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ABSTRACT

The supply/demand of a security in the market is an intertemporal, not a static, object and its

dynamics is crucial in determining market participants' trading behavior. Previous studies on the

optimal trading strategy to execute a given order focuses mostly on the static properties of the

supply/demand. In this paper, we show that the dynamics of the supply/demand is of critical

importance to the optimal execution strategy, especially when trading times are endogenously

chosen. Using a limit-order-book market, we develop a simple framework to model the dynamics

of supply/demand and its impact on execution cost. We show that the optimal execution strategy

involves both discrete and continuous trades, not only continuous trades as previous work suggested.

The cost savings from the optimal strategy over the simple continuous strategy can be substantial.

We also show that the predictions about the optimal trading behavior can have interesting

implications on the observed behavior of intraday volume, volatility and prices.
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1 Introduction

It has long being documented that the supply/demand of a security in the market is not

perfectly elastic.1 The limited elasticity of supply/demand or liquidity can significantly affect

how market participants trade, which in turn can affect the supply/demand itself and the

prices. Thus, to understand how market participants trade is important to our understanding

of how the securities market functions and how security prices are determined. We can

approach this problem by first looking at the optimal strategy to execute a given order, also

referred to as the optimal execution problem. Many empirical studies have shown that this

is a problem confronted by institutional investors who need to execute large orders and often

break up trades in order to manage the trading cost.2

Several authors have formulated the problem of optimal execution and provided solutions

to the optimal execution strategy. For example, Bertsimas and Lo (1998) propose a static

price impact function and solve for the optimal execution strategy to minimize the expected

cost of executing a given order. Almgren and Chriss (2000) include risk considerations in

a similar setting using a mean-variance objective function.3 The framework used in these

work has two main features. First, the price impact of a trade is described by a static

price impact function, which depends only on the size of the trade and does not reflect the

intertemporal properties of the security’s supply/demand. For example, the price impact

of two consecutive trades depends merely on their total size, not on their relative sizes and

the time between. Second, this framework adopts a discrete-time setting so that the times

to trade are fixed at certain intervals. A discrete-time setting is clearly undesirable for

such a problem because the timing of trades is an important choice variable and should be

determined optimally. A natural way to address this issue would be to take a continuous-time

limit of the discrete-time formulation, but this leads to a degenerate situation in which the

execution cost becomes strategy independent. By introducing an additional cost penalizing

speedy trades, Huberman and Stanzl (2000) avoid this degeneracy in the continuous-time

limit (see also Almgren (2003)). However, imposing such a cost restricts the execution

strategy to continuous trades, which is in general sub-optimal.

We show in this paper that the inability of the conventional models to find an optimal

execution strategy in a general class of feasible strategies arises from the use of a static

price-impact function to describe the execution cost. Such a price impact function fails to

1See, for example, Holthausen, Leftwitch and Mayers (1987, 1990), Shleifer (1986), Scholes (1972). For the
more recent work, see also Greenwood (2004), Kaul, Mehrotra and Morck (2000), Wugler and Zhuravskaya
(2002).

2See, for example, Chan and Lakonishok (1993, 1995, 1997), Keim and Madhavan (1995, 1997).
3See also, Almgren (2003), Dubil (2002), Subramanian and Jarrow (2001), among others.
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capture the intertemporal nature of supply/demand of a security in the market. For example,

when we consider the execution of a buy order X, the static price impact function describes

the current supply of X and its average price. It does not tell us what the supply will be

over time in response to a sequence of trades. In general, the supply at future times will

depend on the sequence of buy (and sell) orders executed so far, in particular, their timing

and sizes. Given that optimal execution is about how to allocate trades over time, the

intertemporal properties of the supply/demand are at the heart of the problem and essential

in analyzing the optimal execution strategy. Incorporated these properties in our framework,

we show that when the timing of trades is chosen optimally, the optimal execution strategy

differs significantly from those suggested in earlier work. It involves a mixture of discrete

and continuous trades. Moreover, the characteristics of the optimal execution strategy are

mostly determined by the dynamic properties of the supply/demand rather than its static

shape.

In order to describe the supply/demand dynamics, we consider a limit order book market

and construct a dynamic model of the limit order book. We then formulate the optimal

execution problem using this framework and solve for the optimal strategy. We show that

the optimal strategy typically involves a discrete trade at first, which shifts the limit order

book away from its steady state. Such a deviation attracts new orders onto the book. The

initial trade size is chosen to draw enough new orders at desirable prices. A sequence of

continuous trades will then follow to pick off the new orders and keep the inflow. At the end

of the trading horizon, a discrete trade is executed to finish off any remaining order since

future demand/supply is no longer of concern. The combination of discrete and continuous

trades for the optimal execution strategy is in sharp contrast to the strategy obtained in

previous work, which involves only continuous trades. We also show that the saving from

the optimal strategy with respect to those in previous work is substantial. Moreover, we find

that the optimal strategy depends primarily on the dynamic properties of the limit order

book and is not very sensitive to the static price-impact function, which is what previous

work focused on. In particular, the speed at which the limit order book rebuilds itself after

being hit by a trade, which is also referred to as the resilience of the book, plays a critical

role in determining the optimal execution strategy and the cost it saves.

Our predictions about optimal trading strategies lead to interesting implications about

the behavior of trading volume, liquidity and security prices. For example, it suggests

that the trading behavior of large institutional traders may contribute to the observed U-

shaped patterns in intraday volume, volatility and bid-ask spread. It also suggests that

these patterns can be closely related to institutional ownership and the resilience of the

supply/demand of each security.
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The paper is organized as follows. Section 2 states the optimal execution problem. Section

3 introduces the limit-order-book market and a model for the limit order book dynamics. In

Section 4, we show that the conventional setting in previous work can be viewed as a special

case of our limit-order-book framework. We also explain why the stringent assumptions in the

conventional setting lead to its undesirable properties. In Section 5, we solve the discrete-

time version of the problem within our framework. We also consider its continuous-time

limit and show that it is economically sensible and properly behaved. Section 6 provides

the solution of the optimal execution problem in the continuous-time setting. In Section

7, we analyze the properties of the optimal execution strategy and their dependence on

the dynamics of the limit order book. We also compare it with the strategy predicted by

the conventional setting. In addition, we examine the empirical implications of the optimal

execution strategy. Section 8 discusses possible extensions of the model. Section 9 concludes.

All proofs are given in the appendix.

2 Statement of the Problem

The problem we are interested in is how a trader optimally executes a large order. To fix

ideas, let us assume that the trader has to buy X0 units of a security over a fixed time

period [0, T ]. Suppose that the trader ought to complete the order in N + 1 trades at times

t0, t1, . . . , tN , where t0 = 0 and tN = T . Let xtn denote the trade size for the trade at tn. We

then have
N∑

n=0

xtn = X0. (1)

A strategy to execute the order is given by the number of trades, N +1, the set of times to

trade, {0 ≤ t0, t1, . . . , tN−1, tN ≤ T} and trade sizes {xt0 , xt1 , . . . , xtN : xtn ≥ 0 ∀ n and (1)}.
Let ΘD denote the set of these strategies:

ΘD =

{
{xt0 , xt1 , . . . , xtN} : 0 ≤ t0, t1, . . . , tN ≤ T ; xtn ≥ 0 ∀ n;

N∑
n=0

xtn =X0

}
. (2)

Here, we have assumed that the strategy set consists of execution strategies with finite num-

ber of trades at discrete times. This is done merely for easy comparison with previous work.

Later we will expand the strategy set to allow uncountable number of trades continuously

placed over time.

Let P̄n denote the average execution price for trade xtn . We assume that the trader
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chooses his execution strategy to minimize the expected total cost of his purchase:

min
x∈ΘD

E0

[
N∑

n=0

P̄nxn

]
. (3)

For simplicity, we have assumed that the trader is risk-neutral and cares only about the

expected value not the uncertainty of the total cost. We will incorporate risk considerations

later.

The solution to the trader’s optimal execution strategy crucially depends on how his

trades impact the prices. It is important to recognize that the price impact of a trade has

two key dimensions. First, it changes the security’s current supply/demand. For example,

after a purchase of x units of the security at the current price of P̄ , the remaining supply of

the security at P̄ in general decreases. Second, a change in current supply/demand can lead

to evolutions in future supply/demand, which will affect the costs for future trades. In other

words, the price impact is determined by the full dynamics of supply/demand in response

to a trade. Thus, in order to fully specify the optimal execution problem, we need to model

the supply/demand dynamics.

3 Limit Order Book and Supply/Demand Dynamics

The actual supply/demand of a security in the market place and its dynamics depend on

the actual trading process. From market to market, the trading process varies significantly,

ranging from a specialist market or a dealer market to a centralized electronic market with a

limit order book. In this paper, we consider the limit-order-book market, which is arguably

the closest, at least in form, to the text-book definition of a centralized market.

3.1 Limit Order Book (LOB)

A limit order is a order to trade a certain amount of a security at a given price. In a

market operated through a limit-order-book, thereafter LOB for short, traders post their

supply/demand in the form of limit orders to a electronic trading system.4 A trade occurs

when an order, say a buy order, enters the system at the price of an opposite order on the

book, in this case a sell order, at the same price. The collection of all limit orders posted

can be viewed as the total demand and supply in the market.

4The number of exchanges adopting an electronic trading system with posted orders has been increasing.
Examples include NYSE’s OpenBook program, Nasdaq’s SuperMontage, Toronto Stock Exchange, Vancou-
ver Stock Exchange, Euronext (Paris, Amsterdam, Brussels), London Stock Exchange,Copenhagen Stock
Exchange, Deutsche Borse, and Electronic Communication Networks such as Island. For the fixed income
market, there are, for example, eSpeed, Euro MTS, BondLink and BondNet. Examples for the derivatives
market include Eurex, Globex, and Matif.
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Let qA(P ) be the density of limit orders to sell at price P and qB(P ) the density of limit

orders to buy at price P . The amount of sell orders in a small price interval [P, P +dP ) is

qA(P )(P +dP ). Typically, we have

qA(P ) =

{
+, P ≥ A

0, P < A
and qB(P ) =

{
0, P > B

+, P ≤ B

where A ≥ B are the best ask and bid prices, respectively. We define

V = (A+B)/2, s = A−B (4)

where V is the mid-quote price and s is the bid-ask spread. Then, A = V + s/2 and

B = V −s/2. Because we are considering the execution of a large buy order, we will focus

on the upper half of the LOB and simply drop the subscript A.

In order to model the execution cost for a large order, we need to specify the initial LOB

and how it evolves after been hit by a series of buy trades. Let the LOB (the upper half of

it) at time t be q(P ; Ft; Zt; t), where Ft denotes the fundamental value of the security and

Zt represents the set of state variables that may affect the LOB such as past trades. We

will consider a simple model for the LOB, to capture its dynamic nature and to illustrate

their importance in analyzing the optimal execution problem, and return to its extensions to

better fit the empirical LOB dynamics later.5 In particular, we assume that the fundamental

value the security Ft follows a Brownian motion, reflecting the fact that in absence of any

trades, the mid-quote price may change due to news about the fundamental value of the

security. Thus, Vt = Ft in absence of any trades and the LOB maintains the same shape

except that the mid-point, Vt, is changing with Ft. In addition, we assume that the only

set of relevant state variables is the history of past trades, which we denote by x[0, t], i.e.,

Zt = x[0, t].

At time 0, we assume that the mid-quote is V0 = F0 and LOB has a simple block shape

q0(P ) ≡ q(P ; F0; 0; 0) = q 1{P≥A0}

where and A0 = F0+s/2 is the initial ask price and 1{z≥a} is an indicator function:

1{z≥a} =

{
1, z ≥ a

0, z < a

In other words, q0 is a step function of P with a jump from zero to q at the ask price

5There is an extensive empirical literature on the dynamics of LOB. See, for example, Ahn, Bae and Chan
(2000) for the Hong Kong Stock Exchange, Biais, Hillion and Spatt (1995) for the Paris Bourse, Bloomfield,
O’Hara and Saar (2004) for an experimental market setting, Chung, Van Ness and Van Ness (1999) for the
NYSE, Hasbrouck and Saar (2002) for the Island ECN, Hollfield, Miller and Sandas (2003) for the Stockholm
Stock Exchange and Griffiths, Smith, Turnbull and White (2000) for the Toronto Stock Exchange.
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A0 = V0+s/2 = F0+s/2. The first panel in Figure 1 shows the shape of the limit order book

at time 0.

P P P P P

q q q q q

q (p) q (p) q (p) q (p) q (p)t t t t t

A =v +s/2

v +s/2 v +s/2 v +s/2 A =v +s/2

t t

t t t t t

t=t t=t t=t t=t t=t
0 0+ 1 2 3

A

A

A

t

t

t

Figure 1: The limit order book and its dynamics. This figure illustrates how the sell side of
limit order book evolves over time in response to a trade. Before the trade at time t0 = 0,
the limit order book is full at the ask price is A0 = V0+s/2, which is shown in the first
panel form the left. The trade of size x0 at t = 0 “eats off” the orders on the book with
lowest prices and pushes the ask price up to A0+ so that A0+ = (F0+s/2) + x0/q, which is
shown in the second panel. During the following periods, new orders will arrive at the ask
price At, which will fill up the book and lower the ask price, until it converges to its new
steady state At = Ft + λx0 + s/2, which is shown in the last panel on the right. For clarity,
we assume that there are no fundamental shocks.

Now we consider a trade of size x0 at t = 0. The trade will “eat off” all the sell orders

with prices from F0+s/2 up to A0+ , where A0+ is given by∫ A0+

F0+s/2

qdP = x0

or A0+ = F0+s/2+x0/q. The average execution price is P̄ = F0+s/2 + x0/(2q), which is

linear in the size of the trade. Thus, the shape of the LOB we propose is consistent with

the linear price impact function assumed in previous work. This is also the main reason we

adopted it here.6

Right after the trade, the limit order book becomes:

q0+(P ) ≡ q(P ; F0; Z0+ ; 0+) = q 1{P≥A0+}.

A0+ = F0 + s/2+x0/q is the new ask price. All the sell orders at prices below A0+ =

(F0+s/2) + x0/q have been executed. What is left on the LOB are the limit sell orders with

prices at and above A0+ . The second panel of Figure 1 plots the limit order book right after

the trade.

6Huberman and Stanzl (2004) have suggested theoretical reasons for the linear price impact function,
relying on certain form of arbitrage arguments.
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3.2 Limit Order Book Dynamics

What we have to specify next is how the LOB evolves over time after being hit by a trade.

Effectively, this amounts to describing how the new sell orders arrive to fill in the gap in

the LOB eaten away by the trade. First, we need to specify the impact of the trade on the

mid-quote price, which will determine the prices of the new orders. In general, the mid-quote

price will be shifted up by the trade. We assume that the shift in the mid-quote price will

be linear in the size of the total trade. That is,

V0+ = F0 + λx0

where 0 ≤ λ ≤ 1/q and λx0 gives the permanent price impact the trade x0 has. If there are

no more trades after the initial trade x0 at t = 0 and there are no shocks to the fundamental,

the limit order book will eventually converge to its new steady state

qt(P ) = q 1{P≥At}

where t is sufficiently large, At = Vt + s/2 and Vt = F0 + λx0. Next we need to specify

how the limit order book converges to its steady-state. Note that right after the trade, the

ask price is A0+ = F0+s/2+x0/q, while in the steady-state it is A∞ = F0+s/2+λx0. The

difference between the two is A0+ −A∞ = x0(1/q−λ). We assume that the limit order book

converges to its steady state exponentially:

qt(P ) = q 1{P≥At} (5)

where

At = Vt + s/2 + x0κe−ρt, κ = 1/q−λ (6)

and ρ ≥ 0 gives the convergence speed and Vt = V0+ in absence of new trades and changes

in Ft, which measures the “resilience” of the LOB.7 Equations (5) and (6) imply that after

a trade x0, the new sell orders will start coming in at the new ask price At at the rate of

ρq(At−Vt−s/2). For convenience, we define

Dt = At − Vt − s/2 (7)

which stands for the deviation of current ask price At from its steady state level Vt+s/2.

We can easily extend the LOB dynamics described above for a single trade to include

multiple trades and news shocks to the fundamental value over time. Let n(t) denote the

7A number of empirical studies documented the existence of the resiliency of LOB. After a large liquidity
shock when the spread is large, traders quickly place the orders within the best quotes to supply liquidity at
a relatively advantageous prices to obtain time priority. See, for example, Biais, Hillion and Spatt (1995),
Hamao and Hasbrouck (1995), Coppejans, Domowitz and Madhavan (2001), and Ranaldo (2004).
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number of trades during interval [0, t), t1, . . . , tn(t) the times for these trades, and xti their

sizes, respectively. Let Xt be the remaining order to be executed at time t, before trading

at t. We have

Xt = X0 −
∑
tn<t

xtn . (8)

with XT+ = 0. Let

Vt = Ft + λ(X0 − Xt) = Ft + λ

n(t)∑
i=0

xti (9)

where X0−Xt is the total amount of purchase during [0, t). Then the ask price at any time

t is

At = Vt + s/2 +

n(t)∑
i=0

xtiκe−ρ(t−ti) (10)

and the limit order book at any time t is given by (5). Panels 2 to 5 in Figure 1 illustrates

the time evolution of the LOB after a trade. We can easily extend the above description to

include sell orders which may occur in the mean time and can shift the mid-quote Vt. If not

predictable, they are not important to our analysis. Thus, we omit them here.

Before we go ahead with the LOB dynamics and examines its implications on execution

strategy, several comments are in order. It should be pointed out that the simple LOB

dynamics described above is assumed to be given, without further economic justification.

Presumably, it is driven by the optimizing behavior of those who submit the orders and

thus provide liquidity to the market. For example, a natural question to ask is why the new

orders were not submitted to the book before old orders are filled. Apparently, the trade-off

between putting orders on the book or keeping it hidden is what market participants have to

decide optimally.8 In addition, in equilibrium the LOB dynamics may be further affected by

the strategic interactions among those participants whose trades can influence prices (see,

for example, Vayanos (1999, 2001)). To fully capture the detailed properties of the LOB

dynamics, we may well need to consider the interactions among all market participants in

an equilibrium framework. However, it should be emphasized that the goal of this paper

is to demonstrate the insufficiency of considering only static properties of supply/demand

8Many authors have developed models for optimal order placement in a limit order market. See, for
example, Foucault (1999), Foucault, Kadan, and Kandel (2001), Glosten (1994), Goettler, Parlou and Rajan
(2003), Harris(1998), Parlour (1998), Parlour and Seppi(2003), Rock (1996), Rosu (2004), Sandas (2001),
and Seppi (1997). Huang and Wang (2005) consider in a more general setting the optimal decision to
participate in the market when it is costly. There is also ample recent work showing that traders do use
the rich information on the state of the books when deciding on their order submission strategies. See, for
example, Cao, Hansch, and Wang (2003), Harris and Panchapagesan (2005), Bloomfield, O’Hara, and Saar
(2003), Ranaldo (2004), among others.
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to solve for executing strategies and to emphasize qualitative importance of supply/demand

dynamics. The specific model merely helps us to make the point in a simple and revealing

way. Its partial equilibrium nature as well as its quantitative features are neither the focus

of this paper nor crucial to our main conclusions.

3.3 Execution Cost

Given the above description of the LOB dynamics, we can now describe the total cost of

an execution strategy for a given order X0. Let xtn denote the trade at time tn and Atn

the ask price at tn prior to the trade. The evolution of ask price At as given in (10) is not

continuous. For clarity, At always denotes the left limit of At, At = lims→t− As, i.e., the ask

price before the trade at t. The same convention is followed for Vt. The cost for xtn is then

c(xtn) =

∫ xtn

0

Ptn(x)dx (11)

where Pt(x) is defined by equation

x =

∫ Pt(x)

At

qt(P )dP. (12)

For block-shaped LOB given in (5), we have

Pt(x) = At + x/q

and

c(xtn) = [Atn + xtn/(2q)] xtn . (13)

The total cost is
∑N

n=0 c(xtn). Thus, the the optimal execution problem, defined in (3), now

reduces to

min
x∈ΘD

E0

[
N∑

n=0

[Atn + xtn/(2q)] xtn

]
(14)

under our dynamics of the limit order book given in (9) and (10).

4 Conventional Models As A Special Case

Previous work on the optimal strategy for trading a large order uses a discrete-time setting

with a fixed time interval and relies on a static price-impact function to describe the sup-

ply/demand (e.g., Bertsimas and Lo (1998) and Almgren and Chriss (2000)). What such a

setting does not address is how to determine the optimal time interval between trades. From

both a theoretical and a practical point of view, the timing of trades is an essential aspect

9



of the execution strategy. One possible approach to determine the optimal time interval be-

tween trades is to let the time interval go to zero in the discrete-time setting. However, in this

case, as shown in He and Mamaysky (2001) and Huberman and Stanzl (2000), the problem

becomes degenerate and all strategies become equally good. This is obviously unrealistic.

In this section, we briefly describe the setting used in previous work and its limitations in

determining the optimal execution strategy. We then show that the conventional setting can

be viewed as a special case of our framework with specific restrictions on the LOB dynamics.

We further point out why these restrictions are unrealistic when the timing of trades is

determined optimally and why they give rise to the problems in the conventional setting.

4.1 Conventional Setup

We first introduce the conventional setup proposed by Bertsimas and Lo (1998) and Almgren

and Chriss (2000), among others. We adopt a simple version of their framework which cap-

tures the basic features of the models commonly used in the previous work on this problem.9

In a discrete-time setting, the trader trades at fixed time intervals, nτ , where τ = T/N

and n = 0, 1, . . . , N are given. Each trade will have an impact on the price, which will affect

the total cost of the trade and future trades. Most models assume a linear price-impact

function of the following form:

P̄n = P̄n−1 + λxn + un = (Fn + s/2) + λ
n∑

i=0

xi (15)

where the subscript n denotes the n-th trade at tn = nτ , P̄n is the average price at which

trade xn is executed with P̄0− = F0+s/2, λ is the price impact coefficient and un is i.i.d.

random variable, with a mean of zero and a variance of σ2τ .10 In the second equation, we

have set Fn = F0 +
∑n

i=0 ui. The trader who has to execute an order of size X0 solves the

following problem:

min
{x0,x1,...,xN}

E0

[
N∑

n=0

P̄nxn

]
= (F0+s/2)X0 + λ

N∑
n=0

Xn(Xn+1−Xn). (16)

where P̄n is defined in (15) and Xn is a number of shares left to be acquired at time tn

(before trade xtn) with XN+1 = 0.

As shown in Bertsimas and Lo (1998) and Almgren and Chriss (2000), given that the

objective function is quadratic in xn, it will be optimal for the trader to split his order into

small trades of equal sizes and execute them at regular intervals over the fixed period of

9See also Almgren (2003), Dubil (2002), and Monch (2004).
10Huberman and Stanzl (2004) have argued that in the absence of quasi-arbitrage, permanent price-impact

functions must be linear.
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time:

xn =
X0

N + 1
(17)

where n = 0, 1, . . . , N .11

4.2 The Continuous-Time Limit

Although the discrete-time setting with a linear price impact function gives a simple and

intuitive solution, it leaves a key question unanswered. That is, what determines the time-

interval between trades. An intuitive way to address this question is to take the continuous-

time of the discrete-time solution, i.e., to let N goes to infinity. However, as Huberman

and Stanzl (2000) point out, the solution to the discrete-time model (16) does not have a

well-defined continuous-time limit. In fact, as N → ∞, the cost of the trades as given in

(16) approaches the following limit:

(F0+s/2)X0 + (λ/2)X2
0

which is strategy-independent. Thus, for a risk-neutral trader, the execution cost with

continuous trading is a fixed number and any continuous strategy is as good as another.

Therefore, the discrete-time model as described above does not have a well-behaved contin-

uous time limit. For example, without increasing the cost the trader can choose to trade

intensely at the very beginning and complete the whole order in an arbitrarily small period.

If the trader becomes slightly risk-aversion, he will choose to finish all the trades right at the

beginning, irrespective of their price impact.12 Such a situation is clearly undesirable and

economically unreasonable.

This problem has led several authors to propose different modifications to the conven-

tional setting. He and Mamaysky (2001), for example, directly formulate the problem in

continuous-time and impose fixed transaction costs to rule out any continuous trading strate-

gies. Huberman and Stanzl (2000) propose to include a temporary price impact of a special

11If the trader is risk averse, he will trade more aggressively at the beginning, trying to avoid the uncertainty
in execution cost in later periods.

12As N → ∞, the objective function to be minimized for a risk-averse trader with a mean-variance
preference approaches the following limit

C
(
x[0, T ]

)
= E

[∫ T

0

PtdXt

]
+ 1

2
aVar

[∫ T

0

PtdXt

]
= (F0+s/2)X0 + (λ/2)X2

0 + 1
2
aσ2

∫ T

0

X2
t dt

where a > 0 is the risk-aversion coefficient and σ is the price volatility of the security. The trader cares
not only about the expected execution cost but also its variance, which is given by the last term. Only the
variance of the execution cost depends on the strategy. It is easy to see that the optimal strategy is to choose
an L-shaped profile for the trades, i.e., to trade with infinite speed at the beginning, which leads to a value
of zero for the variance term in the cost function.
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form, in addition to the permanent linear price-impact, to penalize high-intensity continuous

trading. As a result, they restrict themselves to a class of only continuous strategies. Both

of these modifications limit us to a subset of feasible strategies, which is in general sub-

optimal. Given its closeness to our paper, we now briefly discuss the modification suggested

by Huberman and Stanzl (2000).

4.3 Temporary Price Impact

In order to obtain a well-behaved solution to the optimal execution problem with a sensible

continuous-time limit, Huberman and Stanzl (2000) modify the price impact function and

introduce a temporary price impact of a trade. In particular, they specify the following

dynamics for the execution prices of trades:

P̂n = P̄n + G(xn/τ) (18)

where P̄n is the same as given in (15), τ = T/N is the time between trades, and G(·) describes

a temporary price impact, which reflects temporary price deviations from “equilibrium”

caused by trading. With G(0) = 0 and G′(·) > 0, the temporary price impact penalizes

high trading volume per unit of time, xn/τ . Using a linear form for G(·), G(z) = θz,

Huberman and Stanzl (2000) have shown that as N goes to infinity the expected execution

cost approaches to

(F0+s/2)X0 + (λ/2)X2
0 + θ

∫ T

0

(
dXt

dt

)2

dt.

Clearly, with the temporary price impact, the optimal execution strategy has a sensible

continuous-time limit. In fact, it is very similar to its discrete-time counterpart: It is deter-

ministic and the trade intensity, defined by the limit of xn/τ , is constant over time.13

The temporary price impact introduced by Huberman and Stanzl reflects an important

aspect of the market, the difference between short-term and long-term supply/demand. If a

trader speeds up his buy trades, as he can do in the continuous-time limit, he will deplete

the short-term supply and increase the immediate cost for additional trades. As more time is

allowed between trades, supply will gradually recover. However, as a heuristic modification,

the temporary price impact does not provide an accurate and complete description of the

supply/demand dynamics, which leads to several drawbacks. First, the temporary price

impact function in the form considered by Huberman and Stanzl rules out the possibility

of discrete trades. This is not only artificial but also undesirable. As we show later, in

general the optimal execution strategy does involve both discrete and continuous trades.

13If the trader is risk-averse with a mean-variance preference, the optimal execution strategy has a de-
creasing trading intensity over time.
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Moreover, introducing the temporary price impact does not capture the full dynamics of

supply/demand.14 Also, simply specifying a particular form for the temporary price impact

function says little about the underlying economic factors that determine it.

4.4 A Special Case of Our Framework

In the conventional setting, the supply/demand of a security is described by a static price

impact function. This is inadequate when we need to determine the timing of the execution

strategy optimally. As we have seen in Section 3, using a simple limit order book framework,

the supply/demand has to be viewed as an intertemporal object which exhibits rich dynamics.

The simple price impact function, even with the modification proposed by Humberman and

Stanzl (2000), misses important intertemporal aspects of the supply/demand that are crucial

to the determination of optimal execution strategy.

We can see the limitations of the conventional model by considering it as a special case

of our general framework. Indeed, we can specify the parameters in the LOB framework so

that it will be equivalent to the conventional setting. First, we set the trading times at fixed

intervals: tn = nτ , n = 0, 1, . . . , N . Next, we make the following assumptions on the LOB

dynamics as described in (5) and (9):

q = 1/(2λ), λ = λ, ρ = ∞ (19)

where the second equation simply states that the price impact coefficient in the LOB frame-

work is set to be equal to its counterpart in the conventional setting. These restrictions

imply the following dynamics for the LOB. As it follows from (10), after the trade xn at tn

(tn = nτ) the ask price Atn jumps from Vtn +s/2 to Vtn +s/2+2λxn. Over the next period,

it comes all the way down to the new steady state level of Vtn +s/2+λxn (assuming no

fundamental shocks from tn to tn+1). Thus, the dynamics of ask price Atn is equivalent to

dynamics of P̄tn in (15).

For the parameters specified in (19), the cost for trade xtn , c(xtn) = [Atn +xtn/(2q)] xtn ,

becomes

c(xtn) = [Ftn +s/2 + λ(X0−Xtn) + λxtn ] xtn

which is the same as the trading cost in the conventional model (16). Thus, the conventional

model is a special case of LOB framework for parameters in (19).

The main restrictive assumption we have to make to obtain the conventional setup is that

ρ = ∞ and the limit order book always converges to its steady state before the next trading

14For example, two sets of trades close to each other in time versus far apart will generate different
supply/demand dynamics, while in Huberman and Stanzl (2000) they lead to the same dynamics.
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time. This is not crucial if the time between trades is held fixed. But if the time between

trades is allowed to shrink, this assumption becomes unrealistic. It takes time for the new

limit orders to come in to fill up the book again. The shape of the limit order book after a

trade depends on the flow of new orders as well as the time elapsed. As the time between

trades shrinks to zero, the assumption of infinite recovery speed becomes less reasonable and

it gives rise to the problems in the continuous-time limit of the conventional model.

5 Discrete-Time Solution

We now return to our general framework and solve the model for the optimal execution

strategy when trading times are fixed, as in the conventional model. We then show that

in contrast to the conventional setting, our framework is robust for studying convergence

behavior as time between trades goes to zero. Taking the continuous-time limit we exam-

ine the resulting optimal execution strategy which turns out to include both discrete and

continuous trading.

Suppose that trade times are fixed at tn = nτ , where τ = T/N and n = 0, 1, . . . , N . We

consider the corresponding strategies x[0, T ] = {x0, x1, . . . , xn} within the strategy set ΘD

defined in Section 2. The optimal execution problem, defined in (3), now reduces to

J0 = min
{x0,...,xN}

E0

[
N∑

n=0

[Atn + xn/(2q)] xn

]
(20)

s.t. Atn = Ftn + λ(X0−Xtn) + s/2 +
n−1∑
i=0

xiκe−ρτ(n−i)

where Ft follows a random walk. This problem can be solved using dynamic programming.

We have the following result:

Proposition 1 The solution to the optimal execution problem (20) is

xn = −1
2
δn+1

[
Dtn

(
1−βn+1e

−ρτ +2κγn+1e
−2ρτ

)− Xtn

(
λ+2αn+1−βn+1κe−ρτ

)]
(21)

with xN = XN , where Dt = At−Vt−s/2. The expected cost for future trades under the

optimal strategy is

Jtn = (Ftn +s/2)Xtn + λX0Xtn + αnX2
tn + βnDtnXtn + γnD

2
tn (22)

where the coefficients αn+1, βn+1, γn+1 and δn+1 are determined recursively as follows

αn = αn+1− 1
4
δn+1(λ+2αn+1−βn+1κe−ρτ )2 (23a)

βn = βn+1e
−ρτ + 1

2
δn+1(1−βn+1e

−ρτ +2κγn+1e
−2ρτ )(λ+2αn+1−βn+1κe−ρτ ) (23b)

γn = γn+1e
−2ρτ− 1

4
δn+1(1−βn+1e

−ρτ +2γn+1κe−2ρτ )2 (23c)
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with δn+1 = [1/(2q)+αn+1−βn+1κe−ρτ +γn+1κ
2e−2ρτ ]

−1
and terminal condition

αN = 1/(2q) − λ, βN = 1, γN = 0. (24)

Proposition 1 gives the optimal execution strategy when we fix the trade times at a

certain interval τ . But it is only optimal among strategies with the same fixed trading

interval. In principle, we want to choose the trading interval to minimize the execution cost.

One way to allow different trading intervals is to take the limit τ → 0, i.e., N → ∞, in

the problem (20). Figure 2 plots the optimal execution strategy {xn, n = 0, 1, . . . , N} for

N = 10, 25, 100, respectively. Clearly, it is very different from the strategy given in (17)

and obtained previously when the dynamics of demand/supply is ignored. Moreover, as N

becomes large, the strategy splits into two parts, large trades at both ends of the horizon

(the beginning and the end) and small trades in between.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

26317

Trade Profiles for Different N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

24697

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

23899

N=10

N=25

N=100

Figure 2: Optimal execution strategy with fixed discrete trading intervals. This figure plots
the optimal trades for N fixed intervals, where N is 10, 25 and 100 for respectively the top,
middle and bottom panels. The initial order to trade is set at X0 = 100, 000 units, the time
horizon is set at T = 1 day, the market depth is set at q = 5, 000 units, the price-impact
coefficient is set at λ = 1/(2q) = 10−4 and the resiliency coefficient is set at ρ = 2.231.

The next proposition describes the limit of the optimal execution strategy and the ex-

pected cost:
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Proposition 2 In the limit of N → ∞, the optimal execution strategy becomes

lim
N→∞

x0 = xt=0 =
X0

ρT +2
(25a)

lim
N→∞

xn/(T/N) = Ẋt =
ρX0

ρT +2
, t ∈ (0, T ) (25b)

lim
N→∞

xN = xt=T =
X0

ρT +2
(25c)

and the expected cost is

Jt = (F0+s/2)Xt + λX0Xt + αtX
2
t + βtXtDt + γtD

2
t

where coefficients αt, βt, γt are given by

αt =
κ

ρ(T−t)+2
− λ

2
, βt =

2

ρ(T−t)+2
, γt = − ρ(T−t)

2κ[ρ(T−t)+2]
. (26)

The optimal execution strategy given in Proposition 2 is different from those obtained

in the conventional setting. In fact, it involves both discrete and continuous trades. This

clearly indicates that the timing of trades is a critical part of the optimal strategy. It also

shows that ruling out discrete or continuous trades ex ante is in general suboptimal. More

importantly, it demonstrates that both the static and dynamic properties of supply/demand,

which are captured by the LOB dynamics in our framework, are important in analyzing the

optimal execution strategy. We return in Section 7 to examine in more detail the properties

of the optimal execution strategy and their dependence on the LOB dynamics.

6 Continuous-Time Solution

The nature of the continuous-time limit of the discrete-time solution suggests that limiting

ourselves to discrete strategies can be suboptimal. We should in general formulate the

problem in continuous-time setting and allow both continuous and discrete trading strategies.

In this section, we present the continuous-time version of the LOB framework and derive the

optimal strategy.

The uncertainty in model is fully captured by fundamental value Ft. Let Ft = F0 + σZt

where Zt is a standard Brownian motion defined on [0, T ]. Ft denotes the filtration generated

by Zt. A general execution strategy can consist of two components, a set of discrete trades

at certain times and a flow of continuous trades. A set of discrete trades is also called an

“impulse” trading policy.

Definition 1 Let N+ = {1, 2, . . .}. An impulse trading policy (τk, xk) : k ∈ N+ is a sequence

of trading times τk and trade amounts xk such that: (1) 0 ≤ τk ≤ τk+1 for k ∈ N+, (2) τk is

a stopping time with respect to Ft, and (3) xk is measurable with respect to Ftk .
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The continuous trades can be defined by a continuous trading policy described by the in-

tensity of trades µ[0, t], where µt is measurable with respect to Ft and µtdt gives the trades

during time interval [t, t + dt). Let us denote T̂ the set of impulse trading times. Then, the

set of admissible execution strategies for a buy order is

ΘC =

⎧⎨
⎩µ[0, T ], x{t∈T̂} : µt, xt ≥ 0,

∫ T

0

µtdt +
∑
t∈T̂

xt = X0

⎫⎬
⎭ (27)

where µt is the rate of continuous buy trades at time t and xt is the discrete buy trade for

t ∈ T̂ . The dynamics of Xt, the number of shares to acquire at time t, is then given by the

following equation:

Xt = X0 −
∫ t

0

µsds −
∑

s∈T̂ , s<t

xs.

Now let us specify the dynamics of ask price At. Similar to the discrete-time setting, we

have A0 = F0+s/2 and

At = A0 +

∫ t

0

[
dVs − ρDsds − κdXs

]
(28)

where Vt = Ft + λ(X0−Xt) as in (9) and Dt = At−Vt−s/2 as in (7). The dynamics of At

captures the evolution of the limit order book, in particular the changes in Vt, the inflow of

new orders and the continuous execution of trades.

Next, we compute the execution cost, which consists of two parts: the costs from contin-

uous trades and discrete trades, respectively. The execution cost from t to T is

Ct =

∫ T

t

Asµsds +
∑

s∈T̂ , t≤s≤T

[As + xs/(2q)] xs. (29)

Given the dynamics of the state variables in (9), (28), and cost function in (29), the

optimal execution problem now becomes

Jt ≡ J(Xt, At, Vt, t) = min
{µ[0, T ], {xt∈T̂ }}∈ΘC

Et [Ct] (30)

where Jt is the value function at t, the expected cost for future trades under the optimal

execution strategy. At time T , the trader is forced to buy all of the remaining order XT ,

which leads to the following boundary condition:

JT = [AT + 1/(2q)XT ] XT .

The next proposition gives the solution to the problem:
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Proposition 3 The value function for the optimization problem (30) is

Jt = (Ft+s/2)Xt + λX0Xt + αtX
2
t + βtDt + γtD

2
t

where Dt = At−Vt−s/2. The optimal execution strategy is

x0 = xT =
X0

ρT + 2
, µt =

ρX0

ρT + 2
∀ t ∈ (0, T ) (31)

where the coefficients αt, βt, and γt are the same as given in Proposition 2.

Obviously, the solution we obtained with the continuous-time setting is identical to the

continuous-time limit of the solution in the discrete-time setting. The optimal strategy

consists of both continuous and discrete trades.

7 Optimal Execution Strategy and Cost

In contrast with previous work, the optimal execution strategy includes discrete and con-

tinuous trading. We now analyze the properties of the optimal execution strategy in more

detail. Interestingly, while it does not depend on parameters λ and q, which determine static

supply/demand, it crucially depends on parameter ρ, which describes the LOB dynamics,

and the horizon for execution T . Further in this section we quantify the cost reduction which

the optimal execution strategy brings and discuss its empirical implications.

7.1 Properties of Optimal Execution Strategy

The first thing to notice is that the execution strategy does not depend on λ and q. Coefficient

λ captures the permanent price impact of a trade. Given the linear form, the permanent

price impact gives an execution cost of (F0+s/2)X0 + (λ/2)X2
0 , which is independent of the

execution strategies. This is a rather striking result given that most of the previous work

focus on λ as the key parameter determining the execution strategy and cost. As we show

earlier, λ affects the execution strategy when the times to trade are exogenously set at fixed

intervals. When the times to trade are determined optimally, the impact of λ on execution

strategy disappears. Given the linear form of the price impact function, λ fully describes the

instantaneous supply/demand, or the static supply/demand. Our analysis clearly shows that

the static aspects of the supply/demand does not fully capture the factors that determining

the optimal execution strategy.

Coefficient q captures the depth of the market. In the simple model for the limit order

book we have assumed, market depth is constant at all price levels above the ask price. In

this case, the actual value of the market depth does not affect the optimal execution strategy.
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For more general (and possibly more realistic) shapes of the limit order book, the optimal

execution strategy may well depend on the characteristics of the book.

The optimal execution strategy depends on two parameters, the resilience of the limit

order book ρ and the horizon for execution T . We consider these dependencies separately.

0 T 0 Tt t

X t

X0

X0+

X T

XT+

A t

A 0

A 0+

A T

A T+

v +s/2t

(a) (b)

Figure 3: Profiles of the optimal execution strategy and ask price. Panel (a) plots the
profile of optimal execution policy as described by Xt. Panel (b) plots the profile of realized
ask price At. After the initial discrete trade, continuous trades are executed as a constant
fraction of newly incoming sell orders to keep the deviation of the ask price At from its
steady state Vt +s/2, shown with grey line in panel (b), at a constant. A discrete trade
occurs at the last moment T to complete the order.

Panel (a) of Figure 3 plots the optimal execution strategy, or more precisely the time

path of the remaining order to be executed. Clearly, the nature of the optimal strategy is

different from those proposed in the literature, which involve a smooth flow of small trades.

When the timing of trades is determined optimally, the optimal execution strategy consists

of both large discrete trades and continuous trades. In particular, under the LOB dynamics

we consider here, the optimal execution involves a discrete trade at the beginning, followed

by a flow of small trades and then a discrete terminal trade. Such a strategy seems intuitive

given the dynamics of the limit order book. The large initial trade pushes the limit order

book away from its stationary state so that new orders are lured in. The flow of small

trades will “eat up” these new orders and thus keep them coming. At the end, a discrete

trade finishes the remaining part of the order. The final discrete trade is determined by two

factors. First, the order has to be completed within the given horizon. Second, the evolution

of supply/demand afterwards no longer matters. In practice, both of these two factors can

take different forms. For example, the trading horizon T can be endogenously determined

rather than exogenously given. We consider this extension in Section 8.

The size of the initial trade determines the prices and the intensity of the new orders. If

too large, the initial trade will raise the average prices of the new orders. If too small, an

initial trade will not lure in enough orders before the terminal time. The trade off between
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these two factors largely determines the size of the initial trade.

The continuous trades after the initial trade are intended to maintain the flow of new

orders at desirable prices. To see how this works, let us consider the path of the ask price

At under the optimal execution strategy. It is plotted in panel (b) of Figure 3. The initial

discrete trade pushes up the ask price from A0 = V0+s/2 to A0+ = V0+s/2+X0/(ρT+2)/q.

Afterwards, the optimal execution strategy keeps Dt = At−Vt−s/2, the deviation of the

current ask price At from its steady state Vt + s/2, at a constant level of κX0/(ρT +2).

Consequently, the rate of new sell order flow, which is given by ρDt, is also maintained at a

constant level. The ask price At goes up together with Vt+s/2, the steady-state “value” of

the security, which is shown with the grey line in Figure 3(b). As a result, from (28) with

dAt = dVt for 0 < t < T , we have ρDt = κµt or µt = (1/κ)ρDt. In other words, under the

optimal execution strategy a constant fraction of 1/κ of the new sell orders is executed to

maintain a constant order flow.

Our discussion above shows that the dynamics of the limit order book, which is captured

by the resilience parameter ρ, is the key factor in determining optimal execution strategy.

In order to better understand this link, let us consider two extreme cases, when ρ = 0

and ∞. When ρ = 0, we have no recovery of the limit order book after a trade. In this

case, the cost of execution will be strategy independent and it does not matter when and

at what speed the trader eats up the limit order book. This result is also true in a discrete

setting with any N and in its continuous-time limit. When ρ = ∞, the limit order book

rebuilds itself immediately after a trade. As we discussed in Section 4, this corresponds to

the conventional setting. Again, the execution cost becomes strategy independent. It should

be pointed out that even though in the limit of ρ → 0 or ∞, the optimal execution strategy

given in Proposition 3 converges to a pure discrete strategy or a pure continuous strategy,

other strategies are equally good given the degeneracy in these two cases.

When 0 < ρ < ∞, the resiliency of the limit order book is finite, the optimal strategy

is a mixture of discrete and continuous trades. The fraction of the total order executed

through continuous trades is
∫ T

0
µtdt/X0 = ρT/(ρT +2), which increases with ρ. In other

words, it is more efficient to use small trades when the limit order book is more resilient.

This is intuitive because discrete trades do less in taking full advantage of new order flows

than continuous trades.

Another important parameter in determining the optimal execution strategy is the time-

horizon to complete the order T . From Proposition 3, we see that as T increases, the size of

the two discrete trades decreases. This result is intuitive. The more time we have to execute

the order, the more we can continuous trades to benefit from the inflow of new orders and

to lower the total cost.
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7.2 Minimum Execution Cost

So far, we have focused on the optimal execution strategy. We now examine how important

the optimal execution is, as measured by the execution cost it saves. For this purpose, we

use the strategy obtained in the conventional setting and its cost as the benchmark. The

total expected execution cost of a buy order of size X0 is equal to its fundamental value

(F0+s/2)X0, which is independent of the execution strategy, plus the extra cost from the

price impact of trading, which does depend on the execution strategy. Thus, we will only

consider the execution cost, net of the fundamental value, or the net execution cost.

As shown in Section 4, the strategy from the conventional setting is a constant flow

of trades with intensity µ∞ = X0/T , t ∈ [0, T ]. Under this simple strategy, we have

Vt = Ft + λ(t/T )X0, Dt = [κX0/(ρT )](1 − e−ρt) and At = Vt+Dt+s/2. The expected net

execution cost for the strategy with constant rate of execution µ∞ is given by

J̃CM
0 = E0

[∫ T

0

(At−Ft−s/2)(X0/T )dt

]
= (λ/2)X2

0 + κ
ρT − (1−e−ρT )

(ρT )2
X2

0

where the superscript stands for the “Conventional Model”. From Proposition 3, the ex-

pected net cost under the optimal execution strategy is

J̃0 = J0 − (F0+s/2)X0 = (λ/2)X2
0 +

κ

ρT + 2
X2

0

(note that at t = 0, D0 = 0). Thus, the improvement in expected execution cost by the

optimal strategy is JCM
0 − J0, which is given by

J̃CM
0 − J̃0 = κ

2ρT−(ρT +2)(1−e−ρT )

(ρT +2)(ρT )2
X2

0

and is always non-negative. The relative gain can be defined as ∆ = (J̃CM − J̃0)/J̃
CM.

In order to calibrate the magnitude of the cost reduction by the optimal execution strat-

egy, we consider some numerical examples. Let the size of the order to be executed be

X0 = 100, 000 shares and the initial security price be A0 = F0+s/2 = $100. We choose the

width of the limit order book, which gives the depth of the market, to be q = 5, 000. This

implies that if the order is executed at once, the ask price will move up by 20%. Without

losing generality, we consider the execution horizon to be one day, T = 1.15 The other

parameters, especially ρ, may well depend on the security under consideration. In absence

of an empirical calibration, we with consider a range of values for them.

Table 1 reports the numerical values of the optimal execution strategy for different values

15Chan and Lackonishok (1995) documented that for institutional trades T is usually between 1 to 4 days.
Keim and Madhavan (1995) found that the duration of trading is surprisingly short, with almost 57% of buy
and sell orders completed in the first day. Keim and Madhavan (1997) reported that average execution time
is 1.8 days for a buy order and 1.65 days for a sell order.
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of ρ. As discussed above, for small values of ρ, most of the order is executed through two

discrete trades, while for large values of ρ, most of the order is executed through a flow of

continuous trades as in the conventional models. For intermediate ranges of ρ, a mixture of

discrete and continuous trades is used.

ρ Half-life (log 2/ρ) Trade x0 Trade over (0, T ) Trade xN

0.001 693.15 day 49,975 50 49,975
0.01 69.31 day 49,751 498 49,751
0.5 1.39 day 40,000 20,000 40,000

1 270.33 min 33,333 33,334 33,333
2 135.16 min 25,000 50,000 25,000
4 67.58 min 16,667 66,666 16,667
5 54.07 min 14,286 71,428 14,286

10 27.03 min 8,333 83,334 8,333
20 13.52 min 4,545 90,910 4,545
50 5.40 min 1,921 96,153 1,921

300 0.90 min 331 99,338 331
1000 0.20 min 100 99,800 100

10000 0.03 min 10 99,980 10

Table 1: Profiles of the optimal execution strategy for different levels of LOB resiliency
ρ. The table reports values of optimal discrete trades x0 and xT at the beginning and the
end of the trading horizon and the intensity of continuous trades in between for an order
of X0 = 100, 000 for different values of the LOB resilience parameter ρ or the half-life of
an LOB disturbance τ1/2, which is defined as exp{−ρ τ1/2} = 1/2. The initial ask price is
$100, the market depth is set at q = 5, 000 units, the (permanent) price-impact coefficient
is set at λ = 1/(2q) = 10−4, and the trading horizon is set at T = 1 day, which is 6.5 hours
(390 minutes).

Table 2 reports the relative improvement in the expected net execution cost by the

optimal execution strategy over the simple strategy of the conventional setting. Let us first

consider the extreme case in which the resilience of the LOB is very small, e.g., ρ = 0.001

and the half-life for the LOB to rebuild itself after being hit by a trade is 693.15 days. In

this case, even though the optimal execution strategy looks very different from the simple

execution strategy, as shown in Figure 4, the improvement in execution cost is minuscule.

This is not surprising as we know the execution cost becomes strategy independent when

ρ = 0. For a modest value of ρ, e.g. ρ = 2 with a half life of 135 minutes (2 hours and 15

minutes), the improvement in execution cost ranges from 4.32% for λ = 1/(2q) to 11.92%

for λ = 0. When ρ becomes large and the LOB becomes very resilient, e.g., ρ = 300 and

the half-life of LOB deviation is 0.90 minute, the improvement in execution cost becomes

small again, with a maximum of 0.33% when λ = 0. This is again expected as we know that
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λ
ρ Half-life 1

2q
1

10q
1

50q
1

100q 0

0.001 693.15 day 0.00 0.01 0.02 0.02 0.02
0.01 69.31 day 0.08 0.15 0.16 0.16 0.17
0.5 1.39 day 2.82 5.42 5.99 6.06 6.13

1 270.33 min 3.98 8.16 9.14 9.26 9.39
2 135.16 min 4.32 9.97 11.51 11.71 11.92
4 67.58 min 3.19 9.00 11.05 11.35 11.65
5 54.07 min 2.64 8.07 10.21 10.53 10.86

10 27.03 min 1.13 4.58 6.65 7.01 7.41
20 13.52 min 0.37 1.98 3.54 3.89 4.31
50 5.40 min 0.07 0.49 1.24 1.50 1.88

300 0.90 min 0.00 0.02 0.08 0.13 0.33
1000 0.20 min 0.00 0.00 0.01 0.02 0.10

10000 0.03 min 0.00 0.00 0.00 0.00 0.09

Table 2: Cost savings by the optimal execution strategy from the simple trading strategy.
Relative improvement in expected net execution cost ∆ = (J̃CM − J̃0)/J̃CM is reported for
different values of LOB resiliency coefficient ρ and the permanent price-impact coefficient.
The order size is set at 100,000, the market depth is set at q = 5, 000 and the horizon for
execution is set at T = 1 day (equivalent of 390 minutes).

the simple strategy is close to the optimal strategy when ρ → ∞ (as in this limit, the cost

becomes strategy independent).

In order to see the difference between the optimal strategy and the simple strategy

obtained in conventional settings, we compare them in Figure 4. The solid line shows the

optimal execution strategy of the LOB framework and the dashed line shows the execution

strategy of the conventional setting. Obviously, the difference between the two strategies are

more significant for smaller values of ρ.

Table 2 also reveals an interesting result. The relative savings in execution cost by the

optimal execution strategy is the highest when λ = 0, i.e., when the permanent price impact

is zero.16

7.3 Empirical Implications

Optimality of discrete trades at the beginning and the end of the trading period leads to

interesting empirical implications. It is well documented that there is a U-shaped pattern in

the intraday trading volume, price volatility and average bid-ask spread.17 Several authors

16Of course, the magnitude of net execution cost becomes very small as λ goes to zero.
17Intraday patterns in volume and prices in the U.S. markets have been documented by Jain and Joh(1988),

Gerety and Mulherin (1992), Chan, Christie, Schultz (1995), among others. They are also present in other
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Figure 4: Optimal execution strategy versus simple execution strategy from the conven-
tional models. The figure plots the time paths of remaining order to be executed for the
optimal strategy (solid line) and the simple strategy obtained from the conventional models
(dashed line), respectively. The order size is set at X0 = 100, 000, the initial ask price
is set at $100, the market depth is set at q = 5, 000 units, the (permanent) price-impact
coefficient is set at λ = 1/(2q) = 10−4, and the trading horizon is set at T = 1 day, which
is assumed to be 6.5 hours (390 minutes). Panels (a), (b) and (c) plot the strategies for
ρ = 0.001, 2 and 1, 000, respectively.

have proposed theoretical models that can help to explain the intraday price and volume

patterns.18 Most of these models generate the intraday patterns from the time variation in

information asymmetry and/or trading opportunities associated with market closures.

Our model suggests an alternative source for such patterns. Namely, they can be gener-

ated by the optimal execution of block trades. It is well known that large-block transactions

have become a substantial fraction of the total trading volume for common stocks. Ac-

cording to Keim and Madhaven(1996), block trades represented almost 54% of New York

Stock Exchange share volume in 1993 while in 1965 the corresponding figure was merely 3%.

Thus, the execution strategies of institutional traders can influence the intraday variation

in volume and prices. It is often the case that institutional investors have daily horizons

to complete their orders, for example to accommodate the inflows and outflows in mutual

funds. For reasonable values of the LOB recovery speed ρ, our optimal execution strategy

implies large trades at the beginning and at the end of trading period. If execution horizon

of institutional traders coincides with a trading day, their trading can cause the increase in

trading volume and bid-ask spread at the beginning and the end of a trading day.

Our model predicts higher variation in the optimal trading profile for stocks with lower

ρ. This implies that stocks with low resilience in its LOB (low ρ) and high institutional

holdings should exhibit more intraday volume variation. We leave the empirical tests of

these predictions for future research.

markets. See McInish and Wood(1991) for the Toronto Stock Exchange, Hamao and Hasbrouck (1995) for
the Tokyo Stock Exchange, Niemayer and Sandas (1993) for the Stockholm Stock Exchange, and Kleidon
and Werner (1996) for the London Stock Exchange.

18See, for example, Admati and Pfleiderer (1988), Back and Baruch (2004), Brock and Kleidon (1992),
Foster and Viswanathan(1990, 1995), and Hong and Wang (2000).
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8 Extensions

So far, we have used a parsimonious LOB model to analyze the impact of supply/dynamics

on optimal execution strategy. Obviously, the simple characteristics of the model does not

reflect the richness in the LOB dynamics we actually face in the market. However, the

framework we developed is quite flexible to allow for extensions in various directions. In

this section, we briefly discuss some of these extensions. First, we consider the case where

the resilience of the LOB is time-varying. Next, we discuss the possibility of allowing more

general shapes of the static limit order book. Finally, we include risk considerations in

optimization problem.

8.1 Time Varying LOB Resiliency

Our model can easily incorporate time-variation in LOB resiliency. It has been documented

that trading volume, order flows and transaction costs all exhibit a U-shaped intraday pat-

tern, high at the opening of the trading day, then falling to lower constant levels during the

day and finally rising again towards the close of trading day. This suggests that the liquidity

in the market may well vary over a trading day. Monch (2004) has attempted to incorporate

such a time-variation in implementing the conventional models.

We can easily allow time-variation in LOB and its dynamics in our model. In particular,

we can allow the resilience coefficient to be time dependent, ρ = ρt for t ∈ [0, T ]. The results

in Proposition 1, 2, 3 still hold if we replace ρ by ρt, ρT by
∫ T

0
ρtdt and ρ(T − t) by

∫ T

t
ρtdt.

8.2 Different Shapes for LOB

We have considered a simple shape for the LOB, which is a step function. As we showed

in Section 3, this form of the LOB is consistent with the static linear price impact function

widely used in the literature. Huberman and Stanzl (2000) have provided theoretical ar-

guments in support of the linear price impact functions. However, empirical literature has

suggested that the shape of the LOB can be more complex (see, e.g., Hopman (2003)). We

can allow more general shapes of the LOB in our framework. This will also make the LOB

dynamics more complex. As a trade eats away the tip of the LOB, we have to specify how the

LOB converges to its steady state. With a complicated shape for the LOB, this convergence

process can take many forms which involves assumptions about the flow or new orders at

a range of prices. For certain specifications of this convergence process, our model is still

tractable. For brevity, we do not present these cases here. But beyond certain point, closed

form solutions become hard to find. Although the actual strategy can be quite complex
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and depends on the specifics of the LOB shape and its dynamics, we expect its qualitative

features to be the same as that under the simple LOB dynamics we considered.

8.3 Risk Aversion

Let us consider the optimal execution problem for a risk-averse trader. For tractability, we

assume that he has a mean-variance objective function with a risk-aversion coefficient of a.

The optimization problem (30) now becomes

Jt ≡ J(Xt, At, Vt, t) = min
{µ[0, T ], {xt∈T̂ }}∈ΘC

Et [Ct] + 1
2
a Vart [Ct] (32)

with (9), (28), (29) and the same terminal condition JT = [AT + 1/(2q)XT ] XT . Since the

only source of uncertainty is Ft and only the trades executed in interval [t, t + dt) will be

subject to this uncertainty, we can rewrite (32) in a more convenient form:

Jt = min
{µ[0, T ], {xt∈T̂ }}∈ΘC

Et [Ct] + 1
2
a

∫ T

t

σ2X2
s ds. (33)

At time T , the trader is forced to buy all of the remaining order XT . This leads to the

following boundary condition:

JT = [AT + 1/(2q)XT ] XT .

The next proposition gives the solution to the problem for a risk averse trader:

Proposition 4 The solution to the optimization problem (33) is

x0 = X0
κf ′(0) + aσ2

κρf(0) + aσ2

µt = κx0
ρg(t) − g′(t)

1 + κg(t)
e−

� t
0

κg′(s)+ρ
1+κg(s)

ds, ∀ t ∈ (0, T )

xT = X0 − x0 −
∫ T

0

µsds

and the value function is

Jt = (Ft+s/2)Xt + λX0Xt + αtX
2
t + βtDt + γtD

2
t

where Dt = At−Vt−s/2 and the coefficients are given by

αt =
κf(t) − λ

2
, βt = f(t), γt =

f(t) − 1

2κ
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and

f(t) = (v − aσ2)/(κρ) +

[
−κρ

2v
+ e

2ρv

2κρ+aσ2 (T−t)

(
κρ

2v
− κρ

v − aσ2 − κρ

)]−1

g(t) = −f ′(t) − ρf(t)

kf ′(t) + aσ2

with v =
√

a2σ4 + 2aσ2κρ.

It can be shown that as risk aversion coefficient goes to 0 the coefficients αt, βt, and γt

converge to the ones given in Proposition 2, which presents the results for the risk neutral

trader.
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Figure 5: Profiles of the optimal execution strategies for different coefficients of risk aver-
sion. This figure shows the profiles of optimal execution policies Xt for the traders with
different coefficients of risk aversion a = 0 (solid line), a = 0.05 (dashed line), a = 0.5
(dashed-dotted line) and a = 1 (dotted line), respectively. Variable Xt indicates how much
shares still has to be executed before trading at time t. The order size is set at X0 = 100, 000,
the market depth is set at q = 5, 000 units, the permanent price-impact coefficient is set at
λ = 0, and the trading horizon is set at T = 1, the resiliency coefficient is set at ρ = 1.

The nature of the optimal strategy remains qualitatively the same under risk aversion:

discrete trades at the two ends of the trading horizon with continuous trades in the middle.

The effect of trader’s risk aversion on his optimal trading profile is shown in Figure 5.

The more risk averse is the trader, the larger the initial trade more trades he shifts to the

beginning.

So far, we have assumed the execution horizon, [0, T ], to be exogenously given, and

ignored any time preference for execution a trade. Risk aversion, however, introduces a

natural preference for such a preference: Trading sooner reduces uncertainty in execution

prices. Such a preference is clearly reflected in the optimal policy as shown in Figure 5. Such

a time preference provides a mechanism to endogenize the execution horizon. For example,

T is sufficiently large, when the trader is risk-averse enough, he may optimally finish the

whole order soon before T .
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9 Conclusion

In this paper, we analyze the optimal trading strategy to execute a large order. We show

that the static price impact function widely used in previous work fails to capture the in-

tertemporal nature of a security’s supply/demand in the market. We construct a simple

dynamic model for a limit order book market to capture the intertemporal nature of sup-

ply/demand and solve for the optimal execution strategy. We show that when trading times

are chosen optimally, the dynamics of the supply/demand is the key factor in determining

the optimal execution strategy. Contrary to previous work, the optimal execution strategy

involves discrete trades as well as continuous trades, instead of merely continuous trades.

This trading behavior is consistent with the empirical intraday volume and price patterns.

Our results on the optimal execution strategy also suggest testable implications for these

intraday patterns and provide new insight into the demand of liquidity in the market.

The specific model we used for the LOB dynamics is very simple since our goal is mainly

to illustrate its importance. The actual LOB dynamics can be much more complex. However,

the framework we developed is fairly general to accommodate rich forms of LOB dynamics.

Moreover, with the current increase in the number of open electronic limit order books, our

LOB model can be easily calibrated and used to address real world problems.

It is important to note that our analysis is of a partial equilibrium nature. We take

the LOB dynamics as given and derive the optimal execution strategy for a large order.

In general, the order flow that determines the LOB dynamics arises from the optimizing

behavior of other market participants. As discussed before, ideally we want to have the

order flow process to be consistent with the optimal behavior of those who submit the

orders. In other words, the optimal execution should be consistent with an equilibrium of

the market. We leave such an analysis for future research.
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Appendix

Proof of Proposition 1

From (7), we have

Dtn = Atn−Vtn−s/2 =
n−1∑
i=0

xtiκe−ρτ(n−i) (A.1)

From (A.1), the dynamics of Dt between trades will be

Dtn+1 = (Dtn + xtnκ) e−ρτ (A.2)

with D0 = 0. We can then re-express the optimal execution problem (20) in terms of variables

Xt and Dt:

min
x∈ΘD

E0

N∑
n=0

[(Ftn +s/2) + λ(X0−Xtn)+Dtn +xtn/(2q)] xtn . (A.3)

under dynamics of Dt given by (A.2).

First, by induction we prove that value function for (A.3) is quadratic in Xt and Dt and

has a form implied by (22):

J(Xtn , Dtn , Ftn , tn) = (Ftn +s/2)Xtn + λX0Xtn + αnX
2
tn + βnXtnDtn + γnD

2
tn . (A.4)

At time t = tN = T , the trader has to finish the order and the cost is

J(XT , DT , FT , T ) = (FT +s/2)XT + [λ(X0−XT )+DT +XT /(2q)]XT .

Hence, αN = 1/(2q) − λ, βN = 1, γN = 0. Recursively, the Bellman equation yields

Jtn−1 = min
xn−1

{[
(Ftn−1 +s/2) + λ(X0−Xtn−1)+Dtn−1 +xn−1/(2q)

]
xn−1

+ Etn−1J
[
Xtn−1−xn−1, (Dtn−1 +κxn−1)e

−ρτ , Ftn , tn
]}

.

Since Ftn follows Brownian motion and value function is linear in Ftn , it immediately follows

that the optimal xn−1 is a linear function of Xtn−1 and Dtn−1 and the value function is a

quadratic in Xtn−1 and Dtn−1 satisfying (A.4), which leads to the recursive equation (23) for

the coefficients. Q.E.D.

Proof of Proposition 2

First, we prove the convergence of the value function. As τ = T/N → 0, the first order

approximation of the system (23) in τ leads to the following restrictions on the coefficients:

λ + 2αt − βtκ = 0

1 − βt + 2κγt = 0
(A.5)
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and

α̇t = 1
4
κρβ2

t

β̇t = ρβt − 1
2
ρβt(βt − 4κγt)

γ̇t = 2ργt + 1
4κ

ρ(βt − 4κγt)
2.

(A.6)

It is easy to verify that αt, βt and γt given in (26) are the solution of (A.6), satisfying (A.5)

and the terminal condition (24). Thus, as τ → 0 the coefficients of the value function (23)

converge to (26).

Next, we prove the convergence result for the optimal execution policy {xt}. Substituting

αt, βt, γt into (21), we can show that as τ → 0, the execution policy converges to

xt =

{
Xt

1

ρ(T−t) + 2
− Dt

1 + ρ(T−t)

κ[ρ(T−t) + 2]

}[
1 − 1

2
ρ2(T−t)τ

]
+ 1

2
(ρ/κ)Dtτ + o(τ) (A.7)

where o(τ) denotes terms to the higher order of τ . At t = 0, D0 = 0 and we have limτ→0 x0 =
X0

ρT+2
. Moreover, after the initial discrete trade x0 all trades will be the continuous (except

possibly at T ) and equal to

xt = 1
κ
ρDtτ + o(τ), t = nτ, n = 1, . . . , N − 1. (A.8)

We prove this by induction. First, using (A.7), where Xτ = X0 − x0 and Dτ = kx0(1 − ρτ),

it is easy to check that (A.8) holds for xτ . Second, let us assume that (A.8) holds for some

xt, where t = nτ , then we can show that xt+τ will satisfy it as well. In fact, the dynamics of

Xt and Dt is defined by

Xt+τ = Xt −xt, Dt+τ = (Dt +kxt)(1−ρτ), t = nτ, n = 0, . . . , N − 1. (A.9)

Substituting these into (A.7) and using the induction assumption, we get that

xt+τ = (ρ/κ)Dt+ττ + o(τ).

Thus, after the discrete trade x0 at time t = 0 all consequent trades will be the continuous.

Moreover, (A.8) implies the following form of Xt and Dt dynamics:

Xt+τ = Xt − 1
κ
ρDtτ + o(τ), Dt+τ = Dt + o(τ). (A.10)

Taking into account the initial condition right after the trade at time 0, we find that

Dt = Dτ =
kX0

ρT + 2
+ o(τ).

Thus, from (A.8) as τ → 0 for any t ∈ (0, T ) trade xt converges to ρX0

ρT+2
τ . Since all shares

X0 should be acquired by time T , it is obvious that limτ→0 xT = X0

ρT+2
. Q.E.D.
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Proof of Propositions 3 and 4

We give the proof of Proposition 4 along with Proposition 3 as a special case. Let us first

formulate problem (33) in terms of variables Xt and Dt = At−Vt−s/2 whose dynamics

similar to (A.2) is

dDt = −ρDtdt − κdXt (A.11)

with D0 = 0. If we write the cost of continuous and discrete trading as following:

dCc
t = (Ft+s/2)µtdt + λ(X0−Xt)µtdt + Dtµtdt (A.12)

∆Cd
t = 1{t∈T̂}

[
(Ft+s/2)xt + λ(X0−Xt)xt + Dtxt + x2

t /(2q)
]
. (A.13)

then (33) is equivalent to

min
{µ[0, T ], {xt∈T̂ }}∈ΘC

Et

⎡
⎣∫ t

0

dCc
t +

∑
t∈T̂

∆Cd
t

⎤
⎦ + (a/2)

∫ T

t

σ2X2
s ds (A.14)

with (A.11), (A.12) and (A.13).

This is the optimal control problem with a single control variable Xt. We can now apply

standard methods to find its solution. In particular, the solution will be characterized by

three regions where it will be optimal to trade discretely, continuously and do not trade at

all. We can specify the necessary conditions for each region which any value function should

satisfy. In fact, under some regularity conditions on the value function we can use Ito’s

lemma together with dynamic programming principle to derive Bellman equation associated

with (A.14). For this problem, Bellman equation is a variational inequality involving first-

order partial differential equation with gradient constraints. Moreover, the value function

should also satisfy boundary conditions. Below we will heuristically derive the variational

inequalities and show the candidate function which satisfies them. To prove that this function

is a solution we have to check the sufficient conditions for optimality using verification

principle.19

We proceed with the proof of Proposition 4 in three steps. First, we heuristically define

the variational inequalities (VI) and the boundary conditions for the optimization problem

(A.14). Second, we show that the solution to the VI exists and implies a candidate value

function and a candidate optimal strategy. Third, we verify that candidate value function

and optimal strategy are indeed solution to optimization problem. Finally, we will discuss

the properties of optimal strategies.

19For detailed treatment of similar problems see Hindy, Huang and Zhu(1997), Shreve and Soner (1994),
Eastham and Hastings(1988).
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A. Variational Inequalities

Let J(Xt, Dt, Ft, t) be a value function for our problem. Then, under some regularity condi-

tions it has to satisfy the necessary conditions for optimality or Bellman equation associated

with (A.14). For this problem, Bellman equation is a variational inequality involving first-

order partial differential equation with gradient constraints, i.e.,

min
{
Jt − ρDtJD + 1

2
σ2JFF + aσ2X2

t , (Ft+s/2) + λ(X0−Xt) + Dt − JX + κJD

}
= 0.

Thus, the space can be divided into three regions. In the discrete trade (DT) region, the

value function J has to satisfy

Jt−ρDtJD + 1
2
σ2JFF +aσ2X2

t > 0, (Ft+s/2)+λ(X0−Xt)+Dt−JX +κJD = 0. (A.15)

In the no trade (NT) region, the value function J satisfies:

Jt−ρDtJD + 1
2
σ2JFF +aσ2X2

t = 0, (Ft+s/2)+λ(X0−Xt)+Dt−JX +κJD > 0. (A.16)

In the continuous trade (CT) region, the value function J has to satisfy:

Jt−ρDtJD + 1
2
σ2JFF +aσ2X2

t = 0, (Ft+s/2)+λ(X0−Xt)+Dt−JX +κJD = 0. (A.17)

In addition, we have the boundary condition at terminal point T :

J(XT , DT , FT , T ) = (FT +s/2)XT + λ(X0−XT )XT + DT XT + X2
T /(2q). (A.18)

Inequalities (A.15)-(A.18) are the so called variational inequalities (VI’s), which are the

necessary conditions for any solutions to the problem (A.14).

B. Candidate Value Function

Basing on our analysis of discrete-time case we can heuristically derive the candidate value

function which will satisfy variational inequalities (A.15)-(A.18). Thus, we will be searching

for the solution in a class of quadratic in Xt and Dt functions. Note that it is always optimal

to trade at time 0. Moreover, the nature of the problem implies that there should be no NT

region. In fact, if we assume that there exists a strategy with no trading at period (t1, t2),

then it will be always suboptimal with respect to the similar strategy except that the trade

at t1 is reduced by sufficiently small amount ε and ε trades are continuously executed over

period (t1, t2). Thus, the candidate value function has to satisfy (A.17) in CT region and

(A.15) in any other region.

Since there is no NT region, (Ft+s/2)+λ(X0−Xt)+Dt−JX +κJD = 0 holds for any point

32



(Xt, Dt, Ft, t). This implies a particular form for the quadratic candidate value function:

J(Xt, Dt, Ft, t) = (Ft+s/2)Xt + λX0Xt

+ [κf(t) − λ)]X2
t /2 + f(t)XtDt + [f(t) − 1]D2

t /(2κ) (A.19)

where f(t) is a function which depends only on t. Substituting (A.19) into Jt − ρDtJD +
1
2
σ2JFF + aσ2X2

t ≥ 0 we have:

(κf ′ + aσ2)X2
t /2 + (f ′−ρf)XtDt + (f ′+2ρ−2f)D2

t /(2κ) ≥ 0 (A.20)

which holds with an equality for any point of the CT region.

Minimizing with respect to Xt, we show that the CT region is specified by:

Xt = − f ′−ρf

κf ′ + aσ2
Dt. (A.21)

For (Xt, Dt) in the CT region (A.20) holds with the equality. Thus, function f(t) can be

found from the Riccati equation:

f ′(t)(2ρκ + aσ2) − κρ2f 2(t) − 2aσ2ρf(t) + 2aσ2ρ = 0. (A.22)

This guarantees that Jt − ρDtJD + 1
2
σ2JFF + aσ2X2

t is equal to zero for any points in CT

region and greater then zero for any other points. Taking in account terminal condition

f(T ) = 1, we can solve for f(t). As a result, if the trader is risk neutral and a = 0, then

f(t) =
2

ρ(T−t)+2
.

Substituting the expression for f(t) into (A.19) we get the candidate value function of Propo-

sition 3. If the trader is risk averse and a 	= 0, then

f(t) = 1
κρ

(v − aσ2) −
[
κρ

2v
+

(
κρ

v − aσ2 − κ
− κρ

2v

)
e

2ρv

2ρκ+aσ2 (T−t)

]−1

where v is the constant defined in Proposition 4. From (A.19) this results in the candidate

value function specified in Proposition 4.

C. Verification Principle

Now we verify that the candidate value function J(X0, D0, F0, 0) obtained above is greater

or equal to the value achieved by any other trading policy. Let X[0, T ] be an arbitrary feasible

policy from ΘC and V (Xt, Dt, Ft, t) be the corresponding value function. We have

X(t) = X(0) −
∫ t

0

µtdt −
∑

s∈T̂ , s<t

xs

where µt ≥ 0 and xt ≥ 0 for t ∈ T̂ . For any τ and X0, we consider a hybrid policy which

follows policy Xt on the interval [0, τ ] and the candidate optimal policy on the interval [τ, T ].
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The value function for this policy is

Vτ (X0, D0, F0, 0) = E0

[ ∫ τ

0

[(Ft+s/2)+λ(X0−Xt) + Dt] µtdt

+
∑

ti<τ, ti∈T̂

[
(Fti +s/2)xti +λ(X0−Xti)xti + Dtixti + x2

ti
/(2q)

]
+ J(Xτ , Dτ , Fτ , τ)

]
.

(A.23)

For any function, e.g., J(Xt, Dt, Ft, t) and any (Xt, Dt, Ft, t), we have

J(Xt, Dt, Ft, t) =J(X0, D0, F0, 0) +

∫ t

0

Jsds +

∫ t

0

JXdX +

∫ t

0

JDdD

+

∫ t

0

JF dF +

∫ t

0

1
2
JFF (dF )2 + aσ2

∫ t

0

X2
s ds +

∑
ti<t, ti∈T̂

∆J. (A.24)

Use dDt = −ρDtdt − κdXt and substitute (A.24) for J(Xτ , Dτ , Fτ , τ) into (A.23), we have

Vτ (X0, D0, F0, 0) = J(X0, D0, F0, 0)

+ E0

∫ τ

0

[
Ft +

s

2
+ λ(X0−Xt) + Dt − JX + κJD

]
µtdt

+ E0

∫ τ

0

(
Jt − ρDtJD + 1

2
σ2JFF + aσ2X2

t

)
dt

+ E0

∑
ti<t, ti∈T̂

[
∆J +

(
Ft +

s

2
+ λ(X0−Xt) + Dt + xti/(2q)

)
xti

]

= J(X0, D0, F0, 0) + I1 + I2 + I3 (A.25)

Now we are ready to show that for any arbitrary strategy Xt and for any moment τ it is

true that

Vτ (X0, D0, F0, 0) ≥ J(X0, D0, F0, 0). (A.26)

It is clear that VI (A.15)-(A.17) implies non-negativity of I1 and I2 in (A.25). Moreover,

it implies that I3 ≥ 0. It is easy to be shown if you rewrite ∆J(Xti , Dti , Fti , ti) as J(Xti −
xti , Dti + κxti , Fti + σZti , ti) − J(Xti , Dti , Fti , ti). This complete the proof of (A.26).

Use it for τ = 0 to see that J(X0, D0, F0, 0) ≤ V (X0, D0, F0, 0). Moreover there is an

equality if our candidate optimal strategy is used. This complete the proof of Proposition 3.

D. Properties of the Optimal Execution Policy

We now analyze the properties of optimal execution strategies. First, let us consider the risk

neutral trader with a = 0. Substituting the established expression for f(t) into (A.21), we

find that the CT region is given by

Xt =
ρ(T−t)+1

κ
Dt.
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This implies that after the initial trade x0 = X0

ρT+2
which pushes the system from its initial

state X0 and D0 = 0 into CT region, the trader trades continuously at the rate µt = ρX0

ρT+2

staying in CT region and executes the rest xT = X0

ρT+2
at the end of trading horizon. In fact,

this is the same solution as we had for continuous time limit of solution of problem (20).

If the trader is risk averse then the CT region is given by

Xt = g(t)Dt, where g(t) = −f ′(t) − ρf(t)

f ′(t)κ + aσ2
.

This implies that after discrete trade x0 = X0
κf ′(0)+aσ2

ρκf(0)+aσ2 at the beginning which pushes the

system from its initial state into CT region, the trader will trade continuously at the rate

µt = κx0
ρg(t) − g′(t)

1 + κg(t)
e−

� t
0

κg′(s)+ρ
1+κg(s)

ds.

This can be shown taking in account the dynamics of Dt given in (A.2) and specification of

CT region. At the end the trader finishes the order. Q.E.D.
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