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average returns as a proxy for expected returns. We find that the market beta plays a much more
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premium is significantly positive and countercyclical. We find no evidence of ex-ante positive

momentum profits.
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1 Introduction

The standard asset pricing theory argues that investors should demand an ex-ante premium

for acquiring risky securities (e.g., Sharpe (1964), Lintner (1965), and Merton (1973)). In

practice, because the ex-ante risk premium is not readily observable, empirical asset pricing

studies often use ex-post, average realized equity returns as a proxy for expected equity

returns. This commonplace strategy is justified on grounds that for sufficiently long horizons

the average return will “catch up and match” the expected return on equity securities —

ex-post average excess equity returns provide for an easy-to-implement, seemingly unbiased

estimate of expected equity risk premium.

Despite its popularity, the above strategy has potentially serious limitations.1 In partic-

ular, the average realized return might not converge to the expected risk premium in finite

samples.2 This, in effect, conditions any inferences based on ex-post returns on the proper-

ties of the particular data under examination. In his AFA presidential address, Elton (1999)

observes that there are periods longer than ten years during which stock market realized

returns are on average lower than the risk-free rate (1973 to 1984), and periods longer than

50 years in which risky bonds on average underperform the risk-free rate (1927 to 1981).

Based on this “counter-intuitive” evidence on risk and return, Elton proposes:

“[D]eveloping better measures of expected return and alternative ways of testing

asset pricing theories that do not require using realized returns have a much

higher payoff than any additional development of statistical tests that continue

to rely on realized returns as a proxy for expected returns.” (p. 1200)

As most findings in the empirical asset pricing literature were established (and are revisited)

with the use of realized returns, it is natural to ask whether extant inferences about risk–

expected return trade-off hold under an alternative, direct measure of expected return.

In this paper, we construct an ex-ante measure of risk premium based on data from

bond yield spreads and investigate whether well-known equity factors, such as market, size,

1Earlier studies have discussed in some detail the noisy nature of average realized returns in a number of
different contexts (see, e.g., Blume and Friend (1973), Sharpe (1978), and Miller and Scholes (1982)).

2Complexity in learning about asset pricing formation might also cause ex-post returns to deviate from
their expectations (see Lewellen and Shanken (2002) and Brav and Heaton (2002)).



book-to-market, and momentum, can explain the cross-sectional variation of expected (as

opposed to average realized) stock returns. Our basic approach builds on the observation

that debt and equity are financial claims written on the same set of real assets and hence

must share common risk factors. In particular, our analysis explores this insight to show

how one can use corporate bond data to glean information about investors’ required equity

risk premium. In what follows, we derive an analytical formula that links ex-ante equity risk

premia and bond risk premia after adjusting bond yields for default risk, rating transition

risk, and the tax spreads between the corporate and the Treasury bonds.

Why use bond data? While relevant information regarding a firm’s systematic risk is

incorporated both into its stocks and bonds, the latter reveal key insights about investors’

return expectations. The first thing to notice is that bond yields are calculated in the spirit

of forward-looking internal rates of return. To wit, bond yield is the expected return if the

bond does not default and the yield does not change in the subsequent period. Importantly,

current bond prices impound the probability of future default, and yield spreads contain the

expected risk premium for taking default risk. Controlling for default risk, firms with higher

systematic risk will have higher yield spreads; a relationship that holds period by period,

cross-sectionally. This contrasts sharply with what one can learn from equity securities,

whose prices reveal little conditional information about expected cash flows and discount

rates — one has to rely on a long time series to “back out” the expected return.3

Secondly, notice that the time-variation of expected returns in the equity markets often

works against the convergence of average realized returns to the expected return. Consider,

for example, that investors require a higher equity risk premium from cyclical firms during

economic downturns. To reflect this, those firms’ equity prices should fall and their discount

rates rise during recessions. Cyclical firms’ equity values indeed fall during economic

downturns, reflecting value losses in those firms’ underlying assets. However, by averaging

ex-post a cyclical firm’s returns over the course of a recession, one might wrongfully conclude

that the cyclical firm is less risky because of its lower “expected” return. Bond yield spreads,

3As pointed out by Sharpe (1978), the CAPM only holds conditionally and expected return might have
nothing to do with future realized returns. Risk premia recovered from bond yields, in contrast, will reflect
conditional information.
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in contrast, increase during recessions: yield spreads move in the same direction of the

discount rate and they are higher for cyclical firms.

Our principal goal in this paper concerns the empirical applicability of a basic risk

argument linking yield spreads and expected equity returns. Building on Merton’s (1974)

framework, we first formalize our ideas. We then test our pricing predictions using standard

multi-factor models. In our view, the asset pricing tests of this paper provide fresh insights

in to the determinants of the cross-section of expected returns, complementing the inferences

based on average realized returns.

Our main findings can be summarized as follows. First, the market beta plays a more

important role in explaining the cross-sectional variation of expected returns than previously

documented. Its explanatory role remains significant even after we control for size, book-to-

market, and prior returns. This finding is striking given the well-publicized “weak” relation

between market beta and ex-post average returns (see, e.g., Fama and French (1992)). In

effect, our findings are more consistent with those of Kothari et al. (1995), who estimate

market betas from annual return data and find economically and statistically significant

compensation for beta risk. We conjecture that the market beta is more significant in our

tests because ex-ante returns are much less noisy than ex-post returns.

Second, the expected value premium is significantly positive throughout our sample pe-

riod (from 1973 to 1998). Moreover the ex-ante value premium is countercyclical. As a whole,

our evidence supports the view that book-to-market captures relevant dimensions of risk that

are priced ex-ante in equity returns (e.g., Fama and French (1993, 1996)). In addition, it

lends support to studies highlighting the effects of business cycles and conditional information

on the value premium (e.g., Ferson and Harvey (1999) and Lettau and Ludvigson (2001)).

Third, we find that there are no ex-ante positive momentum profits. In fact, momentum

is priced ex-ante with a negative sign. This finding is consistent with several interpretations.

For example, one interpretation is that investors do not expect stocks with comparatively

high prior returns to be riskier and earn higher returns in the future. In other words,

momentum might not be an ex-anted priced risk factor, consistent with behavioral models

of Barberis et al. (1998), Daniel et al. (1998), and Hong and Stein (1999). Alternatively,
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the ex-ante distribution of returns might deviate from the ex-post distribution of returns

because of incomplete information and learning. In other words, ex-post returns might

appear predictable to an econometrician, but investors can neither perceive nor exploit

this predictability ex-ante (see Brav and Heaton (2002), Lewellen and Shanken (2002),

and Shanken (2004)). Yet another interpretation for our findings is that momentum is an

empirical by-product of using average realized returns as a (poor) proxy for expected returns.

This interpretation, coupled with the fact that momentum strategies involve frequent trading

in securities with high transaction costs (see Lesmond et al. (2004)), raises the possibility

that momentum may be an “illusion” of profit-taking opportunity.

The remainder of the paper is organized as follows. Section 2 discusses related literature.

Section 3 describes the construction of our expected equity risk premium. Section 4 reports

our findings on the time series of common equity factors and on the cross-sectional variation

of equity risk premium. Finally, Section 5 summarizes and interprets our results.

2 Related Literature

The empirical asset pricing literature has traditionally used average realized equity returns

as surrogates for expected equity returns. Recently, several papers have experimented with

alternative proxies for expected returns. Our work is largely related to this line of research,

as well as to the literature on the relation between yield spreads and equity returns. We find

it important to establish these connections here.

Linking expected equity returns to yield spreads has a long tradition in empirical finance.

Harvey (1986, 1988) is among the first to link yield spreads to consumption growth, an impor-

tant component of pricing kernels that affect expected returns. Chen et al. (1986) find that

yield spreads are priced in equity returns. Ferson and Harvey (1991) and Harvey (1991) use

the yield spreads as instruments for expected equity returns. Other examples include Keim

and Stambaugh (1986), Campbell (1987), Fama and French (1989, 1993), and Jagannathan

and Wang (1996). Importantly, all of those papers model expected market risk premium as a

function of aggregate yield spreads. The novelty of our study is that we model firm-level ex-

pected returns as a function of firm-level yield spreads. In other words, while previous papers
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focus on the market equity premium, we focus on the cross-section of expected returns.

Recently, researchers have looked for alternative measures of expected returns. Brav et

al. (2003) use analyst forecasts to construct the ex-ante equity risk premium (below we draw

comparisons between our results and those of Brav et al.). Likewise, in an intriguing paper,

Graham and Harvey (2003) obtain direct measures of the equity risk premium from surveying

Chief Financial Officers of U.S. corporations. They find evidence of a variable one-year risk

premium, but a more stable ten-year risk premium. Our work is also in the spirit of a stream

of papers that use valuation models to estimate expected equity risk premium (examples are

Blanchard (1993), Gebhardt et al. (2001), and Fama and French (2002)).

Also close in spirit is Vassalou and Xing (2004), who build on Merton’s (1974) option

pricing model to compute default likelihood measures for individual firms. They find that

default risk has a significant impact on equity returns, and that the size effect and part of

the value effect are driven by default risk. Our paper is related to theirs because we also

use information from corporate debt to price corporate equity. However, differently from

Vassalou and Xing, who use average realized returns, we use direct measures of expected

returns. In a sense, our paper combines insights from both Vassalou and Xing and Brav et

al. (2003). Another important connection with the literature concerns Bekaert et al. (2004),

who present a model with stochastic risk aversion that is consistent with many stylized facts

in the aggregate stock and bond markets. As Bekaert et al., we also explore the simultaneity

between debt and equity pricing. Our focus, however, is on the cross-section of returns.

Above all, we differ from the existing literature because we use firm-level bond data to

construct expected equity returns. In essence, we explore the part of investors’ information

set that is uniquely tied to investors’ revealed preferences — their actual demand for risky

corporate securities (bonds). Also new is our approach to recovering information from bond

data. The details of this approach are provided in the next section.

3 Constructing Expected Equity Returns

This section describes the construction of expected equity returns based on bond data.

Section 3.1 lays out the basic idea. Section 3.2 formalizes our argument through a series of
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propositions. Implementation details of our method are described in Section 3.3.

3.1 The Basic Idea

Our basic insight comes from the observation that bond and equity risk premia are

intrinsically connected because bond and equity securities are contingent claims written on

the same set of productive assets — an idea that can be traced back to Merton (1974). Using

this link, we recover the ex-ante equity risk premium from the bond risk premium. From

the definition of bond price as a function of bond yield, we back out the bond risk premium

from the observable yield spreads, which are forward-looking. We then conduct asset pricing

tests in which we replace realized equity returns with the constructed equity risk premium.

In our empirical tests, we follow Fama and French (1992, 1993) and study potential

common factors driving the cross-sectional variation in expected equity returns. This

strategy is consistent with Merton’s (1974) original work, even though Merton uses a single-

factor dynamic model. To see this, note that the firm value is driven by a one-dimensional

Brownian motion in Merton. Naturally, bond and equity returns inherit a single-factor

dynamic structure. Crucially, though, one can also assume that firm value is driven by a

multi-dimensional Brownian motion within the very framework used by Merton. This is

exactly what we do — see Eqs. (A1) and (A2) in Appendix A. Because Merton’s contingent

claim analysis is agnostic about the nature of the process driving firm value, all of his bond

pricing results will go through in our multi-factor setting. Bond and equity returns hence

inherit a multi-factor structure in our extension of Merton’s economy.

Noteworthy, even if we use a single-factor dynamic model for bond and equity returns in

theory, we can still look for potential unconditional multi-factor specifications of bond and

equity returns in practice. The reason is that a conditional single-factor model can be obser-

vationally equivalent to an unconditional multi-factor model (e.g., Cochrane (2001, p. 146–

148)). To wit, scaling the time-varying loadings in the conditional single-factor model or scal-

ing the single factor itself by instruments (such as, the default premium, the term premium,

or the dividend yield) will lead to a multi-factor unconditional model with fixed loadings.

The equivalence between single-factor conditional models and multi-factor unconditional
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models is illustrated, for example, in the simulations of Gomes et al. (2003). Their model is

a single-factor conditional Consumption-CAPM. Yet, using simulated data generated from

the model, Gomes et al. find that size and book-to-market can explain the cross-section of

average returns in multi-factor unconditional specifications.

3.2 Methodology

Proposition 1 Let Ri
St be firm i’s expected equity return, Ri

Bt be its expected debt return,

Fit, Bit, and Sit be its assets, debt, and equity values at time t, respectively, and let rt be the

interest rate. Then:

Ri
St − rt =

[(
∂Sit

∂Bit

)(
Bit

Sit

)] (
Ri

Bt − rt

)
. (1)

Proof. See Appendix A.

Proposition 1 is intuitive. Since both equity and debt are contingent claims written on

the same set of productive assets, a firm’s equity risk premium is naturally tied to its debt

risk premium. Eq.(1) formalizes the intuition. The equity risk premium equals the debt risk

premium multiplied by two coefficients. The first coefficient is the first derivative of equity

with respect to debt. The second coefficient is the debt-equity ratio.

Empirically, Eq.(1) allows us to recover the expected equity risk premium using expected

bond risk premium without assuming that the average realized equity return is an unbiased

measure of the expected equity return. The next two propositions introduce our method of

constructing expected bond risk premium, Ri
Bt−rt, from observable bond characteristics.

Proposition 2 Let Yit be the yield to maturity, Hit be the modified duration, and Git be

the convexity of firm i’s bond at time t. In the absence of tax differential between corporate

bonds and Treasury bonds, the following relation holds for expected bond excess return and

observable bond characteristics:

Ri
Bt − rt = (Yit − rt) − Hit

Et [dYit]

dt
+

1

2
Git

(dYit)
2

dt
(2)

Proof. See Appendix A.
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Eq. (2) is easy to interpret. The first term on the right-hand side is the yield spread

between the corporate bond and Treasury bill, which equals the expected excess return of

the bond if the bond yield remains constant. The next two terms adjust for the changes in

bond yield: the first order change is multiplied by modified duration and the second order

change is multiplied by convexity. In essence, Eq. (2) provides a second order approximation

of the bond risk premium based on the yield spread.

The next challenge is to model adequately the yield change. The extant literature is rich in

models for bond yields (e.g., Merton (1974), Longstaff and Schwartz (1995), Collin-Dufresne

and Goldstein (2001), and Huang and Huang (2003)). Rather than imposing a parametric

model on the yield process, we focus on capturing two important empirical patterns: (i)

bond value decreases in the event of default, and (ii) bond ratings generally revert to their

long-run means conditional on no-default. Our objective is achieved in the next proposition.

Proposition 3 Let πit be the expected default probability, dY −
it be the yield change

conditional on default, and dY +
it be the yield change conditional on no-default. Then expected

bond excess return is given by:

Ri
Bt − rt = (Yit − rt) + EDLit + ERNDit (3)

where EDL denotes expected default loss rate, and is defined as:

EDLit ≡ πit

(
−HitEt[dY −

it ] +
1

2
Git

(
dY −

it

)2
)

/dt < 0 (4)

and ERND denotes the expected return due to yield changes conditional on no-default, is

defined:

ERNDit ≡ (1 − πit)

(
−HitEt[dY +

it ] +
1

2
Git

(
dY +

it

)2
)

/dt (5)

Proof. See Appendix A.

Finally, notice that part of the yield spread of corporate bonds over Treasury bonds

arises because corporate bond investors have to pay state and local taxes while Treasury

bond investors do not. Hence, the component in the yield spread that is related to the tax

differential should be removed from the spread if one wants to obtain a clean measure of
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the bond risk premium. Let Ci be the coupon payment for bond i and let τ be the effective

state and local tax rate, then:

Ri
Bt − rt = (Yit − rt) + EDLit + ERNDit − ETCit (6)

where ETC denotes expected tax compensation, and is given by:

ETCit =

[
(1 − πit)

Ci

Bit

1

dt
+ EDLit

]
τ . (7)

In Eq. (7), (1 − πit)
Ci

Bit

1
dt

is the coupon rate conditional on no-default. The expected default

loss rate, EDL, is also included in (7) to capture the tax refund in the event of a default.

Our propositions are consistent with the valuation method in Merton (1974). In fact,

because our formulations are in essence a second order Taylor expansion, the two approaches

are mathematically equivalent. Merton models equity as an European call option on the

underlying asset. The value of corporate debt, Bit, which has face value K and maturity T ,

is equal to Bit =Dt−Pit, where Dt is the price of a risk free bond and Pit is a put option. The

yield spread can then be calculated as yit =log
(

K
Bit

)
/T − r, a function of Fit

K
and volatility

σi only. It seems as if systematic risk has no effects on the yield spread.

Notice, however, that the firm value process follows dFit

Fit
=µidt + σi dωt, where µi is the

instantaneous expected return of firm i, determined by its covariance with the stochastic

discount factor. Now, consider two firms, 1 and 2, with firm 1 having a higher systematic

risk and thus a higher expected return. Since firm 1’s value grows faster than that of firm

2, all else equal, firm 1 will have a lower default probability. Hence, even though both firms

have the same yield spread, after adjusting for the fair compensation for default risk, firm 1

has a higher component in the yield spread representing its higher systematic risk. In sum,

the yield spreads, after properly adjusting for default risk and other components, are capable

of identifying the cross-sectional variation of systematic risk and expected returns.

3.3 Implementation

This subsection details the empirical implementation of each of the components of our ex-

ante measure of expected return: (i) yield spreads (Ri
Bt−rt); (ii) expected default loss rates
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(EDLit); (iii) no-default yields (ERNDit); (iv) expected tax compensation (ETCit); and (v)

the derivative of equity with respect to debt, ∂Sit

∂Bit
.

Yield Spreads, Ri
Bt−rt

We obtain firm-level bond data from the Lehman Brothers fixed income data set, which

provides monthly information on corporate bonds, including price, yield, coupon, maturity,

modified duration, and convexity, from January 1973 to march 1998. This data set, widely

used in empirical research (e.g., Duffee (1999) and Elton et al. (2001)), covers a reasonably

long period of time. Duffee provides a detailed description of the data set. We only include

non-matrix prices because they represent true market quotes. As in Elton et al., we exclude

bonds with maturity less than one year since these bonds’ prices are less reliable. We include

both callable and non-callable bond prices in an effort to retain as many bonds as possible,

but our conclusions also hold when only non-callable bonds are used. Finally, we only include

bonds issued by non-financial firms.

We obtain Treasury yields for all maturities from the Federal Reserve Board. Following

Collin-Dufresne et al. (2001), we compute yield spreads as the corporate bond yields minus

the Treasury yields with matching maturities.

Expected Default Loss Rate, EDLit

The expected default loss rate equals the default probability times the actual default loss

rate. Moody’s publishes information on annual default rates sorted by bond rating from 1970

to 2001, and we use these data to construct expected default probabilities. We note that the

literature on default risk typically only uses the unconditional average default probability

for each rating and ignores the time variation in expected default probabilities (Elton et

al. (2001) and Huang and Huang (2003)). Differently from these papers, our approach is

designed to capture time variation in default probability. To do so, we use the three-year

moving average default probability from year t−2 to t as the one-year expected default

probability for year t.4 For the case of Baa and lower grade bonds, if the expected default

4The choice of a three-year window is based on the observation that there are many two-year but few
three-year windows without default. While we want to keep the number of years in the window as small
as possible, we also want to ensure that expected default probabilities are not literally zero. We have also
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probability in a given year is zero, we replace it with the lowest positive expected default

probability in the sample for that rating. This ensures that even in occasions of no actual

default in three consecutive years, investors still anticipate positive default probabilities.

Table 1 reports the constructed expected default probabilities from 1973 to 1998 based on

Moody’s data. With only a few exceptions, expected default probabilities decrease with bond

ratings. Noteworthy, those default probabilities are typically higher during recessions than

during expansions, highlighting the systematic nature of corporate defaults. For example, in

the 1990–91 recession, the expected default probability of B3 bonds exceeds 25%, compared

to only 5–8% during the late 1990s expansion.

To construct the expected default loss rate, EDLit, we still need default loss rates.

Following Elton et al. (2001), we use the recovery rate estimates provided by Altman and

Kishore (1998). Their recovery rates for bonds rated by S&P are: 68.34% (for AAA bonds),

59.59% (AA), 60.63% (A), 49.42% (BBB), 39.05% (BB), 37.54% (B), and 38.02% (CCC).

As in Elton et al., we assume the equivalence between ratings by Moody’s and S&P (e.g.,

Aaa = AAA, . . ., Baa = BBB, . . ., Caa = CCC), and apply the same recovery rates.

We note that our calculations of expected default probability based on the three-year

moving average implicitly assume that the moving average converges to the true expected

default probability. Further, the recovery rates from Altman and Kishore (1998) are taken to

be unconditional. Admittedly, on these two particular aspects, our approach does not depart

significantly from the standard practice of replacing expected returns with average realized

returns. However, since yield spreads are considerably less volatile than stock returns —

especially at the firm level, the focus of our study — our method is, at a minimum, still less

subject to the criticisms discussed in Introduction.

experimented four other ways to capture the time varying one-year expected default probabilities: (i) using
the average one-year default probability from year t−3 to t−1; (ii) using the actual default probability itself
at year t; (iii) using the average default probability from year t to t+2; and (iv) using the average default
probability from year t+1 to t+4. Results from these alternative windows (available from the authors) have
no bearing on our main conclusions.
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Table 1 : Three-Year Moving Average Annual Default Probability (in Percent)

This table reports the three-year moving average annual default rates for corporate bonds categorized by

ratings, where the three-year window includes the current year and the previous two years. The table is

constructed using annual default rate data from Moody’s.

Year Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3

1973 0 0 0 0 0 0 0 0.343 0.343 0.343 0.430 0.430 0.430 4.920 4.920 4.920
1974 0 0 0 0 0 0 0 0.343 0.343 0.343 0.430 0.430 0.430 5.937 5.937 5.937
1975 0 0 0 0 0 0 0 0.343 0.343 0.343 0.633 0.633 0.633 5.547 5.547 5.547
1976 0 0 0 0 0 0 0 0.280 0.280 0.280 0.833 0.833 0.833 4.633 4.790 5.093
1977 0 0 0 0 0 0 0 0.280 0.280 0.280 0.867 0.867 0.867 3.427 3.583 3.887
1978 0 0 0 0 0 0 0 0.280 0.280 0.280 0.887 0.887 0.887 3.240 3.397 3.700
1979 0 0 0 0 0 0 0 0.280 0.280 0.280 0.707 0.707 0.707 3.240 3.397 3.700
1980 0 0 0 0 0 0 0 0.280 0.280 0.280 0.673 0.673 0.673 3.833 3.990 4.293
1981 0 0 0 0 0 0 0 0.280 0.280 0.280 0.450 0.450 0.450 3.527 3.683 3.987
1982 0 0 0 0 0.090 0.090 0.090 0.290 0.290 0.290 1.213 1.213 1.213 3.987 3.987 3.987
1983 0 0 0 0 0.090 0.090 0.090 0.290 0.290 0.290 1.213 1.213 1.940 2.643 5.633 8.270
1984 0 0 0 0 0.090 0.090 0.090 0.290 0.290 0.550 1.457 1.607 1.940 3.093 10.387 7.740
1985 0 0 0 0 0 0 0 0.280 0.280 0.540 0.673 1.223 2.270 3.750 12.053 11.557
1986 0 0 0 0 0 0 0 0.280 0.280 2.053 0.823 1.480 2.547 5.943 14.277 10.943
1987 0 0 0 0 0 0 0 0.280 0.280 1.793 1.680 1.260 3.387 5.640 9.460 13.433
1988 0 0 0 0 0 0 0 0.280 0.280 1.793 1.680 0.860 2.993 5.627 9.290 12.053
1989 0 0 0 0.467 0 0 0 0.280 0.453 0.543 1.650 1.067 3.417 5.170 6.493 13.213
1990 0 0 0 0.467 0 0 0 0.280 0.453 0.543 1.297 1.690 3.740 6.390 12.423 19.400
1991 0 0 0 0.467 0 0 0 0.440 0.453 0.543 1.507 1.690 6.173 6.957 14.370 25.633
1992 0 0 0 0 0 0 0 0.440 0.280 0.280 1.387 1.227 4.850 5.220 12.123 27.297
1993 0 0 0 0 0 0 0 0.440 0.280 0.280 0.767 0.430 3.793 3.463 6.413 21.480
1994 0 0 0 0 0 0 0 0.280 0.280 0.280 0.557 0.430 0.693 2.083 3.387 14.690
1995 0 0 0 0 0 0 0 0.280 0.280 0.280 0.557 0.430 1.020 3.190 4.993 7.877
1996 0 0 0 0 0 0 0 0.280 0.280 0.280 0.430 0.430 0.913 2.473 3.840 5.170
1997 0 0 0 0 0 0 0 0.280 0.280 0.280 0.430 0.430 0.873 2.183 3.120 4.957
1998 0 0 0 0 0 0 0 0.280 0.293 0.280 0.430 0.490 0.663 1.443 3.523 5.460

The Expected Return Due to Yield Changes Conditional on No-default, ERNDit

To calculate ERNDit, we need to calculate dY +
it , the yield changes conditional on no-default.

We first some evidence on the mean-reverting behavior of default probabilities, and then

discuss our procedure of constructing dY +
it based on the bond data.

Evidence on Mean-Reverting Default Probabilities Empirically, if a bond does

not default, its default probability mean-reverts. In Table 2, we report one-year default

probabilities from one to 20 years conditional on no-default in the previous year. The cohorts

of bonds are sorted by their ratings in the initial year. These probabilities are constructed by
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Table 2 : Annual Default Probability Conditional on No-Default in the Previous
Year (in Percent)

This table reports the annual default probability conditional on no-default in the previous year. The table

is constructed using the average one-year rating transition matrix of Moody’s and that of S&P Corporation,

reported in Table V of Elton et al. (2001).

Year Aaa Aa A Baa Ba B Caa

1 0 0 0.052 0.158 1.402 7.403 22.289
2 0.001 0.011 0.094 0.312 1.949 7.459 19.278
3 0.004 0.024 0.139 0.467 2.348 7.337 16.427
4 0.008 0.042 0.188 0.615 2.633 7.112 13.887
5 0.013 0.062 0.239 0.752 2.832 6.830 11.726
6 0.020 0.084 0.290 0.877 2.963 6.521 9.947
7 0.029 0.109 0.343 0.987 3.044 6.204 8.511
8 0.039 0.136 0.397 1.085 3.084 5.889 7.368
9 0.051 0.165 0.449 1.169 3.094 5.585 6.461
10 0.065 0.195 0.500 1.243 3.081 5.295 5.742
11 0.080 0.226 0.550 1.304 3.051 5.022 5.169
12 0.096 0.259 0.597 1.356 3.009 4.767 4.707
13 0.114 0.291 0.643 1.399 2.957 4.528 4.330
14 0.133 0.324 0.686 1.435 2.898 4.306 4.019
15 0.153 0.358 0.727 1.463 2.837 4.100 3.758
16 0.175 0.391 0.765 1.486 2.771 3.910 3.535
17 0.197 0.425 0.802 1.503 2.706 3.733 3.344
18 0.220 0.458 0.835 1.516 2.639 3.569 3.175
19 0.243 0.490 0.867 1.525 2.574 3.417 3.027
20 0.268 0.522 0.895 1.530 2.510 3.276 2.894

using the one-year default transition matrices provided by Moody’s and S&P Corporation.

The first row of Table 2 shows that the default probability for Aaa bonds in the first year

is zero, a pattern consistent with that reported in the first three columns of Table 1. Table

2 reports positive default probabilities for Aaa bonds starting from the second year. This

is also consistent with the previous table because some Aaa bonds can be downgraded and

lower rated bonds have positive default probabilities.

More important, it is clear from Table 2 that, conditional on no-default, annual default

probabilities increase over the years for bonds with originally high rating, but they decrease

for bonds with originally low rating. For example, at year one, the one-year ahead default

probability for Caa bonds is 22.28%. The one-year default probability then goes down to

19.28% in the second year and to 16.43% in the third year. Since mean-reverting default

probabilities imply mean-reverting yields, high-quality bonds can have positive yield spreads
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Table 3 : Evolution of Ratings and Yield Spreads in Corporate Bonds

This table uses Lehman Brothers Fixed Income data set (January 1973 to March 1998) to form cohorts of

bonds with the same initial rating each year. Ratings from Aaa to Caa are assigned integer numbers from

one to seven, with higher numbers indicating lower ratings. We report the average rating and yield spread

changes for the same initial rating groups. Changes in yield spreads are in percent. The t-statistics adjusted

for heteroscedasticity and autocorrelations of up to 12 monthly lags from GMM are reported in parentheses.

Year Changes in Aaa Aa A Baa Ba B Caa

1 Rating 0.093 0.087 0.046 0.017 0.005 -0.045 0.195
(7.54) (14.98) (12.38) (2.91) (0.46) (-8.28) (-5.49)

Yield Spread 0.084 0.062 0.079 0.080 -0.024 0.556 -1.402
(3.49) (6.27) (11.34) (5.90) (-0.75) (7.69) (-4.86)

2 Rating 0.175 0.181 0.088 0.047 -0.007 -0.114 -0.350
(9.15) (16.98) (12.82) (3.87) (-0.42) (-9.39) (-6.04)

Yield Spread 0.177 0.153 0.160 0.104 0.213 1.075 -0.922
(4.55) (9.08) (10.61) (4.03) (2.93) (7.06) (-1.98)

3 Rating 0.262 0.264 0.139 0.082 -0.019 -0.166 -0.500
(10.19) (18.63) (13.79) (4.49) (-0.75) (-9.40) (-6.70)

Yield Spread 0.306 0.251 0.196 0.109 0.191 1.411 -1.461
(6.21) (9.05) (11.43) (2.92) (1.87) (6.75) (-2.57)

even though their one-year default rates are close to zero.

Table 3 provides further evidence on the mean reversion of yield spreads. On an annual

basis, we pool together all bonds belonging to the same Moody’s rating category in the

Lehman Brothers data set and study the changes in cumulative average ratings and yield

spreads over the following three years. We assign numeric numbers, from one to seven, to

bonds rated from Aaa to Caa, with a lower number corresponding to a better rating.

Table 3 shows that the ratings of high-quality bonds (Aaa, Aa) indeed decline over time

while their yield spreads increase. For example, the rating of Aa-rated bonds, conditional on

no-default, increases by 0.087 after a year, where an increase of one indicates a full downgrade

to grade A. Accordingly, the average yield spread of Aa bonds increases by 6.2 basis points.

In contrast, the ratings of low-quality bonds (Caa) improve over time and their yield spreads

decline. The evidence clearly shows mean reversion in yield spread conditional on no-default.

Modeling Mean-Reverting Yield Changes We adopt the following three-step

procedure to recover dY +
it , the yield change conditional on no-default, from the data. First,
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we construct the cumulative default probability for each maturity using Table 2. For example,

the conditional default probabilities for a bond initially rated Baa are 0.16% and 0.31% for the

first two years, respectively. Assuming that the default rate is the same within a given year,

the cumulative default probabilities are 0.16%, 0.16%, 0.47% (= 0.16%+(1−0.16%)×0.31%),

and again 0.47% for 0.5-year, 1-year, 1.5-year, and 2-year maturity, respectively.

Second, for each bond we calculate the expected cash flow, while taking into account

possible default. The expected cash flow for a particular coupon date before maturity is

equal to: coupon payment× [1−cumulative default probability× (1− recovery rate)], where

the recovery rates are from Altman and Kishore (1998). We calculate the present value of

the bond by discounting its expected cash flows by the corresponding Treasury yields with

matching maturities.5 After we obtain bond prices, we then calculate bond yields.

For example, suppose the bond in the previous example has two years to maturity and

the coupon rate is 8% with face value of $100. Further assume that the current Treasury

yield, with annualized semi-annual compounding, is 8% for a two-year maturity. Without

default, the cash flows for the bond are $4, $4, $4, and $104 for the four half-year periods.

The recovery rate from Altman and Kishore (1998) for the Baa-rated bond is 49.42%. With

default risk, the expected cash flows are (1−0.16%×(1−49.42%))×4, (1−0.16%×(1−49.42%))×4,

(1− 0.47%× (1−49.42%))×4, and (1−0.47%×(1−49.42%))×104, respectively. The present

value, when we use the discount rate of 8%, is thus $99.77. With the promised cash flows of

$4, $4, $4, and $104, and the price at $99.77, the bond yield equals 8.12%.

Third, assume that the bond does not default within the first year. Conditional on that

event, the bond maturity decreases by one year, and the second-year conditional default

probability reported in Table 2 becomes the first-year default probability for this “new”

bond. One can iterate over the last two steps to calculate the price and yield for the

new bond. Because conditional default probabilities of high grade bonds will increase in the

second year, bond prices will decrease and yields will increase, revealing a downgrading trend.

Similarly, because conditional default probabilities will decrease for low grade bonds in the

second year, bond prices will increase and yields will decrease, representing an upgrading

5This is equivalent to calculating the fair price of the bond by a risk-neutral investor.
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trend. The yield difference between the last two steps will be our proxy for the yield change

conditional on no-default within the first year. As expected, this yield change, dY +
it , will be

positive for high grade bonds but negative for low grade bonds.

Let’s again consider our numerical example. After one year, conditional on no-default, the

new cumulative default rates will be 0.31% and 0.31% for the 0.5-year and 1-year maturities.

Using our method to calculate the expected cash flows for this bond, we find the new price

to be $99.85 and the yield to be 8.17%. Thus, the bond yield will go up by five basis points

due to the expected increase of default probability. The five basis points will be used as dY +
it

in calculating ERNDit, the expected return due to yield change conditional on no-default.

To sum up, ERNDit is a function of rating-specific default probability, bond specific

maturity, duration, convexity, and the Treasury yield for a given month. Although a bit

tedious, our method ensures that this component of yield spread dynamics is captured with

the best available information for the particular bond at any given time.

Expected Tax Compensation, ETCit

To calculate the expected tax compensation given by (7), we follow Elton et al. (2001)

and set the effective state and local tax rate to be 4% for all bonds. This completes our

construction of the four components in the bond risk premium formula (6).

Constructing Expected Equity Returns

Armed with a measure of expected bond risk premium, it is straightforward to use

Proposition 1 to obtain expected equity risk premium. Note, though, that we do not directly

observe ∂Sit

∂Bit
. This derivative needs to be estimated from the data and the following steps

describe our estimation procedure.

First, we combine the bond data with CRSP monthly data to obtain market capitalization

for equity, and then merge it further with Compustat to gather information on firm leverage.

The final merged Lehman Brothers/CRSP/Compustat data set includes 1,023 non-financial

firms covering the period from January 1973 to March 1998.

Second, for each firm, we calculate the change of Sit as the market capitalization change
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for each month. We also add together the value change for each bond within each firm. Our

bond data covers approximately 50% of all debt for each Compustat-matched firm, and in

order to obtain the change of Bit, we multiply the total bond value change by the ratio of

book debt from Compustat to the total bond face value from our Lehman Brothers data set.

We then obtain projected estimates for ∂Sit

∂Bit
using a pooled panel regression of ∂Sit

∂Bit
on a

constant and the debt/equity ratio (t-statistics in parentheses):

∂Sit

∂Bit

= 12.83
(49.50)

− 0.58
(12.55)

Bit

Sit

. (8)

While the specification of Eq.(8) is admittedly simple, we later conduct extensive robustness

checks using alternative specifications for ∂Sit

∂Bit
in Section 4.4. As it turns out, the above

parsimonious specification is already sufficient in delivering our main results.

The predicted negative relation between ∂Sit

∂Bit
and Bit

Sit
agrees with theoretical priors. To

see this, consider the simple model of Merton (1974), in which the equity S is a European

call option on the underlying asset F . The debt is a zero coupon bond with face value of K

and maturity of T years. The Black and Scholes’ (1973) formula implies that: ∂S
∂B

= N(d1)
1−N(d1)

,

where N(·) is the cumulative density function of normal distribution, d1≡
log(F/K)+(r+ 1

2
σ2)T

σ
√

T
,

and σ is the volatility of the firm’s asset return. Because d1 is always positive, N (d1)>0.5

and N(d1)
1−N(d1)

>1. Moreover, because d1 decreases with K
F

, N(d1)
1−N(d1)

decreases with the leverage

ratio. That is, for firms with higher leverage, a unit change of debt value is associated with

a smaller change in the equity value. Intuitively, given one unit of firm value change, the

change in equity value will be smaller if the debt portion is larger.

Having developed empirical counterparts for each of the components of our ex-ante return

measure, we substitute those estimates into Eq. (1) for each firm-month in our sample. We

can now study the pricing of risky securities with a direct measure of expected returns.

4 Empirical Findings

We first report summary statistics of yield spreads and expected bond risk premia that are

used in our expected equity return measure in Section 4.1. Section 4.2 studies the properties
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Table 4 : Descriptive Statistics of Yield Spreads and Expected Bond Risk Premium
By Bond Ratings

This table reports mean, standard deviation (std), min, max, and autocorrelations of orders 1 (ρ1), 2 (ρ2),

6 (ρ6), and 12 (ρ12), of yield spread (Panel A) and expected bond risk premium (Panel B) for bonds rated

from B to Aaa. The mean, std, min, and max are in annualized percent.

Panel A: Yield Spread

Rating mean std min max ρ1 ρ2 ρ6 ρ12

Aaa 0.850 0.521 0.302 3.092 0.948 0.909 0.781 0.540
Aa 0.897 0.342 0.419 2.286 0.965 0.930 0.800 0.616
A 1.093 0.354 0.608 2.514 0.948 0.902 0.691 0.409

Baa 1.805 0.638 0.456 4.310 0.955 0.910 0.708 0.445
Ba 2.967 0.837 1.738 6.785 0.852 0.793 0.626 0.419
B 5.494 2.373 2.671 18.460 0.957 0.932 0.801 0.546

Panel B: Expected Bond Risk Premium

Rating mean std min max ρ1 ρ2 ρ6 ρ12

Aaa 0.464 0.488 -0.027 2.653 0.942 0.897 0.748 0.470
Aa 0.465 0.326 0.011 1.863 0.960 0.919 0.760 0.543
A 0.607 0.330 0.133 2.045 0.943 0.891 0.655 0.351

Baa 0.930 0.573 -0.017 3.379 0.946 0.892 0.666 0.408
Ba 1.053 0.547 0.110 2.917 0.816 0.722 0.432 0.107
B 2.238 1.405 0.066 10.980 0.844 0.765 0.596 0.311

of the common equity factors of Fama and French (1993) and momentum under our ex-

ante measure. Section 4.3 examines the cross-sectional variation of the expected equity risk

premium. Finally, Section 4.4 tests the robustness of our basic results.

4.1 Yield Spreads and Expected Bond Risk Premium

Table 4 reports summary statistics of yield spreads and constructed bond risk premia for B-

through Aaa-rated bonds. Because data are not available on time-varying default rates for

bonds rated Caa or lower, we delete these bonds from the sample. (These bonds consist of

about one percent of all bonds.) We construct firm-level bond risk premium as the simple

average of the risk premia of all the bonds issued by the firm, but emphasize that the use

of value-weighted averages yields very similar results, as different bonds issued by the same

firm earn very similar risk premia.

Table 4 shows that the yield spread and the expected bond risk premium increase as the

bond rating decreases. The bond risk premium for Aaa-rated bonds is on average 0.46%

18



per annum, and it goes up to 2.24% for B-rated bonds. This evidence suggests that lower

graded bonds are systematically riskier than higher graded bonds. Both the yield spread

and the expected bond risk premium are highly persistent. The first-order autocorrelations

range from 0.82 to 0.97, and the 12th-order autocorrelations range from 0.10 to 0.60.

4.2 Common Factors in Expected Equity Returns

We define the market equity risk premium as the value-weighted average equity risk premia

of all firms. The expected returns of the size and book-to-market factors (SMB and HML,

respectively) are constructed following exactly the procedure used by Fama and French

(1993). To construct the momentum factor, we sort stocks each month on the basis

of their realized equity return in the past 12 months into winners (W>70%), medium

(70%≥M≥30%), and losers (L<30%) categories. We skip one month to avoid market

microstructure difficulties and hold the portfolios for 12 months. The momentum factor

is then computed as the winner-minus-loser (WML) portfolio.

Descriptive Statistics

Panel A of Table 5 reports the summary statistics of expected returns of the four common

equity factors. The expected market risk premium is on average 3.93% per annum. The

expected size premium is on average 5.68% and the expected value premium is on average

9.04%. The momentum factor, in contrast, earns a negative expected return of -2.02%.

Panel B of Table 5 reports the correlation matrix of the expected returns of the four

equity factors. The expected return of the market factor is positively correlated with the

size factor (0.19) and the book-to-market factor (0.68), but is negatively correlated with the

momentum factor (-0.44). We also find that the bond market portfolio earns on average

0.42% per annum (raw standard deviation of 0.33%). The equity market risk premium is

highly positively correlated with the market bond risk premium; with a correlation coefficient

of 0.86. This is not surprising under our approach since, as contingent claims on the same

productive assets, equity and bond should share similar risk factors.

Panel C reports the market regressions of SMB, HML, and WML. The unconditional

alphas of SMB and HML are 4.41% and 3.50% per annum, and are highly significant (t-
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Table 5 : Descriptive Statistics of Expected Returns of Common Equity Factors

This table reports summary statistics of expected returns of common equity factors, including market excess

return (MKT), SMB, HML, and WML (the momentum factor). Panel A reports mean, standard deviation

(std), min, max, and autocorrelations of orders 1 (ρ1), 2 (ρ2), 6 (ρ6), and 12 (ρ12). Panel B reports the

results of market regressions for SMB, HML, and WML, including the intercepts (α) and the slopes (β) as

well as their t-statistics. And Panel C reports the correlation matrix for these four factors. The numbers of

mean, std, min, max, and α are in annualized percent. All cross-correlations in Panel C are significant at the

one percent significance level. All the t-statistics estimated from GMM are adjusted for heteroscedasticity

and autocorrelations of up to 12 lags.

Panel A: Summary Statistics

mean std min max ρ1 ρ2 ρ6 ρ12

MKT 3.926 2.568 0.220 15.549 0.888 0.848 0.698 0.408
SMB 5.677 4.354 -2.749 22.774 0.921 0.875 0.642 0.353
HML 9.042 5.353 -3.225 26.314 0.896 0.837 0.701 0.554
WML -2.021 4.889 -18.177 12.513 0.834 0.768 0.350 0.159

Panel B: Cross-Correlations Panel C: Market Regressions

MKT SMB HML WML α tα β tβ

MKT 1 0.191 0.677 -0.439 na na na na
SMB 1 -0.202 -0.209 4.410 8.599 0.327 3.062
HML 1 -0.274 3.498 6.925 1.430 13.894
WML 1 1.265 2.346 -0.860 -7.974

statistics of 8.60 and 6.93, respectively). The unconditional betas of SMB and HML are

also positive and statistically significant. WML has a positive unconditional alpha of 1.27%

(t-statistic of 2.35), but a negative unconditional beta of -0.86 (t-statistic of -7.97).

Business Cycle Properties

We now investigate the cyclical properties of the expected returns for the four equity factors

during the 1973–1998 period. Following the empirical business cycle literature (e.g., Stock

and Watson (1999, Table 2)), Table 6 reports the cross correlations (with different leads and

lags) of the expected returns with the cyclical component of the real industrial production

index. The industrial production index is obtained from the monthly database of the

Federal Reserve Bank of Saint Louis. We follow Stock and Watson (1999) by removing

from the output series its long-run growth component as well as those fluctuations that

occur over periods shorter than a business cycle, which arise from temporary factors such
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Table 6 : Cross Correlations with Cyclical Component of Industrial Production

This table reports the cross correlations of expected returns of equity factors with the cyclical component

of the industrial production index, corr(rt, yt+k), for different leads and lags, k. The cyclical component of

the real industrial production index (obtained from FRED) is estimated by passing the raw series through

the Hodrick and Prescott (1997) filter. p-values of the cross correlations are reported in parentheses.

rt corr(rt, yt+k)

-24 -12 -6 -3 -2 -1 0 1 2 3 6 12 24

MKT 0.222 0.193 0.070 -0.051 -0.122 -0.195 -0.241 -0.289 -0.314 -0.313 -0.320 -0.198 0.228
(0.00) (0.00) (0.23) (0.38) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SMB -0.136 0.171 0.056 -0.128 -0.199 -0.275 -0.357 -0.426 -0.463 -0.473 -0.425 -0.086 0.373
(0.03) (0.01) (0.37) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.18) (0.00)

HML 0.145 0.049 -0.044 -0.162 -0.222 -0.269 -0.295 -0.309 -0.308 -0.299 -0.227 -0.117 0.154
(0.02) (0.43) (0.48) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.02)

WML -0.209 -0.113 0.099 0.224 0.249 0.268 0.273 0.267 0.254 0.259 0.252 0.062 -0.082
(0.00) (0.06) (0.10) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.31) (0.19)

as measurement errors. This is achieved by passing the raw industrial production index

through the Hodrick and Prescott (1997) filter. Following Hodrick and Zhang (2001), we set

the monthly smooth parameter in the Hodrick-Prescott filter to be 6,400.

Table 6 reports a number of interesting patterns. First, the expected market risk premium

is negatively correlated with the cyclical component of output. The cross correlations are

mostly negative and significant across different leads and lags. This evidence suggests that

the expected market risk premium is countercyclical; i.e., investors demand a higher risk

premium in recessions. This finding speaks to the criticism voiced by Elton (1999) that

ex-post equity returns go down in recessions and thus fail to capture investors’ (presumably)

heightened required returns from risky assets in uncertain environments.

Second, both the expected size premium and the expected value premium are negatively

correlated with the cyclical component of output. In other words, investors seem to perceive

small and value stocks as riskier securities than big and growth stocks ex-ante, charging a

countercyclical risk premium for holding those assets. The final noticeable feature of Table 6

concerns the cyclical properties of momentum. In contrast to other equity factors, expected

momentum is strongly procyclical; the cross correlations between expected momentum

returns and output are positive and significant at most leads and lags.
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Average Realized Excess Returns versus Expected Risk Premia

Since we argue that our constructed expected equity returns might provide new insights into

the pricing of equities, it is important to show how different our proxy is from the average

realized return. To this end, we run predictive regressions of future, realized cumulative

equity factor returns onto the expected factor returns constructed from yield spreads.

Table 7 reports the results. Four different horizons are considered: six-month, 12-month,

24-month, and 36-month. We test the convergence of average realized equity returns and

the constructed expected returns as follows. The null hypothesis is that the slope equals 1/2

in the six-month horizon, one in the 12-month horizon, two in the 24-month horizon, and

three in the 36-month horizon. We report the p-values associated with these tests.

From Panel A of Table 7, our proxy of the expected market risk premium is very close

to the average market excess return in short horizons up to 12 months. From the reported

p-values, the slope coefficient of regressing future realized returns onto the expected return is

not reliably different from 1/2 in the six-month horizon, and is not reliably different from one

in the 12-month horizon. However, the expected-return measure diverges from the average

realized returns over the longer horizons. Crucially, the null hypotheses of convergence at the

two- and three-year horizons are rejected at the five percent significance level. We believe

this evidence highlights the importance of time variation in return expectations and the

limitations involved in the use of ex-post return averaging. In essence, since the expected

market excess return varies over the long horizons, estimates of past expected returns cannot

serve as the convergence targets of the average realized returns.

Panel B of Table 7 reports a more drastic divergence between the expected returns and

the average realized returns of SMB. The slope coefficients of regressing the realized returns

on the expected returns are negative across all horizons. The null of convergence is rejected

in all cases. This suggests an explanation for why we find a significantly positive expected

size premium in the 1973–1998 period while studies using realized returns typically report

a weak or even negative size premium over comparable time periods. For example, Schwert

(2003) reports that the alpha of Dimensional Fund Advisors Small Company Portfolio is

0.20% per month with a standard error of 0.30% per month. Based on this evidence that the
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Table 7 : Regressing Realized Equity Factor Returns onto Their Constructed
Expected Returns

This table reports predictive regressions of realized equity factor returns including market excess return

(Panel A), SMB (Panel B), HML (Panel C), and WML (Panel D) onto their respective constructed expected

returns. Four different predictive horizons are considered: (i) six-month; (ii) 12-month; (iii) 24-month; and

(iv) 36-month horizons. We report and slope coefficients and R2’s. We also test the convergence of average

realized equity returns and the constructed expected returns as follows. The null hypothesis is that the slope

equals 1/2 for the regressions with the six-month horizon, the slope equals one for the 12-month horizon, two

for the 24-month horizon, and three for the 36-month horizon. We report the p-values in the parentheses for

these tests. And all the p-values are computed using standard errors estimated from GMM and adjusted for

heteroscedasticity and autocorrelations of up to 12 lags.

Panel A: MKT Panel B: SMB

6-month 12-month 24-month 36-month 6-month 12-month 24-month 36-month

slope 0.508 0.838 0.050 0.674 slope -0.024 -0.139 -0.312 -0.274
p (0.99) (0.80) (0.02) (0.01) p (0.00) (0.00) (0.00) (0.00)
R2 0.014 0.023 0.000 0.009 R2 0.000 0.007 0.023 0.016

Panel C: HML Panel D: WML

6-month 12-month 24-month 36-month 6-month 12-month 24-month 36-month

slope 0.100 0.169 0.498 0.406 slope 0.634 0.825 0.930 0.474
p (0.02) (0.00) (0.00) (0.00) p (0.50) (0.54) (0.00) (0.00)
R2 0.005 0.007 0.028 0.013 R2 0.096 0.097 0.104 0.039

size premium has weakened or disappeared after its discovery by Banz (1981), Schwert argues

that the size anomaly is “more apparent than real.” Our evidence, however, suggests that

the disappearance of the size effect could result from the high volatility of realized returns.

In particular, our estimate of the SMB alpha, 4.41% per annum or 0.37% per month, is well

within the one-standard-error bound estimated by Schwert.

4.3 The Cross-Section of Expected Equity Returns

We now examine the cross-sectional variation of expected equity returns. Using the Fama

and MacBeth (1973) methodology, we study whether the factor loadings on the market

beta, size, book-to-market, and momentum have explanatory power in the cross-section of

expected returns. Both covariances and characteristics are used in our asset pricing tests.
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Covariance-Based Tests

Our covariance-based tests are conducted in two steps. In the first step, for each individual

stock and month, we run the time series regression of the equity returns in the past 60

months (with at least 24 months of data available):

ri
t+1 = αit +βi

MKT,tMKTt+1 +βi
SMB,tSMBt+1 +βi

HML,tHMLt+1 +βi
WML,tWMLt+1 + εit+1. (9)

where ri
t+1 is the realized excess equity return of stock i from time t to t+1 over the one-

month Treasury bill rate, and MKT, SMB, HML, and WML are the excess return factors of

market, size, book-to-market, and momentum taken from Kenneth French’s website.

Following standard practice, we estimate the factor loadings in Eq. (9) using the realized

returns of ri
t+1 and the four factors. For comparison, we also estimate the loadings using

our constructed expected equity returns and the expected factor premia, all dated at time

t. The resultant loadings are denoted β̃MKT,t, β̃SMB,t, β̃HML,t, and β̃WML,t.

In the second step, we run cross-sectional regressions, month by month, of firm-specific,

expected equity returns on the factor loadings estimated from Eq.(9). The time series average

of the coefficients are regarded as the risk premia associated with the loadings. We use GMM

to adjust the standard errors of the coefficients for heteroscedasticity and autocorrelations of

up to 12 lags. The standard errors of the intercepts are then used to compute the t-statistics.

The null hypothesis in our cross-sectional tests is the CAPM. We also use size, book-

to-market, and prior returns to test for model misspecifications. In doing so, we implicitly

assume that our constructed risk premia are unbiased measures of the true risk premia. In

other words, the measurement errors in the risk premia have a mean of zero — if there were

no measurement errors, then under the null hypothesis the regression R2 should be one.

Panel A of Table 8 reports the cross-sectional regressions with the factor loadings. The

column denoted Model 1 shows that when the market beta estimated with the realized returns

is used alone, the slope coefficient is a positive 2.16% per annum and is highly significant.

Using the market beta estimated with the expected returns reduces the slope to 0.96%, but

it remains significant (Model 4). Thus, stocks with higher market betas will have higher
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expected excess return, consistent with standard asset pricing models.

From Model 2 in Panel A, when the loadings on SMB and HML are also included, all three

Fama-French factors have positive and significant slopes. In particular, the market beta is

priced even in the presence of SMB and HML loadings, but the risk premium associated with

the market beta shrinks to 0.89% per annum. From Model 3, the risk premia of the SMB and

HML loadings remain positive and significant when the momentum factor is controlled for.

But the risk premium of the market beta is insignificant, albeit still positive. From Models 5

and 6, using the loadings estimated with the expected returns yields stronger pricing results

for the market beta. Its slope is 2.41% in the three-factor regression, and is 2.58% in the

four-factor regression. Both are significant.

Panel A also shows that the HML loading is reliably priced. This result is robust to

different model specifications and to different estimation methods of the factor loadings.

Finally, the cross-sectional R2’s range from 1.3% to 38.8%. We note that although these

R2’s are lower than those reported by Fama and French (1993, 1996) on the portfolio-level

data, they are generally higher than those from similar cross-sectional regressions on the

firm-level data.6 The reason is that our constructed expected returns are less volatile than

both the realized equity returns and the realized growth rates.

Characteristic-Based Tests

In Panel B of Table 8, we retain the loading on the market factor, but replace the other

loadings with firm characteristics. That is, we use the logarithm of size, the book-to-market

ratio, and the prior equity return to replace their respective factor loadings. From Model

7, the market beta estimated with the realized returns is again significantly priced but the

magnitude of its premium is only 1.12% per annum. Size has a negative and highly significant

premium, -4.18%, and book-to-market has a positive and highly significant premium, 4.78%.

Using the market beta estimated with the expected returns reduces its premium to 0.53%,

which is only marginally significant. However, the pricing results on size and book-to-market

6For example, Chan et al. (2003, Table X) regress the growth rates of operating performance on an
exhaustive list of explanatory variables. Their highest R2 is 11.75%, and most R2s are below 5%.
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Table 8 : The Cross-Section of Expected Equity Risk Premium

Panel A of this table reports the Fama-MacBeth cross-sectional regressions of firm-level equity risk premium

on the market beta, SMB beta, HML beta, and WML beta, separately and jointly. We estimate these

betas using 60-month (or at least 24-month) rolling regressions of the realized equity excess returns onto

the realized excess returns of Fama-French three factors and WML. These betas estimated from realized

returns are denoted βMKT, βSMB, βHML, and βWML. We also estimate the betas from 60-month (or at

least 24-month) rolling regressions of the constructed expected excess returns onto the constructed expected

Fama-French three factors and WML. These betas are denoted β̃MKT, β̃SMB, β̃HML, and β̃WML. Panel B

reports the cross-sectional regressions of firm-level equity risk premium on the market beta (estimated both

from the realized and the constructed expected excess returns), size, book-to-market, and past 12-month

returns, separately and jointly. The t-statistics reported in parentheses are adjusted for heteroscedasticity

and autocorrelations of up to 12 lags, and are estimated with GMM. The point estimates of the intercepts

and slopes are in annualized percent.

Panel A: Covariance-Based Tests Panel B: Characteristic-Based Tests

Model 1 Model 2 Model 3 Model 7 Model 8

Intercept 5.675 5.449 5.828 Intercept 31.965 32.220
(10.17) (11.20) (10.65) (18.60) (18.86)

βMKT 2.159 0.894 0.714 βMKT 1.124 1.109
(5.45) (2.03) (1.49) (3.59) (4.03)

βSMB 4.806 5.080 log(ME) -4.177 -4.069
(13.59) (13.62) (-20.36) (-20.36)

βHML 2.820 3.500 BE/ME 4.781 4.388
(6.81) (8.25) (7.86) (7.87)

βWML -49.445 Past Returns -6.206
(-0.67) (-8.35)

Average R2 0.013 0.162 0.184 Average R2 0.350 0.370

Model 4 Model 5 Model 6 Model 9 Model 10

Intercept 8.192 5.787 5.208 Intercept 26.505 26.250
(14.80) (15.31) (16.38) (11.46) (11.54)

β̃MKT 0.958 2.409 2.579 β̃MKT 0.525 0.543
(2.72) (5.18) (5.33) (1.76) (1.88)

β̃SMB 0.910 1.207 log(ME) -3.153 -2.984
(1.61) (1.82) (-11.30) (-11.12)

β̃HML 4.386 4.750 BE/ME 5.737 5.276
(3.69) (4.00) (8.85) (8.69)

β̃WML -3.312 Past Returns -5.404
(-2.84) (-5.51)

Average R2 0.123 0.328 0.388 Average R2 0.353 0.370
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are the same. Finally, the last column of the table shows that adding post returns in the

regressions does not materially change the results from the three-factor regressions.

4.4 Robustness

Our benchmark results on expected returns are based on Eq. (8), which specifies ∂Sit

∂Bit
as a

linear function of the leverage ratio, Bit

Sit
. This specification is admittedly simple, but provides

a natural starting point. For robustness, we conduct tests that use alternative specifications

of ∂Sit

∂Bit
. In doing so, we revisit all of our results on equity pricing.

Merton (1974) implies that ∂S
∂B

= N(d1)
1−N(d1)

, where N(·) is the cumulative distribution

function of a normal variate, d1≡
log(F/B)+(r+ 1

2
σ2)T

σ
√

T
, and σ is the volatility of the firm’s asset

return. This model suggests that ∂Sit

∂Bit
should also be a function of firm volatility and the risk

free rate rt, in addition to the leverage ratio. We therefore use an alternative specification

of ∂Sit

∂Bit
as follows (with point estimates and their t-statistics reported):

∂Sit

∂Bit

= 23.08
(29.7)

+ 2.07
(19.06)

Bit

Sit

+ 12.56
(2.24)

σit − 1.39
(15.27)

rt + εit, (10)

We use equity volatility instead of firm volatility (as the leverage ratio is already included).

As a less model-dependent, but more inclusive specification, we also model ∂Sit

∂Bit
by

augmenting Eq. (10) with the log of market value, log(MEit), the book-to-market ratio,

BEit

MEit
, and the past 12-month equity return, r12

it :

∂Sit

∂Bit

= −11.80
(−6.01)

− 0.15
(1.04)

Bit

Sit

+ 47.35
(7.96)

σit − 0.62
(6.38)

rt

+ 3.99
(20.49)

log(MEit) − 6.26
(10.56)

BEit

MEit

+ 5.55
(6.18)

r12
it + εit, (11)

We have also experimented with the inclusion of the yield spread in the right-hand side

of Eq. (11). The reason is that ∂Sit

∂Bit
is an endogenous variable, potentially depending on

financing conditions captured by the yield spread. But the estimated slope of the yield

spread turned out small and insignificant. Accordingly, the pricing results are fairly similar

to those returned from Eq. (11) (available from the authors).7

7We thank our referee for suggesting various robustness checks.
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Table 9 reports the properties of the common equity factors that are constructed under

the alternative proxies for ∂Sit

∂Bit
from Eqs. (10) and (11); see Panels A and B, respectively.

The results are largely consistent with those of Table 5. We continue to find significantly

positive premia for the market and value factors. The size premium is significantly positive

with specification (10), but is insignificant with (11), albeit still positive.

Table 10 reports the cross correlations of the expected equity factors with the cyclical

component of the real industrial production index. Panels A and B report the results

with ∂Sit

∂Bit
given by Eqs. (10) and (11), respectively. From Panel A, the results are largely

unchanged from Table 6 as the expected market, size, and value premia are all countercyclical

and the expected momentum return is procyclical. And from Panel B, when ∂Sit

∂Bit
is modelled

as Eq. (11), the expected market and value premia continue to exhibit strong countercyclical

movements. However, the expected size and momentum returns are both acyclical. One

possible interpretation is that the additional regressors in Eq. (11) may have introduced

extra noise into Eq. (10).8

Table 11 reports the cross-sectional regressions of expected equity returns on factor

loadings and firm characteristics using the two alternative specifications of ∂Sit

∂Bit
. The results

are very similar to those in Table 8. Notice that the pricing results of the market beta are

slightly stronger than those reported in Table 8. In particular, the slopes of the market betas

are positive and significant across all specifications. Further, the risk premia of the HML

loadings and the slopes of book-to-market are all significant and positive.

5 Summary and Interpretation

We construct measures of expected returns using bond yield spreads. The basic idea is

simple: because both equity and bond are contingent claims written on the same productive

assets (e.g., Merton (1974)), they must share the same systematic risk factors. We then use

the ex-ante returns to study the cross-section of expected equity returns. Differently from

the standard approach, our asset pricing tests do not assume that average realized returns

8Those additional regressors are not directly related to the partial derivative of the equity value with
respect to the bond value, as predicted by Merton (1974).
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Table 9 : Expected Returns of Common Equity Factors: Robustness Checks

This table reports summary statistics of expected returns of common equity factors, including market excess

return (MKT), SMB, HML, and WML (the momentum factor). We report mean, standard deviation (std),

min, max, and autocorrelations of orders 1 (ρ1), 2 (ρ2), 6 (ρ6), and 12 (ρ12), the results of market regressions

including the intercepts (α) and the slopes (β) as well as their t-statistics and the correlation matrix for these

four factors. The numbers of mean, std, min, max, and α are in annualized percent. All cross-correlations

are significant at the 1-percent test level or lower. All the t-statistics are adjusted for heteroscedasticity and

autocorrelations of up to 12 lags, and are estimated from GMM. Expected returns are constructed using two

alternative specifications of ∂Sit

∂Bit

.

Panel A: ∂Sit

∂Bit

= α0 + α1
Bit

Sit

+ α2σit + α3rt + εit

mean std min max ρ1 ρ2 ρ6 ρ12

MKT 4.369 2.520 0.535 12.348 0.876 0.794 0.490 0.329
SMB 4.381 3.551 -6.376 20.021 0.816 0.649 0.328 -0.052
HML 7.764 5.414 -9.283 22.943 0.895 0.830 0.590 0.439
WML -1.472 5.131 -19.746 22.007 0.820 0.701 0.347 0.146

Cross-Correlations Market Regressions

MKT SMB HML WML α tα β tβ

MKT 1 0.354 0.558 -0.308 na na na na
SMB 1 -0.110 -0.263 2.263 2.600 0.483 2.062
HML 1 -0.164 2.671 2.720 1.163 5.139
WML 1 1.268 1.192 -0.627 -2.138

Panel B: ∂Sit

∂Bit

= α0 + α1
Bit

Sit

+ α2σit + α3rt + α4 log(MEit) + α5
BEit

MEit

+ α6r
12
it + εit

mean std min max ρ1 ρ2 ρ6 ρ12

MKT 5.117 3.285 1.731 15.557 0.940 0.896 0.693 0.503
SMB 0.101 2.598 -8.123 8.629 0.762 0.603 0.332 0.121
HML 7.650 6.089 -2.556 26.269 0.903 0.853 0.740 0.560
WML -0.723 4.964 -18.849 12.004 0.771 0.705 0.298 0.116

Cross-Correlations Market Regressions

MKT SMB HML WML α tα β tβ

MKT 1 -0.499 0.689 -0.346 na na na na
SMB 1 -0.475 0.077 2.179 4.393 -0.389 -4.679
HML 1 -0.243 0.926 0.950 1.259 7.856
WML 1 1.949 2.168 -0.522 -2.575
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Table 10 : Cross Correlations with Cyclical Component of Industrial Production:
Robustness Checks

This table reports the cross correlations of expected returns of equity factors with the cyclical component of

the industrial production index, corr(rt, yt+k), for different leads and lags, k. The cyclical component of the

real industrial production index (obtained from FRED) is estimated by passing the raw series through the

Hodrick and Prescott (1997) filter. Expected returns are constructed using two alternative specifications of
∂Sit

∂Bit

. p-values of the cross-correlations are reported in parentheses.

Panel A: ∂Sit

∂Bit

= α0 + α1
Bit

Sit

+ α2σit + α3rt + εit

k -24 -12 -6 -3 -2 -1 0 1 2 3 6 12 24

MKT 0.132 0.062 -0.091 -0.224 -0.299 -0.361 -0.372 -0.372 -0.344 -0.300 -0.139 0.135 0.234
(0.03) (0.31) (0.13) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.03) (0.00)

SMB -0.117 -0.003 -0.215 -0.341 -0.362 -0.373 -0.392 -0.403 -0.380 -0.336 -0.161 0.236 0.270
(0.06) (0.97) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00)

HML 0.072 -0.032 -0.083 -0.249 -0.300 -0.319 -0.322 -0.307 -0.274 -0.234 -0.109 0.053 0.212
(0.25) (0.61) (0.18) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.08) (0.41) (0.00)

WML -0.348 -0.200 -0.071 0.120 0.201 0.255 0.259 0.269 0.251 0.233 0.170 0.001 -0.021
(0.00) (0.00) (0.24) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.98) (0.73)

Panel B: ∂Sit

∂Bit

= α0 + α1
Bit

Sit

+ α2σit + α3rt + α4 log(MEit) + α5
BEit

MEit

+ α6r
12
it + εit

k -24 -12 -6 -3 -2 -1 0 1 2 3 6 12 24

MKT 0.310 0.116 -0.080 -0.181 -0.229 -0.270 -0.283 -0.288 -0.274 -0.245 -0.144 0.009 0.230
(0.00) (0.06) (0.19) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.89) (0.00)

SMB -0.212 -0.094 0.055 0.068 0.093 0.110 0.095 0.064 0.031 0.010 -0.029 0.011 0.022
(0.00) (0.13) (0.38) (0.28) (0.14) (0.08) (0.13) (0.31) (0.62) (0.87) (0.65) (0.87) (0.74)

HML 0.168 0.018 -0.171 -0.214 -0.234 -0.240 -0.239 -0.237 -0.236 -0.232 -0.181 0.007 0.120
(0.01) (0.77) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.91) (0.07)

WML -0.354 0.000 -0.129 -0.046 0.003 0.007 0.011 0.019 0.005 0.002 0.019 0.098 0.025
(0.00) (1.00) (0.03) (0.44) (0.97) (0.91) (0.86) (0.75) (0.93) (0.98) (0.75) (0.11) (0.69)

are an unbiased proxy for expected returns. Our new approach yields several fresh insights

regarding the determinants of the cross-section of returns.

First and foremost, we document that the market beta plays a much more important

role in the cross-section of expected returns than previously reported. The market beta is

significantly priced in most of our cross-sectional regressions even after we control for popular

characteristics such as size, book-to-market, and prior returns.

Our beta-pricing result contrasts with Fama and French (1992), who show that the market

beta does not have any explanatory power with and without the size and book-to-market

factors. Instead, our finding lends support to Kothari et al. (1995). Kothari et al. estimate
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market betas from regressing annual portfolio returns onto the annual equally weighted

market returns, finding economically and statistically significant compensation (about 6–9%

per annum) for beta risk. Our result is also consistent with Brav et al. (2003). Those

authors use analyst forecasts to construct expected returns and also find a positive and

robust relation between expected returns and market beta.

Second, we find that the ex-ante market, SMB, and HML returns are significantly positive

and generally countercyclical. This evidence lends support to Fama and French (1993, 1995,

1996), who argue that size and book-to-market factors are ex-ante priced risk factors. In

this regard, our result differs from Brav et al. (2003), who find that high book-to-market

firms are not expected to earn higher returns than low book-to-market firms (a finding that

is inconsistent with the notion that book-to-market is a risk factor).

Our evidence on the countercyclicality of the expected value premium lends support to

studies emphasizing the effect of conditional information on the value premium. Ferson and

Harvey (1999) show that loadings on aggregate predictive variables provide significant cross-

sectional explanatory power for stock returns even after controlling for the Fama-French fac-

tors. Lettau and Ludvigson (2001) show that value stocks are more correlated with consump-

tion growth than growth stocks in bad times when risk or risk premium is high.9 A theoretical

explanation of the countercyclical expected value premium is provided by Zhang (2005). He

argues that it is more costly for firms to reduce than to expand capital. In bad times, firms

want to scale down, especially value firms that are less productive than growth firms. Because

scaling down is difficult, value firms are more adversely affected by economic downturns.

Finally, we find that there are no ex-ante positive momentum profits. More exactly,

momentum is priced ex-ante, but with a negative sign. Brav et al. (2003) report a similar

finding using alternative ex-ante return measures. This evidence is consistent with several

interpretations. For example, investors may expect stocks with high prior returns to be

less risky and to have lower returns in the future than stocks with low prior returns. Then

9Subsequent studies that use different econometric techniques but reach similar conclusion include Ang
and Chen (2004), Jostova and Philipov (2004), Petkova and Zhang (2004), and Anderson et al. (2005). But
Lewellen and Nagel (2004) highlight that the covariance between the value beta and the expected market
risk premium is too small to explain the value anomaly within the conditional CAPM.
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positive momentum profits in ex-post returns come as a surprise to investors, and hence do

not show up in ex-ante returns. This interpretation suggests that momentum profits result

from systematic mispricing due to, e.g., conservatism (Barberis et al. (1998)), self-attributive

overconfidence (Daniel et al. (1998)), and slow information diffusion (Hong and Stein (1999)).

Alternatively, the ex-ante distribution of stock returns perceived by investors may deviate

from the ex-post distribution of stock returns (e.g., Brav and Heaton (2002) and Lewellen

and Shanken (2002)). According to this argument, investors must learn about economic fun-

damentals because of incomplete information. As a result, the ex-ante return distribution

perceived by investors often deviates from the ex-post return distribution. Shanken (2004)

highlights that this deviation can affect the interpretation of asset pricing tests. In particular,

ex-post returns can appear predictable to econometricians, but investors might neither per-

ceive nor exploit this predictability ex-ante. This interpretation does not rely on mispricing.

Finally, momentum profits are likely an empirical by-product of using average realized

returns as expected returns. In other words, momentum might arise from the use of

average realized returns as a poor proxy for expected returns. Our evidence, coupled

with the fact that implementing momentum strategies requires frequent trading in securities

with disproportionately high transaction costs (e.g., Lesmond et al. (2004)), suggests that

momentum may be an illusion of profit opportunity when, in fact, none exists.

While we do not claim that our ex-ante return measures should dominate any other

measures, we believe that reexamining basic inferences in empirical finance with alternative

proxies for investor expectations is a valid, relevant experiment. Because our proposed mea-

sure captures information that — both on theoretical and empirical grounds — is imperfectly

correlated with ex-post average returns, we believe that experiments like ours can provide

for fresh insights in to the economic determinants of the cross-section of expected returns.
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Table 11 : The Cross-Section of Expected Equity Risk Premium: Robustness Checks

This table reports the Fama-MacBeth cross-sectional regressions of expected excess returns on the factor loadings as well as firm characteristics such

as size, book-to-market, and past returns. We estimate factor loadings using 60-month (or at least 24-month) rolling regressions of equity excess

returns onto the Fama-French three factors and the WML excess returns. In the rolling regressions, we use both realized returns (with betas denoted

βMKT, βSMB, βHML, and βWML) and constructed expected returns (with betas denoted β̃MKT, β̃SMB, β̃HML, and β̃WML). The t-statistics reported in

parentheses are adjusted for autocorrelations of up to 12 lags, and are estimated with GMM. All the regression coefficients are in annualized percent.

Expected returns are constructed using two alternative specifications of ∂Sit

∂Bit

.

Panel A: ∂Sit

∂Bit

= α0 + α1
Bit

Sit

+ α2σit + α3rt + εit Panel B: ∂Sit

∂Bit

= α0 + α1
Bit

Sit

+ α2σit + α3rt

+α4 log(MEit) + α5
BEit

MEit

+ α6r
12
it + εit

Covariance-Based Tests Characteristic-Based Tests Covariance-Based Tests Characteristic-Based Tests

Model 1 Model 2 Model 3 Model 7 Model 8 Model 1 Model 2 Model 3 Model 7 Model 8

Intercept 2.923 2.703 2.934 Intercept 14.019 12.552 Intercept 3.259 3.597 3.784 Intercept 9.959 8.329
(5.35) (4.95) (4.80) (6.49) (5.71) (6.31) (6.60) (6.11) (5.33) (4.55)

βMKT 3.088 2.048 1.624 βMKT 2.018 2.082 βMKT 2.876 1.633 1.013 βMKT 1.835 1.920
(5.18) (4.84) (3.78) (4.58) (4.46) (4.30) (3.47) (2.21) (3.76) (3.88)

βSMB 3.038 3.207 log(ME) -1.698 -1.460 βSMB 2.335 2.486 log(ME) -1.223 -0.960
(11.76) (11.68) (-7.80) (-6.85) (9.10) (8.96) (-6.34) (-5.05)

βHML 1.590 1.659 BE/ME 4.496 4.605 βHML 1.574 1.492 BE/ME 5.728 5.961
(3.90) (3.56) (4.43) (4.29) (4.21) (3.52) (5.34) (5.84)

βWML 15.210 Past Returns -0.130 βWML -43.673 Past Returns 0.790
(0.54) (-0.21) (-0.64) (0.71)

Average R2 0.031 0.186 0.218 Average R2 0.398 0.415 Average R2 0.022 0.112 0.135 Average R2 0.192 0.222

Intercept 7.888 5.948 5.335 Intercept 20.491 20.256 Intercept 7.055 5.061 4.679 Intercept 3.703 1.975
(20.82) (20.94) (21.92) (6.93) (6.56) (18.36) (22.45) (20.63) (2.02) (0.79)

β̃MKT 1.022 2.133 2.311 β̃MKT 0.676 0.688 β̃MKT 1.082 2.290 2.442 β̃MKT 0.903 0.939
(2.76) (4.41) (4.49) (2.48) (2.64) (3.22) (4.77) (4.83) (2.83) (2.96)

β̃SMB 1.316 1.482 log(ME) -2.305 -2.187 β̃SMB 0.424 0.468 log(ME) -0.240 -0.084
(3.18) (3.27) (-5.64) (-5.31) (1.12) (1.14) (-1.04) (-0.21)

β̃HML 3.664 4.280 BE/ME 7.436 7.057 β̃HML 5.249 5.616 BE/ME 7.080 7.149
(3.25) (3.68) (10.56) (10.19) (5.57) (5.69) (8.44) (8.59)

β̃WML -5.007 Past Returns -3.413 β̃WML -2.321 Past Returns 0.726
(-5.47) (-3.97) (-2.31) (0.74)

Average R2 0.075 0.240 0.295 Average R2 0.351 0.365 Average R2 0.074 0.239 0.274 Average R2 0.185 0.204
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A Proofs

Proof of Proposition 1: Let the uncertainty be represented by a N -dimensional Brownian
motion Wt = (w1t, w2t, . . . , wNt)

′. There are M firms, F1, F2, . . . , FM whose asset values obey
the following well-defined stochastic processes:

dFit

Fit

= µit dt + σ′
it dWt (A1)

where i = 1, . . . ,M and σit ≡ (σi
1t, σ

i
2t, . . . , σ

i
Nt)

′
. Following Merton (1974), we assume that

all firms are levered with predetermined debt. For firm i, both the equity price Sit and debt
value Bit will depend on the underlying asset value Fit.

Assume that the state price density process, Λt, is given by:

dΛt = µΛtdt + σ′
Λt dWt. (A2)

It follows that firm i’s expected excess return on its asset is given by:

Ri
F t − rt = −Covt

(
dFit

Fit

,
dΛt

Λt

)
. (A3)

where Ri
F t ≡Et

[
dFit

Fit

]
/dt is the expected return on the assets, Covt

(
dFit

Fit
, dΛt

Λt

)
denotes the

instantaneous conditional covariance (normalized by dt), and rt≡−µΛt/Λt is the real interest
rate.

As equity Sit and debt Bit are contingent claims written on the same underlying
productive asset, an application of Itô’s lemma yields the risk premia for these two securities:

Ri
St − rt = −

(
∂Sit

∂Fit

)(
Fit

Sit

)
Covt

(
dFit

Fit

,
dΛt

Λt

)
(A4)

Ri
Bt − rt = −

(
∂Bit

∂Fit

)(
Fit

Bit

)
Covt

(
dFit

Fit

,
dΛt

Λt

)
(A5)

Both equity risk and debt risk premia are determined by the systematic component of the

underlying asset, Covt

(
dFit

Fit
, dΛt

Λt

)
. Equation (1) in Proposition 1 follows by taking the ratio

of (A4) and (A5).

Proof of Proposition 2: Similar to Jarrow (1978), we start with the bond yield equation:

Bit =
n∑

j=1

Cie
−YitTj + Kie

−YitTn , (A6)

where Ci is the coupon payment of the bond, n is the number of remaining coupons, Yit

is the bond’s yield to maturity, Tj, j = 1, . . . , n are length of time period for each coupon
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payment, and Ki is the face value of debt.

As the bond yield, Yit, is the only time-varying variable on the right-hand side of (A6),
by Itô’s Lemma we can write bond risk premium as a function of the bond yield and other
observable bond characteristics:

Et [dBit]

Bit

= Et

[
∂Bit

∂t

dt

Bit

+
∂Bit

∂Yit

dYit

Bit

+
1

2

∂2Bit

∂Y 2
it

1

Bit

(dYit)
2

]
(A7)

where

∂Bit

∂t
= YitBit (A8)

∂Bit

∂Yit

= −HitBit with Hit =
n∑

j=1

TjCie
−YitTj

Bit

+
TnKie

−YitTn

Bit

(A9)

∂2Bit

∂Y 2
it

= GitDit with Git ≡

n∑

j=1

T 2
j Cie

−YitTj

Bit

+
T 2

nKie
−YitTn

Bit

(A10)

and Hit and Git are modified duration and convexity, respectively. (A7) thus becomes:

Ri
Bt − rt = Et

[
dBit

Bit

]
/dt − rt = (Yit − rt) − Hit

Et [dYit]

dt
+

1

2
Git

(dYit)
2

dt
(A11)

Proof of Proposition 3: The proposition follows by combining (2) with:

Et[dYit] = πitEt[dY −
it ] + (1 − πit)Et[dY +

it ]

(dYit)
2 = πit(dY −

it )2 + (1 − πit)(dY +
it )2
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