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ABSTRACT

The establishment and growth of industrial research laboratories is one of the key organizational

innovations affecting technological progress in the United States in the 20th century. In this paper,

we investigate the rise of industrial research laboratories in the U.S. pharmaceutical industry

between 1927 and 1946. Our evidence suggests that institutional factors, namely the presence of

universities dedicated to research, played a significant role in the establishment and diffusion of

private pharmaceutical research laboratories. Specifically, we document that the growth of industrial

pharmaceutical laboratories between 1927 and 1946 is positively and significantly correlated with

the extent of local university research, after controlling for other observable factors likely to

influence the geographic distribution of industrial research. We supplement our core results with

case histories illustrative of early university-industry interaction and an examination of the

determinants of university-industry research cooperation. Our qualitative historical evidence and

analyses of the birth of chemical engineering programs suggest that industry also played a role in

influencing university research agendas. We correct for feedback effects from industry to

universities using instrumental variables. Overall, our analyses suggest that while the presence of

industrial facilities helped shape the direction of university research programs, there was a

significant, positive, and causal effect running from university research to the growth of

pharmaceutical research laboratories in the first half of the twentieth century in the United States.
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I. Introduction 

The establishment and growth of industrial research laboratories is one of the key 

organizational innovations affecting technological progress in the United States in the 20th 

century (Mowery, 1990).  We investigate in this paper the rise of industrial research 

laboratories in the U.S. pharmaceutical industry between 1927 and 1946.  Our evidence 

suggests that universities played a significant role in the establishment and diffusion of 

industrial research laboratories in the U.S. pharmaceutical industry during this period.  The 

foundation of our quantitative analysis is the demonstration that the emergence and growth 

of private pharmaceutical research laboratories depends upon the extent and growth of 

nearby academic science.  We complement the quantitative results with qualitative evidence 

that elucidates some of the mechanisms by which universities and industry interacted during 

this period.  For example, our qualitative analyses demonstrate evidence of university-

industry collaboration involving prominent academics, considerable academic participation 

in industrial patenting, and the staffing of emerging industrial research laboratories with 

graduates of nearby university programs.  We are also alert to the fact that this relationship 

may not have been unidirectional, and devote particular attention to the possibility that the 

local industrial base affected the nature of academic science at universities during this 

period.  Our analyses provide suggestive though not dispositive evidence of the impact of 

local firms on university programs.  Even when we correct for this endogeneity bias, 

however, the result that laboratory births are positively related to PhD program graduates 

remains.  We interpret this combination of qualitative and quantitative evidence as support 

for the hypothesis that universities played a significant role in the birth of early American 

pharmaceutical research laboratories. 
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Hand-in-glove relationships between firm laboratories and universities in the life 

sciences are commonplace in the early 2000s, but were substantially more rare a century 

ago.  Indeed, many academic scientists and academic bodies viewed industry with extreme 

skepticism or overt antipathy.  Quoting a 1915 report of the Committee of the Board of 

Trustees of the American Medical Association, Parascandola (1985) illustrates the contempt 

held by medical scientists for industry:  “It is only from laboratories free from any relations 

with manufacturers that real advances can be expected.”1  Though a fictional tale, Sinclair 

Lewis’s novel Arrowsmith is more severe but also representative of the attitude of the time.  

Reacting to the news of famed biology professor Max Gottlieb’s decision to join the 

research laboratories of a private firm, colleagues grieved:  In one lab, “sorrowing men 

wailed, ‘How could old Max have gone over to that damned pill peddler?,’” while in other 

places colleagues lamented, “Of all the people in the world! I wouldn’t have believed it! 

Max Gottlieb falling for those crooks!,” and “I wish HE hadn’t gone wrong!” (Lewis, 1925, 

p. 52).2  It is, then, somewhat surprising that an environment that harbored such scorn for 

industry would, ultimately, be actively involved in planting the seed corn for the 

development of industrial research laboratories. 

History demonstrates, however, that Prof. Gottlieb’s decision to work with the pill 

peddlers was emblematic of the growing ties between university scientists and private firms 

in the U.S. pharmaceutical and chemical industries during this time period.  Indeed, while, 

“American drug companies by and large had no interest in research [in the early years of the 

20th century,]” (Swann, 1990, p.77), industrial research laboratories grew throughout the 

                                                 
1 This quote appears in the Journal of the American Medical Association (1915) “Special Report of the Work 

of the Council on Pharmacy and Chemistry,” 65, p. 69. 
2 This quote is used commonly among historians of the U.S. pharmaceutical industry to reflect the attitudes of 

the time.  See, for example, Parascandola (1985), Swann (1990), and Liebenau et al. (1990).  
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1920s and 1930s such that they were a common organizational form among large 

pharmaceutical manufacturers by the time of World War II.  The increasing relevance of 

academic science for industrial purposes in the late 19th and early 20th centuries appears to 

have been a principal underlying force that enabled collaborations between universities and 

industry to be ultimately fruitful (Mowery and Rosenberg, 1998; Murmann, 2003).  We 

argue that the existence of U.S. universities (and their specific form and nature) animated 

the potential for interaction between academic scientists and pharmaceutical firms in the 

U.S. interwar period.  We examine the early mechanisms through which universities 

affected research in the pharmaceutical and chemical industries and devote particular 

attention to the labor market for trained researchers, collaborative research and consulting 

agreements, and contract research arrangements.3  While our primary aim is to ascertain the 

extent and nature of university influence on the development of industrial research 

laboratories, we also examine the extent to which university researchers and their 

institutions were affected by their interactions with industry.  Some qualitative evidence 

suggests that large pharmaceutical companies with substantial research needs did, indeed, 

influence proximate universities, and our statistical analyses provide some evidence 

consistent with this phenomenon.  

In our principal analysis, we assesses the relationship between academic science and 

the establishment of pharmaceutical research laboratories by estimating the impact of the 

presence of universities and the count of PhD graduates on the number of industrial 

pharmaceutical laboratories established and number of pharmaceutical R&D workers in 

geographically proximate areas.  We set the stage for this analysis by reviewing case 

                                                 
3 The importance of collaborative research between academic scientists and drug makers is of central interest in 

the industrial histories of John P. Swann (1988, 1990). 
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histories of early U.S. pharmaceutical firms and describing the nature of relationships 

between academic scientists and pharmaceutical firms.  The empirical evidence reveals that 

pharmaceutical labs were more likely to be located in counties that contained research in 

academic chemistry or science.  Specifically, the number of pharmaceutical laboratories in a 

county in 1938 and 1947 is, across a wide range of specifications, positively and 

significantly associated with the initial number of research laboratories and the 

contemporaneous count of local science PhD graduates.   

Building on the quantitative analyses, we clarify some of the mechanisms by which 

universities appear to have influenced the birth of pharmaceutical research laboratories.  In 

particular, drawing on records from the rosters of Who’s Who in Chemistry (1928), we 

demonstrate the involvement of adopting firms in the labor market for graduating PhDs.  

Further, we present evidence that collaborative arrangements between academic scientists 

and industry and, occasionally, contract research agreements were both important pre-

cursors and complements to firms developing their own laboratories.  Combining patent data 

with data from American Chemical Society membership rosters, we find that a substantial 

share of pharmaceutical patents for which we can identify inventor affiliations included 

academic inventors. 

Overall, our results paint a picture in which the role of universities in the 

development of industrial research laboratories is significant and multifarious.  In addition to 

serving as the launching pad for the careers of individuals who found employment in private 

firm laboratories, U.S. universities appear to have played a role in the creation of such 

laboratories, via collaborative research and consulting, and in their developing expanded 

research capabilities over time.  We also cite qualitative evidence of feedback effects from 



 5

firms to universities.  By both providing financial support for university research 

laboratories and a market for future trained labor, firms supported the growth of scientific 

capabilities at local universities. The relationships between Merck and Rutgers and Dupont 

and the University of Delaware are illustrative of the bi-directional impact of the 

relationship between universities and industry.  Our analysis of the birth of chemical 

engineering programs provides evidence consistent with these qualitative accounts.  Our 

core results about the influence of universities on the birth of research laboratories do, 

however, hold up, even after correcting for endogeneity using instrumental variables. 

The remainder of the paper proceeds in the following way:  Section 2 introduces 

background research on university-industry interaction and reviews the history of the 

pharmaceutical industry in the early 20th century, and the origins of industrial research 

laboratories.  Section 3 reviews historical interactions between the U.S. pharmaceutical 

industry and academic science.  Section 4 describes our core dataset.  Section 5 evaluates the 

importance of universities in influencing the growth of pharmaceutical research laboratories.  

Section 6 assesses the mechanisms of interaction between universities and pharmaceutical 

firms in greater detail.  Section 7 reviews quantitative evidence on the role of industry in 

affecting program births in universities.  Section 8 discusses our instrumental variables 

estimates.  Section 9 concludes, discussing the implications of the results and speculating 

regarding related, future research. 

 

II. University-Industry Interaction and the Origin of Industrial Research 
Laboratories 

In this section, we lay the groundwork for our argument that U.S. universities 

contributed to the establishment and growth of industrial research laboratories.  In particular, 
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we review research that describes the growth of the U.S. universities in the late 1800s and 

early 1900s, suggests the importance of universities to the United States’ emerging industrial 

leadership, and suggests that proximity and specific institutional arrangements played an 

important role in university-industry interaction. 

 

II.1  The emergence of U.S. universities and the nature of university-industry interaction 

Goldin and Katz (1999) identify the period of 1890-1940 as the “formative years” of 

American higher education.  States dramatically increased their support of higher education 

during this period and the U.S. research university emerged in a form similar to that which 

exists today.  These years were also formative for university-industry collaboration and the 

rise of industrial research laboratories in the United States.  Figures 1-3 display the number 

of public universities, private universities, and industrial research labs by founding date, 

beginning in 1830.  They reveal that more universities were founded in the late 19th century 

than in any other period.  In large part, the rise of universities was due to the Morrill Act of 

1862, which established the land-grant universities, and the Hatch Act of 1887, which 

provided aid for the study of scientific agriculture.  The emergence of industrial research 

labs came somewhat later, in the 1920s and 1930s.4  The boom during this period was, 

however, quite substantial, so substantial in fact that university-industry interaction reached 

a high point in the period between World War I and World War II.  As Mowery and 

Rosenberg (1998) note, “university-industry research linkages… were well-established 

                                                 
4  It should be taken into account that these graphs are snapshots taken at two different points in time: the 

university data were compiled in 1924 and the industrial research lab survey was conducted in 1946. As a 
result, firms that were founded prior to 1946 but did not survive to that date are not counted. 
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before World War II.  Indeed, the share of university research expenditures financed by 

industry appears to have declined throughout much of the postwar period” (p. 37).5 

Rosenberg, Mowery, Nelson and a number of co-authors have argued that the 

research universities that emerged during this period – and, in particular, the aspects of 

academic science that responded to the needs of industry – became one of the main drivers 

of American technological leadership in the twentieth century.6  These authors note a 

number of examples of commercially important early inventions that originated in 

universities, including the Babcock test (which improved the way dairy producers tested the 

butterfat content of milk); Edwin Armstrong’s research on vacuum tubes at Columbia 

University (which influenced the development of radio technology); and the development of 

hybrid corn at agricultural experiment stations.7  Noting the important influence on 

innovation in the later part of the 20th century, these authors further acknowledge the 

seminal contributions of university research on the development of computers and lasers 

(Rosenberg and Nelson, 1994; Mowery et al., 2003, p. 1). 

The role of proximity in facilitating university-industry linkages is central in our 

investigation of the factors that led to the rise of industrial research laboratories.  Existing 

empirical studies of contemporary university-industry research linkages suggest that 

research conducted in universities has a significant and geographically focused effect on 

innovation.  Jaffe (1989) provides evidence that corporate patenting in certain industries is 

                                                 
5  Also, Swann (1988) argues that post-war increases in federal funding for university research in the health 

sciences reduced collaboration between universities and the pharmaceutical industry. 
6  See Nelson and Wright (1992), Rosenberg and Nelson (1994), Mowery and Rosenberg (1998), Rosenberg 

(2000), Mowery, Nelson, Ziedonis and Sampat, (2003). 
7  As another example, the University of Akron supplied local rubber producers with skilled employees, and its 

scientists conducted research in the processing of rubber and, later, polymer chemistry (Mowery et al., 
2003), p. 1).  Additional examples include the University of Oklahoma’s research in the field of petroleum, 
the University of Kentucky’s and the University of North Carolina’s focus on the processing of tobacco, and 
the University of Illinois and Purdue University’s work on railroad technologies (Nelson and Rosenberg, 
1994).    
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positively associated with state-level spending on university research in related academic 

disciplines. Acs, Audretsch and Feldman (1992) substitute innovation counts for patent data 

and find even stronger evidence for spillovers from university research. Jaffe, Trajtenberg, 

and Henderson (1993) find that knowledge spillovers from university research, as measured 

by patent citations, are geographically concentrated.8  In a study of the biotechnology 

industry, Zucker, Darby and Brewer (1998) show that biotechnology firms tend to locate 

near universities in order to take advantage of the areas’ higher levels of “intellectual 

capital”.  In both the qualitative and quantitative evidence we review, geographic proximity 

plays an important role in facilitating interactions between universities and pharmaceutical 

firms. 

The nature of university-firm interactions is informed by research that examines the 

organizational locus of innovative activity.  Specifically, a set of recent papers examine 

whether innovative activity takes place in divisions of the corporation or in entrepreneurial 

firms that transact in the market for technology.  Teece (1988) explains how transaction 

costs can dictate the organizational form in which innovation takes place.  Arora, Fosfuri 

and Gambardella (2001) document the growth in technology trade in the late twentieth 

century, led by high-tech industries like software, chemicals, semi-conductors and 

electronics.  Arora, Fosfuri and Gambardella (2003) model the division of “inventive labor” 

under different conditions.  Stern and Gans (2003) focus on how several aspects of the 

“commercialization environment” affect the innovative start-up’s optimal choice of co-

operation or competition with incumbent firms.  Peretto (1998) develops a model that 

explains the transition from independent inventors to corporate R&D labs in the late 

                                                 
8 Patent citations are references in the patent document to other patented technologies that bear a similarity to 

the invention or that influenced the inventor.  Note that Adams (2002) also finds evidence of geographically-
mediated university spillovers. 
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19th/early 20th centuries as a product of the “interaction of market structure and 

technological change.” 

 

II.2 The origins of industrial research 

The first organized industrial research laboratories appeared in Germany in the 

1870s, in firms that sought to commercialize inventions based on recent breakthroughs in 

organic chemistry (Mowery and Rosenberg, 1998, p. 13.).  Murmann (2003) describes the 

co-evolution of the dye industry and academic research in chemistry in nineteenth-century 

Germany, and argues that spillovers from universities to the dye industry and vice versa led 

Germany to dominate the international dye industry in the 19th century.  Mowery and 

Rosenberg argue that it was not scientific developments alone which led to the growth of in-

house research in the United States, but also the strength of U.S. anti-trust policy following 

the Sherman Act (which triggered a search for alternative sources of market power through 

industrial innovation) and stronger protection of intellectual property rights through the 

patent system.  However, as Mowery points out, “a weak antitrust climate in other nations, 

such as Germany, was associated with growth in industrial research, making it difficult to 

assert a direct cause-and-effect relationship between anti-trust policy and the growth of 

intrafirm R&D” (Mowery, 1990, p. 346).  It could also be argued that the increasing strength 

of intellectual property rights in the late 19th and early 20th centuries would seem to promote 

greater specialization in innovation and vertical dis-integration rather than a shift in 

innovative activity from the realm of the independent inventor to within the boundaries of 

the corporation.  Indeed, Lamoreaux and Sokoloff (2002) argue that, in the nineteenth 

century, 



 10

“the U.S. patent system created a framework that supported trade in technology, 
and that the patent agents and lawyers who serviced this system often took on the 
functions of intermediaries, matching inventors seeking capital with investors 
seeking profitable outlets for their funds and also inventors seeking to sell new 
technological ideas with buyers eager to develop and commercialize them” (p. 5-
6). 

 
Lamoreaux and Sokoloff (1996) document a well-functioning market for technology in the 

late nineteenth century United States.  In 1870-71, for example, 72% of all patents that were 

assigned to a party other than the inventor were assigned after issue.  By 1910-11, this 

number was halved (36.5%).  Fisk (1998) explains that, prior to the 1890s, courts almost 

always favored the rights of the inventor in cases where the ownership of an employee’s 

invention was contested by an employer.  Starting in the 1890s, Fisk documents the 

emergence of the “shop right” patent doctrine, which favored the employer in intellectual 

property disputes.  This change in intellectual property doctrine no doubt made it much more 

attractive for firms to establish in-house research labs. 

Mowery and Rosenberg also emphasize the importance to industrial innovation of 

science conducted in universities.  In this paper, we argue that the unique form taken by 

American universities in the late nineteenth and early twentieth centuries helped promote the 

adoption of industrial research laboratories within the boundaries of firms.  Whereas during 

the nineteenth century, “most industrialists believed the manufacturer’s job was to 

manufacture; new ideas to improve manufacturing could be purchased or otherwise 

appropriated … managers offered little support for research until they had evidence that a 

worker’s results indicated likely commercial application,” (Swann, 1988, p. 13) the 

institutionalization of scientific research in universities facilitated the adoption of scientific 

research in industry.  The scientific research undertaken in universities reduced the cost to 

firms of acquiring scientific knowledge, and this led firms located near universities to 
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engage in research.  Furthermore, the trend towards specialization and professionalization in 

science increased the supply of qualified workers with easily identifiable skills.  Once firms 

could access a pool of potential research workers whose academic credentials reduced the 

uncertainty associated with hiring them, firms could establish labs to engage in long-term 

research projects. 

Several interrelated historical forces combined to favor the organization of invention 

within the firm.  Changes in the nature of technology, in the extent to which firms could 

claim intellectual property rights over their employees’ inventions, and in the enforcement 

of anti-trust rules contributed to firms seeking to adopt of in-house industrial research 

facilities.  In order for firms to respond to these forces to organize invention within firm 

boundaries, they needed skilled R&D workers and scientific expertise.  Universities 

provided these inputs to production of new technology through consulting relationships and 

by providing certification for the skills of potential R&D employees. 

 

III. The U.S. Pharmaceutical Industry and Academic Science in the Early 20th 
Century 

III.1.  Research in the pharmaceutical industry in the early 20th century 

Although a select number of pharmaceutical firms employed in-house researchers in 

the early years of the 20th century, the period between the 1920 and World War II witnessed 

a substantial change in the organization and function of U.S. drug makers (Swann, 1988).  

Over this period, the industry changed from consisting of nearly entirely manufacturing-

oriented firms to being largely comprised of firms dedicated to the systematic discovery and 

introduction of efficacious medicines.  Some of the changes in the industry were preceded or 

accompanied by legislative changes, such as the Biologics Control Act of 1902 and Pure 
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Food and Drug Act of 1906 (and 1912 Shirley Amendment), each of which pushed the 

industry away from sometimes fraudulently-labeled ‘patent’ medicines towards more 

rationalized practices. 

In addition to US-based characteristics and policies, Europe played an important role 

in aiding American firms in their transition to science-based pharmaceutical research.  In the 

years prior to World War I, European-trained (mainly German-trained) researchers and 

students returned to the United States, often to Philadelphia, New York, and the region in-

between (Feldman and Schreuder, 1996) offering expertise, particularly in biologics, to 

pharmaceutical firms, universities, and public health administrations.  The development of 

research capabilities in U.S. pharmaceutical firms was further accelerated by World War I.  

The loss of access to European medicines increased the need for national medicine-making 

capabilities, and the ability to develop medicines was enhanced both by European 

immigration and by the seizure and auction of German intellectual property by the Office of 

the Alien Property Custodian. 

These developments were concomitant with an increasing relevance of academic 

science for drug-making during late 19th and early 20th centuries, which in the eyes of 

Mowery and Rosenberg (1998) and Murmann (2003) helped set the stage for fruitful 

collaborations between universities and industry and, as we argue, for the US 

pharmaceutical industry to draw on resources in universities to help develop in-house 

research facilities.  From the early part of the century, during which research and 

development expenditures were minimal, Mahoney (1959, p. 4) reports that research 

expenditures increased to $15 million in 1939 and $110 million by 1956.  Mahoney claims 

that the nature of the pharmaceutical industry changed dramatically during the 1930s and 
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1940s, as a result of increasing average firm size and technical sophistication.  For example, 

he reports that during the depression years of 1932 and 1934, more than 3,500 firms failed 

(p. 4) and that even until the 1940s most firms were quite small:  “As late as 1939 no ethical 

drug manufacturer in America had a sales volume as large as a department store like Macy’s 

in New York” (p. 4). 

Although the nature of the industry was already changing by the early 1940s, the 

loss, once again, of medicines from Europe and the exigencies of war prompted significantly 

increased investment in research during World War II.  For the first time, the U.S. 

government became actively involved in promoting drug development and manufacturing.   

Two major projects in which the government played a large role were the production of 

penicillin and dried plasma.  These projects were mainly dedicated towards large-scale 

manufacturing, but significant R&D capabilities were a pre-requisite for achieving the 

knowledge to effectively produce the products, and those firms that had already achieved 

some level of in-house research expertise were at considerable advantage. 

 

III.2. Historical evidence of the influence of early 20th century academic science on 
pharmaceutical research 

In order to characterize the relationship between academic science and the early 

industrial research labs, we exploit the fact that geographic proximity facilitates interaction 

between people and organizations.  We argue that firms located near research universities 

were more likely to adopt in-house R&D facilities because local universities provided both 

part-time faculty consultants with highly specialized knowledge and scientifically-trained 

university graduates who could be employed as full-time research employees.  Because 

long-distance collaboration was more difficult in the first half of the twentieth century than 
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it is today, firms were more likely to focus their search for scientific expertise on nearby 

institutions.  In this section, we discuss histories of a number of early pharmaceutical firms, 

including Mulford and Sterling, whose cases appear illustrative of the influence of local 

university science on firm-specific investments in innovation.9 

III.2.1 Illustrative Cases – Mulford & Sterling at the turn of the 20th century 

Founded by two graduates of the Philadelphia College of Pharmacy, the H.K. 

Mulford Company commenced operations in Philadelphia in 1891 when H.K. Mulford and 

Milton Campbell purchased the “Old Simes” drugstore.  After initial successes in improving 

pill-making technologies, the founders undertook a more ambitious challenge for which they 

themselves were by no means sufficiently trained – the synthesis of diphtheria antitoxin.  

Bacteriological illness had become increasingly problematic for urban areas as a result of the 

increased density of city life.  This problem was of particular concern to the Municipal 

Health Department in Philadelphia, which was the third largest city in the country at the 

time.  Philadelphia’s Health Department, like that of New York, was especially active in 

promoting efforts to address bacteriological illnesses.  Long known as the “Cradle of 

Pharmacy” (Mahoney, 1959; Feldman and Schreuder, 1996), Philadelphia was the home to 

some of the most advanced biomedical research institutions in North America.  In addition 

to the Philadelphia College of Pharmacy, several other institutions were pursuing 

bacteriological research, including the University of Pennsylvania, Medico-Chirurgical 

College, and Pepper Clinical Laboratories of the University Hospital.  Together with the 

Municipal Health Department, these institutions were engaged in research on diphtheria in 

response to “public clamor” for a diphtheria antitoxin (Galambos, 1995, p. 13).  Galambos 

                                                 
9 Furman (2003) reviews the relationship between local resources and the strategic orientation of Mulford and 

Sterling. 
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argues that Mulford “recognized the opportunities embodied in the “clamor” for diphtheria 

antitoxin” and set out to produce a commercially viable drug (Galambos, 1995, p. 13).  In 

1894, the firm hired Dr. Joseph McFarland, who was on faculty at the University of 

Pennsylvania’s Medical Department and the Philadelphia Polyclinic and College for 

Graduates in Medicine and had trained in bacteriology in Heidelberg and Vienna, and 

created for him a laboratory in which he could concentrate on developing diphtheria 

antitoxin (Galambos, 1995).  In his efforts, McFarland benefited greatly from interactions 

with the New York City Health Department and the Laboratory for Hygiene at the 

University of Pennsylvania.  By 1895, Mulford was able to become the first commercial 

provider of a diphtheria anti-toxin.  The firm’s success with McFarland then led them to hire 

Professor Leonard Pearson from Penn’s Veterinary School and to establish a full-fledged 

laboratory in 1896 in Glenoden, PA dedicated to biological, veterinary, and vaccine research 

(Galambos, 1995).  In the absence of these locally-available academic scientific resources, it 

does not appear as if Mulford would have engaged the task of synthesizing diphtheria 

antitoxin or, ultimately, of founding a dedicated research laboratory. 

The Sterling pharmaceutical company was founded under circumstances similar to 

those of Mulford and around the same point in time, yet it pursued a very different trajectory 

with respect to research.  Upon graduation from the Philadelphia College of Pharmacy, the 

same institution attended by the founders of Mulford, William E. Weiss returned to his 

hometown of Wheeling, West Virginia and founded the company that became Sterling in 

conjunction with his childhood friend Albert Diebold.  Like Mulford, the fledgling 

drugmaker met with considerable success; unlike Mulford, however, the firm succeeded at 

marketing and distributing patent medicines, products of questionable medical validity 
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which were often alcohol- or narcotic-based.  By 1912, it was valued at $4 million (Mann 

and Plummer, 1991).  In the wake of World War I, Sterling acquired the assets of the Bayer 

Company, including all U.S. rights to Bayer Aspirin in the auction of seized German 

property rights held by the Office of the Alien Property Custodian.  That the fact that 

Sterling was able to raise the funds required for this acquisition demonstrates the triumph of 

the firm’s marketing and distribution resources.  Its technical and research capabilities were 

substantially less well-developed, however.  Sterling’s drug-making competence was, in 

fact, so limited that it was forced to solicit substantial guidance from Bayer in order to have 

any chance to manufacture the basic products it won at auction. 

Both demand and supply side factors appear to have had an influence on Sterling’s 

choice of organizing strategies.  Serving the mainly rural populations of West Virginia and 

central and western Pennsylvania, Sterling did not face substantial demand for medicines to 

fight the bacteriological illnesses towards whose cures academic science had begun to work.  

Even if such demand had existed, however, Sterling did not have ready access to trained 

individuals who could have contributed to effectively to drug discovery; at the very least, it 

seems fair to say that the comparative advantage of Sterling’s West Virginia location was 

not based in scientific research. 

While stylized, these stories seem to be illustrative rather than unique. The early 

history of Detroit’s Parke-Davis, another one of the first chemical firms to establish science-

based industrial research, resonates with that of Mulford.  Similar to its Philadelphia 

counterpart, Parke-Davis began serious research efforts with the aim of making diphtheria 

anti-toxin.  To do so, it hired Elijah M. Houghton, a research assistant at the nearby 

University of Michigan in 1895 and Charles McClintock, a research assistant in 
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bacteriology, in 1896 (Swann, 1988).  Parke-Davis established a research lab in biology, and 

succeeded in producing diphtheria anti-toxin within a few months.  McClintock then turned 

his efforts to other biological research, which dominated the firm until the 1920s when a 

separate department for chemical research was established (Swann, 1988). 

These early examples of the importance of local labor markets in diffusing 

biomedical research knowledge are typical of the experience of U.S. firms in the 1920s and 

1930s.  Firms located near universities appear to have had greater ease in recruiting scholars 

for their research efforts.  The differences in the strength and relevance of the science bases 

in Philadelphia, PA and Wheeling, WV during the formative years of Mulford and Sterling 

are vast.  The “Cradle of Pharmacy,” Philadelphia was home to numerous universities with 

departments dedicated to biomedical sciences, including the University of Pennsylvania 

(which was founded 1740, and offered its first doctorate in 1871), as well as the Philadelphia 

College of Pharmacy (founded 1821), the Medical College of Pennsylvania (1850), 

Jefferson Medical College (1825), Hahnemann Medical College (1848), Temple University 

(1884), and the Drexel Institute of Technology (1892).  The University of Pennsylvania was 

one of the country’s leading biomedical institutions, and had granted, on its own, 919 

doctorates by 1925.  By contrast, Sterling’s hometown, Wheeling, WV was 50 miles from 

the nearest university.  The closest large universities to its home base were in Pittsburgh (59 

miles from away), Morgantown, WV (79 miles away), and Penn State (198 miles away).  

Though not immediately nearby, Pittsburgh was an emerging center of university life at the 

turn of the century, offering the University of Pittsburgh (which was founded in 1786 and 

granted its first doctorate in 1886), the Carnegie Institute of Technology (founded 1905), 

and Duquesne University (founded 1878).  However, even if Sterling had opened facilities 
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in Pittsburgh, these growing universities would not have been able to offer research services 

comparable to those of Philadelphia – by 1925, the city’s largest university, the University 

of Pittsburgh, had only granted 86 PhDs, and Carnegie and Duquesne did not grant any 

PhDs until the 1920s. 

III.2.2.  Early university-industry interactions - collaborations & local labor markets 

In this section we review historical evidence that suggests that university academics 

were sought-after collaborators for early research labs, and that suggests that geographic 

propinquity played an important role in the ability to collaborate with university-based 

researchers.  Both the importance of some academic collaborators and the potentially 

prohibitive cost of long-distance collaboration are illustrated by the agreement struck 

between Du Pont and consulting chemist Roger Adams, a professor at the University of 

Illinois. Du Pont offered Adams $5,000 a year, which was substantially more than half his 

university salary, to entice him to make a monthly trip from Urbana to Wilmington, and to 

visit for a month or so during the summers.  Adams negotiated a deal in which he received 

$3,000 annually (plus travel expenses) for a visit every other month, along with $750 for 

each summer month spent at Du Pont (Hounshell and Smith, 1988).10  While Du Pont, one 

of the first and most successful companies to adopt in-house research, had access to the 

funds required to invest in long-distance relationships with consultants (and had little choice, 

given the absence of a major research university in the vicinity of Wilmington), younger and 

smaller firms did not.  Table 1 lists the industrial labs in the National Research Council 

(NRC) data that in 1938 listed the names of the universities at which they funded consultants 

                                                 
10 While a consultant for Du Pont, Adams told a colleague, “I feel that I get quite as much out of the contact 

from the chemical standpoint as they do” (Ibid, p. 298). 
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or research fellows.11  Local universities, where they exist, predominate.  While other more 

distant universities were supported by firms with larger research efforts (like Merck, with a 

research staff of 111), even these firms continue to be associated with nearby universities. 

 Universities, in addition to providing consulting services, fed the labs with a supply 

of skilled labor.  We have seen that Mulford and Parke-Davis both hired graduates of local 

universities (the University of Pennsylvania and the University of Michigan, respectively) to 

form two of the first in-house research labs in the United States.  Looking at a larger sample, 

we draw on evidence of the geographic mobility of university graduates from the Chemical 

Who’s Who, a directory published in 1928 that contains biographical sketches of executives 

and researchers in the chemical industry.  For a sample of the thirty largest labs in the 

National Research Council (NRC) volume of 1927, we collected information on the 

educational background and location of first employment of executives listed in the Who’s 

Who.  Many of the executives, whether directly involved in research or not, came from 

scientific backgrounds, and the biographical information on the location of an individual’s 

alma mater and post-graduate employment is instructive whether or not the individual joined 

the company immediately upon graduation.  The information we collected revealed that the 

first employment after graduation from a university was very often in the same city as the 

university, and that many firms seemed to hire graduates of nearby universities.  While the 

extent of this practice varied by firm, the firms that did hire from nearby universities 

(“nearby” defined loosely to include universities within 100 or 200 miles of the lab) tended 

to hire almost exclusively from those universities.  For example, at Sharp and Dohme of 

Baltimore, one of the two directors of pharmaceutical research listed in the Who’s Who in 

                                                 
11 In the NRC publication, this is described as “grants to university labs for research projects in support of 

program of association.” 
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1928 was J.C. Krantz, a former professor at the University of Maryland and a former 

lecturer at Johns Hopkins.  The other director of pharmaceutical research graduated from the 

Philadelphia College of Pharmacy and had worked at Mulford and Co. in Philadelphia 

before joining Sharp and Dohme.  One laboratory superintendent (C. Neal) was a graduate 

of the University of Maryland department of Pharmacy, and another superintendent (E. 

Miller) earned a doctorate from Johns Hopkins.  Of the nine employees and executives 

whose educational credentials are described in the Who’s Who, six joined after studying or 

working at Johns Hopkins or the University of Maryland.  Three were graduates of the 

Philadelphia College of Pharmacy (two of whom came to Sharp & Dohme after initial 

employment at Mulford & Co) and one came to Sharp & Dohme after working as a 

professor at the University of Vermont.12 

Another example of localization in early research collaborations, Eli Lilly & Co., of 

Indianapolis, Indiana, engaged in collaborative research with Purdue University.  Lilly hired 

Purdue grads, like director of research development H.W. Rhodehamel, chief pharmacist 

F.E. Bibbins, and assistant chief engineer J.C. Siegesmund.  Pharmaceutical research 

scientist E.H. Stuart was a graduate of Indiana University.  The majority of Lilly employees 

whose credentials are listed in the Who’s Who were graduates of Indiana universities.  Of the 

ten listed university-educated employees of Eli Lilly & Co. of Indianapolis, four were 

graduates of Purdue University (62 miles away in West Lafayette) who joined Lilly upon 

graduation.  Two attended other universities in Indiana (DePauw and Indiana University), 

one came from the U.S. Industrial Alcohol Co. in New Orleans after graduating from 

Louisiana State University, and the others studied at Trinity College and the Philadelphia 

                                                 
12 Sharpe and Dohme acquired Mulford around this time (officially, 1929; Galambos, 1995) , which may  

explain the number of Sharpe and Dohme executives that Who’s Who credits with Mulford experience.  
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College of Pharmacy.  As we discuss in some more detail below, Lilly also provides an 

interesting example of early firms’ abilities to work with distant researchers. 

At Abbott Labs of Chicago, the president, Alfred Burdick, was a former professor at 

the Illinois Medical College; consulting scientist Roger Adams was chair of the department 

of Chemistry at the University of Illinois Urbana-Champaign.  Adams’ former student, 

Henry Volwiler, chief chemist in 1928 (later president and chairman of the board), was a 

graduate of the University of Illinois, as was Floyd Thayer, a former research chemist who 

was in 1928 manager of the chemical sales department.  Of the eight people listed, six joined 

the firm after graduating from or working at an Illinois university.  Swann notes that several 

of Adams’ students also went on to join Abbott (1988). 

In contrast to these examples, there are fifty-five individuals listed as employees of 

Du Pont, and the list of universities is almost as long.  It is clear that not every firm in the 

industry hired graduates of local universities – mainly because it was not always the case 

that local universities produced graduates with the skills required during this period.  

Although the Who’s Who was published in 1928, most of the individuals who appear in it 

had been with the firms for many years, most of them having been hired in the previous 

decade or earlier. 

The example of Alfred Newton Richards’ work for Merck provides one example 

how academics played active roles in the establishment of in-house R&D labs.  Richards 

essentially acted as a head-hunter and recruiter when Merck set up its in-house facilities 

starting in 1930.  Richards was professor of pharmacology and vice-president of medical 

affairs at the University of Pennsylvania.  As Swann notes, “The University of Pennsylvania 

was a logical site for Merck to establish connections for biomedical research and clinical 
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investigations of its drugs.  Pennsylvania was a major research institution with access to 

extensive clinical facilities; the university was conveniently located not far from Rahway; 

and most important, Merck had close contact with one of the faculty whom the university 

community esteemed – Newton Richards” (Swann, 1988, 74-75).  Richards acted as a 

liaison between Merck and the academic community, helping not just in recruiting but also 

in the organization of collaborative projects.  Students and clinicians at Penn carried out the 

investigation and testing of methylcholine, a vasodilator eventually marketed by Merck as 

Mecholyl Chloride.  Pharmacologists at Penn also helped develop Vinethene, an anaesthetic 

originally discovered by a pharmacologist at the University of California Medical School.  

Merck “did not feel that it would be advantageous to spend a great deal of money for the 

pharmacological study of vinyl ether in California.  The distance was so great that a true 

cooperation could not be obtained.”13  Instead, the work was undertaken by clinical faculty 

at the more geographically proximate University of Pennsylvania.  

 While firms with larger R&D budgets often engaged academic consultants at more 

distant universities who were specialists in a specific field, younger and smaller firms appear 

to have been more likely to collaborate with local academics.  Starting in 1925, 

Northwestern University chemist Arthur Tatum did routine testing a few times a year for the 

small Chicago firm Cook Laboratories.  Tatum had no unique knowledge of the drugs he 

tested, and Swann notes that “Cook probably engaged Tatum simply because of his 

proximity to the firm” (Swann, 1988, p. 103).  Selman Waksman worked part-time at nearby 

Cutter Laboratories while a graduate student at UC Berkeley and at Takamine Labs of New 

Jersey while a young assistant professor at Rutgers (Israel, 2004). 

                                                 
13 Letter from Merck scientist R.T. Major to A.N. Richards, quoted to Swann, 1988, p. 77. 
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Geographic proximity appears to matter most for (a) labs at early stages of 

development, or (b) relatively informal or occasional consulting contracts on general 

scientific matters, but not large-scale research projects requiring specialized scientific 

knowledge.  For example, Lilly had 4 general consultants at nearby universities by 1943: an 

organic chemist from U Chicago ($2000/yr), chemical engineer from Purdue ($600/yr), 

biochemist from U Illinois ($600/yr), organic chemist from U Indiana ($2,400/yr) (Swann, 

1988, p. 52).  However, Lilly’s large-scale collaborative research projects were undertaken 

with researchers at more distant universities, for example their collaboration with Banting 

and Best’s work on synthesizing insulin at the University of Toronto, and with scientists at 

Harvard and the University of Rochester on the treatment of pernicious anemia in the 1920s 

(Swann, 1988, Chapter 5). 

III.2.3.  Some from early university-firm interactions:  Data from patents 

Some of the fruits of the early collaborations between universities and 

pharmaceutical firms can be found in data on firm-level patenting in the 1930s.  Combining 

data gleaned from original patent documents with the 1930 and 1935 registries of the 

American Chemical Society, we have identified the affiliations of many of the inventors 

listed on the patents granted to the firms in our sample in 1938.  Among the subset of patents 

for which we were able to identify at least one inventor’s affiliation, approximately 13% 

included at least one academic inventor.  (We were able to identify the inventors for 184 of 

the 384 patents we examined.)  Among prominent pharmaceutical firms Abbott, Lilly, and 

Parke-Davis, 50%, 56%, and 67% of patents granted, respectively, included academic 

inventors (when the inventor could be identified in the ACS directory).  Other well-known 

firms with academic inventors include Merck (1 of 8 patents whose inventors could be 
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identified had an academic inventor) and Sharp and Dohme (1 of 1).  Some smaller firms, 

including Ostro Research Labs Lewis Chemical Co, Sonneborn and Sons, Zonite Products 

Corp., and Commercial Solvents Corp. also included academic inventors on their patents, as 

did Monsanto (although for only 2 of 21 patents with identifiable inventors).  While this 

sample is not sufficiently large to derive substantial statistical power, it provides suggestive 

evidence of considerable academic involvement in important research-oriented tasks in 

some pharmaceutical firms as early as 1938. 

 

III.3. Reciprocal relationships:  Historical evidence of the influence of early 20th century 
firms on academic science 

In addition to the documented episodes of academic researchers’ roles in nurturing 

the birth and growth of industrial pharmaceutical research, the historical record suggests that 

a number of companies were influential in shaping the evolution of university research 

programs.  The relationships between Merck and Rutgers University and DuPont and the 

University of Delaware appear to be illustrative of this phenomenon. 

Merck’s choice of Rahway, NJ as the location for the plant it built in 1899 –

influenced in part by a board member who owned land in the community (Feldman and 

Schreuder, 1996, p. 856) – proved propitious for nearby Rutgers University.  In the 1930s, 

Merck developed a relationship with microbiologist Selman Waksman of the College of 

Agriculture at Rutgers.  Starting in 1939, Merck agreed to supply assistance for antibiotics 

developed by Waksman, who would assign all ensuing patents to Merck in exchange for a 

2.5% royalty to be paid to Rutgers.  In 1943 Waksman developed streptomycin, a new 

blockbuster antibiotic that was less toxic and more effective (particularly in treating 

tuberculosis) than existing alternatives. Motivated by fear of a public outcry over the 
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monopolization of such an important drug, Waksman and Rutgers convinced Merck to 

relinquish their rights to Waksman’s patents to the Rutgers Research and Endowment Fund, 

which licensed the patent to several competing companies. The Fund collected $12 million 

in royalties from Waksman’s discoveries over the next forty years.  Swann quotes 

Waksman, whose work earned the Nobel Prize for Medicine in 1952, as suggesting that he 

owed more to support from Merck than from Rutgers for the discoveries (Swann, 1988).14 

The University of Delaware’s relationship with Du Pont proved to be similarly 

beneficial to that institution.  Established in 1802 on the banks of the Brandywine river, in 

part because the location provided easy access to waterpower and an abundant supply of 

willow trees (from which charcoal could be produced), Du Pont was founded long before 

chemical research was widespread in American universities and, consequently, without 

regard to the availability of local academic science.  Nonetheless, Du Pont played an 

important role in the subsequent development of scientific research at the University of 

Delaware through a number of significant gifts from the Du Pont family and other 

individuals associated with Du Pont.  In 1924, the first physics professor was brought to 

Delaware with the help of Lammot Du Pont, who contributed $2,000 for equipment and 

pledged an additional $600 a year for five years, half for research equipment and half to top 

off the new professor’s salary (Munroe, 2004, Chapter 9).  The university’s chemical 

laboratory was established between 1935 and 1937 with a $300,000 gift from Fletcher 

Brown, a former Du Pont Vice President.  Brown also made a donation to supplement the 

salary of Allan Colburn, a Du Pont engineer who became the first professor of Chemical 

Engineering at Delaware in April 1938.  Chemical Engineering quickly became the most 

                                                 
14 Waksman stated that, “Without the help…of an industrial organization that took over a major part of the 

pharmacological evaluation of the antibiotic [streptomycin] and large-scale production our contribution 
would have never attained its goal” (Swann, 1998, p. 90). 
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active field of research at the university, with the possible exception of the agricultural 

experiment station (Munroe, 2004, Chapter 10). 

 

IV. Data on Universities and Pharmaceutical Research Laboratories, 1920-1946 

We use the historical and mainly qualitative evidence of the preceding section to 

inform and complement a quantitative analysis of the role of academic science in the 

establishment of industrial research labs.  Our analysis takes advantage of data on the 

number of research labs by city over several years from the publication Industrial Research 

Laboratories of the United States, collected by the National Research Council.  In 1920 the 

National Research Council began to circulate surveys inquiring about firms’ industrial 

research activities.  While the term “industrial research” was interpreted broadly to include 

development and product improvement, the term “laboratory” was restricted to apply only to 

those departments of companies that had “separate and permanently established research 

staff and equipment,” excluding “firms that indicated they only occasionally carry out 

research, using teams temporarily recruited for the purpose or assembled from their 

operating staffs” (Industrial Research Laboratories of the United States, 1956, Introduction, 

p. 2).  Government and university laboratories were excluded, as were labs that conducted 

testing and analysis but no research. 

These publications contain information on the characteristics of industrial research 

labs in nineteen years between 1920 and 1985.15  In the earliest years in which the series was 

published, these characteristics include the firm’s address, the number of its research 

employees, and a brief description of its activities.  In later years, the surveys list the labs’ 

                                                 
15 The years in which volumes were published are: 1920, 1927, 1931, 1933, 1938, 1940, 1946, 1948, 1950, 

1956, 1960, 1965, 1970, 1975, 1977, 1979, 1982, 1983, and 1985.  
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founding dates, number of scientific and other personnel by type (i.e.: biologists, chemists, 

etc.), the names of important researchers, scientific journals published by the lab, and their 

partners in collaborative research.16  

We combine these data with (a) information on American universities drawn from 

the Bulletin of the Office of Higher Education (Biennial of Education) and the American 

Council on Education’s serial publication American Universities and Colleges17 and (b) data 

on county-level population and manufacturing establishments drawn from the US censuses 

of population and US censuses of manufacturing, respectively, for the years 1920-1950.18   

By including population and manufacturing data in the county-level regressions, we control 

for the extent to which the size, magnitude of economic activity, and, to a degree, 

urbanization affect the extent of industrial pharmaceutical research in US counties. 

Figures 4, 5, and 6 plot the industrial research labs, universities, and manufacturing 

establishments, by county on maps of the United States, respectively.19  The figures suggest 

that manufacturing and industrial research were more concentrated (particularly in the 

manufacturing belt of the Northeast/Midwest) than were population and universities and 

colleges.  Table 2 provides summary statistics from the dataset.  It shows that counties with 

more Ph.D.-granting universities tend to have a much larger number of 

chemical/pharmaceutical industrial research labs per capita, in each year of the sample.  We 

restrict ourselves to data on the number of labs per county in the years 1927, 1938, and 

1946. 

                                                 
16 Starting in 1950, the volumes also contain indices of universities that participate in collaborative research, 

indicating whether or not the university possesses “facilities for research in practically all fields of science”, 
its facilities are limited to specific fields, or it has particular capabilities in certain areas.  

17 We thank Claudia Goldin for making the Biennial data available. 
18 In matching the county-level manufacturing and population data to the county-level lab data, we were 

careful to account for changes over time in county boundaries.  
19 Manufacturing and population are plotted only for those counties above the median for the country. 
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V. Evaluating the Role of Universities as a Determinant of Pharmaceutical 
Laboratory Growth 

Table 3a contains results from panel regressions in which the dependent variable is 

the number of pharmaceutical industrial research labs by county and year.  Because our 

dependent variables are non-negative integers truncated at zero (i.e., count variables), we 

employ Negative Binomial regressions designed to account for these characteristics of the 

data.  To facilitate the interpretation of the coefficients on the covariates as elasticities, each 

of these enters in logs.20  Each regression includes county population and the number of 

manufacturing establishments in the county to control for factors associated with county size 

and economic composition.  Throughout the Table, we address county-specific 

heterogeneity by controlling for the impact of initial conditions (conditions in the county in 

1927) on the number of laboratories in subsequent years of the data. 

In the first four columns of Table 3a, we model the number of pharmaceutical labs in 

a county as a function of county population, county manufacturing establishments, the initial 

number of pharmaceutical labs in the county in 1927, and, depending on the column, both 

the 1927 count and contemporaneous count of Chemistry or Science-oriented PhDs granted 

by universities in the county.21  The initial number of pharmaceutical labs in the county 

helps control for county-level heterogeneity, but is also relevant for adjudicating competing 

hypotheses regarding the birth of industrial research labs.  Specifically, the significance and 

direction of the coefficient on initial labs helps evaluate whether their growth is random or 

follows a pattern consistent with convergence or divergence.  This variable enters positively 

and significantly in each of the models.  That implies that counties with more 
                                                 
20 In each case, we add 1 to the variable before taking logs. 
21 These variables are expressed in logs to account for heteroskedasticity. 
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pharmaceutical labs in 1927 had faster rates of growth in labs to 1938 and 1946.  Controlling 

for other relevant factors, this suggests that counties with a larger number of initial 

laboratories are more likely to experience laboratory births in the future, a pattern consistent 

with the divergence hypothesis.  The finding is consistent with the pattern of path dependent 

growth evident in Feldman and Schreuder’s study of the early pharmaceutical industry in the 

Mid-Atlantic region (1996).  Divergence does not appear to be the only significant pattern in 

the data, however. 

To investigate the hypothesis that universities exerted a significant influence on the 

birth of industrial research labs, we employ the number of PhDs awarded in a county as a 

proxy for the extent to which local universities engage in relevant research.22  In Columns 1 

and 2, we include the number of PhDs awarded in 1927 separately from the number of PhDs 

awarded contemporaneously. In both cases, the contemporaneous number of PhDs is 

positive and significant at the 1% level.  The coefficients in these columns imply that, 

holding observable county characteristics constant, an increase of 10% in the number of 

Chemistry PhDs or overall Science PhDs is associated with a 4.0% and 3.2% increase in the 

number of labs in the county, respectively.  Consistent with the fact that there is a great deal 

of autocorrelation in the geographic distribution of PhD graduates, the impact of 

contemporaneous degrees awarded increases when the controls for initial conditions are 

removed in Columns 3 and 4.  Although we do not report them here, the results obtained 

using county-level data in Table 3a are consistent with estimates we obtained using MSA-

level data.  It is also worth noting that these results are not driven by those counties in which 

                                                 
22 We also obtained data on the universities’ research expenditures for certain years. While this variable comes 

closer to the effect we are trying to estimate, it is not available for every university in every year. As a result, 
we use number of PhD degrees awarded, which is perhaps noisier but we would argue a reasonable proxy for 
the research effort of the university. 
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the largest firms (e.g., such as Abbott, Lilly, and Merck) reside.  The key results in 3a are 

robust to the exclusion of counties that include firms whose R&D employment falls into the 

top 10 percent of the distribution.  The results are also robust to the exclusion of all counties 

in states in New England and the Mid-Atlantic area (i.e., MD, DE, PA, NJ, NY, CT, RI, 

MA, VT, NH, and ME).  

While we would like to model the growth of pharmaceutical employment in addition 

to the number of labs over this period, the NRC data on lab employment are less reliable.  

For example, employment data may reflect total firm employment rather than lab-level 

employment, and, for about 10% of the observations, no employment data are listed.  

Although these data are more noisy, we estimate the correlates of county-level R&D 

workers in Table 3b.  The pattern of divergence evident in the laboratory models remains in 

these models; however, the influence of lagged and contemporaneous PhD graduates is 

statistically insignificant in models that include all of the laboratories in the data (Columns 

1-3).  The number of PhD graduates does enter in a statistically and economically significant 

way, however, in certain models that include only the first laboratory listed for each firm.  

(As a rule, the first laboratory listed is also the headquarters laboratory for the firm.)  In 

Columns 5, the number of contemporaneous Science PhDs enters positively and 

significantly at the 1% level, although the initial number of county Science PhDs is 

statistically insignificant.  The coefficient on contemporaneous Science PhDs suggests that 

10% higher Science PhD graduates is correlated with 90% more laboratory employment in 

the county.  Neither 1927 nor contemporaneous Chemistry PhDs graduates enters 

significantly when both are included in models of county R&D employment (in Column 4); 

however, when the initial number of Chemistry PhDs is omitted (in Column 6), the 
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contemporaneous count is significant at the 1% level.  Considering the noisiness of the lab-

level counts of R&D employment, we interpret these results as suggestive of a relationship 

between proximate academic science and county R&D employment, at least in the case of 

headquarters facilities. 

Table 4 contains the results of conditional fixed-effects Negative Binomial 

regressions run on all years (1927, 1938, and 1946) and including a county-level fixed effect 

to control for time-invariant characteristics of the county that may be associated with both 

the location of R&D and academic science.  The coefficients in Table 4 are thus identified 

by changes over time in the number of PhDs granted and the extent of R&D located in a 

county.  They continue to exhibit a positive and significant association between academic 

research in Chemistry and in science more broadly (with a slightly larger effect coming from 

Chemistry) after controlling for unobserved heterogeneity across counties. 

In this table, we also present estimates that use a distance-weighted count of PhDs 

within a 500 mile radius of the county in which the lab is located.23  These distance-

weighted counts are calculated by summing up PhDs granted by all universities within 500 

miles, weighted by the distance between the county and the lab.  That is, we calculate  
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where PhD_wt for firm i is the number of PhDs nearby, weighted by the distance between 

firm i and university j.  Nearby PhDs would get a very high weight (very low inverse 

weight), whereas PhD 500 miles away make almost no contribution to the count.  We 

calculate these variables and estimate the relationship between them and the R&D variables 

                                                 
23 We thank Toby Stuart for suggesting a distance-weighted measure.  We modeled our PhD count on the “IPO 

concentration” measure found in Stuart and Sorensen (2003). 
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because of concerns about the arbitrary nature of county boundaries.  The fact that M.I.T., 

located in Middlesex county, MA, is a stone’s throw from Boston and Suffolk county means 

that when we use county boundaries to define the radius within which we expect spillovers 

to take place, we will sometimes miss important potential relationships at the boundaries of 

counties.  We use the distance-weighted counts as a robustness check, and find that similar 

results are obtained whether we use county boundaries or a continuous distance-weighted 

measure to define the location of “nearby” academic science. 

It should be noted here that the data on research labs may not be exhaustive of all the 

labs in existence for the early years during which it was collected.  The Appendix to this 

paper reproduces an excerpt from the introduction to the 1927 edition of the series.  It 

explains that members of the main scientific and engineering associations were consulted in 

order to establish a list of firms known to have in-house research labs, and the published 

information is based on surveys were sent to these firms.  It is important to determine what 

effect this sampling bias might have on the results, that is, whether the correlation between 

labs and universities per county could be an artifact of the way the sample was constructed.  

If, for example, regional branches of scientific and engineering associations tended to be 

located near universities, they may have had more information about research labs in the 

surrounding community. To guard against this possibility, we ran regressions that include a 

dummy variable equal to 1 if there was a branch of the American Chemical Society (ACS) 

located in county i in year t.24  In the event that a bias is introduced by the tendency of ACS 

branches to locate near universities, this dummy will correct for that bias.  Column 5 of 

Table 3a shows that the coefficient in the on the number of chemistry PhDs is slightly 

                                                 
24 These data were obtained from the Directory of Members of the American Chemical Society. Directories 

from 1924, 1930, and 1947 listed the locations of branch headquarters and the year in which they were 
chartered. 
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reduced, but remains significant at the 5% level.  Similar results are obtained for the other 

specifications if the ACS branch dummy is included. 

 

VI. Mechanisms of university-industry interaction:  Collaboration  

 We look more closely at the role played by proximity to academic science in Table 

5, in which the firm’s decision to collaborate with academic scientists is modeled as a 

function of the extent of research undertaken at nearby universities.  The number of PhDs in 

science or chemistry awarded by local universities is positively and significantly associated 

with the propensity of pharmaceutical firms to engage in collaborative research with 

universities.  Firms with larger numbers of researchers are significantly more likely to 

engage in cooperative research, and older firms are slightly more likely to collaborate with 

academic scientists.25  We also estimated specifications including the manufacturing or 

population intensities of the county, and these variables were insignificantly associated with 

the probability of collaboration.  To test the hypothesis that collaboration with local 

academic scientists was more important for firms at different stages of the life cycle, we 

include interaction effects of local chemistry research with age and size in columns 4 and 5.  

The coefficient on the interaction of age and nearby PhDs in chemistry is insignificant at the 

5% level.  This is slightly surprising, considering our expectation that younger firms might 

be relatively lacking in internal research capabilities and therefore more likely to benefit 

from collaboration with local scientists.  The effect of local academic chemistry research 

does not appear to vary according to firm size, however, since the interaction of firm size 

and chemistry PhDs is not significant at the 5% level.  

                                                 
25 When the age variable is included, the number of observations falls because age is only observed in the 1946 

sample. 
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VII. Statistical evidence on the influence of private industry on university programs 

Our qualitative evidence suggests that the research needs of large firms played a role 

in the evolution of at least a few universities.  Our quantitative analysis offers mixed support 

for this proposition.  Table 6 reports the results of logit regressions at the level of the 

university that examine the determinants of the adoption of a chemical engineering program 

for the first time between 1937 and 1947.  We use the full sample of universities and 

colleges drawn from the publication American Colleges and Universities, excluding 

religious seminaries, teacher’s colleges, and junior colleges.  Data on engineering programs 

in American universities are drawn from the United States Office of Education’s Bulletins.26  

The dependent variable takes on the value 1 if the university established a department of 

chemical engineering for the first time between 1937 and 1947, and 0 if not.  Universities 

that had already established programs by 1937 are omitted from the analysis.  This variable 

is regressed on a measure of pharmaceutical research in industry in the county in 1938, the 

population and number of manufacturing establishments in the county in 1940 and 1939 

respectively, and the growth of population, manufacturing, and industrial research in 

pharmaceuticals during the period.27  The results show that universities located in counties 

that were centers of research in the pharmaceutical industries in 1938 were significantly 

more likely to establish a department of chemical engineering between that year and 1947, 

even after controlling for the growth of the industry during that period.  This appears to be 

evidence of a feedback effect in which the presence nearby firms influenced the programs 

offered by universities.  Such effects were not evident, however, when we looked at 

                                                 
26  The Bulletins, part of the series “Accredited Higher Institutions” were published in 1938 and 1948. 
27 For universities in cities that fall in multiple counties, we use the average of these variables. 
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universities that began granting Ph.D.s in Chemistry during this period.  We were also 

unable to find evidence of “anchor” effects in the data (Agrawal and Cockburn, 2003; 

Feldman, 2003), in which especially large firms had a particularly large impact on the 

growth of local university programs in sciences or chemistry. 

 

VIII. Instrumental Variables Estimates 
 

Preceding sections of this paper document a statistically significant, positive 

relationship between the number of pharmaceutical industrial research laboratories in a 

county and university research in a county, after controlling for other variables likely to 

influence the location decision of R&D labs and including a county-specific fixed effect.  

These results imply that growth over time in the amount of university research (as measured 

by the number of PhDs granted) in a county was associated with growth over time in 

pharmaceutical R&D in a county.  However, because university research is also likely to 

have been stimulated by nearby industrial research (through consulting contracts, joint 

research projects, demand for graduates, etc.), we cannot necessarily infer a causal 

interpretation from this relationship.  Indeed, the stories of Chemical Engineering at the 

University of Delaware and the streptomycin royalties at Rutgers, together with the results 

presented in Table 6, illustrate the possibility of “feedback effects” from firms to 

universities during this period.  As Geiger observes, “but if the universities were dedicated 

to science, broadly speaking, by the beginning of the twentieth century, it was not yet 

evident that science was or ought to be beholden to universities.  Scientific investigation was 

undertaken in government bureaus and in semi-independent laboratories… [E]ven by 1920 
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the research universities could not be assured of being the primary locus of basic research” 

(Geiger, 1986). 

Panel estimates of the relationship between university and industrial research are 

likely to be characterized by simultaneity – research universities attracted industrial 

laboratories, and the research conducted in these laboratories affected nearby academic 

departments.  In this section, we use instrumental variables to correct for this simultaneity 

bias.  The instruments are the amount of money obtained as the proceeds of the sale of land 

and scrip granted to the state under the Morrill Act of 1862, and a dummy variable equal to 

1 if a university in the county was founded before 1800.  

 The Morrill Act established the “land-grant” colleges by giving the states public 

lands that could be sold and to finance the colleges.  A state received 30,000 acres for each 

member of its congressional delegation, and since the smallest states had at least two 

senators and one representative, the minimum land grant consisted of 90,000 acres.  The 

Hatch Act of 1887 provided funding for agricultural experiment stations, and a second 

Morrill Act in 1890 extended the land grant provisions to southern states. 

 While the amount of land granted under the Morrill Act was proportional to the size 

of the state, the sale price per acre obtained by states varied considerably, and for somewhat 

aleatory reasons.  Nevins (1963) writes that: 

“A great deal of obscurity yet surrounds the precise disposition made by some states of their 
share of the Morrill grant…Many university historians tend to pass over the disposition of 
the grants hastily…partly because the story has occasional elements of folly and rascality 
that make it embarrassing.  A number of states let the land scrip slip through their fingers; 
fingers loosed by negligent officers, pried apart by speculators, or even greased by 
corruptionists” (p. 29). 

Rhode Island was granted 120,000 acres, and asked Rev. Horace T. Love (president of 

Brown University) to select the land for sale.  He went west in the summer of 1863, and 
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came back “to report that the task was impossibly heavy, for it involved choosing lands, 

paying taxes, negotiating sales, and defending titles” and a committee of five was appointed 

by Love to take charge. The committee then sold the land to Love in 1865 for $50,000 (the 

lowest amount received by any state, and the third lowest per acre), accepting payment over 

five years with no interest. Nevins is “not astonished to learn that the sale aroused much 

criticism.”  In Pennsylvania, “Heavy pressure had come from an unholy partnership of land 

speculators, anxious to obtain a bargain, and officers of the state college, anxious to get 

funds for a new start”  Other states in which the sale of Morrill lands was bungled include 

New Jersey, New Hampshire, and Connecticut (all quotes from Nevins, 1963, p. 29-31). 

In contrast, states like New York managed to turn the grants into more significant 

endowments. Faced with a glut of land scrip and depressed land prices following the Act, 

Ezra Cornell purchased New York’s scrip and held it until prices rose.  When Cornell 

returned the land and profits to the university in 1905, the value had risen almost seven-fold, 

to $5,460,038.  California, Illinois, Iowa, Michigan, Minnesota, and Nebraska, also obtained 

higher prices per acre for their scrip.  The appendix lists the acreage granted and amount 

obtained at sale, by land grant institution.28 

The price per acre obtained for Morrill Act land grants had a long-run impact on 

university finances.  The states that obtained the most for their scrip are the ones that are 

even today home to the better-funded public universities.  However, because the price per 

acre obtained by the states varied substantially for reasons unrelated to the state’s 

attractiveness to industrial research labs seventy years hence, it constitutes a valid 

instrument.  

                                                 
28 These data come from the U.S. Office of Education’s Biennial of Higher Education, 1928. 
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The instruments vary by county – they equal zero for all counties not containing a 

public university.  There may be some concern that states placed universities in counties 

with heavy manufacturing concentration, and that for this reason the land grant instrument is 

correlated with the errors.  While it is true that states had a mandate to serve agricultural and 

manufacturing interests through public universities, we feel that this concern is misplaced 

because any influence the location of manufacturing in the mid- to late-nineteenth century 

may have had on the location of public universities is controlled for through the inclusion in 

the regression of the number of manufacturing establishments in the county.  

 Table 7a presents results of a two-stage least squares (2SLS) model in which the 

endogenous variable is log of the number of PhDs granted in a county, and the instruments 

are the original sale price received by states for land and scrip obtained through the Morrill 

Act and the dummy for universities founded before 1800.  Two sets of regressions results 

are included, one with the log of the number of labs on the left hand side, and another with 

the log of R&D employment.  We control for manufacturing, population, and year and 

region fixed effects (county or state fixed effects could not be included due to collinearity 

with the instruments).  The relationship between university research in a county and 

pharmaceutical R&D is positive and significant at the 5% level after instrumenting, whether 

research is proxied by Chemistry PhDs or Science PhDs.  The first-stage F-statistic (from 

the regression of the endogenous variable on the instruments) is 64.4 for chemistry and 76.3 

for science.  These values are well above the “rule-of-thumb” F-statistic of 10 proposed by 

Staiger and Stock (1997) as a test for weak instruments. 

 To be consistent with the rest of the estimates in the paper, which use the Negative 

Binomial model to account for the discrete, non-negative nature of the dependent variable, 
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Table 7b presents non-linear two-stage least squares estimates obtained using the 

Generalized Method of Moments (GMM).29  The GMM estimates remain positive and 

significant at the 5% level when the left-hand-side variable is the number of labs.  However, 

when we estimate the causal effect of local academic science on R&D employment in the 

county, the effect is not significant.  We also tried estimating the IV models with distance-

weighted PhDs on the right-hand-side, and obtained similar results – a positive, significant 

effect of science or chemistry PhDs when the dependent variable is the number of labs, but a 

positive, insignificant effect when the dependent variable is lab employment.  The 

instruments are also equally valid when we use distance-weighted PhDs. 

How do the effects compare to the un-instrumented effects displayed in Table 4?  In 

the fixed-effects Poisson estimates, the elasticity of the number of labs with respect to the 

number of Chemistry PhDs is 0.450, implying that a 10% increase in the number of 

Chemistry PhDs awarded in a county is associated with a 4.5% increase in the number of 

pharmaceutical research laboratories nearby, controlling for county-specific fixed effects.  

After instrumenting, the elasticity of labs with respect to Chemistry PhDs found in the 

GMM estimates in Table 7b is 0.325.  The elasticity with respect to science PhDs sees a 

similar reduction from 0.342 to 0.224. 

 

IX. Discussion 

 The 1920s, 30s, and 40s saw the diffusion of an organizational innovation in the 

form of the in-house R&D laboratory in the United States.  Also during this period, the 

modern American research university developed and collaborative linkages emerged 

                                                 
29 See Mullahy (1997) for an example of a GMM model for count data with endogenous regressors. 
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between industrial and academic researchers.  We argue that universities played an 

important role in the emergence of industrial research situated within the boundaries of the 

firm, and we present evidence that R&D labs located near universities benefited from 

increased access to academic scientists and graduates.  The results described in this paper 

characterize the relationship between universities and the pharmaceutical industry between 

1927 and 1946.  They demonstrate that industrial and academic research were co-located, 

and that proximity to university research was associated with a greater likelihood that firms 

adopt industrial research facilities and collaborate with academic scientists. 

Our qualitative and quantitative analyses provide evidence consistent with the 

possibility of feedback effects, according to which university programs were affected by the 

presence of pharmaceutical industry activity.  Specifically, our empirical results suggest that 

universities located near larger numbers of industrial research labs in chemistry and 

pharmaceuticals as of 1938 were more likely to establish new programs of chemical 

engineering by 1946. 

In an attempt to identify the causal effect of academic science on the growth of 

industrial research, we employ an instrumental variables approach to correct for simultaneity 

bias in our estimates of the impact of university research on the birth of industrial research 

laboratories.  In sum, our analyses suggest that while the presence of industrial facilities 

helped shape the direction of university research programs, there was a significant, positive, 

and causal effect running from university research to the growth of industrial research 

laboratories in the first half of the twentieth century in the United States. 



 41

References 

Acs, Z., D. Audretsch, and M. Feldman (1992) “Real Effects of Academic Research: 
Comment,” American Economic Review, 82(1), 363-367. 

Adams, J. D. (2002) "Comparative Localization of Academic and Industrial Spillovers," 
Journal of Economic Geography, 2(3):  253-278.  

Agrawal, A. and I. Cockburn (2003) “The Anchor Tenant Hypothesis: Exploring the Role 
of Large, Local, R&D-Intensive Firms in Regional Innovation Systems,” 
International Journal of Industrial Organization, 21:  1227-1253. 

American Chemical Society (1924, 1930, 1947) Directory of members - American 
Chemical Society.    Washington, D.C., American Chemical Society.  

Arora, A., A. Fosfuri, and A. Gambardella (2001) Markets for Technology: The 
Economics of Innovation and Corporate Strategy.  Cambridge, MA:  The MIT Press. 

Arora, A., A. Fosfuri, and A. Gambardella (2003) "The Division of Inventive Labor: 
Functioning and Policy Implications," working paper, presented at the NBER, Zvi 
Griliches Memorial Conference in Paris, FR. 

Council on Competitiveness (1996), Endless Frontiers, Limited Resources: U.S. R&D 
Policy for Competitiveness, Washington, D.C., Council on Competitiveness. 

Fisk, C. (1998) “Removing the 'Fuel of Interest' from the 'Fire of Genius': Law and the 
Employee-Inventor, 1830-1930,” University of Chicago Law Review, 65, 1127. 

Feldman, M. P. (2003) “The Locational Dynamics of the US Biotech Industry: 
Knowledge Externalities and the Anchor Hypothesis,” Industry and Innovation, 10: 
311 – 328. 

Feldman, M. and Y. Schreuder (1996)  “Initial advantage:  The origins of geographic 
concentration of the pharmaceutical industry in the Mid-Atlantic region,” Industrial 
and Corporate Change, Vol. 5, 839-862. 

Furman, J. (2003) “Location and Organizing Strategy? Exploring the Influence of 
Location on Organization of Pharmaceutical Research,” in Joel A.C. Baum and Olav 
Sorenson (ed.), Advances in Strategic Management, 49-88. 

Galambos, L. with J. E. Sewell (1995) Networks of Innovation: Vaccine Development at 
Merck, Sharp & Dohme, and Mulford, 1985-1995. Cambridge, UK: Cambridge 
University Press. 

Gans, J. and S. Stern (2003) “The Product Market and the Market for Ideas: 
Commercialization Strategies for Technology Entrepreneurs,” Research Policy, 
32(2), pp. 333-350. 

Geiger, R. L., (1986) To Advance Knowledge: The Growth of American Research 
Universities, 1900-1940.  New York, NY:  Oxford University Press. 

Goldin, C.  and L. F. Katz  (1999) “The Shaping of Higher Education: The Formative 
Years in the United States, 1890 to 1940,”  Journal of Economic Perspectives, Winter 
1999, p. 37-62 



 42

Hounshell, D. A. and J. K. Smith, Jr. (1988), Science and Corporate Strategy: DuPont 
R&D, 1902-1980.  New York: Cambridge University Press. 

Israel, P.  (2004) “Waksman – Biography,” 
http://www.scc.rutgers.edu/njh/SciANDTech/Waksman/biog.htm (accessed July 16,  
2004). 

Jaffe, A. “Real Effects of Academic Research” (1989), American Economic Review, 79 
(5), p. 957-70.  

Jaffe, A., M. Trajtenberg and R. Henderson (1993) “Geographic Localization of 
Knowledge Spillovers as Evidenced by Patent Citations,” The Quarterly Journal of 
Economics, 108 (3), p 577-98. 

Journal of the American Medical Association (1915) “Special Report of the Work of the 
Council on Pharmacy and Chemistry,” 65, p. 69. 

Lamoreaux, N. and K. Sokoloff (1996) “Long-term change in the organization of 
inventive activity,” Proceedings of the National Academy of Sciences, 93, 12686-
12692. 

Lamoreaux, N. and K. Sokoloff (2002) “Intermediaries in the U.S. Market for 
Technology, 1870-1920”, NBER Working Paper no.9017 

Lewis, S. (1925) Arrowsmith.  New York, NY:  Grosset and Dunlap. 

Liebenau, J., Higby, G. J., and E. C. Stroud (1988) Pill Peddlers:  Essays on the History 
of the Pharmaceutical Industry.  Madison, WI:  American Institute of the History of 
Pharmacy. 

Mahoney, T. (1959) The Merchants of Life.  New York, NY:  Harper Brothers. 

Mann, C. C. and M. L. Plummer (1991) The Aspirin Wars. New York, NY: Knopf. 

Mowery, D. and N. Rosenberg (1998) Paths of Innovation: Technological Change in 
20th-Century America, Cambridge; New York: Cambridge University Press. 

Mowery, D. (1983) “Industrial Research and Firm Size, Survival, and Growth in 
American Manufacturing, 1921-46: An Assessment”. Journal of Economic History, 
43 (4), p. 953-980. 

Mowery, D. (1990) “The Development of Industrial Research in U.S. Manufacturing,” 
American Economic Review, 80(2), p. 345-349 

Mowery, D., R. Nelson, B. Sampat, and A. Ziedonis (2003) “Ivory Tower” and 
Industrial Innovation: University-Industry Technology Transfer Before and After the 
Bayh-Dole Act in the United States, Manuscript 

Mullahy, J. (1997) “Instrumental-Variable Estimation of Count Data Models: 
Applications to Models of Cigarette Smoking Behavior,” Review of Economics and 
Statistics, 79, 586–593. 

Munroe, J. (2004) “The University of Delaware: A History,” 
http://www.udel.edu/PR/munroe/ (accessed, July 1-7, 2004) 



 43

Murmann, J. P. (2003) Knowledge and Competitive Advantage:  The Coevolution of 
Firms, Technology, and National Institutions.  New York, NY:  Cambridge 
University Press. 

National Research Council (1921) Bulletin 16, “Research Laboratories in Industrial 
Establishments of the United States, Including Consulting Research Laboratories”, 
Washington, D.C.: National Research Council. 

National Research Council (1927-85) “Industrial Research Laboratories of the United 
States”, Washington, D.C.: National Research Council. 

Nelson, R. and N. Rosenberg (1994) “American Universities and Technical Advance in 
Industry,” Research Policy, 23, 323-348. 

Nelson, R. R. and G. Wright (1992) “The Rise and Fall of American Technological 
Leadership,” Journal of Economic Literature, 30(4): 1931-1964. 

Nevins, A. (1962) The State Universities and Democracy, Urbana: University of Illinois 
Press.  

Parascandola, J. (1985) “Industrial Research Comes of Age:  The American 
Pharmaceutical Industry, 1920-1940,” Pharmacy in History, 27(1), pp. 12-21.  

Peretto, P. (1998). “Technological Change, Market Rivalry, and the Evolution of the 
Capitalist Engine of Growth”, Journal of Economic Growth, 3 (1), p. 53-80. 

Rosenberg, N. (2000) “America’s University/Industry Interfaces, 1945-2000”, 
Manuscript, Stanford University. 

Staiger, D. and Stock, J. (1997) "Instrumental Variables Regression with Weak 
Instruments,” Econometrica, 65(3), May 1997, 557-586. 

Stuart, T. and O. Sorensen (2003), “Liquidity Events and the Geographic Distribution of 
Entrepreneurial Activity”, Administrative Science Quarterly, 48 (2003): 175-201 

Swann, J.P. (1988) Academic Scientists and the Pharmaceutical Industry, Baltimore: 
Johns Hopkins University press. 

Swann, J.P. (1990) “Universities, Industry, and the Rise of Biomedical Collaboration in 
America,” in Liebenau et al. (ed.) Pill Peddlers:  Essays on the History of the 
Pharmaceutical Industry.  Madison, WI:  American Institute of the History of 
Pharmacy, pp. 73-90. 

Teece, D. (1988) “Technological Change and the Nature of the Firm," in G. Dosi, C. 
Freeman, R. Nelson, G. Silverberg, and L. Soete (eds.), Technical Change and 
Economic Theory.  London:  Pinter, 256-281. 

Haynes, W. (1928) Who’s Who in Chemistry.  New Haven, CT: Haynes & George Co. 

Zucker, L., M. Brewer, and M. Darby (1998) “Intellectual Capital and the Birth of U.S. 
Biotechnology Enterprises,” American Economic Review, vol. 88, no. 1, pp. 290-306 



 44

Table 1: Pharmaceutical Research Labs and Academic Collaborators, 1938 
 

Laboratory Location University  

Bauer and Black Chicago, IL Northwestern, U Chicago, U Michigan 

Breon and Company, Inc., 
George A. Kansas City, MO U Nebraska, U Kansas, U Cincinnati 

Bristol-Meyers Company Hillside, NJ Carnegie Institute  Technology, Rutgers, 
Stanford 

Carbide and Carbon 
Chemicals Corporation 

South Charleston, 
WV Mellon Institute  Industrial Research 

Commercial Solvents 
Corporation Terre Haute, IN Purdue University 

Drackett Company Cincinnati, OH Ohio State University 

Emerson Drug Company Baltimore, MD U Maryland; U Illinois; Yale 

Endo Products, Inc. New York, NY NYU 

Harshaw Chemical Company Cleveland, OH Western Reserve University 

Hynson, Westcott, and 
Dunning, Inc. Baltimore, MD John Hopkins University, U Maryland 

Jergens Company, Andrew Cincinnati, OH University  Cincinnati 

Kessler Chemical Corporation Philadelphia, PA Philadelphia College  Pharmacy and 
Science 

LaMotte Chemical Products 
Company Baltimore, MD Western Reserve University 

Merck and Company, Inc Rahway, NJ 

U California; John Hopkins; U 
Pennsylvania; Princeton; NYU; Tulane; 
MIT; Philadelphia College  Pharmacy; 
Cornell, Rutgers 

Monsanto Chemical 
Corporation 

St. Louis, MO; 
Dayton, OH 

U Cincinnati, U Illinois, Michigan U, U 
Nevada, U Wisconsin, and Princeton 

National Oil Products 
Company, Inc. Harrison, NJ Harvard Medical School; U Iowa; 

Lehigh; Columbia 

Sharp and Dohme, Inc Glenoden, PA and 
Baltimore, MD 

U Pennsylvania, Bryn Mawr College, 
Johns Hopkins Hospital, Philadelphia 
College  Pharmacy and Science; U 
California, Yale,  Northwestern, 
Rochester 

U.S. Industrial Alcohol 
Company 

Stamford, CT and 
Baltimore, MD 

Kalamazoo College, Stanford, Temple, U 
Connecticut, U Chicago, U Detroit, U 
Michigan, U Tennessee 

 
Source: Industrial Research Laboratories of the United States, 1938 
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Table 2a:  Descriptive Statistics 
 Obs Mean Std. Dev. Min Max 
Year 9942 37.02 7.79 27 46.00 
County-Level data      
County Population  
(in hundreds of thousands) 

9304 0.04 0.15 0.000042 4.29 

County Manufacturing Establishments 
(in hundreds) 

9304 0.72 5.12 0 263.28 

Pharma laboratories 9304 0.07 0.60 0 28.00 
R&D personnel 9304 2.20 33.86 0 1712.00 
Patents 9304 0.13 4.02 0 236.00 
Cooperative arrangements with 
universities 

9304 0.02 0.43 0 28.00 

Count of Universities 9304 0.04 0.28 0 6.00 
PhDs granted in Science  
(continuous distance measure) 

9318 1.58 2.33 0 40.08 

PhDs granted in Chemistry (continuous 
distance measure) 

9318 0.58 0.86 0 17.57 

PhDs granted in Science in County 9304 0.59 6.33 0 146.91 
PhDs granted in Chemistry in County 9304 0.21 2.20 0 44.45 
Firm-Level data      
R&D personnel 631 28.10 66.27 0 825.00 
Year firm founded  
(only available for 1946 data) 

39 1886.03 31.31 1828 1924.00 

Firm Age  
(only available for 1946 data) 

631 10.68 19.13 0 118.00 

Patents received 625 1.51 9.88 0 118.00 
Cooperative Agreement with University  
(not available for 1927 data) 

392 0.54 0.50 0 1.00 

University-Level data      
Total PhDs granted 342 16.97 29.23 0 171.55 
PhDs granted in Science 342 12.58 19.92 0 105.91 
PhDs granted in Chemistry 342 4.60 7.32 0 43.45 

 
Table 2b:  Pharmaceutical labs per 100,000 population 

 Obs Std. Dev. Mean 
Counties without a PhD-granting university 

1927 3048 0.066 0.383 
1938 3015 0.033 0.423 
1946 2997 0.054 0.672 

    
Counties with a PhD-granting university  

1927 59 0.746 1.615 
1938 84 0.762 1.986 
1946 101 1.040 1.969 

    
Counties with a university granting PhDs in Chemistry 

1927 48 0.729 1.647 
1938 73 0.836 2.095 
1946 90 1.056 1.928 
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Table 3a:  Location of pharmaceutical research, 1938-1946 
Negative Binomial regressions, controlling for initial conditions 

 
 (1) (2) (3) (4) (5) 

0.401   0.555 0.310 
Chemistry PhDs in county† 

(0.122)***   (0.156)*** (0.123)** 
0.227    0.318 

1927 Chemistry PhDs in county † (0.261)    (0.219) 
 0.318 0.416   

Science PhDs in county†  (0.096)*** (0.121)***   
 0.132    

1927 Science PhDs in county†  (0.153)    
2.307 2.312 2.327 2.327 2.177 

1927 Pharma Labs in county† (0.176)*** (0.178)*** (0.181)*** (0.182)*** (0.160)***
-2.273 -2.281 -2.329 -2.321 -2.458 

Population† (0.578)*** (0.573)*** (0.574)*** (0.577)*** (0.548)***
0.804 0.803 0.809 0.807 0.788 

Manufacturing† (0.077)*** (0.077)*** (0.076)*** (0.077)*** (0.074)***
    0.625 

ACS section 
    (0.205)***

-0.947 -0.949 -0.941 -0.935 -0.918 
Year = 1938 (0.169)*** (0.167)*** (0.166)*** (0.167)*** (0.157)***

-6.121 -6.122 -6.152 -6.142 -6.125 
Constant (0.297)*** (0.295)*** (0.292)*** (0.294)*** (0.264)***
Observations 6197 6197 6197 6197 6197 
Log Likelihood -833.44 -834.48 -835.06 -834.38 -831.95 

† in logs 
Robust standard errors in parentheses;  * significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 3b: Location of R&D, dependent variable = laboratory employment in county i in year t 
 

 (1) (2) (3) (4) (5) (6) 
 Using all labs Using only first lab listed 

-0.578  0.077 0.930  1.302    
Chemistry PhDs in county† 

(0.505)  (0.214) (0.590)  (0.406)***
1.005   0.630   

1927 Chemistry PhDs in county † (0.683)   (0.543)   
 -0.087   0.919  

Science PhDs in county†  (0.296)   (0.324)***  
 0.278   -0.090  

1927 Science PhDs in county†  (0.380)   (0.298)  
1.117 1.114 1.117 1.009 1.032 1.023    

1927 R&D Workers in county† (0.159)*** (0.158)*** (0.155)*** (0.252)*** (0.249)*** (0.247)***
0.257 0.211 0.210 -2.274 -2.324 -2.300    

Population† (2.699) (2.711) (2.722) (2.030) (2.027) (2.023) 
1.116 1.118 1.125 1.615 1.620 1.619    

Manufacturing† (0.206)*** (0.208)*** (0.205)*** (0.213)*** (0.212)*** (0.211)***
-3.782 -3.772 -3.771 -1.848 -1.847 -1.845    

Year = 1938 (0.449)*** (0.447)*** (0.446)*** (0.483)*** (0.483)*** (0.482)***
-2.562 -2.576 -2.593 -5.922 -5.939 -5.933    

Constant (0.774)*** (0.778)*** (0.766)*** (0.823)*** (0.820)*** (0.818)***
Observations 6197 6197 6197 6197 6197 6197 
Log Likelihood -2373.00 -2373.24 -2373.33 -1848.2039 -1848.32 -1848.48 

 
† in logs 
Robust standard errors in parentheses 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 4: Conditional Fixed Effects Negative Binomial Regressions, 1927, 1938 and 1946 
 

Dependent variable is either the number of laboratories in county i in year t, or the total employment 
of laboratories in the county. 

 
(1) (2) (3) (4) (5) (6) 

 Laboratories Laboratories Laboratories R&D 
Workers 

R&D 
Workers 

R&D 
Workers 

0.342      Science PhDs in 
county† (0.150)**      

 0.450  0.145   Chemistry PhDs in 
county†  (0.181)**  (0.104)   

    0.038  Chemistry PhDs in 
county     (0.012)***  

  0.188   0.186 Distance-weighted 
Chemistry PhDs   (0.065)***   (0.053)***

-3.690 -3.617 -2.042 0.624 0.471 0.414 
Population† 

(1.337)*** (1.337)*** (1.566) (0.607) (0.623) (0.630) 

0.436 0.446 0.257 0.532 0.529 0.460 
Manufacturing† 

(0.272) (0.272) (0.270) (0.127)*** (0.127)*** (0.128)***

2.237 2.121 2.597 -5.507 -5.428 -5.261 
Constant 

(1.702) (1.690) (1.789) (0.603)*** (0.600)*** (0.596)***

Observations 788 788 781 644 644 640 
Number of groups 
(county state) 257 257 255 209 209 208 

Log Likelihood -411.70 -411.18 -404.82 -821.30 -817.68 -812.79 
 

† in logs  
Year dummies included 
Standard errors in parentheses 
* significant at 10%; ** significant at 5%; *** significant at 1%      
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Table 5 Determinants of Cooperative Research 

 
Logit estimates 
Dependent variable: COOP = 1 if firm has cooperative agreement with University  

 
 (1) (2) (3) (4) (5) 

Science PhDs† 0.376***     

 (0.061)     

Chemistry PhDs†  0.503 0.652 0.517 0.574 

  (0.084)*** (0.135)*** (0.221)** (0.235)** 

R&D staff† 0.186** 0.177 -0.005 -0.005 0.181 

 (0.082) (0.082)** (0.103) (0.104) (0.084)** 

Age    0.011 0.008  

   (0.006)* (0.007)  

Age X chemistry PhDs†    0.005  

    (0.006)  

R&D† X chemistry PhDs†     -0.015 

     (0.045) 

Year = 1946 1.495*** 1.474   1.485 

 (0.274) (0.273)***   (0.276)*** 

Constant -2.158*** -2.090 -0.364 -0.301 -2.115 

 (0.310) (0.305)*** (0.358) (0.378) (0.322)*** 

Observations 528 528 351 351 528 

Log likelihood -319.17 -319.75 -220.11 -219.87 -319.70 
 

† in logs 
Robust standard errors in parentheses      
* significant at 10%; ** significant at 5%; *** significant at 1%      
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Table 6: New Chemical Engineering programs, 1937-47 
 

Dependent variable = 1 if the university began offering degrees in chemical engineering 
between 1937 and 1947 
  

 (1) (2) (3) (4) 

Pharma labs in 1938 0.249 0.285   

 (0.113)** (0.115)**   

Pharma R&D employment in 1938   0.008 0.009 

   (0.004)** (0.004)** 

Manufacturing in 1939  0.004 -0.273 -0.045 -0.393 

 (0.460) (0.514) (0.469) (0.536) 

Population in 1940 -0.187 0.171 -0.023 0.364 

 (0.609) (0.643) (0.604) (0.651) 

Growth of Population, 1940-1950  1.638  1.531 

  (1.092)  (1.117) 
Growth of Manufacturing, 1939-
1947  -0.817  -1.044 

  (0.642)  (0.647) 

Growth of pharma labs, 1938-1946  -0.265   

  (0.137)*   
Growth in R&D employment, 
1938-1946    -0.000 

    (0.002) 

Constant -1.429 -4.261 -3.005 -5.834 

 (4.916) (5.135) (4.845) (5.134) 

Observations 867 867 867 867 
 
Robust standard errors in parentheses      
* significant at 10%; ** significant at 5%; * significant at 1% 
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Table 7a: 2SLS instrumental variables estimates 
 (1) (2) (3) (4) 

 Number of labs† Number of labs† R&D 
employment† 

R&D 
employment† 

Chemistry PhDs † 0.083  0.162  
 (0.038)**  (0.110)  
Science PhDs †  0.055  0.113 
  (0.025)**  (0.073) 
Population† 1.350 1.356 3.339 3.340 
 (0.143)*** (0.142)*** (0.387)*** (0.385)*** 
Manufacturing† -0.009 -0.009 -0.009 -0.009 
 (0.003)*** (0.003)*** (0.009) (0.009) 
Constant 0.037 0.039 0.027 0.030 
 (0.009)*** (0.009)*** (0.031) (0.031) 
Observations 9304 9304 9304 9304 
First-stage F stat 64.4 76.29 64.4 76.29 
Over-id test stat 1.458 1.613 0.006  0.000 
p-value 0.227 0.204 0.939 0.989 

 
Table 7b: GMM (non-linear 2SLS) instrumental variables estimates 

 Number of labs Number of labs R&D 
employment 

R&D 
employment 

Chemistry PhDs † 0.326***  0.298  
 (0.136)  (0.405)  
Science PhDs †  0.225**  0.240 
  (0.097)  (0.260) 
Manufacturing† 0.827*** 0.820*** 0.830*** 0.831*** 
 (0.097) (0.096) (0.155) (0.151) 
Population† -0.258 -0.212 -0.479 -0.535 
 (0.407) (0.3919) (0.935) (0.863) 
Constant -5.776*** -5.733*** -3.483*** -3.481*** 
 (0.460) (0.454) (0.774) (0.755) 
Observations 9304 9304 9304 9304 
Over-ID test 0.247  0.192  1.461 1.359  
p-value  0.619 0.661  0.227 0.244 

 

† in logs.  Year dummies included. Robust standard errors in parentheses     
* significant at 10%; ** significant at 5%; *** significant at 1%  
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Appendix A: Introduction from the 1927 National Research Council survey 
 
“The continued demand for information regarding industrial research laboratories has made 
it seem advisable to issue a second revision of the list originally published in Number 2 and 
revised in Number 16 of the Bulletin of the National Research Council.  The original 
publication, compiled in 1920 by Mr. Alfred D. Flinn, Secretary of the Engineering 
Foundation, listed about 300 industrial laboratories.  The first revision prepared in August 
1921, by Miss Ruth Cobb of the Research Information Service, listed 526 laboratories.  The 
present revision contains data for 1,000 laboratories. 
 As in the earlier lists, all information given in this publication has been obtained 
directly by correspondence and statements are based upon information supplied by 
laboratories….In preparing the mailing list of new companies to which questionnaires 
should be sent, the Research Information Service sought the cooperation of the secretaries of 
the local divisions of the American Chemical Society, the American Institute of Electrical 
Engineers, the American Society of Civil Engineers and the American Society of 
Mechanical Engineers; most of the secretaries supplied a list of the industrial laboratories in 
their community…” 
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Appendix B: Data on Morrill Act land grants 

 

date of state 
acceptance 

provisions of 
Morrill Act 

number of acres 
of land or scrip 
received Under 

Morrill Act 

original total sale 
price received by 

states for land 
and scrip 

date of 
organization of 

land-grant 
college 

date of opening 
of land-grant 

college to 
students 

Cornell U 1863 990,000 1,688,576* 1865 1868 
Michigan  State 1863 240,000 991,673 1855 1857 
Oklahoma Agr and Mech Coll 1890 350,000 835,637** 1890 1891 
U California 1866 150,000 732,233 1868 1869 
Iowa State Coll 1862 240,000 686,817 1858 1859 
U Illinois 1867 480,000 648,442 1867 1868 
U Minnesota 1863 120,000 579,430 1851 1851 
U Nebraska 1867 90,800 560,072 1869 1871 
Montana State Coll 1889 140,000 533,148 1893 1893 
Kansas State Agr Coll 1863 97,682 491,746 1863 1863 
North Dakota Agr Coll 1889 130,000 455,924 1890 1891 
Penn State Coll 1863 780,000 439,186 1855 1859 
U Missouri 1863 330,000 363,441 1839 1841 
Ohio State U 1864 630,000 340,906 1870 1873 
U Wisconsin 1863 240,000 303,594 1848 1849 
Virginia Agr and Mech Coll 1870 300,000 285,000 1872 1872 
U Tennessee 1868 300,000 271,875 1794 1794 
State Coll of Washington 1889 900,000 247,608 1890 1892 
Georgia State Coll Agri 1866 270,000 242,202 1866 1872 
Massachusetts Agr Coll 1863 360,000 236,287 1863 1867 
Alabama Polytechnic 1867 240,000 216,000 1872 1872 
Purdue U 1865 390,000 212,238 1869 1874 
Oregon Agr Coll 1868 90,000 202,113 1855 1865 
Agr Coll Utah 1888 200,000 194,136 1888 1890 
Mississippi Agr & Mech Coll 1866 210,000 188,028 1878 1880 
Colorado Agr College 1879 916,000 185,956 1877 1879 
Louisiana State U 1869 210,000 182,630 1874 1874 
Agr & Mech Coll of Texas 1866 180,000 174,000 1871 1876 
U Kentucky 1863 330,000 164,960 1879 1880 
North Carolina State U 1889 270,000 135,000 1887 1889 
Clemson Agricultural Coll 1868 180,000 130,500 1889 1893 
U Idaho 1890 90,000 129,615 1889 1892 
South Dakota State Coll 1889 160,000 128,804 1881 1884 
U Vermont 1862 150,000 122,626 1781 1801 
U Maine 1863 210,000 116,359 1865 1868 
Rutgers U 1863 210,000 115,945 1766 1771 
U Maryland 1864 210,000 112,504 1856 1859 
U Nevada 1866 90,000 107,363 1873 1874 
West Virginia U 1863 150,000 90,000 1867 1868 
Conn Agr Coll 1862 90,000 83,000 1867 1869 
U Delaware 1867 90,000 83,000 1867 1869 
U Florida 1870 90,000 80,000 1870 1884 
U New Hampshire 1863 150,000 80,000 1866 1868 
U Wyoming 1889 90,000 73,355 1886 1887 
Rhode Island State Coll 1863 120,000 50,000 1888 1890 
Alaska Agr Col & School of Mines 1929 336,000  1922 1922 
U Arizona 1910 150,000  1885 1922 
U Arkansas 1864 150,000  1885 1891 
U Hawaii    1907 1908 
MIT    1861 1865 
New Mexico Coll of Agr & Mech  1898 250000  1889 1890 

* scrip bought by Mr Cornell yielding later through resale $5460038 for institution 
** $103482 cash and $732155 deferred payments on lands sold as of 1916 
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Figure 1:  Founding Dates of Public Universities  
(using data from 1924 Biennial of Education data Sample) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Founding Dates of Private Universities 

(using data from 1924 Biennial of Education data Sample) 
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Figure 3:   Founding Dates of Industrial Research Labs 
(using data from 1946 National Research Council data Sample) 
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Figure 4: The Location of Industrial Research in the United States, 1927 
(Sizes of circles indicate the number of labs in the city/town) 

 
 

Figure 5: PhD-granting institutions, weighted by degrees granted, 1928-37 

 
 




