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Abstract
To what degree should societies allow inequality to be inherited? What role should estate

taxation play in shaping the intergenerational transmission of welfare? We explore these ques-
tions by modeling altruistically-linked individuals who experience privately observed taste or
productivity shocks. Our positive economy is identical to models with infinite-lived individ-
uals where efficiency requires immiseration: inequality grows without bound and everyone’s
consumption converges to zero. However, under an intergenerational interpretation, previous
work only characterizes a particular set of Pareto-efficient allocations: those that value only
the initial generation’s welfare. We study other efficient allocations where the social welfare
criterion values future generations directly, placing a positive weight on their welfare so that
the effective social discount rate is lower than the private one. For any such difference in social
and private discounting we find that consumption exhibits mean-reversion and that a steady-
state, cross-sectional distribution for consumption and welfare exists, where no one is trapped
at misery. The optimal allocation can then be implemented by a combination of income and
estate taxation. We find that the optimal estate tax is progressive: fortunate parents face
higher average marginal tax rates on their bequests.

1 Introduction

Societies inevitably choose the inheritability of inequality. Some balance between equality of oppor-

tunity for newborns and incentives for altruistic parents is struck. We explore how this balancing

act plays out to determine long-run inequality and draw some novel implications for optimal estate

taxation.

∗For useful discussions and comments we thank Daron Acemoglu, Fernando Alvarez, George-Marios Angeletos,
Abhijit Banerjee, Gary Becker, Olivier Blanchard, Ricardo Caballero, Dean Corbae, Mikhail Golosov, Bengt Holm-
strom, Narayana Kocherlakota, Robert Lucas, Casey Mulligan, Roger Myerson, Chris Phelan, Gilles Saint-Paul,
Nancy Stokey, Jean Tirole and seminar and conference participants at Chicago, Minnesota, MIT and the Texas
Monetary Conference held at the University of Austin in honor of the late Scott Freeman. This work begun moti-
vated by a seminar presentation of Chris Phelan at MIT in May 2004. We also have gained significant insight from
a manuscript by Scott Freeman and Michael Sadler—we thank Dean Corbae for bringing it to our attention.
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Existing normative models of inequality reach an extreme conclusion: inequality should be per-

fectly inheritable and rise steadily without bound, with everyone converging to absolute misery and

a vanishing lucky fraction to bliss. This immiseration result is robust; requires very weak assump-

tions on preferences (Phelan, 1998); and obtains invariably in partial equilibrium (Green, 1987,

Thomas and Worrall, 1990), in general equilibrium (Atkeson and Lucas, 1992), and across environ-

ments with moral-hazard regarding work effort or with private information regarding preferences

or productivity (Aiyagari and Alvarez, 1995).1

We depart minimally from these contributions, adopting the same positive economic models,

but a slightly different normative criterion. In a generational context, previous work with infinite-

lived agents characterizes the instance where future generations are not considered directly, but

only indirectly through the altruism of earlier ones. On the opposite side of the spectrum, Phelan

(2005) proposes a social planner with equal weights on all future generations. Our interest here is in

exploring a class of Pareto-efficient allocations that take into account the current population along

with unborn future generations. We place a positive and vanishing Pareto weight on the expected

utility of future generations, this leads effectively to a social discount rate that is lower than the

private one.

This relatively small change produces a drastically different result: long-run inequality remains

bounded, a steady-state, cross-sectional distribution exists for consumption and welfare, social mo-

bility is possible and everyone avoids misery. Indeed, welfare typically remains above an endogenous

lower bound that is strictly better than misery. This outcome holds however small the difference

between social and private discounting, and regardless of whether the source of asymmetric infor-

mation is privately observed preferences or productivity shocks.

We begin by modeling a positive economy that is identical to the taste-shock setup developed

by Atkeson and Lucas (1992). Each generation is composed of a continuum of individuals who

live for one period and are altruistic towards a single descendant. There is a constant aggregate

endowment of the only consumption good in each period. Individuals are ex-ante identical, but

experience idiosyncratic shocks to preferences that are only privately observed—thus ruling out first-

best allocations. Feasible allocations must be incentive compatible and must satisfy the aggregate

resource constraint in all periods.

When only the welfare of the first generation is considered, the planning problem is equivalent

to that of an economy with infinite-lived individuals. Intuitively, immiseration then results from

the desire to smooth the dynastic consumption path: rewards and punishments, required for incen-

tives, are best delivered permanently. As a result, the consumption process inherits a random-walk

component that leads cross-sectional inequality to grow endlessly without bound. Infinite spreading

of the distribution is consistent with a constant aggregate endowment only if everyone’s consump-

1Many find the immiseration result perplexing and some even find it morally questionable, but it is also incon-
venient from a practical standpoint. Long-run steady-states often provide a natural benchmark to study dynamic
economies, but such long-run analyses are not possible for private-information economies without a steady-state
distribution with positive consumption. This has impaired the study of long-run implications of optimal taxation,
so common in the Ramsey taxation literature.
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tion eventually converges to zero. Note, that as a consequence, no steady-state, cross-sectional

distribution with positive consumption exists.

Across generations, this arrangement requires a lock-step link between the welfare of parent and

child. Of course, the perfect intergenerational transmission of welfare improves parental incentives—

but at the expense of exposing newborns to the risk of their parent’s luck. Individuals would value

being insured against the uncertainty of their family’s fortune—it is often recognized that one of

the biggest risks one faces in life is regarding the family one is born into.

By contrast, it remains optimal to link the fortunes of parents and children in our model, but

no longer in lock-step. Rewards and punishments are distributed over all future descendants, but

in a front-loaded manner. This creates a mean-reverting tendency in consumption—instead of a

random walk—that is strong enough to bound long-run inequality. The result is a steady-state

cross-sectional distribution for consumption and welfare, with no fraction of the population stuck

at misery.

We also study a repeated Mirrleesian version of our economy and derive implications for optimal

estate taxation. In this model, individuals have identical preferences with regard to consumption

and work effort, but are heterogenous in the productivity of their work effort. Information about

productivity and work effort is private—only the resulting output is publicly observable. We show

that the analysis from the taste-shock model carries over to this setup, virtually without change. In

particular, a very similar Bellman equation characterizes the solution to the social planning prob-

lem: consumption exhibits mean-reversion and has a steady-state cross-sectional distribution. This

outcome highlights the fact that our results do not require any particular asymmetry of information.

More importantly, the Mirrleesian model offers new insights into estate taxation. Feasible al-

locations can be implemented by combining income and estate taxes. Specifically, we find that a

progressive estate tax, which imposes a higher average marginal tax rate on the bequests of fortu-

nate parents, is optimal. This result reflects the mean-reversion of consumption: more fortunate

dynasties, with relatively high levels of current consumption, must have a declining consumption

path induced by higher estate tax rates that lower the net rates of return across generations.

Finally, an important methodological contribution of this paper is to reformulate the social

planning problem recursively. In doing so, we extend ideas introduced by Spear and Srivastava

(1987) to situations where private and social preferences differ. Indeed, we are able to reduce the

dynamic program to a one-dimensional state variable, and our analysis and results heavily exploit

the resulting Bellman equation.

Related Literature. Our paper is most closely related to Phelan (2005), who considered a

social planning problem with no discounting of the future. He shows that if a steady state for the

planning problem exists then it must solve a static maximization problem, and that solutions to this

problem have strictly positive inequality and social mobility. Our paper establishes the existence

of a steady-state distribution for the planning problem for any difference in social and private

discounting. Unlike the case with no discounting, there is no associated static planning problem for

steady-state distributions, and as a result, the methods we develop here are very different.
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In overlapping-generation models without altruistic links, all market equilibria that are Pareto

efficient place positive direct weight on future generations. Bernheim (1989) was the first to point

out that in the dynastic extension of these models with altruism, many Pareto efficient allocations

are not attainable by the market. Kaplow (1995) argued that these Pareto efficient allocations

are natural social objectives and that they can be implemented by market equilibria with estate

taxation policy. The estate tax is negative—it is a subsidy — so as to internalize the externality of

giving on future generations.

Our work contributes to a large literature on dynamic economies with asymmetric information.

In addition to the work mentioned above, this includes recent research on dynamic optimal taxa-

tion (e.g., Golosov, Kocherlakota and Tsyvinski, 2003; Albanesi and Sleet, 2004; and Kocherlakota,

2004). This application has been handicapped by the immiseration result and by the non-existence

of a steady-state distribution with positive consumption, making it difficult to draw long-run con-

clusions for optimal taxation. Our results provide an encouraging way to overcome this problem.

Our work is also indirectly related to Sleet and Yeltekin (2004), who study an Atkeson-Lucas

environment with a utilitarian planner, who lacks commitment and cares only for the current

generation. In this environment, as in Phelan’s, it is a foregone conclusion that immiseration will

not obtain, so that the interesting question is how to solve for the best subgame-perfect equilibria.

Sleet and Yeltekin derive first-order conditions from a Lagrangian and use these to numerically

simulate the solution. Interestingly, it turns out that the best allocation in their no-commitment

environment is asymptotically equivalent to the optimal one with commitment but featuring a more

patient welfare criterion. Thus, our own approach and results provide an indirect, but effective

way of characterizing the no-commitment problem and of formally establishing that a steady-state

distribution with no one at misery exists.

The rest of the paper is organized as follows. Section 2 introduces the economic environment

and sets up the social planning problem. In Section 3, we develop a recursive version of the planning

problem and draw its connection to our original formulation. The resulting Bellman equation is

then put to use in Section 4 to characterize the solution to the social planning problem. Here we

derive our main results on mean-reversion and on the existence of a steady-state distribution for

consumption. We discuss these results in Section 5 and develop intuition for them by studying

some related problems and reformulations. In Section 6, we turn to the canonical optimal-taxation

setup with productivity shocks and focus on its implications for estate taxes. Section 7 offers some

conclusions from the analysis. All proofs omitted in the main text are contained in the Appendix.

2 A Social Insurance Problem

The backbone of our model requires a tradeoff between insurance and incentives. This tradeoff

can be due to private information regarding either productivity or preferences. For purposes of

comparison, we first adopt the Atkeson-Lucas taste-shock specification. In Section 6, we adapt our

arguments to a repeated Mirrleesian model with privately observed productivity shocks. Similar
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arguments could be applied to moral-hazard situations with unobservable effort choices.

Our positive economy is identical to that of Atkeson-Lucas—the differences are only normative.

An infinite-lived agent can be interpreted as a dynasty of individuals who have finite lives but are

altruistically linked. Under this interpretation, Atkeson-Lucas and others focus on a particular

set of efficient allocations: those that only directly consider the welfare of the initial generation.2

In contrast, our interest here lies with efficient allocations that directly weigh the welfare of all

future generations. This approach is asymptotically equivalent to postulating preferences for an

infinitely-lived social planner who is more patient than individuals.

Demography, Preferences and Technology. At any point in time, our economy is populated

by a continuum of individuals who have identical preferences, live for one period, and are replaced

by a single descendant in the next. Parents born in period t are altruistic towards their only child

and their utility vt satisfies

vt = Et−1 [ θtu(ct) + βvt+1 ] ,

where ct ≥ 0 is the parent’s own consumption and β ∈ (0, 1) is the altruistic weight placed on the

descendant’s utility vt+1. The utility function u(c) is assumed continuous and concave, with a contin-

uous derivative for all c > 0 satisfying the Inada conditions limc→0 u′(c) = ∞ and limc→∞ u′(c) = 0.

The taste shock θ ∈ Θ is distributed identically and independently across individuals and time.

This specification of altruism is consistent with individuals having a preference over the entire

future consumption of their dynasty given by

vt =
∞∑

s=0

βs Et−1 [ θt+su (ct+s) ] . (1)

In each period, a resource constraint limits aggregate consumption to be no greater than some

constant aggregate endowment e > 0. These specifications choices preferences and technology are

precisely those adopted by Atkeson-Lucas.

Define U ≡ u(R+) to be the set of all possible utility values. Note that we allow utility to

be unbounded so that the extremes u ≡ u(0) and ū ≡ limc→∞ u(c) may be finite or infinite. The

cost function c(u) is defined on U as the inverse of the utility function c ≡ u−1. For simplicity, we

assume Θ contains a finite number of shocks θ ≡ θ1 < θ2 < · · · < θN ≡ θ̄. We denote the density

by p(θ) and adopt the normalization that E[θ] =
∑N

n=1 θn p(θn) = 1. The level of dynastic utility vt

then always belongs to the set V ≡ u(R+)/(1− β) with extremes v ≡ u/(1− β) and v̄ ≡ ū/(1− β).

Social Welfare. We depart from Atkeson-Lucas by assuming that the social welfare criterion can

be represented by preferences given by the utility function

∞∑
t=0

β̂t E−1[ θtu(ct) ], (2)

2The final paragraph in Atkeson Lucas (1992) discusses the possible importance of relaxing this assumption.
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with β̂ > β. Thus, social preferences are identical to the individual preferences given by (1), except

for the discount factor.

This setup puts weight on the welfare of future generations directly. Future generations are

already indirectly valued through the altruism of the current generation. If, in addition, they are

also directly included in the welfare function the social discount factor must be higher than β. To

see this, consider the utilitarian welfare criterion

∞∑
t=0

αt E−1vt =
∞∑

t=0

δt E−1 [ θtu (ct) ], (3)

where δt ≡ βt + βt−1α + · · ·+ βαt−1 + αt. Then the discount factor satisfies

δt+1

δt

= β +
αt+1

δt

> β

and social preferences are more patient. In the limit δt+1/δt → max{β, α}, so the welfare crite-

rion (3) approaches (2) with β̂ = max{β, α}.3,4

Atkeson-Lucas’ analysis applies to the case with β = β̂, so we focus on the case where enough

weight is placed on future generations to ensure that the long-run social discount factor remains

strictly higher than the private one, β̂ > β. Although we adopt the preference in (2) directly for the

rest of the paper, it is straightforward to adapt the arguments to the welfare criterion (3). The two

specifications are slightly different for any finite horizon but are identical for the long-run, which is

our primary concern.

Information and Incentives. Taste shock realizations are privately observed by individuals and

their descendants. The revelation principle then allows us to restrict our attention to mechanisms

that rely on truthful reports of these shocks. Thus, each dynasty faces a sequence of consumption

functions {ct}, where ct(θ
t) represents an individual’s consumption after reporting the history θt ≡

(θ0, θ1, . . . , θt). A dynasty’s reporting strategy σ ≡ {σt} is a sequence of functions σt : Θt+1 → Θ

that maps histories of shocks θt into a current report θ̂t. Any strategy σ induces a history of reports

σt : Θt → Θt. We use σ∗ to denote the truth-telling strategy with σ∗t (θ
t) = θt for all θt ∈ Θt.

Given an allocation {ct}, the utility obtained from any reporting strategy σ is

U
({ct}, σ; β

) ≡
∞∑

t=0

∑

θt∈Θt+1

βtθtu
(
ct

(
σt(θt)

))
Pr(θt).

3Bernheim (1989) performs similar intergenerational discount factor calculations in his welfare analysis of a
deterministic dynastic saving model. Caplin and Leahy (2005) argue that these ideas also apply to intra-personal
discounting within a lifetime, leading to a social discount factor that is greater than the private one not only across
generations, but within generations as well.

4One can also adopt the more general welfare criterion
∑∞

t=0 αt E−1vt for some sequence of positive Pareto weights
{αt}. In particular, the sequence α0 = (1− β̂)/(1−β) and αt = α0β̂

t for t ≥ 1 delivers δt+1/δt = β̂ for all t = 0, 1, . . .
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An allocation {ct} is incentive compatible if truth-telling is optimal:

U
({ct}, σ∗; β

) ≥ U
({ct}, σ; β

)
. (4)

Social Planning Problem. Following Atkeson-Lucas, we identify each dynasty with a number

v, which we interpret as its initial entitlement to expected, discounted utility, v0 = v. We assume

that all dynasties with the same entitlement v receive the same treatment. We then let ψ denote a

distribution of utilities v across the population of dynasties: ψ(A) is the fraction of dynasties who

will receive expected discounted utility in the set A ⊂ R.

An allocation is a sequence of functions {cv
t } for each v, where cv

t (θ
t) represents the consumption

that a dynasty with initial entitlement v gets at date t after reporting the sequence of shocks θt.

For any given initial distribution of entitlements ψ and resources e, we say that an allocation {cv
t }

is feasible if: (i) it is incentive compatible for all dynasties; (ii) it delivers expected utility of at least

v to all initial dynasties entitled to v; and (iii) average consumption in the population does not

exceed the fixed endowment e in all periods. We let e∗(ψ) denote the lowest resource level e such

that there exists a feasible allocation that delivers the distribution of utility entitlements ψ—the

efficiency problem studied by Atkeson and Lucas (1992) which is relevant for β = β̂.

A social optimum maximizes the average social welfare function (2), weighed by ψ, over all

feasible allocations. That is, the social planning problem given an initial distribution of entitlements

ψ and an endowment level e is to maximize

∫
U

({cv
t }, σ∗, β̂

)
dψ(v)

subject to v = U({cv
t }, σ∗; β) ≥ U({cv

t }, σ; β) for all v, and

∫ ∑

θt

cv
t (θ

t) Pr(θt) dψ(v) ≤ e t = 0, 1, . . . (5)

Our social planning problem is well defined, with a non-empty constraint set, for all e ≥ e∗(ψ); we

are interested in situations with β̂ > β and where e > e∗(ψ).

Steady States. Our focus is on distributions of utility entitlements ψ such that the solution

to the planning problem features, in each period, a cross-sectional distribution of continuation

utilities vt that is also distributed according to ψ. We also require the cross-sectional distribution

of consumption to replicate itself over time. We term any initial distribution of entitlements with

these properties a steady state and denote them by ψ∗. As we shall demonstrate below, continuation

utility constitutes a state variable that follows a Markov process, and steady states are then invariant

distributions of this process.

Note that in the Atkeson-Lucas case, with β = β̂, the non-existence of a steady state with

positive consumption is a consequence of the immiseration result: starting from any non-trivial

initial distribution ψ and resources e∗(ψ) the sequence of distributions converges weakly to the
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distribution having full mass at misery, with zero consumption for everyone. We seek non-trivial

steady states ψ∗ that exhaust a strictly positive aggregate endowment e in all periods.

3 A Bellman Equation

In this section we study a relaxed version of the social planning problem whose solution coincides

with that of the original problem at steady states. The relaxed problem has two important advan-

tages. First, the relaxed problem can be solved by studying a set of subproblems—one for each

dynasty with entitlement v—which avoids the need to keep track of the entire population. Second,

each of these subproblems admits a simple recursive formulation, which can be characterized quite

sharply. We believe that the general approach we develop here may be useful in other contexts.

Consider the relaxed planning problem where the sequence of resource constraints (5) is replaced

by the single intertemporal condition

∫ ∞∑
t=0

Qt

∑

θt

cv
t (θ

t) Pr(θt) dψ(v) ≤ e

∞∑
t=0

Qt, (6)

for some positive sequence {Qt} with
∑∞

t=0 Qt < ∞. One can interpret this problem as representing

a small open economy facing intertemporal prices {Qt}. The relaxed and original versions of the

planning problem are related in that any solution to the former which happens to satisfy the

resource constraints in (5) must also be a solution to the latter. A Lagrangian argument establishes

the converse: there must exist some positive sequence {Qt} such that the solution to the original

planning problem also solves the relaxed problem. Most importantly, any steady-state solution to

the relaxed problem is a steady-state solution to the original one.

Our focus on steady states leads naturally to Qt = qt for some q > 0. Indeed, steady states

are only compatible with q = β̂, so we adopt this value for the relaxed problem from this point

forward. Attaching a multiplier λ̂ > 0 to the intertemporal resource constraint (6), we can form

the Lagrangian L ≡ ∫
Lv dψ(v) where

Lv ≡
∞∑

t=0

∑

θt

β̂t
(
θtu(cv

t )− λ̂cv
t (θ

t)
)
Pr(θt)

and study the optimization of L subject to v = U({cv
t }, σ∗; β) ≥ U({cv

t }, σ; β) for all v. This is

equivalent to the pointwise optimization, for each v, of the subproblem: k(v) ≡ sup Lv subject to

v = U({cv
t }, σ∗; β) ≥ U({cv

t }, σ; β). Our first result characterizes this value function and shows that

it satisfies a Bellman equation.

Theorem 1 The value function k(v) is continuous, concave, and satisfies the Bellman equation

k(v) = max
u,w

E
[
θu(θ)− λ̂c

(
u(θ)

)
+ β̂k

(
w(θ)

)]
(7)
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subject to

v = E[θu(θ) + βw(θ)] (8)

θu(θ) + βw(θ) ≥ θu(θ′) + βw(θ′) for all θ, θ′ ∈ Θ. (9)

This recursive formulation imposes a promise-keeping constraint (8) and an incentive con-

straint (9). Intuitively, the latter rules out one-shot deviations from truth-telling, guaranteeing

that telling the truth today is optimal if the truth is told in future periods. Of course, this is

necessary to satisfy the full incentive-compatibility condition (4). Intuitively, the rest is implicitly

taken care of in (7) by evaluating the value function at the continuation utility: for any given

continuation value w(θ), envision the planner in the next period solving the remaining sequence

problem by selecting an entire allocation that is incentive compatible from then on. Then k(w(θ))

represents the value to the planner of this continuation allocation. Taken together, a pair u(θ) and

w(θ) that satisfies (8)–(9) pasted with the corresponding continuation allocations for each w(θ),

yields an allocation that satisfies the full incentive-compatibility (4). The objective function in (7)

then captures the relevant value of allocations constructed in this way.

Among other things, Theorem 1 shows that the maximum in the Bellman equation (7) is at-

tained. We let the policy functions gu(θ, v) and gw(θ, v) denote the unique solutions for u and w,

respectively. For any initial utility entitlement v0, an allocation {ut} can then be generated from

the policy functions (gu, gw) by setting u0(θ0) = gu(θ0, v0) initially and defining ut(θ
t) and vt+1(θ

t)

inductively for t ≥ 1 by ut(θ
t) = gu(θt, vt(θ

t−1)) and vt+1(θ
t) = gw(θt, vt(θ

t−1)).

Our next result elucidates the connection between allocations generated from the policy functions

in this way and solutions to the planning problem.

Theorem 2 (a) An allocation {ut} is optimal for the relaxed problem, given v0, if and only if it

is generated by the policy functions (gu, gw) starting at v0, is incentive compatible, and delivers a

lifetime utility of v0; (b) an allocation {ut} generated by the policy functions (gu, gw), starting at

v0, has limt→∞ βt E−1vt(θ
t−1) = 0 and delivers utility v0; (c) an allocation {ut} generated by the

policy functions (gu, gw), starting from v0, is incentive compatible if

lim sup
t→∞

E−1β
tvt

(
σt−1(θt−1)

) ≥ 0

for all reporting strategies σ.

Part (a) of Theorem 2 implies that either the solution to the relaxed planning problem is

generated by the policy functions of the Bellman equation, or there is no solution at all. Parts (b)

and (c) of the theorem show that the first case is guaranteed if we can verify the limit condition in

part (c). The latter is automatically satisfied for all utility functions that are bounded below and

can be verified in many other cases of interest.5

5Theorem 2 involves various applications of versions of the Principle of Optimality. For example, for any given
policy functions (gu, gw) and an initial value v0, the individual dynasty faces a recursive dynamic programming
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The case with β = β̂ can be studied by the same approach. Recall that the efficiency problem

studied by Atkeson and Lucas (1992) minimizes resources e subject to the sequence of resource

constraints (5) and v = U({cv
t }, σ∗; β) ≥ U({cv

t }, σ; β) for all v. Consider the relaxed version

of this problem that replaces the sequence of resource constraints with the single intertemporal

constraint (6) for some sequence {Qt}. Then if the solution to this problem satisfies the resource

constraints (5) it is also a solution to the original problem. Although no steady state exists in

this case, with constant relative risk aversion utility functions, the relaxed problem with Qt = qt
AL

characterize the original one, for an appropriately chosen value of qAL > 0, not necessarily equal to

β.

Since the constraint (6) binds, we can take the objective function for the relaxed problem as

the left hand side of this inequality. This minimization can then be done pointwise: for each v let

KAL(v) ≡ inf
∑∞

t=0 qt
ALct(θ

t) subject to v = U({ct}, σ∗; β) ≥ U({ct}, σ; β). The associated Bellman

equation for this problem is then

KAL(v) = min
u,w
E

[
c
(
u(θ)

)
+ qALKAL

(
w(θ)

)]
(10)

subject to (8) and (9). This problem can be thought of as the limiting version of the β̂ > β case as

λ̂ →∞ and where the discount factor in the objective qAL is not necessarily β̂. Theorems 1 and 2

also apply to this problem and its Bellman equation.

4 Optimal Inequality

In this section we exploit the connection between the Bellman equation and the planning problem.

We characterize the solution and derive a key equation that illustrates mean-reverting forces in the

dynamics of consumption. The main result of the section is to establish that these forces are strong

enough to imply the existence of an invariant distribution with no misery. Finally, we provide

sufficient conditions to verify part (c) of Theorem 2, and ensure that a solution to the planning

problem exists.

Mean Reversion

We are now in a position to study the Bellman equation’s optimization problem. To begin, we

justify the use of first-order conditions with the following lemma:

Lemma 1 The value function k(v) is strictly concave and differentiable on the interior of its do-

main, with limv→v̄ k′(v) = −∞. If utility is unbounded below, then limv→v k′(v) = 1. Otherwise

problem with state variable vt. Conditions (8) and (9) then amount to guessing and verifying a solution to the
Bellman equation of the agent’s problem—in particular, that the value function that satisfies the Bellman equation,
with truth telling, is the identity function. However, one also needs to verify that this value function represents the
true optimal value for the dynasty from the sequential problem. This verification is accomplished by part (c) of
Theorem 2.

10



limv→v k′(v) = ∞.

Let λ = k′(v) be the multiplier on the left-hand side of the promise-keeping constraint (8) and

let µ(θ, θ′) be the multipliers on the incentive constraints (9). The first-order condition for u(θ) is

(
1− λ̂c′

(
u(θ)

))
p(θ)− θλp(θ) +

∑

θ′
θµ(θ, θ′)−

∑

θ′
θ′µ(θ, θ′) ≤ 0,

with equality if u (θ) is interior. The solution for w(θ) must be interior, given the Inada conditions

for k(v) derived in Lemma 1, and must satisfy the first-order condition

β̂k′
(
w(θ)

)
p(θ)− βλp

(
θ
)

+ β
∑

θ′
µ(θ, θ′)− β

∑

θ′
µ(θ, θ′) = 0.

Using the envelope condition k′(v) = λ and adding up across θ, this becomes

∑

θ∈Θ

k′
(
gw(θ, v)

)
p(θ) =

β

β̂
k′(v). (11)

This key equation can be represented in sequential notation as

Et−1

[
k′

(
vt+1(θ

t)
)]

=
β

β̂
k′

(
vt(θ

t−1)
)

(12)

where {vt} is generated by the policy function gw. Thus, {k′(vt)} is a Conditional Linear Auto

Regressive (hereafter: CLAR) Markov process. Note that we can translate anything about the

process {k′(vt)} into implications for the process {vt}, since the derivative k′(v) is continuous and

strictly decreasing. Likewise, using the policy function gu(θ, v), conclusions about the process {vt}
provide information about the process for consumption.

The conditional expectation in (12) illustrates that β/β̂ < 1 creates a force for mean reversion

for the process {k′(vt)} toward zero. Lemma 1 implies that the value function k(v) has an interior

maximum at v∗ > v with k′(v∗) = 0, so reversion occurs towards this interior utility level—away

from misery. This feature is key to our results on the existence of invariant distributions.

Economically, the mean-reversion equation itself embodies an interesting form of social mobility.

We can divide the population into two social hierarchies, with mobility ensured between them.

Descendants of individuals with current welfare above v∗ will eventually fall below it. Similarly

dynasties initially entitled to welfare below v∗ are guaranteed to access levels above it. This rise

and fall of families illustrates a strong intergenerational mobility in the model.

In deriving this result, it is important to stress the role played by the non-monotonicity of

the value function k(v). Although mean reversion stems from β̂/β < 1 in equation (12), it is

non-monotonicity of k(v) that ensures that reversion is not toward misery. By contrast, in the

Atkeson-Lucas case a CLAR equation similar to (12) may hold, but the value function in this

case is monotone and reversion then occurs toward misery. Indeed, the envelope and first-order

11



conditions for the Bellman equation (10) yield

∑

θ

K ′
AL

(
gw

AL(θ, v)
)
p(θ) =

β

qAL

K ′
AL(v),

which is similar to condition (12) when qAL > β.6 Crucially, unlike the case with β̂ > β, here

the value function KAL(v) is strictly increasing, so that K ′
AL (v) ≥ 0. Thus, {K ′

AL(vt)} is a non-

negative process, which implies by the Martingale Convergence Theorem that it must converge

almost surely (a.s.) to some finite value. Since incentives must be provided using continuation

utilities gw(θ̄, v) 6= gw(θ, v), this rules out anything other than K ′
AL(vt) → 0 a.s. Immiseration then

follows, vt → v and ct → 0 a.s. This highlights the importance of the non-monotonicity of the value

function k(v) for our results in the case of β̂ > β.

Our next result pushes the characterization of reversion past the average behavior of the {k′t}
process by deriving bounds for its evolution. These bounds are critical for guaranteeing the existence

of an invariant distribution with no mass at misery.

Proposition 1 The policy function gw(θ, v) satisfies the CLAR equation (11). In addition:

(a) if utility is unbounded below, then

γ
(
1− k′(v)

)
+

(
1− β

β̂

)
≤ 1− k′

(
gw(θ, v)

) ≤ γ̄
(
1− k′(v)

)
+

(
1− β

β̂

)
(13)

for all θ ∈ Θ, where the constants are given by γ̄ ≡ (β/β̂) max
1≤n≤N

{(1 + θn − E[θ ≤ θn])/θn} and

γ ≡ (β/β̂) min
2≤n≤N

{1 + θn−1 − E[θ | θ ≥ θn]/θn−1}.

(b) if utility is bounded below, then for low enough values of v such that k′(v) > 1, we have

u(θ) = u

w(θ) > v

k′
(
w(θ)

)
= (β̂/β)k′(v)

for all θ ∈ Θ. For values of v such that k′(v) ≤ 1, the lower bound in (13) holds; the upper

bound in (13) holds for sufficiently high v.

Proposition 1 illustrates a powerful tendency away from misery. For example, with utility

unbounded below, continuation utility gw(θ, v) remains bounded even as v → −∞. Thus, no matter

how much a parent is supposed to be punished, his child is always somewhat spared.

6With logarithmic utility qAL = β yields a solution with constant average consumption. With u(c) = c1−σ/(1−σ)
and σ < 1 the appropriate value of qAL, that yields constant consumption, is strictly above β.
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Main Result: Existence of an Invariant Distribution with No Misery

We now state the main result of this section: if a solution to the relaxed planning problem exists,

then it admits an invariant distribution with no misery. The proof of this result relies on the

conditional-expectation equation (12) and the bounds in Proposition 1. Thus, it makes use of both

mean-reversion properties discussed in the previous subsection.7

Proposition 2 The existence of an invariant distribution ψ∗ with no mass at misery, ψ∗({v}) = 0,

for the Markov process {vt} implied by gw is guaranteed if either: utility is unbounded below, utility

is bounded above, or γ̂ < 1.

Proposition 2, when combined with part (a) of Theorem 2, leaves open only two possibilities: (i)

the relaxed problem admits a steady-state invariant distribution with no misery; or (ii) no solution

exists. This situation contrasts strongly with the Atkeson-Lucas case, with β = β̂, where a solution

exists but does not admit a steady state, and everyone ends up at misery. Towards the end of this

section we show that a solution to the planning problem can be guaranteed so that case (i) holds.

Our Bellman equation also provides an efficient method for explicitly solving the planning prob-

lem. We illustrate this with two examples, one analytical and another numerical.

Example 1. Suppose utility is CRRA with σ = 1/2, so that u(c) = 4c1/2 for c ≥ 0 and c(u) = u2/2

for u ≥ 0. For β = β̂ Atkeson-Lucas show that the optimum involves consumption inequality

growing without bound and leading to immiseration.

Consider the relaxed problem where we ignore the non-negativity constraints on u and w,

k(v) = max
u,w

E
[
θu(θ)− λ̂

2
u(θ)2 + β̂k

(
w(θ)

)]
,

subject to (8) and (9). This is a linear-quadratic dynamic programming problem, so it follows that

the value function is a quadratic and the policy functions are linear in v:

gu(θ, v) = γu
1(θ)v + γu

0(θ)

gw(θ, v) = γw
1 (θ)v + γw

0 (θ)

For taste shocks with sufficiently small amplitude we can guarantee, by continuity with the deter-

ministic case θ = θ̄, that γw(θ) < 1 and γw(θ̄) > 0, implying a unique bounded ergodic set for utility

[vL, vH ] with vL > 0. Moreover, gu(θ, v) > 0 for v ∈ [vL, vH ]. Hence, since the planning problem is

convex and utility turns out to be strictly positive at the steady state, this solution does solves the

original problem with non-negativity constraints on u.

7When utility is bounded below, we either require that utility be bounded above, or that γ̂ < 1, which is ensured
for a small dispersion of the shocks, as a simple way of ensuring that the ergodic set is bounded away from misery.
It seems very plausible, however, that these conditions could be dispensed with.

13



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

v
t

v t+
1

Figure 1: Policy functions gw(θ, v)
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Figure 2: Policy function gc(θ, w)

Example 2. To illustrate the numerical value of our recursive formulation, we compute the solution

for the logarithmic case with β = 0.9, β̂ = 0.975, e = λ̂−1 = 0.6, θh = 1.2, θl = 0.75 and p = 0.5.

We iterated on the Bellman equation for k(v) until convergence.8

Figure 1 plots the policy function for continuation utility in consumption-equivalent units,

c(v(1 − β)) against c(gw(θ, v)(1 − β)), while Figure 2 does the same for the policy function for

consumption, c(v(1−β)) against gc(θ, v). Both policy functions are monotonic and smooth. Figure

1 reveals a unique, bounded ergodic set for v. Note that both policy functions become nearly flat for

low values of v. This illustrates the result, discussed immediately after Proposition 1, that utility

is kept above some endogenous bound.

Figure 3 displays the steady-state, cross-sectional distribution of dynastic utility measured in

consumption-equivalent units, c(v(1 − β)) implied by the solution to the planning problem.9 The

long-run distribution has a smooth bell-curve shape—a feature that must be due to the smooth,

mean-reverting dynamics of the model, since it cannot be a direct consequence of our two-point

distribution of taste shocks. The figure also shows the invariant distributions for various values of

8The details of this numerical exercise where as follows: we solved for u (θ) as a function of w (θ) using the
incentive and promise-keeping constraints. We then maximized over w (θ). We employed a grid for v defined in
terms of equally spaced consumption-equivalent units c ((1− β) v) = {0.01, . . . , 2}. Results with a grid size of 100
and 300 were similar; we report the latter. We used Matlab’s splines package to interpolate the value function
and used fmincon.m as our optimization routine over w(θ). Our iterations were initialized with the value function
corresponding to the feasible plan that features constant consumption:

k0(v) =
v(1− β)− λ̂c(v(1− β))

1− β̂

We stopped the iterations when ‖kn(v)−kn−1(v)‖ < 10−10 and verified that the policy functions had also converged.
Note that gw(θ, v) is well within the interior of [.01, 2], so that the arbitrary upper and lower bounds from our grid
choice were not found to be binding.

9The invariant distribution was approximated by generated a Monte Carlo simulation for the dynamics of the
{vt} process generated by gw, with an arbitrary initial value of v0. Since this process converges to a unique invariant
distribution ψ∗, starting from any initial value of v0, the frequencies in a long time-series sample approach the
frequencies of ψ∗. To create the figure we used Matlab’s Wavelet Toolbox to approximate the density from the
simulated Monte-Carlo sample.
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Figure 3: Steady-State Distributions of Dynastic Utility

β̂. The degree of inequality appears to decrease with higher values of β̂. This outcome is suggested

intuitively by the coefficient on the CLAR equation (12) and the discussion in Section 5 on features

of the impulse response to shocks. These simulations also support the natural conjecture that as

we approach the Atkeson-Lucas case, β̂ → β, the resulting sequence of invariant distributions blows

up, since no steady state with positive consumption exists when β̂ = β.

We now turn briefly to issues of uniqueness and stability for the invariant distribution guaranteed

by Proposition 2. This question is of economic interest because it represents an even stronger notion

of social mobility than that implied by the mean-reversion condition (12) discussed in the previous

subsection. That is, if convergence toward the distribution ψ∗ occurs starting from any initial utility

level v0, then the fortunes of distant descendants—the distribution of their welfare—is independent

of the individual’s present condition. At the optimum, the past always exerts some influence on the

present, but its influence is bounded and dies out over time, so that the advantages or disadvantages

of distant ancestors are eventually wiped out.

Indeed, under some conditions we can guarantee that the social optimum in our model does

display this strong notion of social mobility. To see this, suppose the ergodic set for the {k′t}
process is compact. This is guaranteed, for example, by applying Proposition 1 when γ̄ < 1. Then,

if the policy function gw(θ, v) is monotone in v, the invariant distribution ψ∗ is unique and stable

in the sense that, starting from any initial distribution ψ0, the sequence of distributions {ψt},
generated by gw, converges weakly to ψ∗. This follows since the conditional-expectation equation

(12) ensures enough mixing to apply Hopenhayn-Prescott’s Theorem.10 The monotonicity of the

10See pg. 382-383 in Stokey and Lucas with Prescott (1989).
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policy functions for continuation utility w seems intuitive and plausible, as illustrated by Examples

1 and 2.11

Another approach suggests uniqueness and convergence without relying on monotonicity. Grun-

wald, Hyndman, Tedesco and Tweedie (1999) show that one-dimensional, irreducible Markov processes

with the Feller property that are bounded below and satisfy a CLAR condition, such as (12), have

a unique and stable invariant distribution. Moreover, convergence to this distribution from any

initial distribution is fast, in the sense that it occurs at the geometric rate β/β̂. All the require-

ments of their theorem have been verified already for our model, except for the technical condition

of irreducibility, which is likely to hold if we were to assume that the taste shock has a continuous

distribution. We do not pursue this formally other than to note that the forces for reversion in (12)

could be further exploited to establish uniqueness and convergence.

Our focus on steady states, where the distribution of utility entitlements replicates itself over

time, has exploited the fact that the relaxed and original planning problems must coincide. However,

for the logarithmic utility case we can do more and characterize transitional dynamics.

Proposition 3 If utility is logarithmic, then for any initial distribution of utility entitlements ψ

there exists an endowment level e∗(ψ) such that the solution to the original social planning problem

is generated by the policy functions (gu, gw) from the relaxed problem with Qt = β̂t. The function

e∗ is monotone increasing, in that if ψa ≺ ψb in the sense of first-order stochastic dominance then

e∗(ψa) < e∗(ψb).

One interesting application of this result is to the situation where the planning problem is

modified to select the best initial distribution ψ, instead of taking one as given. Then all initial

dynasties are treated identically and started with identical utility level v∗ solving k′(v∗) = 0. The

optimal allocation then evolves according to the dynamics implied by the policy function gw(θ, v).

The cross-sectional distribution of welfare will spread out from its initially egalitarian condition as

dynasties experience varying luck in the realization of their shocks.

By applying Proposition 3, convergence to a unique invariant distribution ψ∗ of the Markov

process {vt} implied by the policy function gw(θ, v) takes on additional economic meaning. It implies

the stability of the cross-sectional distributions of welfare and consumption in the population. That

is, if the Markov process {vt} generated by gw is stable, then the cross-sectional distributions of

welfare and consumption eventually settle down to the steady state.

As mentioned in Section 3, for any utility function specification one can characterize the solution

for any (ψ, e) as the solution to a relaxed problem with some sequence of prices {Qt}, that are not

necessarily exponential. Proposition 3 identifies the distributions and endowment pairs (ψ, e) that

lead to exponential prices in the logarithmic case. More generally, with logarithmic utility for any

pair (ψ, e), we can show that Qt = β̂t + Λβt for some constant Λ. The entire optimal allocation

can then be characterized by the policy functions from a non-stationary Bellman equation. Since

11Indeed, for the general case it can be shown that gw(θ, v) is strictly increasing in v. However, although we know
of no counterexample, we have not found conditions that ensure the monotonicity of gw(θ, v) for all θ 6= θ.
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prices are asymptotically exponential, in that limt→∞ β̂−tQt = 1, it follows that long-run dynamics

are always dominated by the policy functions (gu, gw) from the relaxed problem with exponential

prices Qt = β̂t that we have characterized.

Sufficient Conditions for Verification

We conclude this section by describing sufficient conditions for a solution to the planning problem

to exist at the steady state ψ∗ identified by the policy functions in Proposition 2. This involves two

steps. First, we establish that allocations generated by the policy functions are indeed incentive

compatible by verifying the condition in part (c) of Theorem 2. Second, we verify that average

consumption is finite under the invariant distribution ψ∗.

Lemma 2 The allocation generated from the policy functions (gu, gw), starting from any v0, is

guaranteed to be incentive compatible in the following cases: (a) utility is bounded above; (b) utility

is bounded below; (c) utility is logarithmic; or (d) γ̄ < 1 or γ > 0.

We now find sufficient conditions that guarantee average consumption is finite under the invariant

distribution ψ∗. If the ergodic set for utility v is bounded away from the extremes, then consumption

is bounded and average consumption is trivially finite. Even when a bounded ergodic set for utility

v cannot be ensured, finite average consumption can be guaranteed for a large class of utility

functions.

Lemma 3 Average consumption is finite under the invariant distribution ψ∗

∫ ∑

θ

c
(
gu(θ, v)

)
p(θ) dψ∗(v) < ∞

if either (a) the ergodic set for v is bounded; or (b) utility is such that c′(u(c)) is a convex function

of c.

Note that a bounded ergodic set is guaranteed by γ̄ < 1, which is ensured for taste shocks

with sufficiently small amplitude; and condition (b) holds, for example, for all constant relative risk

aversion utility functions with σ ≥ 1.

The value of average consumption depends on the value of λ̂. For instance, in the case of

constant relative risk aversion utility, average steady state consumption is a power function of λ̂,

and thus has full range. In fact, in this case the entire solution for consumption is homogenous

of degree one in the value of the endowment e. This ensures a steady state solution to the social

planning problem for any endowment level.

5 Discussion: Mean-Reversion

This section develops an intuitive understanding of the key mean-reversion property discussed pre-

viously. We first derive the impulse response of consumption to a one-time taste shock. We then
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revisit the full problem with an alternative Bellman equation that is useful as a source of intuition.

Impulse Response

Consider a version of our model where only the first generation faces uncertainty. In the first

period, there are two possible values for the taste shock θ0 ∈ {θL, θH}, but thereafter the economy

is deterministic: θt = 1 for t ≥ 1. We compare this to the case with no uncertainty in the first

period. This allows us to trace out the consumption response to the taste shock over time. To

simplify, we adopt logarithmic utility.

We begin by studying a subproblem of the deterministic planning problem from the second

generation onward, that is for t = 1, 2, . . .. For a given, promised continuation utility v1, the

planning problem is

kdet(v1) ≡ max
{ct}

∞∑
t=1

β̂t−1
(
log ct − λ̂ct

)
,

subject to

v1 =
∞∑

t=1

βt−1 log ct.

The associated Bellman equation is

kdet(vt) = max
ct,vt+1

(
log(ct)− λ̂ct + β̂kdet(vt+1)

)

subject to vt = log ct + βvt+1. The first-order and envelope conditions imply that

k′det(vt+1) =
β

β̂
k′det(vt), (14)

ct = λ̂−1(1− k′det(vt)). (15)

Condition (14) shows that {k′det(vt)} reverts geometrically towards zero at the rate β/β̂. This is

a deterministic version of the conditional-expectation equation (12). In the logarithmic case, it

translates directly into consumption by the first-order condition (15). Thus, consumption reverts

back to a common steady state at the same rate; deviations from the steady-state level of consump-

tion have a half-life of (log2(β̂/β))−1. Note that in the Atkeson-Lucas case when social and private

discounting coincide, so that β = β̂, consumption remains perfectly constant after the shock at its

new level ct = c(v1/(1− β)).

Turning to the first generation at t = 0, the planning problem solves

max
c0,v1

E
[
θ0 log

(
c0(θ)

)− λ̂0c0(θ) + β̂kdet

(
v1(θ)

)]

subject to

θL log
(
c0(θL)

)
+ βv1(θL) ≥ θL log

(
c0(θH)

)
+ βv1(θH).
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where we omit the other incentive constraint since it is not binding at the optimum, and the problem

is convex. At the optimum, c0(θH) > c0(θL), v1(θH) < v1(θL), and

E
[
k′det

(
v1(θ)

)]
= 0,

implying that v1(θH) < v∗ < v1(θL) where k′(v∗) = 0. Note that average consumption is constant

and equal to λ̂−1 in all periods.

Figure 4 shows the consumption response to a taste shock in the first period, for subsequent

periods. That is, we use (14) and (15) for t ≥ 1 starting at v1(θL), v∗ and v1(θH). The effect

on consumption from the shock dies out over time and consumption returns to a common steady-

state level. Again, this illustrates that the influence of past fortunes eventually vanishes for distant

descendants. We also plot the Atkeson-Lucas case with β = β̂, where the luck of the first generation

has a permanent impact on the consumption of all descendants.
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Figure 4: Consumption path for t ≥ 1 in response to taste shock at t = 0

To provide incentives for the first generation, society rewards the descendants of an individual

reporting a low taste shock. Rewards can take two forms and society makes use of both. The

first is standard and involves increased consumption spending, in present-value terms. The second

is more subtle and exploits differences in preferences: it allows an adjustment in the pattern of

consumption, for a given present value, in the direction preferred by individuals.12

Since individuals are more impatient than the planner, this latter form of reward is delivered

by tilting the consumption profile toward the present. Similarly, punishments involve tilting the

12Some readers may recognize this last method as the time-honored system of rewards and punishments used by
parents when conceding their child’s favorite snack or reducing their TV-time. In these instances, the child values
some goods more than the parent wishes, and the parent uses them to provide incentives.
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consumption path toward the future. In both cases, earlier consumption dates are used more

intensively to provide incentives—rewards and punishments are front-loaded. Indeed, consumption

returns to a common steady-state level in the long-run regardless of the initial shock because

affecting the consumption of very distant descendants is not an efficient way for society to provide

incentives to the first generation.

Another Bellman Equation

Here we develop another Bellman equation that holds for any value of q not necessarily equal to β̂.

This alternative formulation is useful, both as a source of intuition and to motivate our focus on

q = β̂.

Consider the following cost minimization problem

K(v, v̂) ≡ min
{ct}

∞∑
t=0

qt
∑

θt

ct(θ
t) Pr(θt),

subject to the incentive compatibility constraint U({ct}, σ∗; β) ≥ U({ct}, σ; β) and

v̂ =
∞∑

t=0

β̂t E−1

[
θtu(ct)

]

v =
∞∑

t=0

βt E−1

[
θtu(ct)

]
,

that is, delivering utility v̂ and v for the planner and individual, respectively. Then the value

function must satisfy the Bellman equation

K(v, v̂) = max
u,w,ŵ

E
[
c
(
u(θ)

)
+ qK

(
w (θ) , ŵ (θ)

) ]
,

subject to

v̂ = E
[
θu(θ) + β̂ŵ(θ)

]

v = E
[
θu(θ) + βw(θ)

]

and

θu(θ) + βw(θ) ≥ θu(θ′) + βw(θ′) for all θ, θ′ ∈ Θ.

This formulation could be used to derive all of our results, although the lower-dimensional Bellman

equation (7) is slightly more convenient for that purpose. The advantage of this cost-minimization

formulation, however, is that it lends itself naturally to economic interpretations.

The following story provides a useful reinterpretation and source for intuition. Consider an

infinite-lived household with two members, husband and wife, and assume that consumption is

a public good—there is no intra-period resource allocation problem. However, husband and wife
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disagree on how to discount the future. Suppose the wife is more patient, but only the husband

can observe and report taste-shock realizations.

Then this cost-minimization problem characterizes the constrained Pareto problem for this

household, in the sense that the isocost curve K(v, v̂) = K0 represents, given resources K0, the

Pareto frontier between husband and wife. The Pareto frontier is non-standard in that it is not

everywhere decreasing and does not represent the usual transfer of private goods between two

agents. Instead, it arises from differences in preferences that generate a disagreement about the

optimal consumption path for the only public good. Since disagreement on preferences is bounded,

the Pareto frontier is non-monotone and the highest possible utility for the wife is attained for an

interior utility level for the husband, where K1(v
∗, v̂∗) = 0. Reductions in the husband’s utility to

the left of this point must also decrease utility for the wife, for a given level of resources.

The first-order conditions can be rearranged to deliver

β̂K2(v, v̂) = qK2

(
w(θ), ŵ(θ)

)
(16)

− K1(v, v̂)

K2(v, v̂)
=

β

β̂
E

[
−K1

(
w(θ), ŵ(θ)

)

K2

(
w(θ), ŵ(θ)

)
]

. (17)

Condition (16) can then be used to argue that a steady-state requires q = β̂. Indeed, if q < β̂, then

{K2t} would increase without bound; likewise, if q > β̂, then {K2t} decreases toward zero. Both

situations clearly do not lend themselves to the existence of an invariant distribution for (v, v̂).

On the other hand, if q = β̂ then K2(vt, v̂t) is constant along the optimal path and an invariant

distribution is possible.

When q = β̂, the state (vt, v̂t) moves along a one-dimensional locus given by K2(v, v̂) =

K2(v0, v̂0). Intuitively, since no incentives are required for the wife, she is perfectly insured in

the sense that the marginal cost of delivering welfare to her is held constant across time.

Figure 5 shows that the curve K2(v, v̂) = K2(v0, v̂0) for continuation utilities cuts the isocost

curves from below, and cuts K1(v, v̂) = 0 from above. Intuitively, incentives require foregoing

perfect insurance for the husband and accepting fluctuations in v as rewards and punishments.

Starting from (v∗, v̂∗), rewards can be delivered in two ways. The optimum makes use of both forms

of rewards, explaining the shape of the schedule for continuation utilities.

The first form of rewarding involves increasing resources K, and can be seen as an upward

movement along the diagonal K1(v, v̂) = 0. However, the husband is also rewarded by allowing an

allocation of these resources that is more to his liking, which can be represented as lateral movements

along the Pareto frontier, which at (v∗, v̂∗) is horizontally flat. The solution combines both forms of

rewards and, as a result, (v, v̂) travels along K2(v, v̂) = K2(v0, v̂0) to the right of K1(v, v̂) = 0 and

above the initial isocost curve. Note that punishments will push the agent on the upward sloping

section of the Pareto frontier. Thus, ex-ante efficiency demands ex-post inefficiency.13

13Returning to the analogy in footnote 12: parents often complain that the punishments they choose to inflict on
their children hurt them more than they do their kids.
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Figure 5: Isocost curves of K(v, v̂)

Condition (17) is the analog of the conditional-expectation equation (12) obtained from the

one-dimensional Bellman equation. Here, it implies that the slope of the isocost curve (Pareto

frontier), −K1/K2 reverts geometrically toward 0. Thus, (vt, v̂t) moves along K2(v, v̂) = K2(v0, v̂0)

and eventually reverts toward (v∗, v̂∗). Intuitively, the solution deviates from (v∗, v̂∗) to provide the

husband with incentives, but it is efficient to revert back to this point of maximum efficiency for

the wife: Patience ensures that the wife has her way in the long-run.

6 Estate Taxation

We now turn to a repeated Mirrleesian economy and study optimal taxation. In this version of our

model, individuals have identical preferences over consumption and work effort but are heterogenous

regarding their labor productivity, which is privately observed by the individual and independently

distributed across generations and dynasties. We continue to focus on the case where the social

welfare criterion discounts the future at a lower rate than individuals.

Unlike the taste-shock model, here even if we were to restrict allocations to feature no link

between parent and child, there would still be a non-trivial planning problem. Indeed, in each

period the situation would then be identical to the static, nonlinear income tax problem originally

studied by Mirrlees (1971). Moreover, in the absence of altruism, so that β = 0, the social optimum

actually coincides with this static solution. With altruism, however, we shall see below that it is

always optimal to link welfare across generations within a dynasty to enhance incentives for parents.

Despite differences between the Mirrleesian economy and our taste-shock model, our previous

analysis can be adapted virtually without change. In particular, a recursive representation can
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be derived, and the Bellman equation can be used to characterize the solution and to establish

that a steady-state, invariant distribution exists. This highlights the fact that our model requires

asymmetric information, but not any particular form of it.

We focus on an implementation of the allocation that uses income and estate taxes, and derive

some interesting results for the latter. We find that estate taxation should be progressive: more

fortunate parents should face a higher average marginal tax rate on their bequests. This result

reflects the mean reversion in consumption explained in the previous section. A higher estate tax

ensures that the fortunate face a lower net rate of return across generations, and that consequently

their consumption path decreases over time toward the mean.

Repeated Mirrlees: Productivity Shocks

Each period of this economy is identical to the canonical optimal taxation setup in Mirrlees (1971).

Utility depends on the level of consumption c and work effort n. We assume that individuals in

generation t have identical preferences that satisfy

Vt = Et−1[u(ct)− h(nt) + βVt+1],

but differ regarding their productivity in translating work effort into output. An individual with

productivity w, exerting work effort n, produces output y = wn. We assume that productivity w

is independently and identically distributed across dynasties and generations. Thus, the produc-

tivity talents of parent and child are unrelated—innate skills are assumed nonheritable. Given this

assumption, if the optimum features intergenerational transmission of welfare, then it represents a

social decision to provide altruistic parents with incentives in this way, and not a mechanical result

originating from the assumed physical environment.14

For convenience, we adopt the power disutility function h(n) = nγ/γ so that, defining θ ≡ w−γ,

we can write total utility over consumption and output as being subject to taste shocks

∞∑
t=0

βt E−1

[
u(ct)− θth(yt)

]
=

∞∑
t=1

βt E−1

[
β−1u(ct−1)− θth(yt)

]− E−1

[
θ0h(y0)

]

The right-hand side of this equation leads to a convenient recursive representation of the planning

problem in the continuation utility defined by vt =
∑∞

s=0 βs Et−1[u(ct+s−1)− θt+sh(yt+s)] (where we

are abusing notation slightly by folding the β−1 into the definition of the utility function u(c)).

The resource constraint requires total consumption not to exceed total output plus some fixed

constant endowment

∫ ∑

θt

cv
t (θ

t) Pr(θt) dψ(v) ≤
∫ ∑

θt

yv
t (θ

t) Pr(θt) dψ(v) + e t = 0, 1, . . .

14As in the taste shock model, here the case with β = β̂ leads to immiseration. This case has been studied by
Albanesi and Sleet (2004), who impose an exogenous lower bound on dynastic welfare to circumvent immiseration.
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where individuals are indexed by their initial utility entitlement v, with distribution ψ in the

population.

We continue to assume social discounting is lower than private discounting: β̂ > β. The planning

problem is to choose an allocation {cv
t (θ

t), yv
t (θ

t)} to maximize average social welfare subject to the

incentive-compatibility constraints and the resource constraints.

Using the last expression for the utility function and applying similar reasoning as in the taste-

shock model yields the Bellman equation for the associated relaxed problem

k(v) = max
u−,h,w

E
[
u− − λ̂c(u−)− θh(θ) + λ̂y

(
h(θ)

)
+ β̂k

(
w(θ)

)]

v = E
[
u− − θh(θ) + βw(θ)

]

−θh(θ) + βw(θ) ≥ −θh(θ′) + βw(θ′),

where the function y(h) represents the inverse of the disutility function, y = h−1. The arguments

that justify the study of this Bellman equation, are similar to those that underlie Theorems 1 and 2

in the context of the taste-shock model. The results regarding steady states parallel those obtained

previously, and imply that an invariant distribution exists with no immiseration, as in Proposition 2.

Implementation with Income and Estate Taxation

Any allocation that is incentive compatible and feasible can be implemented by a combination of

taxes on labor income and estates. Here we first describe this implementation, and explore some

features of the optimal estate tax in the next subsection.

For any incentive-compatible and feasible allocation {cv
t (θ

t), yv
t (θ

t)} we propose an implemen-

tation along the lines of Kocherlakota (2004). In each period, conditional on the history of their

dynasty’s reports θ̂t−1 and any inherited wealth, individuals report their current shock θ̂t, produce,

consume, pay taxes and bequeath wealth subject to the following set of budget constraints

ct + bt ≤ yt

(
θ̂t

)− Tt

(
θ̂t

)
+

(
1− τ t

(
θ̂t

))
Rt−1, tbt−1 t = 0, 1, . . . (18)

where Rt−1,t is the before-tax interest rate across generations, and initially b−1 = 0. Individuals are

subject to two forms of taxation: a labor income tax Tt(θ̂
t), and a proportional tax on inherited

wealth Rt−1, tbt−1 at rate τ t(θ̂
t).15

Given a tax policy {T v
t (θt), τ v

t (θ
t), yv

t (θ
t)}, an equilibrium consists of a sequence of interest rates

{Rt, t+1}; an allocation for consumption, labor income and bequests {cv
t (θ

t), bv
t (θ

t)}; and a reporting

strategy {σv
t (θ

t)} such that: (i) {ct, bt, σt} maximize dynastic utility subject to (18), taking the

15In this formulation, taxes are a function of the entire history of reports, and labor income yt is mandated given
this history. However, if the labor income histories yt : Θt → Rt being implemented are invertible, then by the
taxation principle we can rewrite T and τ as functions of this history of labor income and avoid having to mandate
labor income. Under this arrangement, individuals do not make reports on their shocks, but instead simply choose
a budget-feasible allocation of consumption and labor income, taking as given prices and the tax system.
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sequence of interest rates {Rt, t+1} and the tax policy {Tt, τ t, yt} as given; and (ii) the asset market

clears so that
∫
E−1[b

v
t (θ

t)] dφ(v) = 0 for all t = 0, 1, . . . We say that a competitive equilibrium is

incentive compatible if, in addition, it induces truth telling.

For any feasible, incentive-compatible allocation {cv
t , yv

t }, we construct an incentive-compatible

competitive equilibrium with no bequests by setting T v
t (θt) = yt(θ

t)− ct(θ
t) and

τ v
t (θ

t) = 1− 1

βRt−1, t

u′(cv
t−1(θ

t−1))

u′(cv
t (θ

t))
(19)

for any sequence of interest rates {Rt−1, t}. These choices work because the estate tax ensures that

for any reporting strategy σ, the resulting consumption allocation {cv
t (σ

t(θt))} with no bequests

bv
t (θ

t) = 0 satisfies the consumption Euler equation

u′
(
cv
t

(
σt(θt)

))
= βRt, t+1

∑

θt+1

u′
(
cv
t+1

(
σt+1(θt, θt+1)

))(
1− τ v

t+1

(
σt+1(θt, θt+1)

))
Pr(θt+1).

The labor income tax is such that the budget constraints are satisfied with this consumption allo-

cation and no bequests. Thus, this no-bequest choice is optimal for the individual regardless of the

reporting strategy followed. Since the resulting allocation is incentive compatible, by hypothesis, it

follows that truth telling is optimal. The resource constraints together with the budget constraints

then ensure that the asset market clears.16

As noted above, in our economy without capital only the after-tax interest rate matters so the

implementation allows any equilibrium before-tax interest rate {Rt−1, t}. In the next subsection,

we set the interest rate to the reciprocal of the social discount factor, Rt−1, t = β̂−1. This choice is

natural because it represents the interest rate that would prevail at the steady state in a version of

our economy with capital.

Optimal Progressive Estate Taxation

In this subsection we derive an important intertemporal condition that must be satisfied by the

optimal allocation. This condition has interesting implications for the optimal estate tax, computed

using (19) at the optimal allocation.

Let λ be the multiplier on the promise-keeping constraint and let µ(θ, θ′) represent the multipliers

on the incentive constraints. Then the first-order conditions for u− and w(θ) are

c′(u−)− λ̂− λ = 0

β̂k′
(
w(θ)

)
p(θ)− βλp(θ)−

∑

θ′
µ(θ, θ′) +

∑

θ′
µ(θ′, θ) = 0

16Since the consumption Euler equation holds with equality, the same estate tax can be used to implement alloca-
tions with any other bequest plan with income taxes that are consistent with the budget constraints.
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and the envelope condition is k′ (v) = λ. Together these imply

∑

θ

k′
(
w(θ)

)
p(θ) =

β

β̂
k′(v),

Using c′(u−) = 1/u′(c−) = λ̂ + k′(v) we arrive at the Modified Inverse Euler equation

1

u′(c−)
=

β̂

β

∑

θ

1

u′
(
c(θ)

) p(θ) − λ̂

(
β̂

β
− 1

)
. (20)

The left-hand side together with the first term on the right-hand side is the standard inverse Euler

equation. The second term on the right-hand side is novel, since it is zero when β = β̂ and is strictly

negative when β̂ > β.17

In our environment, the relevant past history is encoded in the continuation utility so the estate

tax τ(θt−1, θt) can actually be reexpressed as a function of vt(θ
t−1) and θt. Abusing notation we

then denote the estate tax by τ t(v, θt). Since we focus on the steady-state, invariant distribution,

we also drop the time subscripts and write τ(v, θ).

The average estate tax rate τ̄(v) is then defined by

1− τ̄(v) ≡
∑

θ

(
1− τ(v, θ)

)
p(θ) (21)

Using the modified inverse Euler equation (20) we obtain

τ̄ (v) = −λ̂ u′
(
c−(v)

)( β̂

β
− 1

)

In particular, this implies that the average estate tax rate is negative, τ̄(v) < 0, so that bequests

are subsidized. However, recall that before-tax interest rates are not uniquely determined in our

implementation. As a consequence, neither are the estate taxes computed by (19). With our

particular choice for the before-tax interest rate, however, the tax rates are pinned down and

acquires a corrective, Pigouvian role. Differences in discounting can be interpreted as a form of

externalities from future consumption, and the negative average tax can then be seen as a way

of countering these externalities as prescribed by Pigou. In our setup without capital, this result

depends on the choice of the before-tax interest rate. However, the negative tax on estates would

be a robust steady-state outcome in a version of our economy with capital.

In our model it is more interesting to understand how the average tax varies with the history

of past shocks encoded in the promised continuation utility v. The average tax is an increasing

function of consumption, which, in turn, is an increasing function of v. Thus, estate taxation is

progressive: the average tax on transfers for more fortunate parents is higher.

17This equation can also be derived from an elementary variation argument. This is done in Farhi, Kocherlakota
and Werning (2005), who also show that this equation, and its implications for estate taxation, generalize to an
economy with capital and an arbitrary process for skills.
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Proposition 4 In the repeated Mirrlees economy, the optimal allocation can be implemented by a

combination of income and estate taxes. At a steady-state, invariant distribution ψ∗, the optimal

average estate tax τ̄(v) defined by (19) and (21) is increasing in promised continuation utility v.

The progressivity of the estate tax reflects the mean-reversion in consumption. The fortunate

must face lower net rates of return so that their consumption path decreases towards the mean.18

7 Conclusions

Should privately-felt parental altruism affect the social contract? If so, what are the long-run

implications for inequality? To address these questions, we modeled a central tension in society:

the tradeoff between ensuring equality of opportunity for newborns and providing incentives for

altruistic parents.

Our model’s answer is that society should indeed exploit altruism to motivate parents, linking

the welfare of children to that of their parents. However, we also find that if we value the welfare

of future generations directly, the inheritability of good or bad fortune should be tempered. This

produces a steady-state outcome in which welfare and consumption are mean-reverting, long-run

inequality is bounded, social mobility is possible and misery is avoided by everyone.

What instruments should society use to implement such allocations? For a Mirrleesian version

of our model we find an important role for the estate tax. The optimal tax on inheritances is

progressive: more fortunate parents should face a higher average marginal tax rate on their bequests.

This result illustrates an interesting way in which the conflict between corrective and redistributive

taxation is optimally resolved. Further examination of other situations with similar conflicts remains

an interesting direction for future work.19

Appendix

Proof of Theorem 1

Weak concavity of the value function k(v) follows because the relaxed sequence problem has a

concave objective and a convex constraint set. The weak concavity of the value function k(v) implies

its continuity over the interior of its domain. If utility is bounded, continuity at the extremes can

also be established as follows. Define the first-best value function

k∗(v) ≡ max
u

∞∑
t=0

β̂t E−1

[
θtut(θ

t)− λ̂c
(
ut(θ

t)
) ]

subject to v =
∑∞

t=0 βt E−1[θtut(θ
t)]. Then k∗(v) is continuous and k(v) ≤ k∗(v), with equality

at any finite extremes v̄ and v. Then continuity of k(v) at finite extremes follows. Thus, k(v) is

18Farhi, Kocherlakota and Werning (2005) explore more general versions of this result and discuss other intuitions.
19Some progress along these lines can be found in Amador, Angeletos and Werning (2005).
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continuous.

The constraint (6) with q = β̂ implies that utility and continuation utility are well-defined.

Toward a contradiction, suppose

lim
T→∞

T∑
t=0

βtEsθtu(ct)

is not defined, for some s ≥ −1. This implies that limT→∞
∑T

t=0 βt max{Esθtu(ct), 0} = ∞. Since

utility is concave θu(c) ≤ Ac + B for some A,B > 0, so it follows that

T∑
t=0

βt max{Esθtu(ct), 0} ≤ A

T∑
t=0

βt Esct + B ≤ A

T∑
t=0

β̂t Esct + B

Taking the limit yields limT→∞
∑T

t=0 β̂t E−1ct = ∞. Since there are finitely many histories θs ∈ Θs+1

this implies limT→∞
∑T

t=0 β̂t E−1ct = ∞. If there is a non-zero measure of such agents this implies

a contradiction of (6). Thus, for both the relaxed and unrelaxed problems utility and continuation

utility are well defined given the other constraints on the problem. This is important for our

recursive formulation below.

We next prove two lemmas that imply the rest of the theorem. Consider the optimization

problem on the right hand side of the Bellman equation:

sup
u,w
E

[
θu(θ)− λ̂c

(
u(θ)

)
+ β̂k

(
w(θ)

)]
(22)

v = E
[
θu(θ) + βw(θ)

]
(23)

θu (θ) + βw(θ) ≥ θu (θ′) + βw(θ′) for all θ, θ′ ∈ Θ (24)

Define m ≡ maxc≥0,θ∈Θ(θu(c) − λ̂c) and k̂ (v) ≡ k (v) − m/(1 − β̂) ≤ 0. The problem in (22) is

equivalent to the following optimization with non-positive objective:

sup
u,w
E

[
θu(θ)− λ̂c

(
u(θ)

)−m + β̂k̂
(
w(θ)

)]
(25)

subject to (23) and (24).

Lemma A.1 The supremum in (22), or equivalently (25), is attained.

Proof. If utility is bounded the result follows immediately by continuity of the objective function

and compactness of the constraint set. So suppose utility is unbounded above and below — similar

arguments apply when utility is only unbounded below or only unbounded above. We first show

that

lim
v→∞

k̂(v) = lim
v→−∞

k̂(v) = −∞ (26)

and then use this result to restrict, without loss, the optimization within a compact set, ensuring a

maximum is attained.
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To establish these limits, define

h(v; β̂) ≡ sup
u

∞∑
t=0

β̂t E−1

[
θtu(θt)− λ̂c

(
u(θt)

)−m
]

subject to v = E−1

∑∞
t=0 βtθtu(θt). Since this corresponds to the same problem but without the

incentive constraints it follows that k̂(v) ≤ h(v, β̂). If limv→∞ h(v, β̂) = limv→−∞ h(v, β̂) = −∞,

then the desired limits (26) follow. Since θu− λ̂c(u)−m ≤ 0 and β < β̂ it follows that

h(v, β̂) ≤ h(v, β) = v − λ̂C(v, β)− m

1− β
, (27)

where

C(v, β) ≡ inf
u

∞∑
t=0

βt E−1c
(
u(θt)

)

subject to v =
∑∞

t=0 βt E−1[θtu(θt)]. Note that C(v, β) is a standard convex first-best allocation

problem, with solution u(θt) = (c′)−1(θtγ(v)) for some positive multiplier γ(v), increasing in v and

such that limv→−∞ γ(v) = 0 and limv→∞ γ (v) = ∞. Then

C(v, β) =
1

1− β
E

[
c
(
(c′)−1

(
θγ(v)

))]
,

so that limv→−∞ h(v, β) = −∞ and limv→∞ h(v, β) = −∞. Using the inequality (27) this establishes

limv→−∞ h(v, β̂) = −∞ and limv→∞ h(v, β̂) = −∞, which, in turn, imply the limits (26).

Fix a v. Take any allocation that verifies the constraints (23) and (24) and let k < ∞ be

the corresponding value of (25). Then, since the objective is non-positive, we can restrict the

maximization to w(θ) such that k̂(w(θ)) ≥ k̄/(β̂p(θ)). Since k̂(w(θ)) is concave with the limits (26),

this defines a closed, bounded interval for w(θ), for each θ. It follows that there exists Mv,w < ∞
such that we can restrict the maximization to |w(θ)| ≤ Mv,w.

Similarly, we can restrict the maximization over u(θ) so that θu(θ) − λ̂c(u(θ)) − m ≥ k̄/p(θ).

Since (θu− λ̂c(u)) is strictly concave, with (θu− λ̂c(u)) → −∞ when either u → ∞ or u → −∞,

this defines a closed, bounded interval for u(θ), for each θ. Thus, there exists an Mv,u < ∞ such

that we can restrict the maximization to |u(θ)| ≤ Mv,u.

Hence, we can restrict the maximization in (25) to a compact set. Since the objective function

is continuous over this restricted set, the maximum must be attained.

Lemma A.2 The value function k(v) satisfies the Bellman equation (7)–(9).

Proof. Suppose that for some v

k(v) > max
u,w

E
[
θu(θ)− λ̂c

(
u(θ)

)
+ β̂k

(
w(θ)

)]
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where the maximization is subject to (23) and (24). Then there exists ∆ > 0 such that

k(v) ≥ E[
θu(θ)− λ̂c

(
u(θ)

)
+ β̂k

(
w(θ)

)
] + ∆

for all (u,w) that satisfy (23) and (24). But then by definition

k
(
w(θ)

) ≥
∞∑

t=0

β̂t E−1

[
θtũt(θ

t)− λ̂c
(
ũt(θ

t)
)]

for all allocations ũ that yield w (θ) and are incentive compatible. Substituting, we find that

k(v) ≥
∞∑

t=0

β̂t E−1

[
θtut(θ

t)− λ̂c
(
ut(θ

t)
)]

+ ∆

for all incentive-compatible allocations that deliver v, a contradiction with the definition of k(v).

Namely, that there should be a plan with value arbitrarily close to k(v0). We conclude that k(v) ≤
maxu,w E[θu(θ)− λ̂c(u(θ)) + β̂k(w(θ))] subject to (23 ) and (24).

By definition, for every v and ε > 0 there exists a plan {ũt(θ
t; v, ε)} that is incentive compatible

and delivers v with value

∞∑
t=0

β̂t E−1

[
θtũt(θ

t; v, ε)− λ̂ c
(
ũt(θ

t; v, ε)
)] ≥ k(v)− ε.

Let (u∗(θ), w∗(θ)) ∈ arg maxu,w E[θu(θ)− λ̂c(u(θ)) + β̂k(w(θ))]. Consider the plan u0(θ0) = u∗(θ0)

and ut(θ
t) = ũt−1((θ1, . . . , θt); w

∗(θ0), ε) for t ≥ 1. Then

k(v) ≥
∞∑

t=0

β̂t E−1

[
θtut(θ

t)− λ̂c
(
ut(θ

t)
)]

= E−1

[
θ0u

∗(θ0)− λ̂c
(
u∗(θ0)

)
+ β̂

∞∑
t=0

β̂t E0

[
θt+1ut+1(θ

t+1)− λ̂c
(
ut+1(θ

t+1)
)]]

≥ max
u,w

E
[
θu(θ)− λ̂u(θ) + β̂k

(
w(θ)

)]− β̂ε.

Since ε > 0 was arbitrary it follows that k(v) ≥ maxu,w E[θu(θ) − λ̂c(u(θ)) + β̂k(w(θ))] subject to

(23) and (24).

Finally, together both inequalities imply k(v) = maxu,w E[θu(θ)− λ̂c(u(θ)) + β̂k(w(θ))] subject

to (23) and (24).

Proof of Theorem 2

Part (a). Suppose the allocation {ut} is generated by the policy functions starting from v0, is

incentive compatible and delivers lifetime utility v0. After repeated substitutions of the Bellman
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equation (7), we arrive at

k(v0) =
T∑

t=0

β̂t E−1[θtut(θ
t)− λ̂c(ut(θ

t))] + β̂
T
E−1k(vT (θT )). (28)

Since k(v0) is bounded above this implies that

k(v0) ≤
∞∑

t=0

β̂t E−1[θtut(θ
t)− λ̂c(ut(θ

t))],

so {ut} is optimal, by definition of k(v0).

Conversely, suppose an allocation {ut} is optimal given v0. Then, by definition it must be

incentive compatible and deliver utility v0. Define the continuation utility implicit in the allocation

w0(θ0) ≡
∞∑

t=1

βt−1 E0[θtut(θ
t)].

and suppose that either u0 (θ) 6= gu (θ; v0) or w0 (θ) 6= gw (θ; v0), for some θ ∈ Θ. Since the original

plan {ut} is incentive compatible, u0 (θ) and w0 (θ) satisfy (23) and (24). The Bellman equation

then implies that

k(v0) = E
[
gu(θ; v0)− λ̂c

(
gu(θ; v0)

)
+ βk

(
gw(θ; v0)

)]

> E
[
u0(θ)− λ̂c

(
u0(θ)

)
+ βk

(
w0(θ)

)]

≥ E−1

[
u0(θ0)− λ̂c

(
u0(θ0)

)]
+

∞∑
t=1

βt E−1

[
ut(θ

t)− λ̂c
(
ut(θ

t)
)]

.

The first inequality follows since u0 does not maximize (7), while the second inequality follows the

definition of k(w0 (θ)). Thus, the allocation {ut} cannot be optimal, a contradiction. A similar

argument applies if the plan is not generated by the policy functions after some history θt and

t ≥ 1. We conclude that an optimal allocation must be generated from the policy functions.

Part (b). First, suppose an allocation {ut, vt} generated by the policy functions (gu, gw) starting

at v0 satisfies limt→∞ βt E−1vt(θ
t) = 0. Then, after repeated substitutions of (8), we obtain

v =
T∑

t=0

βt E−1

[
θtut(θ

t)
]
+ βT E−1

[
vT (θT )

]
. (29)

Taking the limit we get v0 =
∑∞

t=0 βt E−1[θtut(θ
t)] so that the allocation {ut} delivers lifetime utility

v0. Next, we show that for any allocation generated by (gu, gw), starting from finite v0, we have

limt→∞ βt E−1vt(θ
t) = 0.

Suppose utility is unbounded above and lim supt→∞ βt E−1vt(θ
t) > 0. Then β̂ > β implies that

lim supt→∞ β̂t E−1vt(θ
t) = ∞. Since the value function k(v) is non-constant, concave and reaches
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an interior maximum, we can bound the value function so that k(v) ≤ av + b, with a < 0. Thus,

lim sup
t→∞

β̂t E−1k
(
vt(θ

t)
) ≤ a lim sup

t→∞
β̂t E−1vt(θ

t) + b = −∞

and then (28) implies that k(v0) = −∞, a contradiction since there are feasible plans that yield

finite values. We conclude that lim supt→∞ βt E−1vt(θ
t) ≤ 0.

Similarly, suppose utility is unbounded below and that lim inft→∞ βt E−1vt(θ
t) < 0. Then

lim inft→∞ β̂t E−1vt(θ
t) = −∞. Using k(v) ≤ av + b, with a > 0, we conclude that

lim inf
t→∞

βt E−1k
(
vt(θ

t)
)

= −∞

implying k(v0) = −∞, a contradiction. Thus, we must have lim inft→∞ βt E−1vt(θ
t) ≥ 0.

The two established inequalities imply limt→∞ βt E−1vt(θ
t) = 0.

Part (c). Suppose lim supt→∞ βt E−1vt(σ
t(θt)) ≥ 0 for every reporting strategy σ. Then after

repeated substitutions of (9),

v ≥
T∑

t=0

βt E−1

[
θtut

(
σt(θt)

)]
+ βT E−1vT

(
σT (θT )

)
.

implying

v ≥ lim inf
T→∞

T∑
t=0

βt E−1

[
θtut

(
σt(θt)

)]
.

Therefore, {ut} is incentive compatible, since v is attainable with truth telling from part (b).

Proof of Lemma 1

Part (a) (Strict Concavity) Let {ut(θ
t, v0), vt(θ

t, v0)} be the plans generated from the policy

functions starting at v0 (note: no claim of incentive compatibility is required). Take two initial

utility values va and vb, with va 6= vb. Define the average utilities

uα
t (θt) ≡ αut(θ

t, va) + (1− α)ut(θ
t, vb)

vα
t (θt) ≡ αvt(θ

t; va) + (1− α)vt(θ
t; vb)

Theorem 2 part (b) implies that {ut(θ
t, va)} and {ut(θ

t, vb)} deliver va and vb, respectively. This

immediately implies that {uα
t (θt)} delivers initial utility vα ≡ αva + (1− α)vb. It also implies that

there exists a finite time T such that

T∑
t=0

βt E−1

[
θtut(θ

t; va)
] 6=

T∑
t=0

βt E−1

[
θtut(θ

t; vb)
]
,
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so that

ut

(
θt; va

) 6= ut

(
θt; vb

)
, (30)

for some history θt ∈ Θt+1. Consider iterating T times on the Bellman equations starting from va

and vb:

k(va) =
T∑

t=0

β̂t E−1

[
θtut(θ

t; va)− c
(
ut(θ

t; va)
)]

+ β̂T E−1k
(
vT (θT ; va)

)

k(vb) =
T∑

t=0

β̂t E−1

[
θtut(θ

t; vb)− c
(
ut(θ

t; vb)
)]

+ β̂T E−1k
(
vT (θT ; vb)

)
,

and averaging we obtain

αk(va) + (1− α)k(vb) =
T∑

t=0

β̂t E−1

[
θtu

α
t (θt)− [

αc
(
ut(θ

t; va)
)

+ (1− α)c
(
ut(θ

t; vb)
)]]

+β̂T E−1

[
αk(vT (θT ; va)) + (1− α)k

(
vT (θT ; vb)

)]

<

T∑
t=0

β̂t E−1

[
θtu

α
t (θt)− αc

(
uα

t (θt)
)]

+ β̂T E−1k
(
vα

T (θT )
)

≤ k(vα),

where the strict inequality follows from the strict concavity of the cost function c (u), the fact

that we have the inequality (30), and the weak concavity of the value function k. The last weak

inequality follows from iterating on the Bellman equation for vα since the average plan (uα, vα)

satisfies the Bellman equations constraints at every step. This proves that the value function k(v)

is strictly concave.

(b) (Differentiability) Since the value function k(v) is concave, it is sub-differentiable—that

is, there is at least one sub-gradient at every point v. Differentiability can then be established by

the following variational envelope arguments.

Suppose first that utility is unbounded below. Fix an interior value v0 for initial utility. For a

neighborhood around v0 define the test function

W (v) ≡ E[
θ
(
gu(θ, v0) + (v − v0)

)− λ̂c
(
gu(θ, v0) + (v − v0)

)
+ β̂k

(
gw(θ, v0)

)]
.

Since W (v) is the value of a feasible allocation in the neighborhood of v0 it follows that W (v) ≤ k(v),

with equality at v0. Since W ′(v0) exists it follows, by application of the Benveniste-Scheinkman

Theorem (see Theorem 4.10, in Stokey, Lucas and Prescott, 1989), that k′(v0) also exists and

k′(v0) = W ′(v0) = 1− λ̂ E
[
c′
(
u∗(θ)

)]
. (31)

Finally, since c′(u) ≥ 0 this shows that k′(v) ≤ 1. The limit limv→−∞ k′(v) = 1 is inherited

by the upper bound k(v) ≤ h(v, β) + m/(1 − β̂) introduced in the proof of Theorem 1, since
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limv→−∞ ∂
∂v

h(v, β) = 1.

The limit limv→v̄ k′(v) = −∞ follows immediately from limv→v̄ k(v) = −∞, if v̄ < ∞. Otherwise

it is inherited by the upper bound k(v) ≤ h(v, β)+m/(1− β̂) introduced in the proof of Theorem 1,

since limv→∞ ∂
∂v

h(v, β) = −∞.

Next, suppose utility is bounded below, and without loss in generality suppose that the utility

of zero consumption is zero. Then the argument above establishes differentiability at a point v0 as

long as gu(θ, v0) > 0, for all θ ∈ Θ. However, corner solutions with gu(θ, v0) = 0 are possible here

even with Inada assumption on the utility function, so a different envelope argument is required.

We provide one that exploits the homogeneity of the constraint set.

If utility is bounded below, then lim supt→∞ E−1β
tvt(σ(θt)) ≥ 0 for all reporting strategies σ so

that, applying Theorem 2, a solution {ut} to the planner’s sequence problem is ensured. Then, for

any interior v0, the plan {(v/v0)ut} is incentive compatible and attains value v for the agent. In

addition the test function

W (v) ≡
∞∑

t=0

β̂t E−1

[
θt

v

v0

ut(θ
t)− λ̂c

(
v

v0

ut(θ
t)

)]

satisfies W (v) ≤ k(v), W (v0) = k(v0) and is differentiable. It follows from the Benveniste-

Scheinkman Theorem, that k′(v0) exists and equals W ′(v0).

The proof of limv→v̄ k′(v) = −∞ is the same as in the case with utility unbounded below. Finally,

we show that limv→v k′(v) = ∞. Consider the deterministic planning problem

k(v) ≡ max
u

∞∑
t=0

β̂t
(
ut − λ̂c(ut)

)

subject to v =
∑∞

t=0 βtut. Note that k(v) is differentiable with limv→v k′(v) = ∞. Since deterministic

plans are trivially incentive compatible, it follows that k(v) ≤ k(v), with equality at v. Then we

must have limv→v k′(v) = ∞ to avoid a contradiction.

Proof of Proposition 1

The CLAR equation was shown in the main text, so we focus here on the bounds. Consider the

program

max
u,w

∑
n

p̄n{θ̄nun − c(un) + β̂k(wn)}

v =
∑

n

p̄n(θ̄nun + βwn)

θnun + βwn ≥ θnun+1 + βwn+1 for n = 1, 2, . . . , K − 1,

This problem and its notation require some discussion. We do not incorporate the monotonicity

constraint on u. But this notation allows us to consider bunching in the following way. If any set

of neighboring agents is bunched, then we group these agents under a single index and let p̄n be
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the total probability of this group. Likewise let θ̄n represent the conditional average of θ within

this group, which is what is relevant for the promise-keeping constraint and the objective function.

Let θn be the taste shock of the highest agent in the group. The incentive constraint must rule the

highest agent in each group from deviating and taking the allocation of the group above him.

Of course, every combination of bunched agents leads to a different program. We study all of

them. The optimal allocation of our problem must solve one of these programs, although not nec-

essarily the one that yields the highest value, since this one may not be feasible if the monotonicity

condition is violated.

The first-order conditions are

p̄n{θ̄n − λ̂c′(un)− λθ̄n}+ θnµn − θn−1µn−1 ≤ 0

p̄n{β̂k′(wn)− βλ}+ β(µn − µn−1) = 0

where, by the Envelope theorem, λ = k′(v).

Consider first case with utility unbounded below, so that the first order condition for consump-

tion holds with equality. Summing the first-order conditions for consumption, we get

λ̂E
[
c′
(
u(θ)

)]
= 1− k′(v)

The first-order conditions for n = 1 imply

(1− λ) +
θ1

θ̄1

µ1

p̄1

=
λ̂c′(u1)

θ̄1

≤ λ̂E
[
c′(uθ)

]

θ̄1

=
1− λ

θ̄1

.

This implies
µ1

p̄1

≤ 1− λ

θ1

− (1− λ)
θ̄1

θ1

.

Using

k′(w1) =
β

β̂
λ− β

β̂

µ1

p̄1

,

we get

k′(w1) ≥ β

β̂

[
λ− 1− λ

θ1

+ (1− λ)
θ̄1

θ1

]
=

β

β̂

[
1 +

1

θ1

− θ̄1

θ1

]
k′(v) +

β

β̂

[
θ̄1

θ1

− 1

θ1

]
.

Similarly, writing the first-order conditions for n = K, we get

(1− λ)− θK−1

θ̄K

µK−1

p̄K

=
λ̂c′ (uK)

θ̄K

≥ λ̂E[c′(uθ)]

θ̄K

=
1− λ

θ̄K

.

This implies

−µK−1

p̄K

≥ 1− λ

θK−1

− (1− λ)
θ̄K

θK−1

.
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Using

k′ (wK) =
β

β̂
λ +

β

β̂

µK−1

p̄K

,

we get

k′ (wK) ≤ β

β̂

[
λ− 1− λ

θK−1

+ (1− λ)
θ̄K

θK−1

]
=

β

β̂

[
1 +

1

θK−1

− θ̄K

θK−1

]
k′(v) +

β

β̂

[
θ̄K

θK−1

− 1

θK−1

]
.

For any n, wK ≤ wn ≤ w1, we have for every n

β

β̂

[
1 +

1

θ1

− θ̄1

θ1

]
k′(v) +

β

β̂

[
θ̄1

θ1

− 1

θ1

]
≤ k′ (wn)

≤ β

β̂

[
1 +

1

θK−1

− θ̄K

θK−1

]
k′(v) +

β

β̂

[
θ̄K

θK−1

− 1

θK−1

]
.

After rearranging, we obtain

β

β̂

[
1 +

1

θ1

− θ̄1

θ1

]
(1− k′(v)) + 1− β

β̂
≥ 1− k′ (gw (θ, v))

≥ β

β̂

[
1 +

1

θK−1

− θ̄K

θK−1

]
(1− k′(v)) + 1− β

β̂
.

To arrive at the expression in the text we take the worst case scenario: we choose the subproblem

that is most unfavorable to each bound, noting that 1− k′(v) ≥ 0.

Turning to the bounded utility case, note that all the first-order conditions and constraints are

satisfied when λ ≥ 1 with µn = 0 and u (θ) = u and w (θ) = β−1v > v. The first-order condition for

w implies k′(w(θ)) = k′(β−1v) = (β̂/β)k′(v). Since the problem is strictly convex, this represents

the unique solution. Recall that in the arguments above establishing the lower bound involved no

assumption on interior solutions for u, so this holds for all v. The upper bound, on the other hand,

did require u(θ) > u for all θ, which must be true for high enough v, i.e. for low enough k′(v).

Proof of Proposition 2

Consider first the case with utility unbounded below. Since the derivative k′(v) is continuous and

strictly decreasing, we can define the transition function

Q(x, θ) = k′
(
gw

(
(k′)−1(x), θ

))

for all x < 1 if utility is unbounded below. For any probability distribution µ, let TQ(µ) be the

probability distribution defined by

TQ(µ)(A) =

∫
1{Q(x,θ)∈A} dµ(x) dp (θ)
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for any Borel set A. Define

TQ,n ≡
TQ + T 2

Q + · · ·+ T n
Q

n

For example, TQ,n(δx) is the empirical average of {k′(vt)}n
t=1 over all histories of length n starting

with k′(v0) = x. The following lemma establishes the existence of an invariant distribution by

considering the limits of {TQ,n}.

Lemma A.3 If utility is unbounded below, then for each x < 1 there exists a subsequence {TQ,φ(n)(δx)}
that converges weakly, i.e. in distribution, to an invariant distribution on (−∞, 1) under Q.

Proof. The bounds (13) derived in Proposition 1 imply that for all θ ∈ Θ

lim
x↑1

Q (x, θ) = lim
v→−∞

k′
(
gw(θ, v)

)
= β/β̂ < 1.

We first extend the continuous transition function Q(x, θ) : (−∞, 1)×Θ → (−∞, 1) to a continuous

transition function Q̂(x, θ) : (−∞, 1] × Θ → (−∞, 1), with Q̂(1, θ) = β/β̂ and Q̂(x, θ) = Q(x, θ),

for all x ∈ (−∞, 1). It follows that TQ̂ maps probability distributions over (−∞, 1] to probability

distributions over (−∞, 1), and TQ(δx) = TQ̂(δx), for all x ∈ (−∞, 1).

We next show that the sequence {TQ̂,n(δx)} is tight, in that for any ε > 0 there exists a compact

set Aε such that TQ̂,n(δx)(Aε) ≥ 1 − ε, for all n. The expected value of the distribution T n
Q̂
(δx)

is simply E−1[k
′(vt(θ

t−1))] with x = k′(v0) < 1. Recall that E−1[k
′(vt(θ

t−1))
]

= (β/β̂)tk′(v0) → 0.

This implies that

min{0, k′(v0)} ≤ E−1

[
k′

(
vt(θ

t−1)
)]

≤ T n
Q̂
(δx)(−∞,−A)(−A) +

(
1− T n

Q̂
(δx)(−∞,−A)

)
1

for all A > 0. Rearranging,

T n
Q̂
(δx)(−∞,−A) ≤ 1−min{0, x}

A + 1

which implies that {T n
Q̂
(δx)}, and therefore {TQ̂,n(δx)}, is tight.

Tightness implies that there exists a subsequence TQ̂,φ(n)(δx) that converges weakly, i.e. in dis-

tribution, to some distribution π. Since Q̂(x, θ) is continuous in x, then TQ̂(TQ̂,φ(n)(δx)) converges

weakly to TQ̂(π). But the linearity of TQ̂ implies that

TQ̂

(
TQ̂,φ(n)(δx)

)
=

T
φ(n)+1

Q̂
(δx)− TQ̂(δx)

φ(n)
+ TQ̂,φ(n)(δx)

and since φ(n) →∞ we must have TQ̂(π) = π.

Recall that TQ̂ maps probability distributions over (−∞, 1] to probability distributions over

(−∞, 1). This implies that π = TQ̂(π) has no probability mass at {1}. Since TQ and TQ̂ coincide

for such distributions, it follows that π = TQ(π), so that π is an invariant distribution on (−∞, 1)

under Q.
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The argument for the case with utility bounded below is very similar. Define the transition

function Q(x, θ) as above, but for all x ∈ R, since now k′(v) can take on any real value. If utility

is unbounded above but γ̄ < 1 then there exists an upper bound vH < ∞ for the ergodic set for

v. Define the utility level v0 > v by k′(v0) = 1. Next, define vL to be the minimum of the policy

function gw over v ∈ [v0, vH ], which is defined since gw is continuous over this compact set. If

utility is bounded above then let vL by the minimum of gw over v ∈ [v0, v̄), which is defined since

limv→v̄ gw(θ, v) = v̄. In both cases, since gw > v we must have that this minimum is above misery:

vL > v. Finally, the transition function is continuous with Q(x, θ) ≤ k′(vL) < ∞. The rest of the

argument is then a simple modification of the one above for utility unbounded below, with k′(vL)

playing the role of 1 (things are actually slightly simpler here, since no continuous extension of Q

is required).

Proof of Proposition 3

Consider indexing the relaxed planning problem by e by setting λ̂ = e−1, with associated value func-

tion k(v; e). We first show that if an initial distribution ψ satisfies the condition
∫

k′(v; e) dψ(v) = 0,

then the solution to the relaxed problem and original problem coincide. We then show that for any

initial distribution there exists a value for e that satisfies this condition.

Since utility is unbounded below, we have k′(vt; e) = Et−1

[
1− λ̂c′

(
uv

t (θ
t)

)]
. Applying the law of

iterated expectations to (12) then yields

E−1

[
1− λ̂c′

(
uv

t (θ
t)

)]
=

(
β

β̂

)t

k′ (v; e) .

With logarithmic utility c′(u) = c(u), so that
∫

k′(v; e) dψ(v) = 0 implies
∫
E−1[ct] dψ = λ̂−1 = e

for all t = 0, 1, . . . The allocation is incentive compatible by Lemma 2 below, and applying part (c)

of Theorem 2, it follows that it must solve the original planning problem.

Now consider any initial distribution ψ. We argue that we can find a value of λ̂ = e−1 such that∫
k′(v; e) dψ(v) = 0. The homogeneity of the sequential problem implies that

k(v; e) =
1

1− β̂
log(e) + k

(
v − 1

1− β
log(e); 1

)

Note that k′(v − 1
1−β

log(e); 1) is strictly increasing in e and limits to 1 as e → ∞, and to −∞ as

e → −∞. It follows that

∫
k′(v; e) dψ(v) =

∫
k′

(
v − 1

1− β
log(e); 1

)
dψ(v) = 0

defines a unique value of e∗ for any initial distribution ψ. The monotonicity of e∗(ψ) then follows

immediately by using the fact that k′(·; 1) is a strictly decreasing function.
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Proof of Lemma 2

(a) If utility is also bounded below, then the result follows from part (b). So suppose utility is

unbounded below, but bounded above. Then k′(gw(θ̄, ·)) is continuous and Proposition 1 implies

that limv→−∞ k′(gw(θ̄, v)) = 1. It follows that maxv k′(gw(θ̄, v)) is attained, so there exists a vL >

−∞ such that gw(θ̄, v) > vL.

(b) If utility is bounded below, the result follows immediately from part (c) of Theorem 2.

(c) Using the first-order conditions from the proof of Proposition 1, one can show that:

c′
(
u

(
θ̄
))

c′ (u (θ))
≤ θ̄

θ
.

With logarithmic utility this implies that gu(θ̄, v) − gu(θ, v) ≤ log
(
θ̄/θ

)
. The incentive constraint

then implies that gw(θ, v)− gw(θ̄, v) ≤ (θ̄/β) log(θ̄/θ) ≡ A. It follows that vt(θ̂
t−1) ≥ vt(θ

t−1)− tA

for all pairs of histories θt−1 and θ̂t−1. Then

βt E−1

[
vt

(
σt−1(θt−1)

)] ≥ βt E−1

[
vt(θ

t−1)
]− βttA.

From part (b) of Theorem 2 we have limt→∞ βt E−1[vt(θ
t−1)] = 0. Since limt→∞ βttA = 0, it follows

that lim supt→∞ βt E−1[vt(σ
t−1(θt−1)] ≥ 0.

(d) If γ > 0 then the bound in (13) implies that k′
(
gw

(
θ̄, v

)) ≥ 1− β/β̂ and the result follows

immediately. If γ̄ < 1, then we can define κ = 1− (1− β/β̂)/(1− γ̄), and define vH by k′(vH) = κ.

Then for all v ≤ vH we have gw(θ, v) ≤ v. It follows that the unique ergodic set is bounded above

by vH . We can now apply the argument in (a) so there exists a vL > −∞ such that gw
(
θ̄, v

)
> vL.

Proof of Lemma 3

Part (a) is immediate since by continuity of the policy functions, consumption is bounded. For part

(b), recall that
∫

k′(v) dψ∗(v) = 0 under the invariant distribution ψ∗. If utility is unbounded below

then all solutions for consumption are interior. If utility is bounded below, then corner solutions

with gc(θ, v) = 0 for some θ can only occur for low enough levels of v, so that gc(θ, v) is bounded,

for all θ in this compact set. Recall that for interior solutions

1− k′(v) = λ̂E
[
c′
(
gu(θ, v)

) ]
= λ̂E

[
c′
(
u
(
c
(
gu(θ, v)

))) ]

Applying Jensen’s inequality we obtain

c′
(

u

(∫
E

[
c
(
gu(θ, v)

)]
dψ∗(v)

))
≤

∫
E

[
c′
(
u
(
c
(
gu(θ, v)

)))]
dψ∗(v) = 1.

The result then follows since c′(u(c)) is an increasing function of c.
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