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ABSTRACT

Recent research documents that aggregate stock prices are driven by shocks with persistence levels

ranging from daily intervals to several decades. Building on these insights, we introduce a

parsimonious equilibrium model in which regime-shifts of heterogeneous durations affect the

volatility of dividend news. We estimate tightly parameterized specifications with up to 256 discrete

states on daily U.S. equity returns. The multifrequency equilibrium has significantly higher

likelihood than the classic Campbell and Hentschel (1992) specification, while generating volatility

feedback effects 6 to 12 times larger. We show in an extension that Bayesian learning about

stochastic volatility is faster for bad states than good states, providing a novel source of endogenous

skewness that complements the "uncertainty" channel considered in previous literature (e.g.,

Veronesi, 1999). Furthermore, signal precision induces a tradeoff between skewness and kurtosis,

and economies with intermediate investor information best match the data.
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1. Introduction

The recent asset pricing literature suggests that stock prices are driven by shocks with

very heterogeneous degrees of persistence. For example, market returns are predictable

at a range of business-cycle horizons; some variables provide best forecasts over intervals

of twelve months or less while others increase in power out to five years and more.1

Complementary studies emphasize even more persistent sources of variations in returns,

including technological innovation (e.g., Greenwood and Jovanovic, 1999), exogenous

demographic changes (e.g., Abel, 2003), and low frequency movements in consumption

or dividend growth (Bansal and Yaron, 2004).2

At the other end of the spectrum, high-frequency returns permit a large number

of observations and thus potentially more precise econometric inference. Researchers

have correspondingly related daily and intraday price movements to weather news (Roll,

1984), macroeconomic announcements (Andersen, Bollerslev, Diebold, and Vega, 2004),

internet bulletin boards (Antweiler and Frank, 2004), analyst reports3 and corporate

announcements.4 The existing literature thus documents persistence levels in stock

market news ranging from daily intervals to several decades.

Our research builds on this evidence by developing an equilibrium framework with

news shocks at many different frequencies. Why has the existing literature not addressed

this agenda? We offer two explanations.

First, it might seem plausible that some financial questions are best addressed in

isolation at a single horizon. Following this logic, equity premium studies largely focus

on annual data, while market efficiency research mainly uses higher frequencies. Re-

cent evidence suggests, however, that fluctuations at different frequencies can interact.

Lochstoer (2004) thus shows that a slowly-evolving generational state variable controls

business-cycle variation in risk premia. Similarly, Andersen, Bollerslev, Diebold, and

Vega (2004) provide evidence that the high-frequency impact of macroeconomic news

depends on the state of the business cycle.

A second, and more pragmatic, impediment to multifrequency research is that com-

plexity grows quickly with the number of components. Recent contributions (e.g.,

Bansal and Yaron, 2004; Lochstoer, 2004) demonstrate not only the empirical advantage

of using two persistence levels, but also that formal estimation becomes more difficult

and high-dimensional calibration more necessary with a more complex setup.

1See, for example, Lettau and Ludvigson (2001).
2Endogenous mechanisms for extremely persistent fluctuations include habit formation (Campbell

and Cochrane, 1999), durable consumption goods (Yogo, 2004a), and the dynamics of capital accumu-

lation with adjustment costs (Jermann, 1998).
3See, e.g., Womack (1996).
4An extensive literature studies stock price reactions to corporate announcements including quarterly

earnings, dividend policy, securities issuances and changes of control. See, e.g., MacKinlay (1997).

1



Our paper proposes a new direction to address these problems by developing a parsi-

monious equilibrium framework based on recent advances in multifrequency economet-

rics. An Epstein-Zin consumer receives an exogenous consumption stream, and prices

a flow of correlated dividends with regime-switching in the mean and volatility of their

growth rates.5 The model thus follows the recent trend to model dividends and con-

sumption as correlated but not identical processes (e.g., Campbell and Cochrane, 1999).

Exact solutions for equilibrium prices, return dynamics, and filtered beliefs are avail-

able. Unlike previous Lucas tree economies considered in the literature (e.g., Bansal

and Yaron, 2004; Lettau, Ludvigson, and Wachter, 2004), our setup implies that higher

volatility reduces prices for any level of the elasticity of intertemporal substitution.

We specify news arrivals with a Markov-switching multifractal (MSM), a stochas-

tic volatility model characterized by a small number of parameters but an arbitrarily

large number of frequencies (Calvet and Fisher, 2001, 2002, 2004; Calvet, Fisher, and

Thompson, 2004). Under this specification, news volatility is hit by exogenous shocks

with highly heterogeneous durations, which range from one day to more than a decade

in empirical applications. Earlier work shows that MSM captures the outliers, volatility

persistence and power variation6 of financial series, while permitting maximum likeli-

hood estimation and analytical multi-step forecasting. MSM compares favorably with

standard volatility models such as GARCH(1, 1) both in- and out-of-sample (Calvet and

Fisher, 2004). It is now natural to embed it into an equilibrium framework.

The multifrequency equilibrium model inherits the appealing properties of MSM.

It is tightly parameterized and permits structural estimation by maximum likelihood.

We estimate our specification on an index7 of US equities over the period 1926-2004.

Versions of the model with six to eight volatility frequencies provide significant improve-

ments in likelihood relative to lower dimensional specifications. The model also improves

on earlier specifications of single frequency news arrivals (Campbell and Hentschel, 1992,

hereafter “CH”), even though our approach uses fewer parameters.

Our model generates volatility feedback, the property that upward revisions to an-

ticipated future volatility tend to decrease current returns. Consistent with a multifre-

quency perspective, previous researchers have studied this topic at a range of different

5Following Hamilton (1989, 1990), researchers have used regime-switching to help explain financial

phenomena including stock market volatility, return predictability, the relation between conditional risk

and return, the term structure of interest rates, and the recent growth of the stock market. Contributions

include Abel (1994, 1999), Bansal and Zhou (2002), Cecchetti, Lam and Mark (1990), David (1997),

Kandel and Stambaugh (1990), Lettau, Ludvigson and Wachter (2004), Turner, Startz and Nelson

(1989), Veronesi (1999, 2000, 2004), Wachter (2004), and Whitelaw (2000).
6Power variation relates to the behavior at small time scales of sums of powers of absolute values of

returns. See Calvet and Fisher (2002), Barndorff-Nielsen and Shephard (2003) and Andersen, Bollerslev,

and Diebold (2003).
7We splice the Schwert (1990a) and value-weighted CRSP indices, as in CH.
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horizons. For example, French, Schwert, and Stambaugh (1987, hereafter “FSS”), CH,

and Wu (2001) assess feedback effects in daily, weekly, and monthly data, while Pindyck

(1984), Poterba and Summers (1985), Bansal and Yaron (2004), and Lettau, Ludvig-

son and Wachter (2004) emphasize volatility movements at the business cycle range

and beyond.8 A multifrequency approach might therefore prove useful in this context.

Intuition suggests that high-frequency volatility shocks help to capture the dynamics

of typical day-to-day variations, while lower-frequency movements generate the strong

feedback required to fit the most extreme daily returns. Volatility feedback models are

thus a natural setting where the interaction of various frequencies seems intuitively

important. The paper can be viewed in this sense as a first step towards bringing

together branches of the lower-frequency macro-finance and higher-frequency financial

econometrics literature.

The multifrequency equilibrium generates substantially larger feedback effects than

previous research. For instance, CH find that feedback amplifies the volatility of divi-

dend news by only about 2%; they attribute this result to the property of GARCH-type

specifications that the volatility of volatility can only be large if volatility itself is high.

In our stochastic volatility MSM specification for dividend news, feedback rises with

the number of components and the likelihood function, increasing to between 12% and

24% for the preferred specifications with six to eight components. The multifrequency

equilibrium model thus generates an unconditional feedback that is 6 to 12 times larger

than in previous literature.9

A substantial level of endogenous skewness is difficult to obtain in our full-information

equilibrium with symmetric dividends. Earlier volatility feedback studies attempt to ad-

dress this by introducing predictive asymmetry (CH) or skewness (Wu, 2001) directly

into the econometric specification of dividends. Our work instead investigates whether

higher return moments can be modeled through the endogenous equilibrium implications

of imperfect investor information and learning. We thus generalize our setup to allow

that the investor observes noisy signals of the volatility components and then makes

Bayesian inferences about the latent volatility state. The separation of dividends from

consumption implies that the price:dividend ratio is linear in investor beliefs, making

the model tractable.

Our learning model generates two main sets of results. First, signal precision has

little effect on the unconditional mean and variance of stock returns. To explain this,

8Investigation of volatility feedback in a general equilibrium setting was pioneered by Barsky (1989)

in a two-period setting and Abel (1988) in the dynamic case. French, Schwert and Stambaugh (1987) and

Campbell and Hentschel (1992) use GARCH-type processes to show that ex-post returns are negatively

affected by positive innovations in volatility. Bekaert and Wu (2000) provide further support for this

hypothesis.
9Based on the paramater estimates presented in Wu (2001), unconditional volatility feedback is 3.5%

for his model estimated on monthly data, and is negative for his model estimated on weekly data.
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we show that the price:dividend ratio (P:D) in the learning model is the conditional

expectation of its full-information counterpart. This implies the same mean and lower

variance, which is the analogue in our setup of the variance bounds discussed by LeRoy

and Porter (1981) and Shiller (1981). In our model, however, the reduction in variance

is negligible because large movements of the P:D ratio are induced by shifts in the

most persistent volatility components. Learning about these rare changes is therefore a

transitory phenomenon that has limited impact on stock return variance, and we verify

this logic numerically. The sizeable volatility feedback implied by our full-information

specification is thus robust to changes in information quality.

Our second learning result is that changes in the most persistent components have

strong effects on the higher moments of returns. In particular, varying the precision

of the volatility signal generates a sizeable tradeoff between endogenous skewness and

kurtosis. When investors have perfect information, volatility shocks are incorporated

fully and immediately into price, regardless of the direction of change. By contrast,

when the volatility component signals are poor, investors rely on dividend news to make

inferences about the volatility state. They still learn quickly about volatility increases,

because a single extreme fluctuation is highly improbable with low volatility. Learning

about reduced volatility must be slow, however, because dividend news observations near

the mean are a relatively likely outcome regardless of the true volatility state. Thus,

bad news about volatility incorporates quickly into price, while good news trickles out

slowly.10 This asymmetry creates the observed tradeoff between endogenous skewness

and kurtosis as information quality changes.

The linearity of the P:D ratio distinguishes our framework from previous research

that builds on the convexity of the price function with respect to beliefs (e.g., Brennan

and Xia, 2001; David, 1997; Lettau, Ludvigson and Wachter, 2004; Veronesi, 1999,

2000). Convexity leads to skewness because price is more sensitive to bad news in

good times than it is to good news in bad times. The origin of convexity in these

models is that signals about the latent state jointly influence investor beliefs about

cash flows and investor beliefs about the stochastic discount factor. This comovement

creates an “uncertainty” price discount, which is most pronounced when beliefs are

intermediate and therefore most variable. By contrast, investors in our framework learn

only about cash flows. The endogenous skewness mechanism identified in our paper

thus complements the “uncertainty” channel considered in previous learning studies.

Our work also complements earlier research by Veronesi (2000) on how information

quality affects stock returns. Whereas Veronesi considers a latent dividend drift, we

investigate learning about volatility and show that signal precision then has powerful

10A statistical interpretation is that odds ratios tend to be larger in the tails of competing distributions

than in the bells. This implies that learning about volatility increases should be faster than learning

about volatility decreases.
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effects in a multifrequency environment. Further, our study directly demonstrates that

structural models of investor learning are empirically relevant to higher-frequency daily

stock returns, which is an advance to this literature.11

Finally, we emphasize the considerable challenge of using a five parameter economic

equilibrium to explain more than 20, 000 observations of daily stock returns over a time

span exceeding eight decades. The model must account for high-frequency regularities

such as thick tails, volatility persistence, skewness, and feedback. It must also be flexible

enough to account for market conditions that change considerably over such a long time

span (Schwert, 1989). Moreover, our approach is structural in the sense that economic

theory places strong restrictions on what would otherwise be degrees of freedom in a

purely statistical setup. Our exogenous dividend news process is conditionally Gaussian,

has constant mean, and is both conditionally and unconditionally symmetric. Thus,

endogenous equilibrium effects must play a significant role in explaining stock returns.

Section 2 presents the asset pricing model and the equilibrium solution for a general

Markov structure. Section 3 specializes to a volatility feedback setup and develops

intuition on a loglinearized version of the model. In Section 4, empirical results are

provided for economies with full information. Learning economies are investigated in

Section 5. All proofs are in the Appendix.

2. An Asset Pricing Model with Regime-Switching Dividends

This section develops a discrete-time equilibrium model with regime-shifts in the mean

and volatility of dividend growth. The model resolves a well-known difficulty in the

volatility feedback literature. In a Lucas (1978) tree economy, an increase in consump-

tion volatility affects the pricing kernel and thus reduces the aggregate market price

only under special choices of relative risk aversion (e.g., Abel, 1989; Whitelaw, 2000) or

the elasticity of intertemporal substitution (Bansal and Yaron, 2004; Lettau, Ludvig-

son, and Wachter, 2004). In our model, dividend news volatility has no impact on the

pricing kernel and thus generates a negative relation between volatility and prices for

all preference parameters.

11Contributions to the literature on learning in financial markets include Detemple (1986), Dothan

and Feldman (1986), Gennotte (1986), Timmermann (1993, 1996), David (1997), Veronesi (1999, 2002),

Brennan and Xia (2001), and Lettau, Ludvigson and Wachter (2004). Empirical implementation tends

to focus on calibration at lower frequencies. For example, Veronesi (2004) calibrates to yearly returns

and considers horizons ranging from twenty to two hundred years. Lettau, Ludvigson and Wachter

(2003) similarly consider highly persistent shocks with durations of about a decade. David (1997) and

Brennan and Xia (2001) calibrate at a monthly frequency. Guidolin and Timmermann (2003) develop

estimation and forecasting for a model of learning about the drift on a binomial lattice, and apply this

to pricing options at a weekly frequency. At a monthly frequency, Turner, Startz, and Nelson (1989)

and Kim, Morley, and Nelson (2004), consider learning about volatility in a two-state specification with

feedback effects, where the signals that drive investor learning are not specified.
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2.1. Preferences, Consumption and Dividends

We consider an exchange economy defined on the regular grid t = 0, 1, 2, ...,∞. As in

Epstein and Zin (1989) and Weil (1989), the representative agent has isoelastic recursive

utility

Ut =

{

(1 − δ)C
1−α
θ

t + δ[Et(U
1−α
t+1 )]

1
θ

}
θ

1−α

,

where α is the coefficient of relative risk aversion, ψ is the elasticity of intertemporal

substitution (EIS), and θ = (1−α)/(1−ψ−1). When α = ψ−1, the specification reduces

to expected utility. While the Epstein-Zin-Weil preferences facilitate comparison with

earlier studies, most of our results hold with standard expected utility.

The agent receives an exogenous consumption stream {Ct}. The log-consumption

ct = lnCt follows a random walk with constant drift and volatility:

ct − ct−1 = gc + σcεc,t, (2.1)

where the shocks {εc,t} are IID N (0, 1). This standard specification is consistent with

the empirical evidence that consumption growth is approximately IID in postwar US

consumption data (e.g., Campbell, 2003).12

The volatility feedback literature suggests that aggregate stock prices decrease with

the volatility of dividend news. When the stock market is a claim on aggregate consump-

tion, this negative relation arises in equilibrium only for specific values of the preference

parameters. For instance, under expected utility α = 1/ψ, the price:dividend ratio de-

clines with volatility only if risk aversion is less than one (Barsky, 1989; Abel, 1988).13

For arbitrary Epstein-Zin preferences, volatility reduces prices only if the EIS is strictly

larger than 1 and relative risk aversion differs from unity: ψ > 1 and α 6= 1 (Bansal and

Yaron, 2004; Lettau, Ludvigson and Wachter, 2004).14 The empirical validity of the

12Bansal and Yaron (2004) argue that consumption growth contains a small but highly persistent

component. This is reasonable but in the raw consumption data difficult to distinguish from the iid

case, which is still the predominant assumption in the asset pricing literature. Future work might

consider incorporating into our framework the type of consumption growth suggested by Bansal and

Yaron.
13The price:dividend ratio is then Qt ≡ Pt/Ct = Et

P+∞

n=1 δ
n (Ct+n/Ct)

1−α , or equivalently

Qt =
+∞
X

n=1

δn
(

Covt

"

„

Ct+n
Ct

«

−α

;
Ct+n
Ct

#

+ Et

"

„

Ct+n
Ct

«

−α
#

Et

„

Ct+n
Ct

«

)

.

When future consumption becomes riskier, the ratio is affected by two opposite effects. First, the

covariances become more negative and reduce the price:dividend ratio Qt, as desired. Second, the

precautionary motive increases the expected marginal utility of future consumption Et

ˆ

(Ct+n/Ct)
−α

˜

,

which lowers interest rates and tends to increase Qt. We eliminate the second effect by disentangling

volatility shocks to the stock market from aggregate consumption.
14The Euler equation is then Qθt = δθEt

h

(Ct+1/Ct)
1−α (1 +Qt+1)

θ
i

. When consumption growth is
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EIS restriction has not been resolved. Attanasio and Weber (1993), Vissing-Jørgensen

(2002), and Bansal and Yaron (2004) report estimates of ψ larger than 1, while Camp-

bell and Mankiw (1989), Campbell (2003), and Yogo (2004b) find ψ to be small and in

many cases statistically indistinguishable from zero.

We resolve these difficulties by: 1) separating dividends from consumption, and 2)

permitting that shocks to dividend volatility do not simultaneously impact consumption.

Specifically, the log-dividend dt = lnDt follows a random walk with state-dependent

drift and volatility:

dt − dt−1 = µd(Mt) −
σ2
d(Mt)

2
+ σd(Mt)εd,t,

where εd,t is IID N (0, 1) and correlated with εc,t, the drift µd and volatility σd are

deterministic functions of the state variable Mt, and the Itô term σ2
d(Mt)/2 guarantees

that expected dividend growth E[Dt/Dt−1|Mt] = eµd(Mt) is controlled only by µd(Mt).

We assume that the state variable Mt is a first-order Markov process, and leave the

exact specification of the drift and volatility fully general in the rest of Section 2.

The model thus separates stock returns from aggregate consumption growth and the

stochastic discount factor. This assumption, which is common in finance, is consistent

with a variety of empirical facts.15 First, the correlation between consumption and the

stock market is generally small. In US data, the correlation between real consumption

growth and real dividend growth is 0.05 at a quarterly frequency, and 0.25 at a 4-year

horizon (Campbell, 2003). Second, aggregate consumption is smooth and not notice-

ably heteroskedastic. In contrast, the volatility of stock returns substantially fluctuates

through time. Third, the disconnect between dt and ct is possible because corporate

profits only account for only a small proportion of national income. For instance, in US

data corporate profits and personal consumption respectively account for approximately

10% and 70% of national income over the period 1929-2002. Consumption and dividend

shocks should thus be correlated, but not identical.

2.2. Asset Pricing under Complete Information

The information available to the investor is a key variable of the model. To develop

intuition, we begin by considering that the agent directly observes the true state of

the economy Mt. This will be the case if agents observe the macroeconomic quantities

determining the state or obtain Mt by engaging into fundamental research. The investor

information set It = {(Cs, Ds,Ms); s ≤ t} thus characterizes full information economies.

IID, the price dividend ratio is constant and satisfies Q/(1+Q) = δ
˘

E
ˆ

(Ct+1/Ct)
1−α

˜¯1/θ
. It decreases

with volatility if (1 − α)/θ > 0 or equivalently ψ > 1 and α 6= 1.
15See for instance Campbell (1996) or Campbell and Cochrane (1999).
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The stochastic discount factor satisfies

SDFt+1 = δ′
(

Ct+1

Ct

)−α

, (2.2)

where δ′ = δ{E[(Ct+1/Ct)
1−α]} 1

θ
−1. This expression is proportional to the stochastic

discount factor obtained under expected utility (θ = 1), suggesting that the elasticity

of intertemporal substitution affects the interest rate but not the price of risk.

We now turn to equilibrium pricing. The interest rate is constant through time and

satisfies the familiar relationship: rf = − ln Et(SDFt+1) = − ln δ′+αgc− (ασc)
2/2. The

equilibrium stock price is proportional to the current dividend: Pt = Q(Mt)Dt. The

Markov state thus controls the P:D ratio. The gross return on the stock

1 +Rt+1 ≡ Dt+1 + Pt+1

Pt
=
Dt+1

Dt

1 +Q(Mt+1)

Q(Mt)
(2.3)

satisfies the pricing condition E [(1 +Rt+1)SDFt+1|It] = 1, or equivalently

δ′E

[

(

Ct+1

Ct

)−α Dt+1

Dt

1 +Q(Mt+1)

Q(Mt)

∣

∣

∣

∣

∣

It

]

= 1.

The price:dividend ratio therefore solves the fixed-point equation

Q(Mt) = Et

{

[1 +Q(Mt+1)]e
µd(Mt+1)−rf−αρc,dσcσd(Mt+1)

}

, (2.4)

where ρc,d = Cov(εc,t, εd,t) > 0 denotes the constant correlation between the Gaussian

noises in consumption and dividends.

When the volatility process {σd(Mt)} is persistent, a large standard deviation of

dividend growth at a given date t implies a low contemporaneous price:dividend ratio

Q(Mt) = Et
∑+∞

n=1[Π
n
h=1e

µd(Mt+h)−rf−αρc,dσcσd(Mt+h)]. High volatility thus feeds into low

asset prices for any choices of the relative risk aversion α and the EIS ψ.

By (2.3), the log excess return rt+1 ≡ ln(1 + Rt+1) − rf is determined by the

price:dividend ratio and the realization of the dividend growth:

rt+1 = ln
1 +Q(Mt+1)

Q(Mt)
+ µd(Mt+1) − rf −

σ2
d(Mt+1)

2
+ σd(Mt+1)εd,t+1. (2.5)

Equations (2.4) and (2.5) are the building blocks of the empirical work.

In empirical applications, we conveniently assume that the Markov state Mt takes

a finite number of values {m1, ...,md}. Fixed-point condition (2.4) implies that the

equilibrium P:D ratio can be easily computed numerically for every possible state

Q(m1), ..., Q(md). Econometric inference is also straightforward. While the investor ob-

serves the true volatility state Mt, the econometrician has a smaller information set

I0
t ⊆ It. Specifically, we assume that the econometrician only observes excess returns:

I0
t ≡ {rs}ts=1 . We show in the Appendix that the likelihood function L(r1, ..., rT ) is then

available in closed-form.
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3. Volatility Feedback with Multifrequency Shocks

A large body of research documents that corporate profits and dividends are hit by

shocks with heterogeneous persistence. Classic asset pricing papers (e.g., CH) nonethe-

less assume an autoregressive specification in which volatility shocks decline at a single

frequency. In standard setups, multifrequency shocks would of course require a large

number of parameters. Recent econometrics literature (Calvet and Fisher, 2001, 2002,

2004) develops Markov-switching multifractal (MSM) processes as a tractable solution

to this problem. We now adopt this specification for dividend news.

3.1. A Multifrequency Specification for Dividend News

We assume that the volatility state Mt follows an MSM process, as is now explained.

The Markov state is a row vector

Mt = (M1,t;M2,t; ...;Mk,t) ∈ R
k̄
+,

where the scalars M1,t,M2,t, ...,Mk,t are volatility components with heterogeneous dura-

tions. Persistence is highest for the first component, and progressively diminishes with

the component index k. MSM thus contains a finite number of volatility components,

each of which corresponds to a different frequency.

Dividends have a constant growth rate

µd(Mt) ≡ gd,

and a stochastic volatility equal to the renormalized product

σd(Mt) ≡ σ̄d (M1,tM2,t...Mk,t)
1/2. (3.1)

We assume that σ̄d is a positive constant and that each random multiplier Mk,t has an

unconditional mean equal to unity: EMk,t = 1.

The volatility state vector is easily constructed through time.16 Let Mt denote the

Markov state at date t. For each k ∈ {1, .., k̄}, the next period multiplier Mk,t+1 is

drawn from a fixed distribution M with probability γk, and is otherwise equal to its

current value: Mk,t+1 = Mk,t. The construction can be summarized as:

Mk,t+1 drawn from distribution M with probability γk
Mk,t+1 = Mk,t with probability 1 − γk.

The switching events and new draws fromM are independent across k and t. The volatil-

ity components Mk,t differ in their transition probabilities but not in their marginal

16This innovation, introduced in Calvet and Fisher (2001), distinguishes our construction from pre-

vious multifractal processes that are generated by recursive operations on the entire sample path.
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distribution. Each component Mk,t therefore follows a Markov process that is identical

except for time scale. These features greatly contribute to the parsimony of the model.

MSM can accommodate any distributionM with positive support and unit mean. In

this paper, we choose for parsimony a binomial taking values m0 ∈ [1; 2] and 2 −m0 ∈
[0; 1] with equal probability. We tightly parameterize the transition probabilities by

assuming

γk = 1 − (1 − γ k̄)
(bk−k̄) . (3.2)

Calvet and Fisher (2001) introduce this specification through the discretization of a

Poisson arrival process, and subsequent work demonstrates its empirical validity (Calvet

and Fisher, 2004; Calvet, Fisher, and Thompson, 2004). Condition (3.2) implies that the

transition probabilities grow approximately geometrically: γk ∼ γk̄b
k−k̄. The parameter

γk̄ thus controls the persistence of the highest frequency component, while b determines

the spacing between component frequencies.

The specification (3.1) is appealing to model the high variability and strong per-

sistence of financial volatility. Low-frequency multipliers deliver persistent and discrete

switches, consistent with evidence of apparent non-stationarity in return variance (e.g.,

Schwert, 1989; Pagan and Schwert, 1990).17 Persistent changes also have a strong

impact on the P:D ratio and thus generate large feedback effects in stock returns. High-

frequency multipliers give additional outliers through their direct effect on the tails of

the dividend news process. Further, multiplicative interaction implies that subperiods

of low volatility can be observed in highly volatile periods. Conversely, total volatility

can quickly switch from an extreme to a normal level, as has been observed in equity

data (e.g., Schwert, 1990b). We expect that these features of MSM will help to fit US

stock returns over a long time span as well as to generate substantial volatility feedback.

The equilibrium excess return

rt+1 = ln
1 +Q(Mt+1)

Q(Mt)
+ gd − rf −

σ2
d(Mt+1)

2
+ σd(Mt+1)εd,t+1 (3.3)

is fully specified by the MSM volatility dynamics and fixed-point condition (2.4). Volatil-

ity feedback manifest itself in the return equation through the term ln 1+Q(Mt+1)
Q(Mt)

. Let

σc,d = σcσ̄dρc,d. By Euler condition (2.4), the price-dividend ratio is determined by

six coefficients: gd − rf , ασc,d and the MSM volatility parameters (m0, γk̄, b, σ̄d). As

is standard in the literature (e.g. Campbell and Shiller, 1988), we calibrate the mean

price:dividend ratio to its empirical value. This constraint guarantees that volatility

feedback estimates do not arise from a counterfactually high share of dividends in stock

17Although our model is strictly stationary, even very long-samples would be difficult to distinguish

from a non-stationary process due to low-frequency switches. We view this as a convenient framework

to model the low-frequency uncertainty that is present in financial data.
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returns. Specifically, consider

ln ρ ≡ E ln
Q(Mt)

1 +Q(Mt)
= E ln

Pt
Pt +Dt

. (3.4)

A unique ασc,d ensures that the price-dividend ratio matches the empirical value of ρ

for any choice of the other five parameters.18

The return dynamics are thus specified by

ψ ≡ (m0, γk̄, b, σ̄d, gd − rf ) ∈ R
5,

wherem0 denotes the high level of a volatility component, γ k̄ is the transition probability

of the least persistent component, b quantifies the growth rates of frequencies, and gd−rf
and σ̄d quantify the mean and standard deviations of dividend news.

3.2. Loglinear Approximation

We now develop intuition for the multifrequency equilibrium by loglinearizing the pricing

equation. Specifically, assume that the price-dividend ratio is loglinear in the volatility

components:

lnQ(Mt) ≈ q̄ −
k̄

∑

k=1

qk(Mk,t − 1). (3.5)

Equilibrium fixed-point condition (2.4) implies that19

qk =
ασc,d

2

1 − γk
1 − (1 − γk)ρ

, (3.6)

ln

(

eq̄

1 + eq̄

)

≡ ln ρ = gd − rf − ασc,d. (3.7)

We observe that each coefficient qk increases with the probability 1 − γk of the corre-

sponding component remaining in the current state. The price:dividend ratio is thus

a persistence-weighted sum of the volatility components. High frequency components

have negligible effects on the P:D ratio: qk → 0 when γk → 1. On the other hand for

very persistent components, the coefficient qk is large since ρ is empirically close to one

at the usual frequencies.

By (3.3) and (3.7), the unconditional expected return satisfies Ert = ασc,d, as in

the consumption CAPM. Volatility innovations thus have no impact the unconditional

18The price:dividend ratio Q(Mt) = Et

P+∞

n=1 e
n(gd−rf )−ασc,d[

√
g(Mt+1)+...+

√
g(Mt+n)] monotonically

decreases from +∞ to 0 as ασc,d increases from −∞ to +∞. Thus for every (m0, γk̄, b, σ̄d, gd − rf ) and

ρ < 1, equation (3.4) has a unique solution ασc,d.
19We show in the Appendix that the approximate solution holds for all choices of γ1, ..., γk̄, and thus

does not hinge on restrictions (3.2).
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equity premium. Realized returns are of course affected by multifrequency shocks and

satisfy

rt+1 ≈ ασc,d +

k̄
∑

k=1

qk[(Mk,t − 1) − ρ(Mk,t+1 − 1)] + σd(Mt+1)εd,t+1. (3.8)

The regimes generate large clustered outliers, as in equity data. We now investigate

how they affect the conditional and unexpected components of returns.

Given investor information It = {(Cs, Ds,Ms); s ≤ t}, the conditional return is the

persistence-weighted sum of volatility components:

Etrt+1 ≈ ασc,d



1 +
1

2

k̄
∑

k=1

(1 − γk)(Mk,t − 1)



 . (3.9)

Multipliers with high durations command a high expected return. We note that the

formula contrasts with the relationships obtained in traditional volatility models, where

the conditional return is typically a function of current volatility (e.g. Merton, 1980;

CH). As in Cecchetti, Lam, and Mark (1990), the volatility components generate mean

reversion in returns: Etrt+n ≈ ασc,d[1+
∑k̄

k=1(1−γk)n(Mk,t−1)/2] → ασc,d as n→ ∞.

Note, however, that convergence may be non-monotonic. For instance if M1,t > 1 and

Mk̄,t < 1, volatility is expected to increase in the short run and decrease in the long

run, implying similar movements in conditional returns.

The return innovation ut+1 = rt+1 − Etrt+1 satisfies

ut+1 ≈ −ρ
k̄

∑

k=1

qk(Mk,t+1 − EtMk,t+1) + σd(Mt+1)εd,t+1. (3.10)

An unexpected increase in a volatility component reduces the price: dividend ratio and

the return on the stock. Similarly, the return innovation is positive when the volatility

component is smaller than expected. As previously, the effect of an innovation on a

multiplier depends on its frequency. This mechanism implies that volatility and returns

are negatively correlated, which generates skewness in the distribution of returns.

The model permits us to revisit the “no news is good news” effect discussed in CH.

Consider component k and assume that no news has arrived between date t and date t+1:

Mk,t+1 = Mk,t. If the component is initially low (Mk,t < 1), volatility remains at a low

level and no news is then good news for the stock market: −ρqk(Mk,t+1−EtMk,t+1) > 0.

On the other hand if volatility is initially high, no arrival is bad news for stock returns.

Thus, the absence of an arrival can be either bad news or good news for the stock market

depending on the volatility state.
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Investor anticipation tends to make returns more volatile than dividend news. The

stock market amplification of exogenous shocks is quantified by the unconditional volatil-

ity feedback

V ar(rt+1)

V ar(dt+1 − dt)
≈ 1 +

V ar(M)

σ̄2
d

k̄
∑

k=1

q2k[2ργk + (1 − ρ)2] > 1, (3.11)

which increases with the duration and size of the volatility components. The relation

between feedback and volatility persistence is thus consistent with previous literature

(e.g., Poterba and Summers, 1985; Bansal and Yaron, 2004), and extends to a multifre-

quency setting.

CH attribute their low estimates of volatility feedback to the fact that in GARCH-

type processes, the volatility of volatility increases very rapidly (as a fourth power) of

the volatility level. By contrast, our model with k̄ = 1 implies

V art(σ
2
t+1) = σ̄4

dγ1[V ar(M) + (1 − γ1)(M1,t − 1)2].

The volatility of volatility is therefore a non-monotonic, U-shaped function of the volatil-

ity level. When k̄ > 1, it is straightforward to approximate V art(σ
2
t+1) by a sum of

U-shaped functions of the multipliers. This weaker relation between the level and con-

ditional variance of volatility suggests that our model may yield larger estimates of the

feedback effect.

4. Empirical Results with Fully Informed Investors

We now investigate the performance of the multifrequency equilibrium model on a long

sample of excess US equity returns. The test is challenging for several reasons. To

begin with, we use daily data spanning a long period of nearly eight decades. Thus, the

model must be able to account for regularities that are important at high frequencies,

such as thick tails, volatility persistence, skewness, and feedback effects. Additionally,

a good model should be flexible enough to account for market conditions that vary

widely across different periods in such a long time span, but also avoid overfitting. Our

parsimonious multifrequency specification seems like a good candidate for this task.

Explaining the data is even more challenging because we use an equilibrium model

rather than a purely econometric specification. Our approach is thus structural in the

sense that economic theory places strong restrictions on what would otherwise be de-

grees of freedom in a purely statistical setup. Finally, our exogenous dividend news

process is conditionally Gaussian, has constant mean, and is both conditionally and un-

conditionally symmetric.20 Thus, endogenous equilibrium effects must play a significant

20Our discussion of symmetry neglects the Itô adjustment term, which is negligible for all practical

purposes. In empirical specifications, the contribution of this term to daily returns never exceeds a few

basis points, while daily standard deviation is of the order of 1%.
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role in explaining daily stock returns.

4.1. Excess Return Data

We estimate the multifrequency equilibrium model on daily excess returns of a US eq-

uity index from January 1926 to December 2003. As in CH, the index is constructed by

combining the Schwert (1990a) daily index from 1926-1963 with CRSP value-weighted

returns from 1963 onwards, and subtracting a daily risk-free rate imputed from 30-day

Treasury bills. The entire 1926-2003 period contains 20,765 observations (“Full Sam-

ple”). We also report results for the period beginning in 1952, as is common in previous

literature (e.g., Campbell, 1991; CH) because it corresponds to a change in interest

rate regime with the Fed-Treasury Accord. This sample contains 13,109 observations

(“Postwar Sample”).21

Figure 1 shows the data, demonstrating the thick tails, low-frequency cycles, and

negative skewness that are widely recognized characteristics of aggregate stock returns.

To further indicate how conditions change across different periods in the long span of

the data, Table 1 shows moments of the excess return series for four evenly spaced

subsamples of each sample. These vary substantially, consistent with the findings of

Schwert (1989) and Pagan and Schwert (1990). The data thus contain complex high-

frequency variations as well as substantial movements at low-frequencies, presenting a

significant challenge to a parsimonious, stationary, and tractable equilibrium model of

returns.

4.2. Maximum Likelihood Estimation and Volatility Feedback

We use maximum likelihood (ML) to estimate the full-information equilibrium model.

This is an achievement in itself. Typically, once one ventures outside the class of GARCH

models to a stochastic volatility setting, exact maximum likelihood estimation becomes

difficult. We preserve this convenient and asymptotically efficient estimation method

because stochastic volatility in our setting is generated by pure regime-switching. Our

multifrequency approach allows us to use this technique effectively at daily intervals,

whereas extensive previous work with regime-switching over the last fifteen years has

been limited to longer horizons. Preserving ML estimation also deserves notice because

our returns process is the endogenous outcome of an economic equilibrium. Observed

returns are thus a highly complex, nonlinear, and dynamic function of the underlying

exogenous state variables.

Table 2 presents our estimation results with the number of volatility components k̄

21An earlier version of the paper carried out the same empirical procedures on the CRSP data only,

and found results very similar to the postwar results reported here.
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varying from 1 to 8 across the columns.22 The first column (k̄ = 1) thus corresponds to a

standard regime-switching model with only two possible volatility states. The two-state

case is a mainstay of the existing regime-switching literature, and the focus of a recent

volatility feedback study by Kim, Morley, and Nelson (2004).

Examining the value of the likelihood function as k̄ increases, we see clearly the ben-

efits of a multifrequency specification. In going from one to two volatility components,

the log likelihood increases by over 750 points in the full sample, and over 330 points in

the post-war sample. Since this requires adding only one additional parameter (from

four to five), the increase in likelihood is large by any standard model selection crite-

rion.23 Increasing the number of frequencies from two to three raises the log likelihood

by an additional 245 points in the full sample, and 167 points in the postwar sample, but

does not increase the number of parameters since components are identical except for

a tightly-parameterized vector of time-scales. Substantial increases continue, without

adding additional parameters, until the likelihood flattens in the range of k̄ = 6 to k̄ = 8

volatility components for both samples.

The parameter estimates in Table 2 also deliver sensible intuition. The multiplier m0

decreases monotonically with the number of components. As k̄ grows, each multiplier

needs to do less work in explaining aggregate volatility fluctuations, and reducing m0 is

the way the model achieves this. The unconditional volatility of dividends varies with

no apparent pattern across k̄, consistent with the fact that long-run volatility is not easy

to identify even in large samples. Dividend growth gd− r is positive and approximately

constant at about 5 basis points per day. We explore this result further in later discus-

sions. Finally, the switching probability γ k̄ of the highest frequency component is fairly

stable across specifications, and b, which controls frequency spacing, drops initially and

stabilizes at a value of about 2 for specification with k̄ = 6 and larger. These results

imply that the highest frequency volatility shocks have durations of approximately 15 to

30 days. Further, adding volatility components at first tightens intrafrequency spacing

when the number of components is small, but eventually serves more to extend the low

frequency range of variations.

Table 2 also reports statistics of the first four moments for each specification. Un-

conditional volatility is variable but in most cases comparable to the data, and excess

kurtosis is captured well when k̄ is large. However, the model appears to overestimate

the equity premium and does not sufficiently capture negative skewness. To fully un-

derstand these difficulties, which we later overcome by introducing investor learning, we

22The computation of the likelihood function uses the exact closed-form expressions of the

price:dividend ratios Q(m1)...Q(md). See the Appendix for further details.
23For example, using the Akaike Information Criterion (AIC) or the Bayesian Information Criterion

(BIC) the necessary increase in likelihood to justify one additional parameter would be less than five

points for either sample size.
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will compare our equilibrium model with the seminal work of Campbell and Hentschel

(1992).

Before beginning this process, we examine the unconditional volatility feedback

V ar(rt+1)

V ar(dt+1 − dt)
,

which is presented in the final line of Table 2. Feedback increases as components are

added, and for the best performing models with k̄ ≥ 6, it contributes between 5 − 17%

of total variance in the full sample, and 23 − 24% in postwar data. These numbers are

6 to 12 times larger than reported by CH for each period, and we now confirm that this

large difference continues to hold in our longer samples.

4.3. Comparison with CH

The Campbell and Hentschel (1992) specification, which we describe in detail in the

Appendix, provides a good comparison for our approach. First, CH also use endoge-

nous feedback to generate restrictions on excess stock returns. They assume QGARCH

dividend news and a linear pricing rule for volatility, which can be approximately rec-

onciled with an equilibrium setup comparable to ours. Second, CH similarly address

feedback effects in daily data over a very long sample, which is ambitious since depar-

tures from normality are most pronounced at shorter intervals, and changing economic

conditions are more important over longer time spans (Schwert, 1989; Pagan and Schw-

ert, 1990). More recent studies (e.g., Wu, 2001) often focus on lower frequency data

over shorter time spans. Third, like CH we restrict dividend news to be symmetric

and conditionally normal, which requires endogenous feedback to play a critical role in

matching higher moments. By contrast, Wu (2001) allows correlation between dividend

news growth and volatility, permitting exogenously skewed dividend news. Fourth, both

CH and our model are relatively parsimonious, requiring only seven and five parameters

respectively. Finally, both our model and CH permit convenient ML estimation, which

further facilitates comparison.

Table 3 reports ML estimation results for the CH model on both samples. Panel A

gives parameter estimates, which are comparable to those found in the original CH study.

Using the formula given in the Appendix, we can calculate the magnitude of volatility

feedback. As in the original study, feedback contributes between 1-2% of unconditional

variance, and is thus small relative to our multifrequency equilibrium model.

Panel B compares in-sample fit of the CH model to our multifrequency specification

with k̄ = 8 volatility components. Although our equilibrium model has two fewer pa-

rameters, its likelihood is over one hundred points larger. We adjust for the number of

parameters by calculating the Bayesian Information Criterion (BIC) statistic for each

specification, and assess significance using the Vuong (1989) test and a HAC-adjusted
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version proposed in Calvet and Fisher (2004). These show that the difference in like-

lihood is highly significant in both samples. Moreover, all multifrequency equilibrium

models with three or more volatility components have higher likelihood than the CH

specification.

This confirms that the full-information multifrequency equilibrium generates large

feedback effects and performs well in-sample relative to an important benchmark. We

now investigate the multifrequency model in greater detail.

4.4. Conditional Inference

In the full-information framework, investors directly observe the volatility state Mt, but

as empiricists we must make inferences based only on excess returns I 0
t ≡ {rs; s ≤ t}.

The Appendix discusses how to calculate filtered beliefs

Π̂j
t ≡ P

(

Mt = mj
∣

∣I0
t

)

as well as the smoothed probabilities

Ψ̂j
t ≡ P

(

Mt = mj
∣

∣I0
T

)

,

for j ∈ {1, ..., 2k̄}. The filtered beliefs are most useful for an empiricist wanting to use

the model for forecasting, while the smoothed beliefs allow the most informative ex post

analysis of the data.

Figure 2 displays marginal probabilities for components of both types of beliefs when

k̄ = 8. Specifically, for each k ∈ {1, .., 8} the amounts Π̂
M(k)
t ≡ P

(

Mk,t = m0

∣

∣I0
t

)

and

Ψ̂
M(k)
t ≡ P

(

Mk,t = m0

∣

∣I0
T

)

give marginal probabilities that volatility component k is

in a high state.24

Filtered beliefs on the left side of the figure show sensible patterns. For the lowest

frequency k = 1, beliefs drop over time from 0.5 to a value close to zero until the 1987

crash, and then jump immediately to almost 1.0. The most likely explanation of the

very large price drop is an increase in low-frequency volatility. By contrast, when a

smaller but still substantial drop in price of about −8% occurs just after 1955, the

lowest frequency k = 1 moves little, but the second lowest frequency k = 2 jumps

upwards substantially. When a similar size price drop occurs in the early 1960’s, beliefs

about the second volatility component are already high, so it cannot absorb the shock.

Filtered beliefs about components k = 3 and higher thus increase. In general, the cycles

in marginal beliefs have shorter durations as k increases, consistent with intuition. For

low values of k, the conditional distribution of the volatility state spends considerable

time at the extreme values of zero and one. By contrast, at high frequencies beliefs move

24A complete depiction is not possible since the full belief vectors each contain 256 elements.
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up and down rapidly, but rarely reach their boundaries. Conditioning on all returns as

in the smoothed beliefs on the right hand of the figure leads to more refined inference.

The smoothed marginal probabilities move less frequently but in larger increments, and

spend more time near the boundaries of zero and one.

In the first two panels of Figure 3, we use the filtered beliefs to compute the one-

step-ahead conditional mean and variance of returns. As implied by our feedback spec-

ification, these are positively correlated, showing small peaks in the early 1970’s with

higher levels in 1987 and around 2000. The asset-pricing literature emphasizes that the

market discount rate exhibits small and persistent variations through time. Feedback

models focus on cyclical variations in dividend news volatility as a possible source of

these fluctuations.25 While our multifrequency specification of volatility is appealing

because it permits multiple sources of volatility fluctuations in accord with economic

intuition, one might worry that this would lead to a conditional mean that is “too vari-

able” or “too jumpy.” Figure 3 shows that this is in fact not the case. The conditional

discount rate moves slowly because it is dominated by the most persistent volatility

component, as predicted by the loglinear solution in Section 3.

The last panel of Figure 3 shows the conditional feedback V art (rt+1)− V art (dt+1),

which moves positively with dividend volatility, but not to the same degree as in CH. In

fact, conditional feedback is relatively stable, and the ratio of its maximum to minimum

value is less than two. Regressing the log of conditional feedback on the log of conditional

news volatility V art (dt+1), we find a coefficient of 0.223 with a standard error of 0.001

and an R2 of 73.6%. This contrasts with CH where the regression coefficient would be

equal to two and the R2 equal to one, and confirms that feedback in our model is a

dampened rather than magnified version of conditional variance.

4.5. Return Decomposition

We now decompose U.S. equity returns into a conditional expectation, feedback inno-

vation, and dividend news. This provides a convenient ex post quantification of the

impacts of volatility feedback in the sample.

The fully informed investor observes in period t+ 1 the excess return rt+1 given by

(3.3). At time t+ 1 or later, the investor can thus implement the decomposition

rt+1 = E (rt+1|Mt) + [E (rt+1|Mt,Mt+1) − E (rt+1|Mt)] + σd(Mt+1)εd,t+1.

This separates the realized return into: 1) its expected value at time t; 2) the innovation

due to the volatility feedback; and 3) the multifrequency dividend news.

25Other explanations include investor heterogeneity (e.g., Constantinides and Duffie, 1996; Dumas,

1989), habit-formation (Abel, 1990; Constantinides, 1990; Campbell and Cochrane, 1999), prospect

theory (Benartzi and Thaler, 1995), or irrational expectations (Barberis, Shleifer and Vishny, 1998).

See Campbell (2003) for a recent review of this literature.
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Even after the entire sample is observed, the empiricist has a smaller information set

I0
T ⊂ IT than the investor, and thus derives an analogous but less precise decomposition.

Specifically, the relation rt+1 = E
(

rt+1|I0
T

)

implies

rt+1 = EΨ̂(t)rt+1 +
(

EΨ̂(t+1) − EΨ̂(t)

)

rt+1 + êd,t+1, (4.1)

where

êd,t+1 ≡ E[σd(Mt+1)εd,t+1|I0
T ] (4.2)

is the ex post estimate of realized dividend news. By the law of iterated expectations,

êd,t+1 has mean zero.

We implement the ex post decomposition in Figure 4. The top panel (4A) illustrates

the excess return series {rt}, and the remaining panels show consecutively the three

smoothed terms of (4.1): conditional return, volatility feedback, and dividend news. We

examine these successively.

The smoothed conditional return in Panel 4B shows small persistent variations, very

much like the ex ante conditional return in Figure 3. Thus, allowing for more precise

inference about the time t volatility state does not greatly influence expected returns.

By contrast, the smoothed feedback in Panel 4C differs sharply from the modest-

sized and fairly stable ex ante feedback in Figure 3. In particular, smoothed feedback

appears in strong, intermittent bursts. On most days it is small, but its occurrences co-

incide with the most substantial variations in the series, and on these days it contributes

a large portion of realized returns. These features are consistent with the intuition of

the model that low-frequency volatility changes are infrequent but have a large price

impact when they occur.

To understand the large difference between ex ante and ex post feedback estimates,

recall that changes in the individual volatility states are unpredictable. Thus, even given

precise information about the state Mt, the empiricist has limited ability to forecast

feedback. When an exogenous change in a low-frequency component does occur, it

appears immediately in the t + 1 return because investors have full information. The

return rt+1 is thus very informative to the empiricist about changes in low-frequency

volatility, and smoothed beliefs therefore give considerably greater refinement in the

estimation of feedback effects. In particular, our ex post analysis attributes over half of

the 1987 crash to volatility feedback.

Finally, in Panel 4D, the residual êd,t+1 is the filtered version of a symmetric MSM

process. We calculate its sample moments, and find a variance of 0.693, skewness co-

efficient −0.121, and kurtosis 8.39.26 Relative to the actual return data, the residual

variance is 13% smaller, skewness is 89% smaller, and leptokurtosis is 78% smaller. The

26These are not necessarily unbiased estimates. For example, applying Jensen’s inequality to (4.2)

shows that the variance of êd,t+1 is a lower bound for the variance of dividend news.
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filtered residual thus has a much lower skewness and kurtosis than the equity returns.

These findings suggest that endogenous volatility feedback plays an important role in

explaining the higher moments of returns in our sample.

4.6. Overidentifying Tests of the Full-Information Equilibrium

The previous section shows that, given observed stock returns, feedback plays an impor-

tant role in matching higher sample moments. A different, but useful question is, how

likely is the model to generate moments similar to the data? Since we have already used

the exact likelihood to estimate the model, we can design overidentifying tests around

this question.

For the sake of comparison, we conduct the tests for both the multifrequency and

CH specifications. For each process, we simulate 1, 000 paths of the same length as the

data and calculate statistics of the first four moments for each path. We also report the

fraction of paths for which the simulated statistic exceeds the corresponding empirical

moment. Note that this is a challenging test, since both models rely on endogenous

economic mechanisms to fit higher moments of the data.

Table 4 shows the results. Both models accurately capture the second moment,

which falls well within the five percent simulated confidence bands for each sample

period. Both models also overestimate the mean equity premium. Although CH is

somewhat closer to the data, the mean return is significant at the five percent level in

all cases. Likewise, the models have trouble capturing the negative skewness of the data,

but CH is somewhat closer and the data falls within its five percent confidence band

in the full sample. Finally, the multifrequency model captures well the high kurtosis of

stock returns, while CH does not.

To understand these results, we first note the link between difficulty matching the

first and third moments that has been established in the literature. FSS and CH discuss

that failing to sufficiently capture negative skewness in a conditionally heteroskedastic

sample tends to produce overestimates of the mean.27 Accurately capturing the skew-

ness of the data thus appears important.

In generating endogenous skewness, an important difference between CH and the

multifrequency equilibrium arises from predictive asymmetry in the dividend news pro-

cess. Predictive asymmetry is the property that negative innovations generate higher fu-

ture volatility than positive innovations of same magnitude. When exogenous dividend

27Consider a very negative observed return. If the innovation process is negatively skewed, then the

observation may be accounted for without inferring a high volatility. On the other hand, if negative

skewness is underestimated, then one must infer a correspondingly larger volatility. In estimating the

mean of a heteroskedastic sample, less weight is given to observations with high volatility. Thus, when

negative skewness is underestimated, a calculation of the population mean gives less weight to negative

observations, more weight to positive observations, and the inferred population mean tends to be larger.
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news has this feature, volatility feedback is immediately asymmetric, giving stronger

negative skewness in returns. Early drafts of CH (e.g., Campbell and Hentschel, 1991)

show that standard GARCH processes provide only a modest level of endogenous

skewness. Incorporating predictive asymmetry in dividend news through the QGARCH

specification helps to give stronger negative skewness, explaining the results in Table 4.

Our MSM specification for dividend growth has no predictive asymmetry. One

possibility would be to modify the dividend growth process to accommodate this feature,

following the path of CH. While reasonable, this would be more an econometric solution

than the outcome of an endogenous economic mechanism. In the next Section, we

leave our symmetric dividend process unchanged, and instead show that learning about

stochastic volatility can be a powerful and economically appealing method of generating

endogenous skewness.28

5. Learning About Volatility and Endogenous Skewness

This section shows that learning about stochastic volatility provides a substantial source

of endogenous skewness not previously identified in the literature. We assume that

Bayesian investors receive imperfect signals about the state of the economy, which is

a reasonable reduced-form if fundamental research is costly. The quality of the signal

controls a tradeoff between endogenous skewness and kurtosis: as information quality

deteriorates, kurtosis falls and returns become more negatively skewed. Although ML

estimation is no longer feasible, we find through simulation that (i) the size of the

volatility feedback effect is not highly sensitive to the learning environment, and (ii)

intermediate information levels best capture higher moment of stock returns.

5.1. Investor Information and Stock Returns

Investors observe every period consumption, dividends, and noisy observations of the

volatility components:

δt = Mt + σδzt, (5.1)

where σδ ≥ 0 is a scalar, and zt ∈ R
k̄ is an IID vector of independent standard normals.

This specification nests the full information case (σδ = 0). The information set It =

{(Ct′ , Dt′ , δt′); t
′ ≤ t} generates a conditional probability distribution Πt over the state

space {m1, ...,md}. We show in the Appendix that beliefs can be computed recursively.

The price:dividend ratio is a function of the investor beliefs: Pt/Dt = Q(Πt). The

stochastic discount factor depends only on consumption and is thus the same as in the

28Note that it would be difficult to incorporate learning in the CH model since volatility is a deter-

ministic function of past observations in GARCH-type settings. Learning is, however, a natural path to

pursue in our multifrequency latent state variable environment.
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full information economy. In equilibrium, the stock price satisfies

δ′E

[

(

Ct+1

Ct

)−α Dt+1

Dt

1 +Q(Πt+1)

Q(Πt)

∣

∣

∣

∣

∣

It

]

= 1,

and by forward iteration

Q(Πt) = E

[

∞
∑

i=1

δ′i
(

Ct+i
Ct

)−α Dt+i

Dt

∣

∣

∣

∣

∣

It

]

. (5.2)

The P:D ratio is the conditional expectation of exogenous variables driven by the first-

order Markov state Mt. We infer that P:D is linear in the current belief29

Q(Πt) = E [Q(Mt)| It] =
d

∑

j=1

Q(mj)Πj
t , (5.3)

where Q(mj) is the price:dividend ratio computed under full information. The setup is

thus highly tractable, as it implies that prices are a (linear) belief-weighted average of

state-prices from the full information model.

The excess return is determined by the volatility state and investor belief:

rt+1 = ln
1 +Q(Πt+1)

Q(Πt)
+ µd(Mt+1) − rf −

σ2
d(Mt+1)

2
+ σd(Mt+1)εd,t+1. (5.4)

When a new state occurs, investor learning implies that the market adjusts more grad-

ually and thus generates less extreme returns than in the full information economy.

Simulating the return process with learning is now straightforward, as discussed in the

Appendix.

The equilibrium impact of signal variability σδ is conveniently analyzed from (5.3)

for fixed values of the other parameters (m0, γ k̄, b, σ̄d, gd − rf ). The P:D ratio is the

filtered version of its full information counterpart, which implies equality of the means:

EQ(Πt) = EQ(Mt). This result suggests that information quality has essentially no effect

on the equity premium. The variance satisfies the orthogonality condition: V ar[Q(Mt)] =

V ar [Q(Πt)]+E{[Q(Πt)−Q(Mt)]
2}. Note that this equation is the analogue in our setup

of the variance bounds considered by Leroy and Porter (1981) and Shiller (1981). In our

framework, we expect the difference in variances to be small: The loglinear approxi-

mation of Section 3.2 shows that the variance of P:D is dominated by changes in the

most persistent components. Since learning about these changes is a rare and transitory

phenomenon, the difference Q(Πt)−Q(Mt) is likely to be modest most of the time. This

29In a representative agent economy with Epstein-Zin-Weil utility, the P:D ratio is linear in beliefs if:

(1) dividend growth is driven by a Markov state; and (2) consumption growth is a separate IID process.
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suggests that the variances of P:D and returns are relatively insensitive to information

quality, and we confirm this logic numerically in the next Section.

The linearity property (5.3) distinguishes our work from earlier research in which

the stock price is a convex function of beliefs (e.g. Brennan and Xia, 2001; David, 1997;

Lettau, Ludvigson and Wachter, 2004; Veronesi, 1999, 2000). Convexity induces skew-

ness because price is more sensitive to bad news in good times than it is to good news

in bad times. This “uncertainty” channel originates from signals that are informative

about both future dividend news and future marginal rates of substitution. We will

show that even in the absence of such a dual role, learning about stochastic volatility

can be a powerful source of endogenous skewness.

The equilibrium effect of information quality is investigated by Veronesi (2000), who

examines learning about mean dividend growth. His setup, like ours, involves a station-

ary equilibrium with discrete latent states and rational Bayesian investors. Our agenda

of investigating learning about volatility is clearly complementary to his.30 Other differ-

ences include: 1) Veronesi uses an analytically convenient continuous-time setup with

a single persistence level, while we develop a tractable multifrequency specification in

discrete-time, and 2) Veronesi uses a Lucas tree economy with power utility, while we

separate dividends from consumption to obtain linear pricing with Epstein-Zin pref-

erences. The tree structure in Veronesi (2000) implies that many of his results have

analogues in the volatility feedback literature. For instance, an increase in the expected

growth rate, like a decrease in volatility, can lead to a decline in prices. Our focus on

cash flow news allows us to abstract away from these issues and develop a multifrequency

learning model that can be applied to daily stock returns.

5.2. Learning Model Results

Despite the simplicity of the pricing and updating rules, econometric inference is compu-

tationally expensive in our imperfect information equilibrium. To see this, note that the

state of a learning economy consists of the volatility vector Mt+1 and the investor belief

Πt+1. Since the econometrician observes only excess returns, evaluating the likelihood of

the data would require integrating over the conditional distribution of the state (Πt,Mt).

When k̄ = 8, this would entail estimating a distribution defined on R
256×{m1, ...,m256}

and the curse of dimensionality would set in.

We instead use a simulation-based approach to investigate the learning model.

We focus on the specification with k̄ = 8 frequencies, and a base set of parameters

30In concluding his study, Veronesi anticipates an extension along the lines we pursue: “There are

other types of information that are certainly relevant and that are also worth investigating. These may

include information about future volatilities [...] for example. The effect of information quality on these

variables may have different implications on stock returns than the one discussed here.” We verify this

prediction.
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(m0, σd, gd − r, γ k̄, b) that appear reasonable given the empirical results in Section 4. In

particular, we set m0 = 1.34 and σd = 0.78 close to their values estimated from the post-

war data in the full information model. We reduce gd − r to the value 0.015, or about

3.75% annually. This approximately matches the empirically observed growth rate of

dividends, and also gives simulated returns that better fit the mean equity premium.

Finally, we set the frequency parameters to γ k̄ = 0.05 and b = 2.5. These are comparable

to the values from the full information estimation, but permit somewhat more contri-

bution from low frequencies. Intuitively, when investors gradually infer changes to the

volatility state, the model can accommodate lower frequency shocks without implying

implausibly large price changes. This choice of specification permits a lowest frequency

shock of about once every forty years, which is about half the length of the sample.

To evaluate the impact of information quality, we consider a set of signal volatilities

σδ ∈ {0, .1, ..., 1, 1.25, ...2, 3, 4, 5, 10, 15, 20}. For each value, we simulate a single long

sample of excess returns, and calculate the first four moments of returns as well as

the feedback, using the same set of random draws. We discuss all results, and report

a subset in Table 5. The mean return is equal to 2.54 basis points per day across all

simulations, which is close to the mean equity premium in both our sample periods. The

fact that mean returns appear approximately constant with the learning environment

is not surprising, since the average price:dividend ratio is independent of the signal

precision. The standard deviation is likewise nearly invariant to information quality,

and takes a value of about 0.82 for each simulation, close to the empirical value in

the post-war period. Because the second moment is not sensitive to signal precision,

feedback is also nearly constant across the different simulations, and takes a value of

about 12.5%. Thus, the degree of volatility feedback is robust across different learning

environments.

We do, however, find large and systematic differences in the degree of skewness and

kurtosis across learning environments. Skewness is close to zero at about −0.02 when

σδ = 0, falling to −.26 when σδ = 0.5, to −0.71 when σδ = 2, and to −1.14 when

σδ = 20. Returns thus become more negatively skewed as investor information becomes

less precise. Kurtosis takes its highest value of about 47 when investor information is

perfect. With a value of σδ = 0.5 kurtosis drops to 13.8 and when σδ = 2 kurtosis falls to

8.23. We thus infer a tradeoff between skewness and kurtosis. With perfect information

kurtosis is large but skewness is close to zero. As the quality of investor information

deteriorates, returns become more negatively skewed and kurtosis falls as well. Values

in the range σδ ∈ [0.4, 1.0] seem most consistent with the high kurtosis and substantial

negative skewness observed in the data. The tradeoff between skewness and kurtosis

across all values of σδ is depicted in Figure 5.

To understand these results, consider the role played by dividend growth in the

investor updating process. When information is perfect, dividend growth plays no role in
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determining investor beliefs about the volatility state. Regardless of whether volatility

state variables increase, decrease, or stay the same, investors find out immediately

and fully incorporate into price the impact of any changes. The speed of learning is

independent of the direction of the volatility change, and returns are approximately

symmetric. Kurtosis is high and skewness close to zero.

At the other extreme, when σδ is arbitrarily large the corresponding signals are

not useful, and investors rely on dividend news to infer the latent state. If volatility

increases, investors may get a single extreme observation that is implausible under

their existing beliefs. In this case beliefs quickly revise upward. On the other hand, a

volatility decrease (good news) can only be revealed slowly. This is because investors

learn about low volatility by observing dividend growth close to its mean, but this

is a relatively likely outcome regardless of the volatility level. Thus, bad news about

increased volatility can be incorporated into price quickly, while good news about low

volatility trickles out slowly. This asymmetry explains why skewness increases and

kurtosis falls as information quality about the volatility state deteriorates.

To further illustrate the effect of information quality, Figure 6 displays four simula-

tions with length T = 20, 000 of the learning economy with different signal precisions.

Consecutively from top to bottom, σδ = 0 corresponds to full information, σδ = 0.6 and

σδ = 1.0 give two reasonable intermediate values, and σδ = 20 corresponds to nearly

uninformative signals. All simulations use identical sets of random draws to facilitate

comparison, and we clearly see the anticipated effects. With perfect information, large

and symmetric feedback gives substantial outliers of both signs. As information quality

decreases, gradual learning causes feedback to be spread out across multiple days, and

fewer extreme returns occur. The attenuation is noticeably stronger for positive returns,

and skewness thus becomes more pronounced with σδ. When σδ = 20, this effect is so

extreme that no large positive returns occur in the simulation. The intermediate cases

where σδ = 0.6 and σδ = 1.0 appear most consistent with daily stock returns.

6. Conclusion

This paper develops a tractable asset-pricing framework for economies with multifre-

quency shocks to dividend news. We focus on a news specification with constant

mean, multifrequency stochastic volatility, and a conditionally Gaussian noise. The five-

parameter equilibrium model accounts for skewness, thick tails, time-varying volatility

and feedback in over eighty years of daily stock returns.

Two endogenous mechanisms play a critical role in matching equity data. First,

volatility feedback contributes between 12 and 24% of return variance, or 6 to 12 times

the amount in previous literature (e.g., Campbell and Hentschel, 1992). Feedback from

persistent components helps to capture extreme returns, while higher-frequency varia-
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tions match day-to-day volatility movements. Second, investor learning generates sub-

stantial endogenous skewness. Building on Veronesi (2000), we consider investor signals

about the volatility state, and show that information quality creates a tradeoff between

skewness and kurtosis. Intermediate information environments best match the data.

The paper illustrates that our multifrequency approach helps to connect low-frequency

macro-finance and learning literature with higher frequency financial econometrics.

Convergence of these areas follows from bringing multifrequency shocks into pure regime-

switching economies, which traditionally offer three major advantages: 1) asset pricing is

straightforward in a Markov chain setup; 2) the econometrics of regime-switching, based

on a simple filtering theory, is well-understood; and 3) learning is easily incorporated

by using similar filtering techniques. The multifrequency approach thus expands the

practical range of equilibrium regime-switching economies from a few states to several

hundred, and from lower frequencies to daily returns.

We anticipate that the multifrequency approach can be extended in a number of

useful directions. First, our Epstein-Zin setup is tractable when the latent Markov

regimes affect drifts as well as volatilities. This invites future investigations on the

equilibrium effect of learning about drifts in a multifrequency environment. Intuition

suggests that learning about the drift should strengthen both our empirical findings

and the results produced by Veronesi (1999, 2000), Brennan and Xia (2001) and others

in a unifrequency environment. Second, recent econometric developments permit the

effective and parsimonious specification of multifrequency comovement across assets

or factors (Calvet, Fisher, and Thompson, 2004). This advance permits for instance

the joint modelling of consumption and dividends, as in Bansal and Yaron (2004), or

more generally paves the way for novel specifications of multifrequency covariation in

stochastic discount factors and asset payoffs. Extensions along these lines are left as

open areas for future research.
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7. Appendix A. Economies with Regime-Switching Drift and Volatility

7.1. Stochastic Discount Factor

As shown by Epstein and Zin (1989), a utility-maximizing agent with budget constraint

Wt+1 = (Wt − Ct)(1 +Rt+1) has stochastic discount factor

SDFt+1 =

[

δ

(

Ct+1

Ct

)− 1
ψ

]θ
[

1

1 +Rt+1

]1−θ

,

where Rt+1 is the simple net return on the optimal portfolio.

In our setup, the representative agent can be viewed as holding a long-lived claim on

the aggregate consumption stream {Ct}∞t=0. The tree has price Pc,t = pcCt, and yields

the return 1 +Rc,t+1 = (1 + 1/pc)Ct+1/Ct. The stochastic discount factor is thus

SDFt+1 = δθ(1 + 1/pc)
θ−1

(

Ct+1

Ct

)−θ/ψ−1+θ

= δθ(1 + 1/pc)
θ−1

(

Ct+1

Ct

)−α

.

The condition Et[SDFt+1(1+Rc,t+1)] = 1 implies that δθ(1+1/pc)
θ

E[(Ct+1/Ct)
1−α] = 1

or equivalently

1 + 1/pc = δ−1{E[(Ct+1/Ct)
1−α]}− 1

θ .

We conclude that equation (2.2) holds.

7.2. Numerical Pricing

The process Mt is a Markov-chain with transition matrix A = (aij)1≤i,j≤d, where aij =

P(Mt+1 = mj|Mt = mi) for all i, j. Consider the row vector ι = (1, ..., 1) ∈ R
d, the

equilibrium column vector

q = [Q(m1), ..., Q(md)]′,

and the matrix B = (bij)1≤i,j≤d with components bij = eµd(m
j)−rf−αρc,dσcσd(m

j)ai,j. The

pricing condition (2.4) can be rewritten as q = B(ι′ + q), or equivalently

q = (I −B)−1Bι′. (7.1)

In empirical work, we use this expression to compute numerically the equilibrium

price:dividend ratio corresponding to a given set of parameters.
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7.3. Bayesian Updating and Closed-Form Likelihood

We derive the filtered beliefs (Π̂j
t )1≤j≤d and the corresponding likelihood. The derivation

follows Hamilton (1989, 1990), but due to feedback the conditional density of observables

at t+ 1 depends on both t and t+ 1 latent states.

Proposition 1. The econometrician’s conditional probabilities are computed recursively

using Bayes’ rule:

Π̂t+1 =
Π̂t [A ∗ F (rt+1)]

Π̂t [A ∗ F (rt+1)] ι
′
, (7.2)

where ∗ denotes element-by-element multiplication, and F (r) is the matrix with ele-

ments Fi,j (r) ≡ frt+1(r|Mt = mi, Mt+1 = mj). The log-likelihood of the return process

satisfies

lnL (r1, ..., rT ) =
T

∑

t=1

ln
{

Π̂t−1 [A ∗ F (rt)] ι
′
}

. (7.3)

Proof. The conditional probability Π̂j
t+1 = P

(

Mt+1 = mj
∣

∣I0
t , rt+1

)

satisfies

Π̂j
t+1 ∝ frt+1

(

rt+1|Mt+1 = mj , I0
t

)

P
(

Mt+1 = mj
∣

∣I0
t

)

.

We recognize that frt+1

(

rt+1|Mt+1 = mj , I0
t

)

can be rewritten as

d
∑

i=1

frt+1

(

rt+1|Mt+1 = mj ,Mt = mi
)

P
(

Mt = mi
∣

∣Mt+1 = mj, I0
t

)

=

d
∑

i=1

frt+1

(

rt+1|Mt+1 = mj ,Mt = mi
) P

(

Mt+1 = mj
∣

∣Mt = mi
)

P
(

Mt = mi
∣

∣I0
t

)

P
(

Mt+1 = mj
∣

∣I0
t

) .

The updated probability can now be written as

Π̂j
t+1 ∝

d
∑

i=1

frt+1

(

rt+1|Mt+1 = mj ,Mt = mi
)

Π̂i
taij,

which implies (7.2).

We now compute the log-likelihood function lnL (r1, ..., rT ) =
∑T

t=1 ln f(rt |r1, ..., rt−1 ).

Bayes’ rule implies

f(rt |r1, ..., rt−1 ) =
d

∑

i=1

d
∑

j=1

P(Mt−1 = mi,Mt = mj|r1, ..., rt−1)f(rt|Mt−1 = mi,Mt = mj)

=
d

∑

i=1

d
∑

j=1

Π̂i
t−1aijf

ij (rt) ,

and therefore f(rt |r1, ..., rt−1 ) = Π̂t−1[A ∗ F (rt)]ι
′. �
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8. Appendix B: Loglinear Approximation

By (2.4), the price:dividend ratio satisfies

lnQ(Mt) = gd − rf − ασc,d + ln Et

{

[1 +Q(Mt+1)]e
−ασc,d[

√
g(Mt+1)−1]

}

.

We assume that σc,d is close to 0 and that the marginal distribution M is concentrated

around 1, and look for a linear approximate solution to this fixed-point equation. The

conditional expectation

Et

{

[1 + eq̄−
Pk̄
k=1 qk(Mk,t+1−1)]e−ασc,d[

√
g(Mt+1)−1]

}

(8.1)

is approximately Et

{

[1 + eq̄ − eq̄
∑

qk(Mk,t+1 − 1)]
[

1 − ασc,d
2

∑

(Mk,t+1 − 1)
]}

, or

(1 + eq̄)Et

[

1 −
∑

(

eq̄

1 + eq̄
qk +

ασc,d
2

)

(Mk,t+1 − 1)

]

.

Since ρ = eq̄

1+eq̄ and Et(Mk,t+1 − 1) = (1 − γk)(Mk,t − 1), we infer that (8.1) is approx-

imately equal to (1 + eq̄)
[

1 − ∑k̄
k=1(1 − γk)

(

ρqk +
ασc,d

2

)

(Mk,t − 1)
]

. The linearized

version of the Euler equation is thus

q̄−
k̄

∑

k=1

qk(Mk,t−1) ≈ gd−rf −ασc,d+ln(1+eq̄)−
k̄

∑

k=1

(1−γk)
(

ρqk +
ασc,d

2

)

(Mk,t−1).

We infer that equations (3.7) − (3.6) hold.

We next derive the log-linearized return on the stock. Linearize ln[1 +Q(Mt+1)] ≈
ln[1 + eq̄−

Pk̄
k=1 qk(Mk,t+1−1)] around the unconditional mean (1, 1, ..., 1) :

ln[1 +Q(Mt+1)] ≈ ln(1 + eq̄) − eq̄

1 + eq̄

k̄
∑

k=1

qk(Mk,t+1 − 1).

Combining this result with (3.5), we infer

ln
1 +Q(Mt+1)

Q(Mt)
≈ − ln ρ−

k̄
∑

k=1

qk[ρ(Mk,t+1 − 1) − (Mk,t − 1)],

and conclude that (3.8) holds.

We then easily derive the conditional moments of the loglinear return process. The

conditional return is given by Etrt+1 ≈ ασc,d +
∑k̄

k=1 qk[1− ρ(1− γk)](Mk,t − 1), which

is equivalent to (3.9). The return innovation rt+1 − Etrt+1 is then easily computed.

By (3.8), the unconditional variance of returns satisfies V ar(rt+1) ≈ σ̄2
d+

∑k̄
k=1 q

2
k

V ar[(Mk,t−1)−ρ(Mk,t+1−1)]. We note that E[(Mk,t+1−1)(Mk,t−1)] = (1−γk)V ar(M)

and conclude that (3.11) holds.
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9. Appendix C: Full-Information Volatility Feedback Economy

9.1. Smoothed Beliefs

Proposition 2. The econometrician’s smoothed belief satisfies the backward recursion

Ψ̂i
t = Π̂i

t

d
∑

j=1

aij
Ψ̂j
t+1

Π̂j
t+1

[

f ij (rt+1)

frt+1

(

rt+1|I0
t

)

]

, (9.1)

i ∈ {1, .., d}, and the final condition Ψ̂T = Π̂T .

Proof. Since Mt is first-order Markov, we know that Ψ̂i
t =

∑d
j=1 P

(

Mt+1 = mj
∣

∣I0
T

)

P
(

Mt = mi
∣

∣Mt+1 = mj, I0
T

)

can be written as

Ψ̂i
t =

d
∑

j=1

Ψ̂j
t+1P

(

Mt = mi
∣

∣Mt+1 = mj, I0
t+1

)

.

By Bayes’rule, P
(

Mt = mi
∣

∣Mt+1 = mj, I0
t+1

)

= P
(

Mt = mi,Mt+1 = mj
∣

∣I0
t+1

)

/Π̂j
t+1,

and thus

Ψ̂i
t =

d
∑

j=1

Ψ̂j
t+1

Π̂j
t+1

P
(

Mt = mi,Mt+1 = mj
∣

∣I0
t+1

)

.

The conditional probability P
(

Mt = mi,Mt+1 = mj
∣

∣I0
t+1

)

is by Bayes’ rule equal

to

frt+1

(

rt+1|Mt+1 = mj ,Mt = mi
)

P(Mt = mi,Mt+1 = mj |I0
t )

frt+1

(

rt+1|I0
t

) =
f ij (rt+1) Π̂i

taij

frt+1

(

rt+1|I0
t

) .

We infer that

P
(

Mt = mi,Mt+1 = mj
∣

∣I0
t+1

)

=
Π̂i
taijf

ij (rt+1)

frt+1

(

rt+1|I0
t

) , (9.2)

and conclude that (9.1) holds. �

This smoothing rule slightly differs from the one derived by Kim (1994) for tradi-

tional Hamilton models, in which the signal observed by the econometrician depends on

the current state Mt+1 but not on the past state Mt. To illustrate this point, note that

our model implies

Π̂j
t+1 = P

(

Mt+1 = mj
∣

∣I0
t , rt+1

)

= P
(

Mt+1 = mj
∣

∣I0
t

)

frt+1

(

rt+1|I0
t ,Mt+1 = mj

)

/frt+1

(

rt+1|I0
t

)

.

The smoothed probability thus satisfies

Ψ̂i
t = Π̂i

t

d
∑

j=1

aij
Ψ̂j
t+1

P
(

Mt+1 = mj
∣

∣I0
t

)

[

f ij (rt+1)

frt+1

(

rt+1|I0
t ,Mt+1 = mj

)

]
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If the past state Mt has no effect on the density of rt+1, the term in square brackets

equals one and the smoothed belief then reduces to the Hamilton-Kim formulation. The

expressions are otherwise different.

9.2. Ex Post Decomposition

We condition the return equation (3.3) with respect to the econometrician’s information

set I0
T :

rt+1 = gd − rf + E

[

ln
1 +Q(Mt+1)

Q(Mt)
− σd(Mt+1)

2

2

∣

∣

∣

∣

I0
T

]

+ êd,t+1.

The definition of smoothed beliefs implies

rt+1 = gd − rf + EΨ̂(t+1)

(

ln[1 +Q(Mt+1)] − σd(Mt+1)
2/2

)

− EΨ̂(t) lnQ(Mt) + êd,t+1

Since EΨ̂(t)rt = gd − rf + EΨ̂(t)

(

ln[1 +Q(Mt+1)] − σd(Mt+1)
2/2 − lnQ(Mt)

)

, we con-

clude that (4.1) holds.

10. Appendix D: The Campbell-Hentschel Model

The CH specification is based on a dividend news that follows a QGARCH(1,2) process

(Engle, 1990; Sentana, 1995). Excess returns follow

rt+1 = µ+ γσ2
t + (1 + 2λb)ηd,t+1 − λ

(

η2
d,t+1 − σ2

t

)

, (10.1)

where the dividend news ηd,t+1 are N
(

0, σ2
t

)

, and

σ2
t = $ + α1

(

ηd,t − b
)2

+ α2

(

ηd,t−1 − b
)2

+ βσ2
t−1,

λ =
γρ (α1 + ρα2)

1 − ρ (α1 + ρα2 + β)
.

The parameter ρ is calibrated to the empirical P:D ratio, and the seven parameters

(µ, γ,$, α1, α2, b, β) are estimated by maximum likelihood.

The conditional return Etrt+1 = µ + γσ2
t increases in conditional volatility and γ,

which is related to risk aversion. Feedback appears itself in (10.1) through a quadratic

term in dividend news, λ(2bηd,t+1 +σ2
t −η2

d,t+1). After an extreme innovation ηd,t+1, the

investor knows that volatility will increase, and price drops. The location parameter b

differentiates QGARCH from traditional GARCH. When b > 0, negative dividend news

ηd,t have a higher impact on volatility than positive news of the same size. Feedback is

calculated by (1 + 2λb)2 + 2λ2σ2
t .
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11. Appendix E: Learning Economies

Consider the volatility state and investor belief (Mt,Πt) at the end of period t. The

state of the economy in the following period is computed in three steps:

1. Latent state of nature. We draw the volatility state Mt+1 given Mt. We also

sample k̄ + 2 independent standard normals (z1,t+1; ...; zk̄,t+1; εd,t+1; ηc,t+1). The

Gaussian consumption noise is εc,t+1 = ρc,dεd,t+1 +
√

1 − ρ2
c,dηc,t+1. We then

compute the consumption, dividend and signal in period t + 1. The empirical

evidence mentioned in Section 2 of the paper suggests to choose a relatively low

value for ρc,d. We use ρc,d = 0.20 in our simulations.

2. Investor belief. The investor observes (δt+1, ct+1−ct, dt+1−dt). She then computes

her new probability distribution Πt+1 over volatility states with Bayes’ rule :

Πj
t+1 ∝ f(δt+1, ct+1 − ct, dt+1 − dt|Mt+1 = mj)

d
∑

i=1

ai,jΠ
i
t, (11.1)

for all j ∈ {1, ..., d}.

3. Stock Return. We can then compute the corresponding excess return using (5.4).
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TABLE 1. – Excess Return Moments

Sample By Subperiod
Moment 1 2 3 4

A. Full Sample: 1926-2003

mean 0.022 0.010 0.043 0.013 0.024
standard deviation 1.104 1.643 0.755 0.773 1.003
skewness -0.30 0.09 0.96 0.07 -1.55
kurtosis 20.54 11.48 11.36 5.79 32.24

B. Postwar: 1952-2003

mean 0.023 0.044 -0.004 0.021 0.030
standard deviation 0.858 0.666 0.766 0.932 1.023
skewness -1.05 -0.70 0.13 -2.83 -0.21
kurtosis 26.51 13.34 5.76 59.84 7.18

Notes: This table reports statistics of the first four moments of daily excess returns. The statistics are
reported for our entire sample and for four evenly spaced subsamples. There is considerable variability in
all four moments across subsamples.



TABLE 2. – Regime-Switching Model with Full Information

k̄ = 1 2 3 4 5 6 7 8

A. Full Sample: 1926-2003

m̂0 1.812 1.656 1.584 1.509 1.456 1.412 1.387 1.381
(0.006) (0.006) (0.007) (0.008) (0.007) (0.009) (0.007) (0.009)

σ̂ 1.477 1.402 1.397 1.412 1.390 1.350 1.218 1.042
(0.029) (0.025) (0.025) (0.048) (0.037) (0.037) (0.032) (0.059)

ĝd − r 0.044 0.047 0.057 0.055 0.058 0.057 0.056 0.052
(0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

γ̂k̄ 0.030 0.065 0.083 0.065 0.062 0.068 0.037 0.065

(0.010) (0.008) (0.009) (0.009) (0.017) (0.013) (0.008) (0.015)

b̂ - 8.24 5.12 3.13 2.43 2.12 1.45 1.87
(1.19) ( 0.416) ( 0.254) ( 0.248) ( 0.142) ( 0.074) ( 0.074)

ln L 69146.92 69905.72 70241.25 70363.96 70416.87 70444.32 70463.67 70451.98
E[rt] 0.049 0.052 0.063 0.061 0.064 0.063 0.064 0.062

V ar[rt]
1/2 1.482 1.416 1.432 1.453 1.437 1.396 1.249 1.129

Skew[rt] -0.040 -0.054 -0.070 -0.070 -0.072 -0.069 -0.077 -0.072
Kurt[rt] 4.95 6.09 7.76 8.38 8.78 8.64 7.75 18.65
feedback 1.008 1.020 1.051 1.059 1.069 1.070 1.051 1.170

B. Postwar: 1952-2003

m̂0 1.711 1.584 1.519 1.440 1.434 1.380 1.372 1.334
(0.009) (0.008) (0.010) (0.009) (0.011) (0.010) (0.006) (0.005)

σ̂ 1.050 1.005 1.040 0.944 1.022 0.943 0.801 0.779
(0.020) (0.021) (0.022) (0.021) (0.037) (0.028) (0.022) (0.031)

ĝd − r 0.043 0.051 0.052 0.052 0.048 0.049 0.047 0.048
(0.004) (0.004) (0.004) (0.006) (0.005) (0.006) (0.006) (0.006)

γ̂k̄ 0.026 0.057 0.039 0.038 0.060 0.059 0.053 0.077

(0.007) (0.008) (0.005) (0.005) (0.009) (0.013) (0.009) (0.015)

b̂ - 5.530 2.662 2.114 2.830 2.234 2.094 1.997
(1.06) ( 0.268) ( 0.133) ( 0.199) ( 0.153) ( 0.095) ( 0.091)

ln L 45675.21 46008.95 46175.35 46218.80 46251.37 46263.60 46268.18 46268.07
E[rt] 0.051 0.060 0.060 0.061 0.056 0.058 0.057 0.058

V ar[rt]
1/2 1.055 1.017 1.060 0.969 1.088 0.999 0.895 0.864

Skew[rt] -0.032 -0.048 -0.056 -0.055 -0.055 -0.054 -0.054 -0.051
Kurt[rt] 4.49 5.37 6.17 6.26 17.80 12.49 36.62 31.35
feedback 1.010 1.024 1.041 1.056 1.133 1.122 1.247 1.230

Notes: This table shows parameter estimates for the full-information regime-switching model for a number
of volatility components ranging from one to eight.



TABLE 3. – Comparison with CH

A. Campbell-Hentschel Model Parameter Estimates

ω × 107 α1 α2 β b × 103 µ × 104 γ

Full Sample 1.87 0.140 -0.073 0.925 3.05 3.60 0.14
(0.78) (0.01) (0.01) (0.004) (0.18) (0.53) (0.03)

Postwar 0.53 0.145 -0.088 0.934 3.04 3.47 0.47
(0.74) (0.01) (0.01) (0.005) (0.20) (0.57) (0.09)

B. Likelihood Comparison

BIC p-value
vs. Multifractal

No. of Vuong HAC
Parameters lnL BIC (1989) Adj

Full Sample Multifractal 5 70451.98 -6.7833
QGARCH 7 69920.65 -6.7311 < 0.001 < 0.001

Postwar Multifractal 5 46268.07 -7.0554
QGARCH 7 46057.26 -7.0218 < 0.001 < 0.001

Notes: Panel A shows parameter estimates from the CH volatility feedback model. Panel B gives a
comparison of the in-sample fit versus the multifrequency regime-switching specification. The Bayesian
Information Criterion is given by BIC = T−1(−2 ln L + NP ln T ). The last two columns in Panel B give
p-values from a test that the QGARCH dividend specification dominates the multifractal specification by
the BIC criterion. The first value uses the Vuong (1989) methodology, and the second value adjusts the
test for heteroskedasticity and autocorrelation. A low p-value indicates that the CH specification would be
rejected in favor of the multifrequency model.



TABLE 4. – Moment Comparison

Standard
Mean Deviation Skewness Kurtosis

A. Full Sample

Data

0.022 1.10 -0.30 20.54
Full-Information Regime-Switching

0.062 1.129 -0.072 18.65
(0.01) (0.13) (0.11) (3.12)
[0.000] [0.407] [0.034] [0.676]

Campbell-Hentschel QGARCH

0.038 1.04 -0.19 7.78
(0.01) (0.09) (0.23) (7.45)
[0.021] [0.823] [0.114] [0.973]

B. Postwar

Data

0.023 0.858 -1.05 26.51
Full-Information Regime-Switching

0.058 0.858 -0.060 32.73
(0.01) (0.09) (0.30) (12.80)
[0.000] [0.490] [0.001] [0.359]

Campbell-Hentschel QGARCH

0.038 0.827 -0.253 5.64
(0.01) (0.06) (0.17) (3.08)
[0.022] [0.761] [0.007] [0.996]

Notes: This table shows a moment-based comparison of the full information regime-switching
feedback model against the CH QGARCH specification. For each model, we simulate a path the
same length as the data 1,000 times. We calculate the first four moment statistics for each sample.
The first line for each model gives the mean moments, and in parentheses in the second line the
standard deviation across simulations. In brackets we report the simulated p-value of the data,
which is the percentage of times the corresponding moment of the data exceeds the simulated
moment of the model. We observe that the regime-switching model does not capture well the first
and third moments, while the QGARCH model does not capture well the first, third, and fourth
moments.



TABLE 5. – Moments of the Learning Model

Signal Standard Deviation σδ

0 0.2 0.5 1 1.5 2

E[rt] 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254

V ar[rt]
1/2 0.8183 0.8184 0.8170 0.8178 0.8185 0.8189

Skew[rt] -0.0250 -0.0742 -0.2573 -0.5063 -0.6301 -0.7116
Kurt[rt] 47.40 29.61 13.78 9.54 8.61 8.23
feedback 1.1263 1.1266 1.1230 1.1250 1.1269 1.1281

Notes: This table shows the effect of learning on different moments of the data. The parameters m0 =
1.34, σd = 0.78, gd − r = 0.15, γk = 0.05, and b = 2.5 are held constant across all simulations. Each column
of the table reports simulation results for different values of the signal standard deviation σd. When σδ = 0,
information is perfect, and as σd becomes larger the signal precision weakens. For each specification, we
simulate a single long series of T = 3 ∗ 106 returns using the same set of random draws, and report moments
of the simulated data. Mean, variance, and feedback are nearly constant across simulations. Skewness
becomes more negative and kurtosis falls as signal precision becomes weaker.
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Figure 1: Daily Excess Returns. This figure shows daily excess returns from 1926 to 2003. The market
return series splices the Schwert (1990a) data from 1926-1963 with the CRSP value weighted index from 1963-2003.
The risk free rate is proxied by the return on 30 day U.S. Treasury bills.



k 
=

 1

Filtered Probability, Π
t
(M

k
=m0)

k 
=

 2
k 

=
 3

k 
=

 4
k 

=
 5

k 
=

 6
k 

=
 7

k 
=

 8

Smoothed Probability, Ψ
t
(M

k
=m0)

    1960      ‘70      ‘80      ‘90     2000
0

0.5

1

Figure 2: Volatility Component Conditional Beliefs. This figure shows ex ante and ex post conditional
beliefs for the values of each volatility component in the full information regime-switching specification with k̄ = 8
components. The filtered probabilities Πt are in the left-hand column, and the smoothed probabilites Ψt are in the
right-hand column. Volatility components progress from low (k = 1) to high (k = 8) frequency from top to bottom
of the figure.
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Figure 3: Ex Ante Conditional Mean, Volatility, and Feedback. This figure shows conditional moments
of excess returns under the full information regime switching specification with k̄ = 8 volatility components. Con-
ditioning information is the ex ante information set of returns up to and including date t. The three panels show
consecutively the conditional mean and variance of returns, and the ex ante absolute feedback.
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Figure 4: Ex Post Return Decomposition. This figure shows an ex post decomposition of realized returns using
the full information regime-switching feedback model. The decomposition uses the smoothed beliefs Ψt obtained by
using the conditioning information set of all returns. The first panel shows actual returns. The second panel shows
the mean return at time t + 1 conditional on the beliefs Ψt. The third panel shows the estimated amount of returns
due to volatility feedback at time t + 1 conditional on all of the data. The final panel is the residual, or the realized
return less the second and third panels.
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Figure 5: Learning Model Skewness and Kurtosis. This figure shows skewness and kurtosis for different
information environments in the simulated learning model. The parameters m0 = 1.34, σd = 0.78, gd − rf = 0.15,
γk̄ = 0.05, and b = 2.5 are held constant across all simulations. Each simulation is then based on a different value
of the signal standard deviation σδ ∈ 0, 0.1, .., 1, 1.25, .., 2, 3, 4, 5, 10, 15, 20. When σδ = 0, information is perfect,
and as σδ becomes larger the signal precision weakens. For each specification, we simulate a single long series of
T = 3 ∗ 106 returns using the same set of random draws. Each marked point on the plot represents a different
simulation, progressing from σδ = 0 in the top left to σδ = 20 in the bottom right.
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Figure 6: Simulations of the Learning Economy. This figure shows learning economy simulations with length
T = 20, 000. All simulations are based on the same set of base parameters m0 = 1.34, σd = 0.78, gd − rf = 0.15,
γk̄ = 0.05, and b = 2.5, and the same random draws for dividends, signal noises, and multipliers. Signal variability,
σδ, is the only item that changes across simulations. The top panel corresponds to full-information. The middle two
panels show intermediate learning environments, and in the final panel information quality is poor. We observe that
noise in the investor signals attenuates extreme feedback realizations, but attenuation is stronger for positive than
negative realizations. This generates increasing skewness as information quality falls.




