1 -.63 -.13 -.05 -.01 .10
2 -.19 -.03 .01 .04 .22
3 .01 .06 .12 .28 1.42
4 .04 .10 .17 .32 1.46
5 .04 .12 .21 .42 1.88

market -.01 .03 .06 .12 .58
5-1 .05 .15 .27 .55 2.41

Table 4: Quantiles were computed by simulating 100,000 times using Box-Tiao priors. The
quantiles were computed using only simulation draws for which the absolute values of the
eigenvalues were all less than .999. The fraction of accepted draws ranged from .986 to .987.
The quantiles were computed using VAR’s that included consumption, corporate earnings
and a single dividend series with one exception. To compute quantiles for the 5 − 1 row,
dividends for both portfolios were included in the VAR.

7 Alternative Models of Cash Flow Growth

Our calculations so far have been based on one model of cash flow growth. We now explore
some alternative specifications used in other research and check for sensitivity. All of these
specifications allow for the dividends from financial portfolios to have distinct growth com-
ponents from consumption. The evidence for growth differences has been documented in a
variety of different places and is evident in figure 6. This figure give the time series trajecto-
ries of the logarithms of portfolio dividends relative to aggregate consumption. Notice that
the first three portfolios appear to grow slower than consumption, and even market divi-
dends display this same pattern. In contrast, portfolios four and five show more pronounced
growth than consumption.

7.1 Dividend Dynamics

In the previous section, we identified dividend dynamics and, in particular, the martingale
component ι(1) using VAR methods. We used a VAR with three variables: consumption,
corporate earnings and dividends (all in logarithms). Consumption and earnings were re-
stricted to have the same long-run response to permanent shocks. We now consider two
alternative specifications of dividend growth to assess sensitivity to model specification.
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Figure 6: Log of Ratios of Portfolio Dividends to Consumption
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Both are restrictions on the equation:

A∗
0y
∗
t + A∗

1yt−1 + A∗
2yt−2 + ... + A∗

`yt−` + B∗
0 + B∗

1t = w∗
t ,

where the shock w∗
t is scalar with mean zero and unit variance and uncorrelated with the

shock vector wt that enters (19). The third entry of A∗
0 is normalized to be positive. As in

our previous estimation, we set ` = 5.

7.2 Cointegration

The first specification restricts that the trend coefficient B∗
1 equal zero, and is the model

used by Hansen, Heaton, and Li (2005). Given our interest in measuring long-run risk,
we measure the permanent response of dividends to the permanent shock. While both
consumption and corporate earnings are restricted to respond to permanent shocks in the
same manner, the dividend response is left unconstrained. We let λ∗ denote the ratio of the
long-run dividend response to the long-run consumption response. We measure this for each
of the five portfolios. In this case we allow the matrix:

[
A(1) 0
A∗(1)

]

to have rank two where

A∗(z)
.
=

∑̀
j=0

A∗
jz

j.

The cointegrating vector (1, 1, λ∗) is in the null space of this rank two matrix. For this model,
the vector π is

π = ι(1) = λ∗γ(1) (21)

and ζ = µd = λ∗µc.
The second specification includes a time trend by freely estimating B∗

1 . A model like
this, but without corporate earnings, was used by Bansal, Dittmar, and Lundblad (2005).
We refer to this as the time trend specification. In this model the time trend introduces a
second source of dividend growth. While π is constructed as in model (21), µd = ζ is now
left unrestricted.

The role of specification uncertainty is illustrated in the impulse response figure 7. This
figure features the responses of portfolio one and five to a permanent shock. For each
portfolio, the measured responses obtained for each of the three growth configurations are
quite close up to about three to four years and then they diverge. Both portfolios initially
respond positively to this shock with peak responses occurring in about seven time periods.
The response of portfolio one is much larger in this initial phase. The limiting responses
differ substantially depending on the growth configuration that is imposed in estimation.
The estimated response of portfolio one is eventually negative when time trends are included
or an additional stochastic growth factor is included. The time trend model leads to lower
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limits for both portfolios. It is interesting, however, that the long-run differential responses
between portfolio one and five are approximately the same for the time trend model and the
dividend growth model.15

To better understand the importance of alternative growth configurations, figure 8 plots
both the level of dividends for portfolios one and five and the fitted values implied by the
“aggregate” innovations to consumption and corporate earnings alone. Results are reported
for all three growth configurations. The presence of a deterministic trend in a log levels
specification allows the VAR model to fit the low frequency movements of dividends for
portfolio 1 much better than either of the other two models.16 In contrast the fitted values
are quite similar across growth configurations for portfolio 5.

15Bansal, Dittmar, and Lundblad (2005) use their estimates with a time trend model as inputs into a cross
sectional return regression. While estimation accuracy and specification sensitivity may challenge these
regressions, the consistency of the ranking across methods is arguably good news, as emphasized to us by
Ravi Bansal. As is clear from our previous analysis, we are using the economic model in a more formal way
than the running of cross-sectional regressions.

16Results for portfolio 2 are very similar to those for portfolio 1.
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Impulse Response Functions for Two Portfolios
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Figure 7: The · · · curve is generated from the level specification for dividends; the —
is generated from the level specification with time trends included; and the -·- curve is
generated from the first difference specification.
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Portfolio Dividends and Fitted Values
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Figure 8: Dashed lines −− display the data. Solid lines are the fitted values based
on consumption shocks alone. Dot-dashed lines −· are fitted values with all shocks set to
zero. Row one gives results for the cointegrated model without time trends, row two for the
cointegrated model with time trends, and row three for the model in which an additional
unit root is imposed on the dividend evolution.
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Up until now, we have taken the linear cointegration model with time trends literally. Is it
realistic to think of these as deterministic time trends in studying the economic components
of long-run risk? We suspect not. While there may be important components to the cash
flows for portfolios 1 and 2 that are very persistent, it seems unlikely that these are literally
deterministic time trends known to investors. Within the statistical model, the time trends
for these portfolios in part offset the negative growth induced by the cointegration. We
suspect that the substantially negative estimates of λ∗ probably are not likely to be the true
limiting measures of how dividends respond to consumption and earnings shocks. While
the long-run risks associated with portfolios one and two look very different from that of
portfolio five, a literal interpretation of the resulting cointegrating relation is hard to defend.

There is a potential pitfall in estimation methods that conditioned on initial data points
as we have here. Sims (1991) and Sims (1996) warn against the use of such methods because
the resulting estimates might over fit the the initial time series, ascribing it to a transient
component far from the trend line. As Sims argues,

... that the estimated model implies that future deviations as great as the initial
deviation will be extremely rare.

This impact is evident for portfolio one as seen in figure 8. This figure includes trajectories
simulated from the initial conditions alone. When the time trend is included, the determin-
istic simulation tracks well the actual dividend data for the first few years. There is sharp
upward movement in the initial phase of this deterministic simulation when a time trend
is included in the dividend evolution. The increase is much more muted when time trends
are excluded.17 In contrast, this phenomenon is not present in deterministic simulation for
portfolio 5. Instead the deterministic trajectory is very similar across the three time series
models.

In summary, while there is intriguing heterogeneity in the long run cash flow responses
and implied returns, the implied risk measures are sensitive to the growth specification as is
the case in the related macroeconomics literature. Given the observed cash flow growth, it
is important to allow for low frequency departures from a balanced growth restriction. The
simple cointegration model introduces only one free growth parameter for each portfolio,
but results in a modest amount of return heterogeneity. The time trend growth models
impose additional sources of growth. The added flexibility of the time trend specification
may presume too much investor confidence in a deterministic growth component, however.
The dividend growth specification that we used in our previous calculations, while ad hoc,
presumes this additional growth component is stochastic and is a more appealing specification
to us.

7.3 Adding Price Information

In the specifications we have considered so far, we have ignored any information for forecast-
ing future consumption that might be contained in asset prices. Our model of asset pricing

17Again portfolio 2 behaves similarly to portfolio 1.
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implies a strict relationship between cash flow dynamics and prices so that price information
should be redundant. Prices, however, may reveal additional components to the information
set of investor and hence a long-run consumption risk that cannot be identified from cash
flows. For these reasons we consider an alternative specification of the VAR where we include
consumption, corporate earnings, dividends as well as prices.

Parker and Julliard (2004) argue that it is the differential ability of the returns to growth
and value portfolios in forecasting future consumption that is an important feature in the
data. We therefore include dividends and prices for portfolios one and five simultaneously
in this analysis. We continue to impose a unit root in consumption and the restriction that
consumption and corporate earnings are cointegrated. We allow each dividend series to have
its own stochastic growth path, but the prices of each portfolio are assumed to be cointegrated
with their corresponded dividends. Finally, to assess the ability of portfolio prices to forecast
future consumption we relax the assumption that consumption and corporate earnings are
not Granger caused by portfolio cash flows or prices.

Figure 9 reports results for excess returns by horizon as in figure 4. The general character
of the results are not changed. For large values of θ the model predicts substantial differences
between portfolio excess returns at long-horizon. The exact patterns are different when prices
are included, however. For example the excess returns to portfolio one, when θ = 20, are
larger at long horizons. Further there is more sensitivity to the parameter ρ when θ = 20.
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Excess Return Decompositions by Horizon
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Figure 9: In the top two panels, the curves impose ρ = 1, the ·· curves impose ρ = .5
and the −. curves impose ρ = 1.5. The curves for ρ 6= 1 were computed using linear
approximation around the point ρ = 1.
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8 Conclusion

Growth-rate variation in consumption and cash flows have important consequences for asset
valuation. The methods on display in this paper formalize the long-run contribution to
value of the stochastic components of discount factors and cash flows and quantify the
importance of macroeconomic risk. We used these methods to isolate features of the economic
environment that have important consequences for long-run valuation and heterogeneity
across cash flows. We made operational a well defined notion of long-run valuation risk,
and we studied the measurement accuracy of the inputs needed to characterize the implied
risk-return tradeoff.

The recursive utility model features the intertemporal composition of risk. We used
the joint evolution of consumption and corporate earnings to identify long-run risk com-
ponents similar to those featured by Bansal and Yaron (2004). While the long-run risk
component shares measurement challenges familiar from the macroeconomics VAR litera-
ture, we showed formally how these shocks are transmitted into risk-adjusted asset values
by deriving a long-run tradeoff for macroeconomic growth rate risk. We then used portfolios
constructed as in the asset pricing literature to investigate how financial cash flows relate
to underlying macroeconomic growth rate risk. We found that the stochastic growth of low
book-to-market portfolios has negligible covariation with consumption while the growth of
high book-to-market portfolios has positive covariation. For these differences to be impor-
tant quantitatively in our long-run risk-return calculations, investors must be either highly
risk averse or highly uncertain about the probability models that they confront.18

In this paper we used an ad hoc VAR model to identify shocks. In contrast to VAR
methods, an explicit valuation model is a necessary ingredient for our analysis; and thus
we analyzed the valuation implications through the lens of a commonly used consumption-
based model. There are important reasons for extending the scope of our analysis in future
work, and the methods we described here are amenable to such extensions. One next step
is to add more structure to the macroeconomic model, structure that will sharpen our inter-
pretation of the sources of long-run macroeconomic risk. While the recursive utility model
used in this paper has a simple and usable characterization of how temporal dependence in
consumption growth alters risk premia, other economic models have interesting implications
for the intertemporal composition of risk, including models that feature habit persistence
(e.g. Constantinides (1990), Heaton (1995), and Sundaresan (1989)) and models of staggered
decision-making (e.g. see Lynch (1996) and Gabaix and Laibson (2002).)

The model we explore here focuses exclusively on time variation in conditional means.
Temporal dependence in volatility can be an additional source of long-run risk. Time varia-
tion in risk premia can be induced by conditional volatility in stochastic discount factors.19

While the direct evidence from consumption data for time varying volatility is modest,
the implied evidence from asset pricing for conditional volatility in stochastic discount fac-

18This latter conclusion can be made precise by using detection probabilities in the manner suggested by
Anderson, Hansen, and Sargent (2003).

19It can also be induced by time variation in risk exposure.
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tors is intriguing. For instance, Campbell and Cochrane (1999) and others argue that risk
prices vary over the business cycle in ways that are quantitatively important. Lettau and
Wachter (2005) explore a long-run risk characterization that features the consequences of
heteroskedasticity using an ad hoc but arguably flexible stochastic discount factor model.20

While the methods we have proposed aid in our understanding of asset-pricing models,
they also expose measurement challenges in quantifying the long-run risk-return tradeoff.
Important inputs into our calculations are the long-run riskiness of cash flows and consump-
tion. As we have shown, these objects are hard to measure in practice. Statistical methods
typically rely on extrapolating the time series model to infer how cash flows respond in the
long-run to shocks. This extrapolation depends on details of the growth configuration of
the model, and in many cases these details are hard to defend on purely statistical grounds.
While volatility can induce an additional source of risk, it also poses the additional challenge
of how to measure this volatility in a flexible way that can extrapolated reliably. Also there
is pervasive statistical evidence for growth rate changes or breaks in trend lines, but this
statistical evidence is difficult to use directly in models of decision-making under uncertainty
without some rather specific ancillary assumptions about investor beliefs. Many of the sta-
tistical challenges that plague econometricians presumably also plague market participants.
Naive application of rational expectations equilibrium concepts may endow investors in these
models with too much knowledge about future growth prospects.

There are two complementary responses to the measurement and modeling conundrums.
One is to resort to the use of highly structured, but easily interpretable, models of long-run
growth variation. The other is to exploit the fact that asset values encode information about
long-run growth. To break this code requires a reliable economic model of the long-run
risk-return relation. While we explored one model-based method for extracting economic
characterizations of this relation, we had to use a high risk aversion parameter to produce
heterogeneity in the dominant valuation components of portfolio cash flows. Unfortunately,
as of yet there is not an empirically well-grounded, and economically relevant model of asset
pricing to use in deducing investor beliefs about the long-run from values of long-lived assets.
There remain important challenges in modeling investor sentiments about shocks to long-run
macroeconomic growth.

20Lettau and Wachter (2005) challenge the long-run implications of the Campbell and Cochrane (1999)
formulation.
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A ρ Approximation

In this appendix we give the first order approximation in ρ for our economy following in
part Kogan and Uppal (2001). The economy we study is different from that Kogan and
Uppal (2001), but they suggest that extensions in the directions that interest us would be
fruitful. While Campbell and Viceira (2002) (chapter 5) show the close connection between
approximation around the utility parameter ρ = 1 and approximation around a constant
consumption-wealth ratio for portfolio problems, there are some interesting differences in
our application. Moreover, ρ = 1 is ruled out in the parameterization of recursive utility
considered by Restoy and Weil (1998) and others because of their use of the return-based
Euler equation.

A.1 Continuation values

We compute the first-order expansion:

vt ≈ v1
t + (ρ− 1)Dv1

t

where v1
t is the continuation value for the case in which ρ = 1. We construct an appropriate

recursion for Dv1
t by expanding the logarithm and exponential functions in (14) and including

up to second-order terms in Qt. The approximate recursion is:

vt ≈ β

[
Qt(vt+1 + ct+1 − ct) + (1− ρ)(1− β)

Qt(vt+1 + ct+1 − ct)
2

2

]
.

Then
v1

t = βQt(v
1
t+1 + ct+1 − ct),

which is the ρ = 1 exact recursion and

Dv1
t = −β(1− β)

Qt(v
1
t+1 + ct+1 − ct)

2

2
+ βẼ(Dv1

t+1|Ft)

= −(1− β)(v1
t )

2

2β
+ βẼ(Dv1

t+1|Ft) (22)

where Ẽ is the distorted expectation operator associated with the density

(
V 1

t+1

)1−θ

E
[(

V 1
t+1

)1−θ |Ft

] .

For the log-normal model of consumption, this distorted expectation appends a mean to the
shock vector wt+1. The distorted distribution of wt+1 remains normal, but instead of mean
zero, it has a risk adjusted mean of (1 − θ)γ(β). The derivative Dv1

t is negative because it
is the (distorted) expectation of the sum of negative random variables.
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Recall that the evolution in the log linear Markov economy is

xt+1 = Gxt + Hwt+1

ct+1 − ct = µc + Uczt + γ0wt+1.

We showed in the text that
v1

t = Uvxt + µv

where Uv = and µv =. Thus

(v1
t )

2 = (Uvxt)
′Uvxt + 2µvUvxt + (µv)

2.

Then from (22),

Dv1
t = −1

2
xt
′Υdvxt + Udvxt + µdv

where

Υdv =
(1− β)

β
U ′

vUv + βG′ΥdvG

Udv = −(1− β)

β
µvUv − β(1− θ)γ(β)H ′ΥdvG + βUdvG (23)

µdv = −(1− β)

2β
(µv)

2 − β(1− θ)2

2
γ(β)H ′ΥdvHγ(β)′

+β(1− θ)UdvHγ(β)′ − β

2
trace(H ′ΥdvH) + βµdv.

The first equation in (23) is a Sylvester equation and is easily solved. Given Υdv, the solution
for Udv is:

Udv = −(I − βG′)−1

[
1− β

β
µvUv +

β(1− θ)

2
G′ΥdvHγ(β)′

]
,

and given Υdv and Udv the solution for µdv is:

µdv =
− (1−β)

2β
(µv)

2 − β(1−θ)2

2
γ(β)H ′ΥdvHγ(β)′ + β(1− θ)UdvHγ(β)′ − β

2
trace(H ′ΥdvH)

1− β

A.2 Wealth expansion

When ρ is different from one, the wealth-consumption ratio is not constant. A first-order
expansion of the continuation value implies a second-order expansion of the consumption-
wealth ratio. This can be seen directly from (17):

log Wt − log Ct = − log(1− β) + (1− ρ)
[
v1

t + (ρ− 1)Dv1
t

]
= − log(1− β)− (ρ− 1)v1

t − (ρ− 1)2Dv1
t .

The term v1
t is very similar (but not identical to) the term typically used when taking

log-linear approximations.21 By construction, the second-order term adjusts the wealth
consumption ratio in a manner that is symmetric about ρ = 1 and it is positive.

21In log-linear approximation the discount rate in this approximation is linked to the mean of the wealth
consumption ratio. In the ρ expansion, the subjective rate of discount is used instead.
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A.3 Stochastic discount factor

Finally, consider the first-order expansion of the logarithm of the stochastic discount factor:

st+1,t ≈ s1
t+1,t + (ρ− 1)Ds1

t+1,t.

Recall that the log discount factor is given by:

st+1,t = −δ − ρ (ct+1 − ct) + (ρ− θ) [vt+1 + ct+1 −Qt(vt+1 + ct+1)]
= −δ − ρ (ct+1 − ct) + (ρ− θ) [vt+1 + ct+1 − ct −Qt(vt+1 + ct+1 − ct)]

Differentiating with respect to ρ gives:

Ds1
t+1,t = − (ct+1 − ct) +

[
v1

t+1 + ct+1 − ct −Qt(v
1
t+1 + ct+1 − ct)

]

+(1− θ)
[
Dv1

t+1 − Ẽ
(
Dv1

t+1|Ft

)]

= v1
t+1 − 1

β
v1

t + (1− θ)
[
Dv1

t+1 − Ẽ
(
Dv1

t+1|Ft

)]
.

Note that

v1
t+1 −

1

β
v1

t = Uvxt+1 − 1

β
Uvxt +

(
1− 1

β

)
µv

= Uv

(
G− 1

β
I

)
xt +

(
1− 1

β

)
µv + UvHwt+1.

and

Dv1
t+1 − Ẽ

(
Dv1

t+1|Ft

)
= −1

2
(Hwt+1)

′ΥdvHwt+1 − (Hwt+1)
′[ΥdvGxt − Udv]

+
1

2
(1− θ)2γ(β)H ′ΥdvHγ(β)′ + (1− θ)γ(β)H ′[ΥdvGxt − Udv]

+
1

2
trace(H ′ΥdvH)

Combining these expressions we obtain:

Ds1
t+1,t =

1

2
wt+1

′Θ0wt+1 + wt+1
′Θ1xt + ϑ0 + ϑ1xt + ϑ2wt+1

where

Θ0 = (θ − 1)H ′ΥdvH
Θ1 = (θ − 1)H ′ΥdvG

ϑ0 =

(
1− 1

β

)
µv +

1

2
(1− θ)3γ(β)H ′ΥdvHγ(β)′ − (1− θ)2γ(β)H ′U ′

dv +
1− θ

2
trace(H ′ΥdvH)

ϑ1 = Uv

(
G− 1

β
I

)
+ (θ − 1)2γ(β)H ′ΥdvG
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ϑ2 = (1− θ)UdvH + UvH

The mean under the risk neutral measure for wt+1 is

[I + (ρ− 1)(θ − 1)H ′ΥdvH]−1

[−ργ(0) + (ρ− θ)γ(β) + (ρ− 1)(θ − 1) (Udv −H ′ΥdvGxt)] .

This mean can be interpreted as the negative of a risk premia. A component of this mean is
the undiscounted (by the risk free rate) price an investor is willing to pay for contingent claim
to the corresponding component of the shock wt+1. In a continuous time approximation, this
formula simplifies to:

−ργ(0) + (ρ− θ)γ(β) + (ρ− 1)(θ − 1) (Udv −H ′ΥdvGxt) .

B Eigenfunction results

B.1 Eigenfunction for the adjoint operator

Guess an eigenfunction of the form:

log ϕ(x) = −ω∗x

then this eigenfunction should satisfy the equation:

E [exp[st+1,t + πwt+1]ϕ(xt)|xt+1] = exp(−ν∗)ϕ(xt).

where exp(−ν∗) is the eigenvalue associated with eigenfunction ψ∗(xt), and we will show
later ν and ν∗ are the same.

First compute the reverse time evolution of xt,

xt = G∗xt+1 + H∗w∗
t .

where w∗
t is a multivariate standard normal, independent of xt+1.

The matrix G∗ can be inferred by standard least squares formulas:

ΣG′Σ−1 = G∗.

and the matrix H∗ can be inferred by factoring:

Σ−G∗ΣG∗′.

where Σ is the unconditional variance-covariance matrix of xt.
Write:

wt+1 = (H ′H)−1H ′(xt+1 −Gxt) = (H ′H)−1H ′ [(I −GG∗)xt+1 −GH∗w∗
t ] .
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Thus:
st+1,t + πwt+1 = ξ∗0 + ξ∗1xt+1 + ξ∗2w

∗
t

for

ξ∗0 = µs

ξ∗1 = UsG
∗ + ξ0(H

′H)−1H ′ (I −GG∗)

ξ∗2 = −ξ0(H
′H)−1H ′GH∗ + UsH

∗.

Then the adjoint problem solves:

E (exp [ξ∗0 + ξ∗1xt+1 + ξ∗2w
∗
t − ω∗(G∗xt+1 + H∗w∗

t )] |xt+1) = exp(−ν∗) exp(−ω∗xt+1)

This problem has the same formal structure as the initial eigenvector problem. The solution
is

ω∗ = ξ∗1(G
∗ − I)−1 = Uc(I −G∗)−1.

The negative logarithm of the eigenvalue is

ν∗ = −ξ∗0 −
|ξ∗2 − ω∗H∗|2

2
,

and it can be easily shown that ν and ν∗ are the same.

B.2 Eigenvalue derivative

Let q denote the stationary density for xt. This vector is normally distributed with mean
zero and covariance matrix:

Σ =
∞∑

j=0

(Gj)HH ′(Gj)′,

which can be computed easily using a doubling algorithm.
We use the relation:

exp(−ν) =
E [exp(st+1,t + πwt+1)φ(xt+1)ϕ(xt)]

E [φ(xt)ϕ(xt)]
.

Write

Ds1
t+1,t =

1

2
wt+1

′Θ0wt+1 + wt+1
′Θ1xt + ϑ0 + ϑ1xt + ϑ2wt+1.

Then
d exp(−ν)

dρ
|ρ=1=

E
[
Ds1

t+1,t exp(s1
t+1,t + πwt+1)φ(xt+1)ϕ(xt)

]

E[φ(xt)ϕ(xt)]
,

and hence
dν

dρ
|ρ=1= −E

[
Ds1

t+1,t exp(s1
t+1,t + πwt+1)φ(xt+1)ϕ(xt)

]

exp(−ν)E[φ(xt)ϕ(xt)]
. (24)

We take three steps to compute this eigenvalue derivative
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B.2.1 Step one: computing the denominator

We must compute:

E[φ(xt)ϕ(xt)] =

∫
exp[−(ω + ω∗)x]q(x)dx

From the lognormal formula, this is

exp

[
(ω + ω∗)Σ(ω + ω∗)′

2

]
.

B.2.2 Step two: computing the numerator

We have already evaluated the denominator, but it remains to compute the numerator:

E
[
Ds1

t+1,t exp
(
s1

t+1,t + πwt+1

)
φ(xt+1)ϕ(xt)

]

We do so by applying the Law of Iterated Expectations, and first computing:

E
[
Ds1

t+1,t exp
(
s1

t+1,t + πwt+1

)
φ(xt+1)ϕ(xt)|xt

]
.

Note that

s1
t+1,t + πwt+1 + log[φ(xt+1)] + log[ϕ(xt)]

= ξ0 + (ξ1 − ωG− ω∗)xt + (ξ2 − ωH)wt+1

=

[
ξ0 +

|ξ2 − ωH|2
2

− (ω + ω∗)xt

]
+

[
(ξ2 − ωH)wt+1 − |ξ2 − ωH|2

2

]
.

We use the second term in the square brackets to change the shock distribution. In particular,
we change the mean of wt+1 from zero to [(ξ2 − ωH)]. Thus

E
[
Ds1

t+1,t exp
(
s1

t+1,t + πwt+1

)
φ(xt+1)ϕ(xt)|xt

]

= exp

[
ξ0 +

|ξ2 − ωH|2
2

− (ω + ω∗)xt

]

×
[
1

2
trace(Θ0) + (ξ2 − ωH)′Θ1xt + ϑ0 + ϑ1xt + ϑ2(ξ2 − ωH)

]

= exp(−ν) exp [−(ω + ω∗)xt]

×[(1/2)trace(Θ0) + (1/2)(ξ2 − ωH)′Θ0(ξ2 − ωH)

+(ξ2 − ωH)′Θ1xt + ϑ0 + ϑ1xt + ϑ2(ξ2 − ωH)]

Next we compute the unconditional expectation. Again we change probability distributions.
To simply the calculation, we adopt a change in measure. We change the mean of xt from
normal mean zero and covariance matrix Σ to normal with mean

µ∗x
.
= −Σ(ω + ω∗)′
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and covariance Σ. Using this transformation we find that

E
[
Ds1

t+1,t exp
(
s1

t+1,t + πwt+1

)
φ(xt+1)ϕ(xt)|xt

]

= exp(−ν) exp

(
µ∗x

′Σ−1µ∗x
2

)

×[
1

2
trace(Θ0) +

1

2
(ξ2 − ωH)′Θ0(ξ2 − ωH)

+(ξ2 − ωH)′Θ1µ
∗
x + ϑ0 + ϑ1µ

∗
x + ϑ2(ξ2 − ωH)].

B.2.3 Step three: combining results

We compute the right-hand side of (24) by combining numerator and denominator terms:

dν

dρ
|ρ=1 = −1

2
trace(Θ0)− 1

2
(ξ2 − ωH)′Θ0(ξ2 − ωH)

−(ξ2 − ωH)′Θ1µ
∗
x − ϑ0 − ϑ1µ

∗
x − ϑ2(ξ2 − ωH).
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