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1 Introduction

A large body of empirical literature in financial economics has documented relations of future

stock returns with characteristics and corporate events, relations that are called anomalies

because they are hard to explain using current asset pricing models (e.g., Fama (1998) and

Schwert (2003)). Many believe that these anomalies are strong evidence against efficient

markets and rational expectations (e.g., Shleifer (2000) and Barberis and Thaler (2003)).

I construct a neoclassical, Q-theoretical foundation for time-varying expected returns in

connection with corporate policies. If the operating-profit and the adjustment-cost functions

have the same degree of homogeneity, stock return equals investment return, which is directly

tied with characteristics and corporate policies via the first principles of optimal investment.

By signing the partial derivatives of investment returns, I demonstrate analytically that

the Q-theory is potentially consistent with many anomalies often interpreted as over- and

underreaction in inefficient markets (e.g., Barberis, Shleifer, and Vishny (1998), Daniel, Hir-

shleifer, and Subrahmanyam (1998), and Hong and Stein (1999)). These anomalies include:

1. The investment-disinvestment anomaly: The investment-to-asset ratio is negatively

correlated, but the disinvestment-to-asset ratio is positively correlated with future

returns. This anomaly is stronger in firms with high operating income-to-capital.

2. The value anomaly: Average returns correlate negatively with market-to-book, and

the magnitude of this correlation decreases with the market value.

3. The payout anomaly: When firms tender their stocks or announce share repurchases or

dividend initiations, they earn positive long-term abnormal returns, and the magnitude

of the abnormal returns is stronger in value firms than in growth firms.
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4. The seasoned-equity-offering (SEO) anomaly: Firms conducting SEOs earn lower

average returns in the next three to five years than nonissuing firms, and the magnitude

of this underperformance is stronger in small firms than in big firms.

5. The expected-profitability anomaly: Expected profitability correlates positively with

expected returns, and this correlation decreases with the market value.

6. The profitability anomaly: Given market-to-cash flows or market-to-book, more

profitable firms earn higher average returns. This relation is stronger in small firms.

7. The post-earnings-announcement drift (earnings momentum): Firms with high

earnings surprise earn higher average returns than firms with low earnings surprise,

and this anomaly is stronger in small firms.

In a nutshell, I demonstrate that, much like aggregate expected returns that vary

over business cycles (e.g., Campbell and Cochrane (1999)), expected returns in the cross

section vary with firm characteristics, corporate policies, and events. This is achieved in a

neoclassical model with rational expectations in the spirit of Kydland and Prescott (1982).

Intuitively, investment return from time t to t+1 equals the ratio of the marginal profit

of investment at t+1 divided by the marginal cost of investment at t. This equation suggests

two economic mechanisms that are potential driving forces of these anomalies.

The first four anomalies can be explained by optimal investment. The Q-theory is a theory

of investment demand — the downward-sloping investment-demand function derived from

the first principles of optimal investment implies a negative relation between cost of capital

(i.e., expected return) and investment demand. Basically, investment-to-asset increases with

net present value of capital (e.g., Brealey and Myers (2003, Chapter 2)), and the net present
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value decreases with cost of capital. Controlling for expected future cash flows, high cost of

capital implies low net present value, which in turn implies low investment demand. Low

cost of capital implies high net present value, which in turn implies high investment demand.

Figure 1 plots the downward-sloping investment-demand function. The negative slope of

this function suggests that expected return decreases with positive investment but increases

with the magnitude of disinvestment, i.e., the investment-disinvestment anomaly. The figure

also shows the distribution of firms with related characteristics other than investment-to-

asset, It

Kt
, across the investment-demand curve. Similar to high investment-to-asset firms,

growth firms, issuing firms, and low payout firms are distributed on the right end of the curve

associated with low expected returns, whereas similar to low investment-to-asset firms, value

firms, nonissuing firms, and high payout firms are distributed on the left end of the curve

associated with high expected returns.

Figure 1. The Downward-Sloping Investment-Demand Function
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Intuitively, investment rate is an increasing function of marginal q, i.e., the present value

of future marginal profits of capital, which is in turn proportional to market-to-book. The

negative slope of the investment-demand function then implies a negative relation between

expected return and market-to-book. The payout anomaly follows because firms’ cash-flow

constraint (that equates the sources with the uses of funds) implies a negative relation

between the payout and investment rates. And the SEO anomaly follows because the cash-

flow constraint implies a positive relation between the equity-financing and investment rates.

With decreasing returns to scale or strictly convex adjustment costs, the relation between

expected return and market-to-book is convex — in the example of quadratic adjustment

costs, the investment-demand function is also convex. This convexity manifests itself, by the

chain rule of partial derivatives, as the stronger value anomaly in small firms, the stronger

SEO anomaly in small firms, and the stronger payout anomaly in value firms.

In contrast, the three earnings-related anomalies can be explained by the marginal

product of capital (MPK) at time t+1 in the numerator of investment return through the

MPK-mechanism. Specifically, MPK is proportional to profitability, a property that implies a

positive relation between expected profitability and expected return. This positive relation in

turn explains the profitability anomaly because profitability is a strong, positive predictor of

future profitability. And because earnings surprise and profitability are both scaled earnings,

they should contain similar information on future profitability. If so, earnings surprise should

correlate positively with expected returns, as in the post-earnings-announcement drift.

Intriguingly, the Q-explanation of anomalies does not involve risk, at least directly, even

though the model is entirely rational. The reason is that I derive expected returns from

firms’ optimality conditions, instead of consumers’. As a result, the stochastic discount fac-
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tor (SDF) and its covariances with returns do not directly enter the expected-return determi-

nation. Characteristics are sufficient statistics for expected returns! Therefore, the debate

on covariances versus characteristics in efficient markets in empirical finance (e.g., Daniel

and Titman (1997) and Davis, Fama, and French (2000)) is not a well-defined question.

I also propose the Q-representation of expected returns as a new empirical asset pricing

model. Although internally consistent with the beta- and the SDF-framework in theory, the

Q-representation is likely to have practical advantages over these two standard models. The

reason is that estimated costs of equity from beta-pricing models are extremely imprecise

even at the industry level (e.g., Fama and French (1997)). But the Q-representation avoids

the difficult tasks of estimating covariances and of identifying the right form of the SDF.

The insight that stock and investment returns are equal first appears in Cochrane

(1991). Cochrane (1991, 1996) is also among the first to study asset prices from firms’

perspective. Restoy and Rockinger (1994) formally establish this equivalence under linear

homogeneity. An early version of Gomes, Yaron, and Zhang (2004) extends the result

under debt financing. I extend the result under homogeneity of the same degree for the

operating-profit and adjustment-cost functions. I differ further from these papers that focus

on aggregate investment returns, because I aim to understand anomalies in the cross section.

The Q-theory is originated by Tobin (1969). Hayashi (1982) establishes the equivalence

between marginal q and average Q under linear homogeneity. Abel and Eberly (1994) extend

this result into a stochastic setting with partial irreversibility and fixed costs proportional to

capital. They also show that marginal q is proportional to average Q when the operating-

profits and the adjustment-cost functions are homogeneous of the same degree, a result I use

extensively. The Q-theory has been used mostly to explain the behavior of investment. But
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I offer the prospects of its large-scale applications to the cross section of returns.

My work shares its long-term goal with the growing literature, pioneered by Berk, Green,

and Naik (1999), the literature that aims to understand the real determinants of the cross

section of returns.1 I contribute by expanding the scope of explained anomalies and by

unifying many anomalies under a single, analytical framework. I also propose a new empirical

asset pricing model with which many ideas of this highly theoretical literature can be tested.

Comparisons with specific papers are presented throughout Section 3.

The rest of the paper is organized as follows. Section 2 sets up the model and establishes

the equivalence between stock and investment returns. Section 3 uses this equivalence to

explain anomalies, Section 4 discusses empirical implications of my theoretical results, and

Section 5 concludes. Appendix A briefly reviews the anomalous evidence that motivates this

paper, and Appendix B contains all the proofs not in the main text.

2 The Model of the Firm

This section presents the basic elements of the Q-theory. My exposition is heavily influenced

by Abel and Eberly (1994) and an early version of Gomes, Yaron, and Zhang (2004). Section

2.1 describes the basic environment. Section 2.2 characterizes the behavior of firm value-

maximization, and establishes the equivalence between stock and investment returns.

2.1 The Environment

Consider a firm that uses capital and a vector of costlessly adjustable inputs, such as labor,

to produce a perishable output. The firm chooses the levels of these inputs each period to

1Other important examples include Berk (1995), Johnson (2002), Berk, Green, and Naik (2004), Carlson,
Fisher, and Giammarino (2004a, 2004b), Chen (2004), Cooper (2004), Gomes, Kogan, and Zhang (2003),
Gomes, Yaron, and Zhang (2004), Gourio (2004), Kogan (2004), Menzly, Santos, and Veronesi (2004), Pastor
and Veronesi (2004), Whited and Wu (2004), and Zhang (2005).
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maximize its operating profit, defined as its revenue minus the expenditures on these inputs.

Taking the operating profit as given, the firm then chooses optimal investment to maximize

its market value. Capital investment involves costs of adjustment.

2.1.1 The Operating-Profit Function

Let Πt =Π(Kt, Xt) denote the maximized operating profit at time t, where Kt is the capital

stock at time t and Xt is a vector of random variables representing exogenous shocks to

the operating profit, such as aggregate and firm-specific shocks to production technology,

shocks to the prices of costlessly adjusted inputs, or industry- and firm-specific shocks to the

demand of the output produced by the firm.

Assumption 1 The operating profit function is homogeneous of degree α with α≤1:

Π(Kt, Xt) = Λ(Xt)K
α
t where Λ(Xt) > 0 (1)

If α = 1, the operating-profit function displays linear homogeneity in Kt. This applies to a

competitive firm that is a price-taker in output and factor markets.2 When α< 1, the firm

has market power (e.g., Cooper and Ejarque (2001)).

From Assumption 1,

αΠ(Kt, Xt) = Π1(Kt, Xt)Kt (2)

2This can be seen from the static maximization problem of the firm that chooses the vector of costlessly
adjustable inputs. Let Lt denote this vector and F (Kt,Lt, Xt) denote the revenue function that is linearly
homogenous in Kt and Lt. If the firm is a price-taker, its operating profit can be written as:

Π(Kt, Xt) = max
Lt

{F (Kt,Lt, Xt) − W
′
tLt} = max

Lt/Kt

{[F (1,Lt/Kt, Xt) − W
′
t(Lt/Kt)] Kt} = Λ(Xt)Kt

where Wt is the vector of market prices of the costlessly adjustable inputs, the second equality follows
from the linear homogeneity of F (K,L, X) in K and L, and the third equality follows by defining
Λ(Xt) ≡ maxLt/Kt

{[F (1,Lt/Kt, Xt) − W
′
t(Lt/Kt)]}. The first-order condition with respect to Lt says

that F2(Kt,Lt, Xt) = Wt. The linear homogeneity of F (Kt,Lt, Xt) in Kt and Lt then implies that
F (1,Lt/Kt, Xt)−W

′
t(Lt/Kt)=F1(1,Lt/Kt, Xt) which is clearly positive. Therefore, Π1(Kt, Xt)=Λ(Xt)>0.

If F3(Kt,Lt, Xt) is positive, then Λ′(Xt)>0.
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Marginal product of capital is strictly positive, Π1(Kt, Xt)>0, where subscript i denotes the

first-order partial derivative with respect to the ith argument. Multiple subscripts denote

high-order partial derivatives. Π1(Kt, Xt) decreases with capital, reflecting decreasing return

to scale, Π11(Kt, Xt)≤0, where the inequality is strict when α<1. Finally, Π111(Kt, Xt)≥0.

More important, equation (2) implies that marginal product of capital, Π1, is also

proportional to the average product of capital, Π(Kt,Xt)
Kt

. This ratio corresponds roughly

to accounting profitability (earnings-to-book) plus depreciation rate. The operating profit

in the model corresponds approximately to earnings plus capital depreciation in the data.

This assumes that accruals are only used to mitigate the accounting timing and matching

problems that deviate operating cash flow from earnings in practice (e.g., Dechow (1994)).

These accounting problems are abstracted from the model.

2.1.2 The Augmented Adjustment-Cost Function

Capital accumulates according to:

Kt+1 = It + (1 − δ)Kt (3)

Thus end-of-period capital equals real investment plus beginning-of-period capital net of

depreciation. Capital depreciates at a fixed proportional rate of δ.

When the firm invests, it incurs costs because of: (i) purchase/sale costs, (ii) convex costs

of physical adjustment, and (iii) weakly convex costs of raising capital when the sum of the

purchase/sale and physical adjustment costs is higher than the operating profit.

(i) Purchase/sales costs are incurred when the firm buys or sells uninstalled capital.

When the firm disinvests, this cost is negative. For analytical convenience, I assume that the

relative purchase price and relative sale price of capital are both equal to unity. This differs
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from Abel and Eberly (1994), who assume that purchase price is higher than sale price to

capture costly reversibility because of, for example, firm-specificity of capital and adverse

selection in the market for used capital. In this case, the purchase/sale cost function is not

differentiable at It =0. My assumption retains this differentiability. Costly reversibility can

still be captured by letting the convex costs of disinvestment be uniformly higher than those

of investment with equal magnitudes (e.g., Hall (2001) and Zhang (2004)).

(ii) Convex costs of physical adjustment are nonnegative costs that are zero when

It = 0. These costs are continuous, strictly convex in It, non-increasing in capital Kt, and

differentiable with respect to It and Kt everywhere. The second-order partial derivative of

the convex-cost function with respect to Kt is nonnegative. It is straightforward to verify

that the standard quadratic, convex adjustment-cost function satisfies all these assumptions.

(iii) Costs of raising capital are incurred when the financial deficit, denoted Ot, is strictly

positive. I define Ot as the higher value between zero and the sum of the purchase/sale costs

and convex costs of adjustment minus the operating profit. I assume that the financing-cost

function is continuous, weakly convex in Ot (and hence in It) and decreasing in Kt. Its first-

order partial derivative with respect to Ot (and hence with respect to It) is zero when Ot =0.

The financing-cost function is differentiable with respect to Ot (and hence with respect to

It) and Kt everywhere. And the second-order partial derivative of the function with respect

to Kt is nonnegative. Previous studies of financing costs (e.g., Gomes (2001) and Hennessy

and Whited (2004)) assume that the costs are proportional to the amount of funds raised.

And quadratic costs can be defined as b
2

(
Ot

Kt

)2

Kt with b>0. Both the proportional and the

quadratic financing-cost functions satisfy the aforementioned assumptions.

The flip side of financial deficit is free cash flow, denoted Ct. I define Ct as the higher
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value between zero and the operating profit minus the sum of the purchase/sale costs and

the convex costs of adjustment. I assume that whenever Ct is strictly positive, the firm pays

it back to its shareholders either in the form of dividends or stock repurchases. The model

is silent on the behavior of cash hoarding or on the form of payout. Further, I assume that

the firm does not pay any extra costs when paying cash out of the firm. Therefore, the firm

either raises capital or distributes payout, but never at the same time.

The total cost of investment represents the sum of purchase/sale costs, convex costs of

physical adjustment, and costs of raising capital. I denote the total cost as Φ(It, Kt), and

refer to it as the augmented adjustment-cost function. To summarize,

Assumption 2 The augmented adjustment-cost function Φ(It, Kt) satisfies:

Φ2(It, Kt) ≤ 0; Φ22(It, Kt) ≥ 0; and Φ11(It, Kt) > 0;

The most important technical assumption is stated explicitly below:

Assumption 3 The augmented adjustment-cost function is homogeneous of the same

degree, α, in It and Kt, as the operating-profit function is in Kt. In other words,

Φ(It, Kt) = G

(
It

Kt

)
Kα

t (4)

Coupled with Assumption 2, Assumption 3 implies that G′′(·)>0 and that

αΦ(It, Kt) = Φ1(It, Kt)It + Φ2(It, Kt)Kt (5)

Assumption 3 is necessary in establishing the equivalence between stock and investment

returns (see the proof of Proposition 2 in Appendix B). But how restrictive is Assumption

3? Abel and Eberly (1994) discuss its content for the case of linear homogeneity. I follow
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their exposition except for the financing-cost function. The linear homogeneity of Φ(It, Kt)

means that each of its three components is linearly homogenous. (i) A doubling of It doubles

the purchase/sale costs that are linear in It, and are independent of Kt. (ii) The investment

literature typically assumes that physical adjustment costs are linearly homogenous (e.g.,

Hayashi (1982), Abel and Blanchard (1983), and Abel and Eberly (1994)). And (iii) the

proportional and quadratic financing-cost functions are linearly homogeneous in It and Kt.

Relative to the specification in Abel and Eberly (1994), my augmented adjustment-cost

function adds the convex costs of financing, but ignores the wedge between purchase and

sale prices of capital and fixed costs of adjustment. The fixed costs of raising capital are not

included either. Incorporating these features will compromise the differentiability of Φ(It, Kt)

with respect to It at the two points where It =0 and Ot =0. The theory below works almost

everywhere but at these two points where investment return is ill-defined because Φ1 does

not exist (see equation (15) below). Although not implemented here, it is possible to define

two different investment returns at these two points using the left- and the right-side partial

derivatives of Φ with respect to It.

More important, including the wedge between the purchase and sale prices of capital and

fixed costs of investment and raising capital leaves the crucial Assumption 3 unaltered. As

argued in Abel and Eberly (1994), the purchase/sale costs are proportional to It. And the

fixed costs are linearly homogenous in Kt, if they reflect the costs of interrupting production,

and are therefore proportional to the operating profit and to capital.

Finally, it is ultimately an empirical question how restrictive Assumption 3 is. But I note

that the special case of α=1 is standard in the empirical investment literature (e.g., Hubbard

(1998) and Erickson and Whited (2000)). Further, several numerically solved models such
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as Cooper (2005), Kogan (2004), and Zhang (2005) yield qualitatively similar results as my

analytical results. In particular, Zhang’s model structure is very similar to mine, and the

only relevant difference is that in his model the operating-profit and the adjustment-cost

functions have different degrees of homogeneity.

2.2 Dynamic Value Maximization

I now characterize firm’s value-maximization behavior. The dynamic problem is:

V (Kt, Xt) = max
{It+j ,Kt+1+j}∞j=0

Et

[
∞∑

j=0

Mt,t+j (Π(Kt+j, Xt+j) − Φ(It+j, Kt+j))

]
(6)

where V (Kt, Xt) is the cum-dividend market value — when j = 0, Π(Kt, Xt)−Φ(It, Kt) is

included in V (Kt, Xt). Mt,t+j >0 is the stochastic discount factor from time t to t+j. Mt,t =1

and Mt,t+iMt+i+1,t+j =Mt,t+j for some integer i between 0 and j. For notational simplicity,

I use Mt+j to denote Mt,t+j whenever the starting date is t.

2.2.1 Marginal q, Tobin’s Average Q, and Market-to-Book

Lemma 1 Under Assumptions 1 and 3, the value function is also homogenous of degree α:

αV (Kt, Xt) = V1(Kt, Xt)Kt

Define Tobin’s average Q as Q̂t≡
V (Kt,Xt)

Kt
, then V1(Kt, Xt)=αQ̂t.

Let qt be the present-value multiplier associated with capital accumulation equation (3).

The Lagrange formulation of the firm value, V (Kt, Xt), is then:

max
{It+j ,Kt+1+j}∞j=0

Et

[
∞∑

j=0

Mt+j (Π(Kt+j, Xt+j) − Φ(It+j, Kt+j) − qt+j[Kt+j+1 − (1 − δ)Kt+j − It+j])

]
(7)
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The first-order conditions with respect to It and Kt+1 are, respectively,

qt = Φ1(It, Kt) (8)

qt = Et[Mt+1[Π1(Kt+1, Xt+1) − Φ2(It+1, Kt+1) + (1 − δ)qt+1]] (9)

Solving equation (9) recursively yields an economic interpretation for marginal q:

Lemma 2 Marginal q is the expected present value of marginal profits of capital:

qt = Et

[
∞∑

j=1

Mt+j(1 − δ)j−1(Π1(Kt+j, Xt+j) − Φ2(It+j, Kt+j))

]
(10)

Proposition 1 (The Link between Marginal q and Market-to-Book) Define the

ex-dividend firm value, Pt, as:

Pt ≡ P (Kt, Kt+1, Xt) = V (Kt, Xt) − Π(Kt, Xt) + Φ(It, Kt) (11)

And define the market-to-book equity as Qt≡
Pt

Kt+1
then under Assumptions 1 and 3,

qt = αQt (12)

In the continuous time formulation of the Q-theory (e.g., Hayashi (1982) and Abel and

Eberly (1994)), marginal qt is proportional to Tobin’s average Qt, i.e., qt = αQ̂t. But in

discrete time, V1(Kt, Xt) is not exactly marginal qt. The time-to-build convention reflected

in the capital accumulation equation (3) implies that one unit of investment today only

becomes effective next period. As a result, qt and Q̂t are linked through:

qt = αEt[Mt+1Q̂t+1] (13)
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To see this, note the derivative of equation (7) with respect to Kt is V1(Kt, Xt)=Π1(Kt, Xt)−

Φ2(It, Kt) + qt(1 − δ). Equation (13) then follows from Lemma 1 and equation (9).

Several useful properties of Φ(It, Kt) evaluated at the optimum can be established using

equation (8) and the link between marginal q and average Q̂t.

Lemma 3 Under Assumptions 1 and 2, the augmented adjustment-cost function Φ(It, Kt),

when evaluated at the optimum, satisfies:

Φ1(It, Kt) > 0; Φ12(It, Kt) ≤ 0; and Φ122(It, Kt) ≥ 0

Proof. See Appendix B for the proof of the last two inequalities. The first inequality can

be shown as follows. From Assumptions 1 and 2, Π1 > 0 and Φ2 ≤ 0, equation (10) then

implies that qt >0. But from equation (8), Φ1 equals qt at the optimum. Therefore, although

Φ1 in general can be positive, negative, or zero when It ≤ 0, it is strictly positive at the

optimum. Equivalently, G′(·) is strictly positive at the optimum.

2.2.2 Investment and Stock Returns

Combining the first-order conditions in equations (8) and (9) yields:

Et[Mt+1r
I
t+1] = 1 (14)

where rI
t+1 denotes the investment return:

rI
t+1 =

Π1(Kt+1, Xt+1) − Φ2(It+1, Kt+1) + (1 − δ)Φ1(It+1, Kt+1)

Φ1(It, Kt)
(15)

The investment-return equation (15) is very intuitive — rI
t+1 can be interpreted as the

ratio of the marginal benefit of investment at time t+1 divided by the marginal cost of
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investment at time t. The denominator, Φ1(It, Kt), is the marginal cost of investment.

By optimality, it equals the marginal qt, the expected present value of marginal profits

of investment. In the numerator of equation (15), Π1(Kt+1, Xt+1) is the extra operating

profit from the extra capital at t+1; −Φ2(It+1, Kt+1) captures the effect of extra capital on

the augmented adjustment cost; and (1 − δ)Φ1(It+1, Kt+1) is the expected present value of

marginal profits evaluated at time t+1, net of depreciation.

Proposition 2 (The Equivalence between Stock and Investment Returns) Define

stock return as:

rS
t+1 ≡

Pt+1 + Π(Kt+1, Xt+1) − Φ(It+1, Kt+1)

Pt

(16)

Then Et[Mt+1r
S
t+1]=1. Under Assumptions 1 and 3, stock return equals investment return:

rS
t+1 = rI

t+1 (17)

Given this equivalence, I will use the common notation rt+1 to denote both returns.

3 Understanding Anomalies

The equivalence between stock and investment returns is an extremely powerful result.

It provides a theoretically motivated, analytical link between expected returns and firm

characteristics, a link that can serve as an economic foundation for understanding anomalies.

Developing this foundation is the heart of this paper. I first discuss in Section 3.1 the

methodology of the Q-determination of expected returns, and its relation to the standard

risk-based determination. Section 3.2 fixes the basic intuition using two canonical examples.

And Section 3.3 extends the intuition into the more general Q-theoretical framework.

16



3.1 Methodology

My analytical methods are very simple. They basically amount to taking and signing partial

derivatives of the expected investment return in equation (15) with respect to various

anomaly-related variables. Using partial derivatives is reasonable because to establish a

new anomaly, empiricists often control for other known anomalies, a practice corresponding

naturally to partial derivatives.3 Cochrane (1991, 1996) uses similar techniques to explain the

return-investment relations. Similar methods are commonly used in the empirical literature

to develop testable hypotheses from valuation models (e.g., Fama and French (2004)).

As a more fundamental departure from the traditional asset pricing approach, which

derives expected returns from consumers’ first-order conditions and determines expected

returns through risk, I follow Cochrane (1991) and derive expected returns from firms’ first-

order conditions. As a result, expected returns are directly tied with firm characteristics.4

Intriguingly, the stochastic discount factor, Mt+1, and its covariances with returns (i.e.,

risk) do not enter the expected-return determination. And firm characteristics are sufficient

statistics for expected returns. I thus need not specify Mt+1 — production-based asset

pricing can in principle be developed independently from consumption-based asset pricing,

without being hindered by difficulties specific to the latter literature.

However, this practice only means that the effect of Mt+1 is indirect, not irrelevant.

For example, if Mt+1 were a constant, M , then equation (14) implies that the expected

return Et[rt+1]=
1
M

, a constant uncorrelated with firm characteristics. And if the correlation

3For example, Chan, Jegadeesh, and Lakonishok (1996) and Haugen and Baker (1996) control for valuation
ratios when they document the earnings momentum and profitability anomalies, respectively.

4Rubinstein (2001, p. 23) highlights the importance of analyzing corporate decisions in solving anomalies:
“For the most part, financial economists take the stochastic process of stock prices, the value of the firms, or
dividend payments as primitive. But to explain some anomalies, we may need to look deeper into the guts
of corporate decision making to derive what the processes are.”
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between Mt+1 and Xt+1 is zero, i.e., firms’ operating profits are unaffected by aggregate

shocks, then equation (14) implies that Et[rt+1]=rft, where rft≡
1

Et[Mt+1]
is risk-free rate. In

this case, there is no cross-sectional variation in expected returns. The analysis below in effect

provides time-series correlations between the risk-free rate and firm characteristics. Since I

study expected returns directly, as opposed to expected excess returns, I need not restrict the

correlation between Mt+1 and Xt+1, the correlation that determines expected excess returns.

The characteristic-based approach is consistent with the traditional risk-based approach.

From Proposition 2, Et[Mt+1r
S
t+1] = 1. Following Cochrane (2001, p. 19), I can rewrite this

equation as the beta-representation, Et[r
S
t+1] = rft+βtλMt, where βt ≡

−Covt[rS
t+1

,Mt+1]

Vart[Mt+1]
is the

amount of risk, and λMt ≡
Vart[Mt+1]
Et[Mt+1]

is the price of risk. Now Proposition 2 also says that

Et[r
S
t+1] = Et[r

I
t+1] where the right-hand side only depends on characteristics from equation

(15). Further, Et[r
I
t+1] = Et[r

S
t+1] = rft +βtλMt, implies that βt =

Et[rI
t+1

]−rft

λMt
, which ties

covariances with characteristics. But apart from this mechanical link, risk only plays a

secondary role in the characteristic-based determination of expected returns.

3.2 Intuition in Two Canonical Examples

I construct two canonical examples to illustrate the basic intuition underlying the anomalies

explanations. Both examples have constant return to scale, α=1. In the first example, the

only costs of investment are linear purchase/sale costs, i.e., Φ(It, Kt)=It. And in the second

example, there are also quadratic costs of physical adjustment, i.e.,

Φ(It, Kt) = It +
a

2

(
It

Kt

)2

Kt where a > 0 (18)
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3.2.1 Linear Purchase/Sale Costs

This example can explain the earnings-related anomalies. Intuitively, the marginal product

of capital (i.e., MPK) at time t+1 is in the numerator of investment return. But MPK is

closely related to profitability, so expected return increases with expected profitability.

Specifically, when Φ(It, Kt)=It, equation (15) implies that:

Et[rt+1] = Et[Π1(Kt+1, Xt+1)] + (1 − δ) (19)

i.e., expected net return is expected marginal product of capital minus depreciation rate.

Let Nt≡Πt−δKt denote earnings. Equations (2) and (19) imply that:

Et[rt+1] = Et

[
Πt+1

Kt+1

]
+ (1 − δ) = Et

[
Nt+1

Kt+1

]
+ 1 (20)

i.e., expected return is expected profitability!

The example is also consistent with the profitability anomaly. Intuitively, profitability is

highly persistent; therefore, high profitability implies high expected profitability, which in

turn implies high expected returns. The following assumption captures this persistence:

Assumption 4 The operating profit-to-capital ratio (or equivalently profitability) follows:

Πt+1

Kt+1

= π(1 − ρπ) + ρπ

(
Πt

Kt

)
+ επ

t+1 (21)

where π > 0 and 0<ρπ < 1 are the long-run average and the persistence of operating profit-

to-capital, respectively. And επ
t+1 is a normal random variable with a zero mean.

Since the operating profit-to-capital ratio equals profitability plus a constant depreciation

rate, Assumption 4 basically says that profitability is persistent. Substituting Πt =Nt + δKt
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into equation (21) yields:

Nt+1

Kt+1

= (π − δ)(1 − ρπ) + ρπ

(
Nt

Kt

)
+ επ

t+1 (22)

where the sum of the first two terms denotes expected profitability and επ
t+1 denotes earnings

surprise. There is much evidence on the persistence of profitability (e.g., Fama and French

(1995, 2000, 2004)). In fact, Fama and French (2004) report that the current profitability is

the strongest predictor of profitability one to three years ahead. It is important to note that

the specific, first-order autoregressive form is unimportant, and more complex time series

specifications will give basically the same economic insights.

Combining equations (20) and (21) yields:

Et[rt+1] = (π − δ)(1 − ρπ) + ρπ

(
Nt

Kt

)
+ 1 (23)

i.e., expected return is an increasing, linear function of profitability. Equation (23) also

implies a new testable hypothesis, i.e., the magnitude of the profitability anomaly should

increase with the persistence of profitability.

The same mechanism driving the expected-profitability and profitability anomalies is also

useful for understanding the post-earnings-announcement drift that has bewildered financial

economists for more than three decades. Intuitively, earnings surprise and profitability are

both scaled earnings, and should contain similar information on future profitability.5 If

earnings surprise captures a principal component of expected profitability as profitability

does, then earnings surprise should correlate positively with expected returns.

5To be precise, earnings surprise is commonly measured as Standardized Unexpected Earnings (SUE) (e.g.,
Chan, Jegadeesh, and Lakonishok (1996)). The SUE for stock i in month t is defined as SUEit ≡

eiq−eiq−4

σit
,

where eiq is quarterly earnings per share most recently announced as of month t for stock i, eiq−4 is earnings
per share four quarters ago, and σit is the standard deviation of unexpected earnings, eiq−eiq−4, over the
preceding eight quarters.
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Formally, lagging equation (22) by one period and plugging the resulting Nt

Kt
into equation

(23) yields Et[rt+1]=(π̄ − δ)(1− ρπ)(1 + ρπ) + ρ2
π

Nt−1

Kt−1
+ ρπεπ

t + 1. The equation implies that

the expected return has a positive loading, ρπ, on the current-period earnings surprise, επ
t .

A new testable hypothesis emerges, i.e., the magnitude of the post-earnings announcement

drift should increase with the persistence of profitability.

Although useful for explaining the sign of the earnings-related anomalies, the simple

example with Φ(It, Kt) = It has many limitations. First, the inverse relation between the

magnitude of the earnings-related anomalies and the market value cannot be explained.

From equations (20) and (23), the partial derivatives of expected return with respect

to expected profitability and profitability are both constant, independent of the market

value. Second, the example cannot explain the value anomaly because Φ(It, Kt) = It

implies that Qt = qt = Φ1(It, Kt) = 1, i.e., firms do not differ in market-to-book. Third,

substituting Kt+1 =
(

It

Kt
+ (1 − δ)

)
Kt into equation (20) and differentiating both sides yield

∂Et[rt+1]
∂(It/Kt)

= Et[Π11(Kt+1, Xt+1)]Kt = 0, where the last equality follows from constant return

to scale. This says that expected return is independent of the investment rate, and hence

independent of the payout and equity-financing rates.

3.2.2 Quadratic Adjustment Costs

I now show that all the limitations in the first example can be extinguished by introducing

adjustment costs into the model. To illustrate the basic intuition, I use a parametric example

with quadratic adjustment costs. Then equations (15) and (18) imply that:

rt+1 =
Π1(Kt+1, Xt+1) + (a/2)(It+1/Kt+1)

2 + (1 − δ)[1 + a(It+1/Kt+1)]

1 + a(It/Kt)
(24)

This is in essence the same investment-return equation in Cochrane (1991, 1996).
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The Expected-Profitability Anomaly Since Π1(Kt+1, Xt+1) = Πt+1

Kt+1
= Nt+1

Kt+1
+ δ, taking

conditional expectations and differentiating both sides of equation (24) with respect to

expected profitability yield ∂Et[rt+1]
∂Et[Nt+1/Kt+1]

= 1
1+a(It/Kt)

> 0.6 The inequality follows because

the denominator equals the marginal qt. Therefore, controlling for market-to-book (the

denominator of investment return), expected return increases with expected profitability.

Further, because the marginal qt equals market-to-book from Proposition 1, ∂Et[rt+1]
∂Et[Nt+1/Kt+1]

=

1
Qt

= Kt+1

Pt
, which is inversely related with the market value, Pt. This explains why the

magnitude of the expected-profitability anomaly is stronger in small firms.

The Profitability Anomaly From equation (21) and the chain rule, ∂Et[rt+1]
∂(Nt/Kt)

=

∂Et[rt+1]
∂Et[Nt+1/Kt+1]

∂Et[Nt+1/Kt+1]
∂(Nt/Kt)

= ρπ
∂Et[rt+1]

∂Et[Nt+1/Kt+1]
. It then follows from the argument for the

expected-profitability anomaly that ∂Et[rt+1]
∂(Nt/Kt)

is positive and decreasing in the market value.

The Post-Earnings-Announcement Drift The argument for the profitability anomaly

is useful for explaining the post-earnings-announcement drift because earnings surprise and

profitability contain similar information on future profitability. The prediction that ∂Et[rt+1]
∂(Nt/Kt)

decreases with the market value is particularly intriguing because the magnitude of the post-

earnings-announcement drift is inversely related to the market value (e.g., Bernard (1993)).

I am not aware of other rational explanations of the earnings-related anomalies. Two

papers offer explanations for a related anomaly, price momentum that buying recent winners

and selling recent losers yield positive abnormal returns (e.g., Jegadeesh and Titman (1993)).

6This partial derivative corresponds to the case of fixing It+1

Kt+1
. This is only for the ease of exposition.

Allowing It+1

Kt+1
to vary does not affect the qualitative result. The reason is that, intuitively, more profitable

firms invest more, i.e., ∂(It+1/Kt+1)
∂Et[Nt+1/Kt+1]

> 0, consistent with the evidence in Fama and French (1995). As

a result, the numerator of ∂Et[rt+1]
∂Et[Nt+1/Kt+1]

remains positive. Formally, equations (10) and (21) imply that
∂qt+1

∂Et[Nt+1/Kt+1]
= ρπ

rft+1
so ∂(It+1/Kt+1)

∂Et[Nt+1/Kt+1]
= ∂(It+1/Kt+1)

∂qt+1

∂qt+1

∂Et[Nt+1/Kt+1]
= 1

a
ρπ

rft+1
> 0. And it follows that

∂Et[rt+1]
∂Et[Nt+1/Kt+1]

=
(1+ρπEt[(1/rft+1)(Kt+2/Kt+1)])

1+a(It/Kt)
>0.
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In Berk, Green, and Naik (1999), the composition and systematic risk of the firm’s assets are

persistent, leading to positive autocorrelations of expected returns. In Johnson (2002), recent

winners have temporarily higher expected growth than recent losers. Assuming that stocks

with higher expected growth earn higher average returns, Johnson shows that his model can

generate price momentum. I complement his work by showing that his key assumption arises

naturally from the first principles of optimal investment.

The Investment Anomaly Intuitively, the Q-theory is a theory of investment demand.

The downward-sloping investment-demand function then implies a negative relation between

investment rate and cost of capital (i.e., expected return). Intuitively, investment rate

increases with net present value of capital (e.g., Brealey and Myers (2003, Chapter 2)).

But the net present value is inversely related to cost of capital, controlling for expected

future cash flows. Higher cost of capital implies lower expected net present value, which in

turn implies lower investment rate, and vice versa.

I now formally establish the negative slope of the investment-demand function, as in

Figure 1. Let U q
t+1 denote the numerator of the investment return in equation (24), and

U q
t+1 > 0. Taking conditional expectations and differentiating both sides with respect to It

Kt

yield: ∂Et[rt+1]
∂(It/Kt)

= −
aEt[U

q
t+1

]

[1+a(It/Kt)]2
+ 1

1+a(It/Kt)

∂Et[U
q
t+1

]

∂(It/Kt)
. To show ∂Et[rt+1]

∂(It/Kt)
< 0, it then suffices to

show
∂Et[U

q
t+1

]

∂(It/Kt)
<0. But rewriting It+1 and Kt+1 in Et[U

q
t+1] as Kt+2−(1−δ)

(
It

Kt
+ (1 − δ)

)
Kt

and
(

It

Kt
+ (1 − δ)

)
Kt, respectively, and differentiating yield

∂Et[U
q
t+1

]

∂(It/Kt)
=−aKt(Et[Kt+2])2

K3
t+1

<0.7

From Figure 1, the investment-demand function is also convex. To see this, differentiating

∂Et[rt+1]
∂(It/Kt)

once more with respect to It

Kt
yields ∂2Et[rt+1]

∂(It/Kt)2
= − a

[1+a(It/Kt)]2
∂Et[U

q
t+1

]

∂(It/Kt)
+

2a2Et[U
q
t+1

]

[1+a(It/Kt)]3
+

1
1+a(It/Kt)

∂2Et[U
q
t+1

]

∂(It/Kt)2
−

∂Et[U
q
t+1

]

∂(It/Kt)
a

[1+a(It/Kt)]2
> 0, where the inequality follows from

∂Et[U
q
t+1

]

∂(It/Kt)
< 0

7I have used the Leibniz integral rule to change the order of integration and differentiation.

23



and
∂2Et[U

q
t+1

]

∂(It/Kt)2
=

3aK2
t (Et[Kt+2])2

K4
t+1

>0. Later I use this convexity to understand other evidence.

The investment anomaly is stronger in firms with high operating income-to-asset ratios

(e.g., Titman, Wei, and Xie (2003)). This pattern can be captured in the model. Using

equation (21) to express Πt+1

Kt+1
in terms of Πt

Kt
and differentiating −∂Et[rt+1]

∂(It/Kt)
with respect to Πt

Kt

yields ∂
∣∣∣∂Et[rt+1]

∂(It/Kt)

∣∣∣ /∂
(

Πt

Kt

)
= aρπ

[1+a(It/Kt)]2
>0.

Besides Cochrane (1991, 1996), most models cited in footnote 1 can explain the

investment anomaly. I contribute by unifying their diverse explanations with the investment-

return equation, by using it to explain other anomalies, and by illustrating the interaction

between the return-investment relation and operating income-to-capital.

The Value Anomaly The downward-sloping and convex investment-demand function

manifests itself as many anomalies other than the investment anomaly. The value anomaly

can be explained using the investment-demand function. From the optimality condition (8),

1+a It

Kt
=qt =Qt, so ∂(It/Kt)

∂Qt
= 1

a
>0. This says that growth firms invest more and grow faster

than value firms, a result consistent with the evidence in Fama and French (1995). The

chain rule of partial derivatives then implies that ∂Et[rt+1]
∂Qt

= ∂Et[rt+1]
∂(It/Kt)

∂(It/Kt)
∂Qt

< 0, i.e., growth

firms earn lower average returns than value firms.

The value anomaly is also stronger in small firms. To see this, again by the chain

rule, ∂
∣∣∣∂Et[rt+1]

∂Qt

∣∣∣ /∂Pt = −∂2Et[rt+1]
∂Qt∂Pt

= − 1
a

∂2Et[rt+1]
∂(It/Kt)2

∂(It/Kt)
∂Pt

. To show that the left-hand side is

negative, it suffices to show ∂(It/Kt)
∂Pt

> 0 because the investment-demand function is convex.

But from 1+a It

Kt
= qt = Qt = Pt

Kt+1
, Pt =

[
1 + a It

Kt

] [
It

Kt
+ (1 − δ)

]
Kt. Differentiating both

sides with respect to It

Kt
yields ∂Pt

∂(It/Kt)
=qtKt + aKt+1 >0.8

8 ∂Pt

∂(It/Kt)
>0 and ∂Qt

∂(It/Kt)
>0 both imply that growth firms invest more and grow faster. ∂Pt

∂(It/Kt)
>0 does

not contradict the evidence that small firms invest more and grow faster than big firms (e.g., Evans (1987)
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Several recent studies have proposed rational explanations for the value anomaly using

investment-based models. Berk, Green, and Naik (1999) construct a real options model in

which endogenous changes in assets in place and in growth options impart predictability in

returns. Also using real options models, Carlson, Fisher, and Giammarino (2004a) emphasize

the role of operating leverage, and Cooper (2005) emphasize the role of fixed costs in driving

the value anomaly. Gomes, Kogan, and Zhang (2003) use a dynamic general equilibrium

production economy, Kogan (2004) uses a two-sector general equilibrium model, and Zhang

(2005) uses a neoclassical investment model to link expected returns to firm characteristics.

My model is most related to Zhang (2005). By making Assumptions 1–3, I now obtain

some analytical results. The scope of anomalies addressed is also much wider. Zhang offers

an explicitly solved model in which Assumption 3 is violated. And his simulation results

are consistent with my analytical results. This consistency implies that, even when stock

and investment returns are not exactly equal without Assumption 3, they share similar

time-series and cross-sectional properties.

More recently, Gourio (2004) analyzes a putty-clay investment model. He argues

that imperfect capital-labor substitutability can induce more than one percent increase in

operating profits given a one percent increase in sales. And this effect is more important

for value firms because they have low productivity. Finally, like my work, Chen (2004) also

explains the inverse relation between the value anomaly and the market value. Chen argues

that the inverse relation arises from shorter life expectancy of small firms. This mechanism is

different from mine that arises from convex adjustment cost and applies to long-lived firms.

and Hall (1987)). The evidence is documented with the logarithm of employment as the measure of firm
size. This measure corresponds to log(Kt) in the model. The model is consistent with the evidence because

Pt =
[
1 + a It

Kt

] [
It

Kt
+ (1 − δ)

]
Kt implies that Kt =Pt

([
1 + a It

Kt

] [
It

Kt
+ (1 − δ)

])−1

, which in turn implies

that ∂Kt

∂(It/Kt)
<0.
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The Payout Anomaly The payout anomaly can also be explained using the investment-

demand function. Intuitively, firms’ cash-flow constraint says that the sources and the uses

of funds must be equal. With quadratic adjustment costs, when free cash flow Ct > 0, this

constraint is Ct

Kt
= Πt

Kt
− It

Kt
− a

2

(
It

Kt

)2

. As a result, ∂(Ct/Kt)
∂(It/Kt)

= −
(
1 + a It

Kt

)
= −qt < 0.

Thus, controlling for profitability, optimal payout and investment rates are negatively

correlated. Grullon, Michaely, and Swaminathan (2002) document that dividend-increasing

firms significantly reduce their capital expenditures over the next three years, while the

dividend-decreasing firms begin to increase their capital expenditure. By the chain rule,

the negative slope of the investment-demand function then manifests itself as the positive

expected return-payout relation (i.e., ∂Et[rt+1]
∂(Ct/Kt)

= ∂Et[rt+1]
∂(It/Kt)

∂(It/Kt)
∂(Ct/Kt)

> 0). And the convexity of

the investment-demand function manifests itself as the stronger payout anomaly in value

firms (i.e., ∂2Et[rt+1]
∂(Ct/Kt)∂Qt

= ∂2Et[rt+1]
∂(It/Kt)2

∂(It/Kt)
∂Qt

∂(It/Kt)
∂(Ct/Kt)

<0).

I am not aware of other rational explanations for the payout anomaly.

The SEO-Underperformance Anomaly This anomaly can also be explained using the

investment-demand function. Intuitively, firms’ cash-flow constraint says that the sources

and the uses of funds must be equal. With quadratic adjustment costs, when outside equity

Ot > 0, this constraint is Ot

Kt
= It

Kt
+ a

2

(
It

Kt

)2

− Πt

Kt
. As a result, ∂(Ot/Kt)

∂(It/Kt)
= qt > 0. Thus,

controlling for profitability, optimal equity-financing and investment rates are positively

correlated. By the chain rule, the negative slope of the investment-demand function

then manifests itself as the negative expected return-financing relation (i.e., ∂Et[rt+1]
∂(Ot/Kt)

=

∂Et[rt+1]
∂(It/Kt)

∂(It/Kt)
∂(Ot/Kt)

< 0). And the convexity of the investment-demand function manifests itself

as the stronger SEO-underperformance in small firms (i.e., ∂
∣∣∣ ∂Et[rt+1]
∂(Ot/Kt)

∣∣∣ /∂Pt =− ∂2Et[rt+1]
∂(Ot/Kt)∂Pt

=

−∂2Et[rt+1]
∂(It/Kt)2

∂(It/Kt)
∂Pt

∂(It/Kt)
∂(Ot/Kt)

− ∂Et[rt+1]
∂(It/Kt)

∂2(It/Kt)
∂Pt∂(Ot/Kt)

< 0). The last inequality follows because
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∂(Ot/Kt)
∂(It/Kt)

=qt =Qt =
Pt

Kt+1
implies that ∂2(It/Kt)

∂(Ot/Kt)∂Pt
=−Kt+1

P 2
t

<0.

Loughran and Ritter (1997) and Richardson and Sloan (2003) provide some evidence

supportive of the Q-explanation of the SEO anomaly. Loughran and Ritter shows that

issuing firms have much higher investment rates than nonissuing firms for nine years around

the issuing date. And issuing firms are disproportionately high-growth firms. Richardson

and Sloan find that the negative relation between external finance and expected returns

varies systematically with the use of the proceeds. When the proceeds are invested in net

operating assets as opposed to being stored as cash, the negative relation is stronger. In

contrast, the negative relation is much weaker when the proceeds are used for refinancing or

retained as cash. This evidence suggests an important role of capital investment in driving

the SEO anomaly. And this is exactly my theoretical approach.

The model shows that the stronger value anomaly in small firms and the stronger SEO

anomaly in small firms are basically the same phenomenon driven by the convex expected

return-investment relation. This prediction is consistent with the evidence that the SEO

underperformance shrinks greatly once both size and book-to-market are controlled for (e.g.,

Brav, Geczy, and Gompers (2000) and Eckbo, Masulis, and Norli (2000)).

Several recent studies have proposed rational explanations of the SEO anomaly. Eckbo,

Masulis, and Norli (2000) argue that issuing firms are less risky because their leverage ratios

are lowered. There is no leverage in my model, and the economic mechanism works through

optimal investment. Schultz (2003) argues that using event studies is likely to find negative

abnormal performance ex post, even if there is no abnormal performance ex ante.9 The

9Schultz (2003) uses his argument to explain the underperformance of initial public offerings (IPOs). The
same logic applies to SEOs. If early in a sample period, SEOs underperform, there will be few SEOs in
the future because investors are less interested in them. The average performance will be weighted more
towards the early SEOs that underperformed. If early SEOs outperform, there will be many more SEOs in
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calendar-time evidence is immune to this problem. But the Q-explanation applies to event-

time and calendar-time underperformance.

Carlson, Fisher, and Giammarino (2004b) argue that that prior to issuance, the firm has

both assets in place and an option to expand; this composition is a levered, risky position.

If the exercise of the option is financed by equity issuance, then risk must drop afterwards.

The real options explanation and the Q-explanation are consistent because they both work

through optimal investment. But I do not assume growth options to be riskier than assets in

place, although it is likely to be true in good times when the option to expand is important.

3.3 The General Model

I now extend the results in the previous two examples into the general Q-theoretical

framework. This is an important step because the general setup allows much more flexible

econometric specifications than the quadratic adjustment-cost function. Except for a few

technical details, the basic intuition remains unchanged in the general setup.

Proposition 3 (The Expected-Profitability Anomaly) Under Assumptions 1 and 3,

expected returns correlate positively with expected profitability, ∂Et[rt+1]
∂Et[Nt+1/Kt+1]

> 0, and the

magnitude of the correlation decreases with the market value, ∂2Et[rt+1]
∂Et[Nt+1/Kt+1]∂Pt

<0.

Proposition 4 (The Profitability Anomaly) Under Assumptions 1–4, expected returns

correlate positively with current-period profitability, and the magnitude of this correlation

decreases with the market value, i.e., ∂Et[rt+1]
∂(Nt/Kt)

>0 and ∂2Et[rt+1]
∂(Nt/Kt)∂Pt

<0.

the future. The early performance will be weighted less in the average performance. Weighting each period
equally as in calendar-time regressions solves this problem.

28



Proposition 5 (The Post-Earnings-Announcement Drift) Under Assumptions 1–4,

expected returns correlate positively with current-period earnings surprise, and the magnitude

of this correlation decreases with the market value, i.e., ∂Et[rt+1]
∂επ

t
>0 and ∂2Et[rt+1]

∂επ
t ∂Pt

<0.

Proposition 6 (The Investment Anomaly) Under Assumptions 1–3, expected returns

decrease with investment rate: ∂Et[rt+1]
∂(It/Kt)

<0. If Assumption 4 also holds, the magnitude of the

investment anomaly increases with operating profit-to-asset: ∂
∣∣∣∂Et[rt+1]

∂(It/Kt)

∣∣∣/∂
(

Πt

Kt

)
>0.

Cochrane (1991, 1996) uses models with quadratic adjustment costs to derive the negative

relation between expected return and investment rate. He also shows that the relation

between expected return and expected investment rate and the relation between expected

return and expected investment growth are both positive. I extend his argument into the

general Q-framework, and use it as a foundation to explain other anomalies.

To derive the positive relations of expected returns with expected investment rate and

expected investment growth, note that equations (4) and (15) implies that ∂Et[rt+1]
∂(It+1/Kt+1)

=

Kα−1

t+1

qt
Et

[
(1 − α)G′

(
It+1

Kt+1

)
+ G′′

(
It+1

Kt+1

)
Kt+2

Kt+1

]
> 0. The inequality follows because 1−α≥ 0,

Kt+2

Kt+1
>0, and G′′>0. Given that expected return decreases with It

Kt
but increases with It+1

Kt+1
,

it should also increase with It+1

Kt+1
/ It

Kt
. But as a ratio of two stock variables, Kt

Kt+1
is likely

to be dominated by the ratio of two flow variables, It+1

It
. Therefore, expected return should

increase with expected investment growth.

In the general model, the investment rate is an increasing function of marginal q.

Equation (8) implies that G′
(

It

Kt

)
Kα−1

t = qt or It

Kt
= G′−1(qtK

1−α
t ), where G′−1(·) is the

inverse function of G′(·). And since G′′ >0, both G′(·) and G′−1(·) are increasing functions.

Because marginal q is proportional to market-to-book, the negative slope of the investment-

demand function implies the negative relation between expected return and market-to-book.
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To explain why the value anomaly is stronger in small firms, I need:

Assumption 5 The augmented adjustment-cost function Φ(It, Kt) satisfies:

Φ111(It, Kt) ≥ 0; Φ112(It, Kt) ≤ 0; and Φ222(It, Kt) ≤ 0

It is easy to verify that standard specifications such as the quadratic adjustment-cost function

and the proportional and quadratic financing-cost functions satisfy this assumption.

Proposition 7 (The Value Anomaly) Under Assumptions 1–3, expected returns

correlate negatively with market-to-book, ∂Et[rt+1]
∂Qt

< 0. If Assumption 5 also holds, the

magnitude of this correlation decreases in the market value, ∂
∣∣∣∂Et[rt+1]

∂Qt

∣∣∣ /∂Pt <0.

Some new testable hypotheses are collected below.

Proposition 8 Under Assumptions 1–3 and 5: (i) the relation between expected return

and market-to-book is convex, ∂2Et[rt+1]

∂Q2
t

> 0; (ii) the investment anomaly is stronger in

small firms, ∂
∣∣∣∂Et[rt+1]

∂(It/Kt)

∣∣∣ /∂Pt < 0; and (iii) the investment anomaly is stronger in value

firms., ∂
∣∣∣∂Et[rt+1]

∂(It/Kt)

∣∣∣ /∂Qt < 0. If 2
[
G′′

(
It

Kt

)]2

≥ G′′′
(

It

Kt

)
G′

(
It

Kt

)
also holds, then (iv) the

investment-demand function is convex, i.e., ∂2Et[rt+1]
∂(It/Kt)2

>0.

Proposition 8 says that the convexity in the investment-demand function holds in the

general model only if 2
[
G′′

(
It

Kt

)]2

≥G′′′
(

It

Kt

)
G′

(
It

Kt

)
. Although compatible with quadratic

adjustment costs, this condition is more strict than the other assumptions.

In the general model, firms’ cash-flow constraint becomes Ct

Kt
= Πt

Kt
− G

(
It

Kt

)
Kα−1

t when

payout Ct > 0. Controlling for profitability, optimal payout and investment rates are

again negatively correlated. This negative correlation, coupled with the downward-sloping

investment-demand function, implies a positive expected return-payout relation. And by the
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chain rule, the convexity of the relation between expected return and market-to-book gives

rise to the stronger payout anomaly in value firms.

Proposition 9 (The Payout Anomaly) Denote payout or free cash flow as:

Ct ≡ C(Kt, Kt+1, Xt) = (Π(Kt, Xt) − Φ(It, Kt))1{Π(Kt,Xt)−Φ(It,Kt)>0} (25)

where 1{·} is an indicator function that takes the value of one if the event described in {·} is

true and zero otherwise. Under Assumptions 1–3, expected returns increase weakly with the

payout rate, Ct

Kt
, i.e., ∂Et[rt+1]

∂(Ct/Kt)
≥0, where the inequality is strict when Ct is strictly positive. If

Assumption 5 also holds, the payout anomaly is stronger in value firms than that in growth

firms, ∂2Et[rt+1]
∂(Ct/Kt)∂Qt

≤0, where the inequality is strict when Ct >0.

Firms’ cash-flow constraint is Ot

Kt
= G

(
It

Kt

)
Kα−1

t − Πt

Kt
when outside equity Ot > 0.

Controlling for profitability, optimal financing and investment rates are positively correlated.

This correlation, coupled with the downward-sloping investment-demand function, implies a

negative expected return-financing relation. By the chain rule, the convex relation between

expected return and market-to-book implies the stronger SEO anomaly in small firms.

Proposition 10 (The SEO Anomaly) Denote the outside equity, Ot, as:

Ot ≡ O(Kt, Kt+1, Xt) = (Φ(It, Kt) − Π(Kt, Xt))1{Φ(It,Kt)−Π(Kt,Xt)>0} (26)

Under Assumptions 1 and 3, expected returns decrease weakly with the rate of external or

outside equity, Ot

Kt
, i.e., ∂Et[rt+1]

∂(Ot/Kt)
≤0, where the inequality is strict when Ot is strictly positive.

If Assumption 5 also holds, the magnitude of this correlation is stronger in small firms,

∂
∣∣∣ ∂Et[rt+1]
∂(Ot/Kt)

∣∣∣ /∂Pt≤0, where the inequality is strict when Ot >0.
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4 Empirical Implications

This section discusses empirical implications of the theoretical results. Section 4.1 proposes

the Q-representation of expected returns as a new empirical asset pricing model. Sections 4.2,

4.3, and 4.4 compare the Q-framework with the standard beta- and SDF-framework as well

as the Ohlson (1995) valuation model popular in accounting research, respectively. I argue

that, although internally consistent with the existing frameworks in theory, the Q-framework

is likely to have comparative advantages in practice.

4.1 A New Empirical Asset Pricing Model

By Proposition 2, if the operating-profit and the augmented adjustment-cost functions have

the same degree of homogeneity, stock return equals investment return. Ex ante, this implies

that expected stock returns equal expected investment returns.

This ex ante restriction can be tested using the following moment conditions:

E

[(
rS
t+1 −

Π1(Kt+1, Xt+1) − Φ2(It+1, Kt+1) + (1 − δ)Φ1(It+1, Kt+1))

Φ1(It, Kt)

)
⊗ Zt

]
= 0 (27)

where Zt is a vector of instrumental variables known at time t, such as anomaly-related

variables. rS
t+1 is the stock returns of portfolios sorted by the anomaly-related variables. Φ

can be properly parameterized, as in the investment literature (e.g., Hubbard (1998) and

Erickson and Whited (2000)). With the estimated parameters, expected stock returns can

be constructed from economic fundamentals through the expected investment returns.10

Other aspects of the real economy, such as financial constraints and labor adjustment

costs, can be incorporated into the investment-return equation. And empire-building type

10Cochrane (1991) implicitly tests the moment condition (27) by comparing the properties of stock and
investment returns, both at the aggregate level.
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of agency cost can be introduced by assuming managers derive private benefits proportional

to the operating profit (e.g., Stulz (1990)). At the portfolio level, convex costs of adjustment

are perhaps enough because investment at this disaggregated level is smooth. At the firm

level, where lumpy investment is common (e.g., Doms and Dunne (1998)), non-convex costs

can be introduced, such as the wedge between purchase and sale prices of capital and fixed

costs proportional to capital.

4.2 The Q-Framework versus the Beta-Framework

The beta-framework is very popular in empirical finance. In event studies, cumulative

abnormal returns are computed as the difference between realized returns and expected

returns from, for example, the CAPM. Tests are performed to see if cumulative abnormal

returns are on average zero (e.g., Ball and Brown (1968) and Fama, Fisher, Jensen, and Roll

(1969)). In cross-sectional tests, stock returns are regressed on beta and firm characteristics

(e.g., Fama and French (1992)). In time-series tests, mimicking portfolios are formed based

on characteristics of interest. Their average returns are tested to see if they equal zero, and

zero-intercept tests are performed by regressing the portfolio returns on a set of benchmark

factor returns (e.g., Fama and French (1993)).

The null hypotheses in these tests are derived from the CAPM and its various extensions,

either static or conditional, single-factor or multi-factor models. Similar to the CAPM,

all these extensions say that only covariances should explain expected returns. Anomalies

emerge because characteristics often dominate covariances in explaining returns. That only

covariances matter is the basic point of Daniel and Titman (1997), and is taken as “one

general feature of the rational approach” in Barberis and Thaler (2003, p. 1091).

Not necessarily. My results show that characteristics can affect expected returns, often
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in the directions reported in the anomalies literature. But my model is entirely rational.

Therefore, the empirical debate on covariances versus characteristics is not a well-defined

question. And rejecting the CAPM and its close cousins is not equivalent to rejecting efficient

markets (e.g., Fama (1965)) or rational expectations (e.g., Muth (1961) and Lucas (1972)).

Further, the Q-representation is perhaps more useful in practice than the beta-

representation. The reason is that the right-hand side of the Q-representation contains

only firm characteristics. And measuring characteristics basically amounts to loading and

cleaning data from Compustat, much easier than measuring covariances.

Measuring covariances is difficult. First, consumption-based asset pricing has not settled

on the right form of the SDF, with which returns are supposed to covary. Second, all dynamic

models imply that covariances are time-varying. But despite recent theoretical efforts, no

easy-to-implement econometric specifications have been derived. And estimates of time-

varying covariances in practice often use convenient, but ad hoc specifications yielding results

sensitive to alternative methods. Finally, even if we assume the priced common factors are

known and covariances are constant, estimates of expected returns from beta-pricing models

are extremely imprecise even at the industry level (e.g., Fama and French (1997)).

The difficulty of measuring covariances is illustrated vividly in Berk, Green, and Naik

(1999) and Gomes, Kogan, and Zhang (2003). In these models, covariances are sufficient

statistics of expected returns. And true covariances indeed dominate characteristics in cross-

sectional regressions in their simulations. But when estimated covariances are used, they are

dominated by characteristics. Unfortunately, true covariances are unobservable in practice.

In sum, it is perhaps time to explore alternative empirical models of expected returns,

for example, along the lines of the Q-representation, without having to estimate covariances.

34



4.3 The Q-Framework versus the SDF-Framework

The Q-framework complements the SDF-framework that is the workhorse of consumption-

based asset pricing (e.g., Cochrane (2001) and Campbell (2003)).

Tests under the SDF-framework are usually done by using Et[Mt+1r
S
t+1] = 1 as moment

conditions in GMM, where Mt+1 is the SDF that can be parameterized using aggregate

consumption (e.g., Hansen and Singleton (1982)). This framework has had some success

in understanding anomalies (e.g., Lettau and Ludvigson (2001), Lustig and Nieuwerburgh

(2004), Parker and Julliard (2004), and Piazzesi, Schneider, and Tuzel (2004)).

But the SDF-framework still leaves plenty of room open. Most important, anomalies are

empirical relations between expected returns and firm characteristics. But characteristics

do not enter the moment conditions directly. They are buried in rS
t+1, i.e., portfolio returns

sorted on characteristics. Further, even if the moment conditions survive over-identification

tests, it is not clear what economic mechanisms drive the results. For example, the empirical

success of Lettau and Ludvigson (2001) and Lustig and Nieuwerburgh (2004) relies on the

returns of value stocks covarying more with the price of risk in bad times than the returns of

growth stocks. But why this occurs can perhaps be better understood by modeling expected

returns and firm characteristics together, for example, in the Q-theoretical framework.

For another example, the important contributions of Bansal, Dittmar, and Lundblad

(2004) and Campbell and Vuolteenaho (2004) show that the value anomaly can be explained

because value stocks have higher cash-flow betas than growth stocks. But the underlying

economic mechanism is unknown because firm dynamics are not modeled.

Characteristics do enter the SDF framework directly in Cochrane (1996), Gomes, Yaron,

and Zhang (2004), and Whited and Wu (2004). In Cochrane and Gomes et al., the SDF is
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a linear function of aggregate investment return constructed using aggregate fundamentals.

But firm characteristics are absent. White and Wu test Et[Mt+1r
I
t+1] = 1 where Mt+1 is

a linear combination of the Fama-French (1993) factors. Firm characteristics show up in

constructing firm-level investment returns, rI
t+1. But stock returns are now absent.

In all, by linking expected returns directly to characteristics in a rigorous, yet easy-to-

implement framework, the Q-theory can cover the grounds missing from the SDF framework.

In terms of the big picture, Fama (1991, p. 1610) calls for a coherent story that “(1) relates

the cross-section properties of expected returns to the variation of expected returns through

time, and (2) relates the behavior of expected returns to the real economy in a rather detailed

way”. Consumption-based asset pricing is naturally fit for the first goal, but production-

based asset pricing is perhaps better equipped to achieve the second. And the coherent story

envisioned by Fama can be provided by the conceptual framework of general equilibrium.

4.4 The Q-framework versus the Ohlson Framework

The Q-framework is also related to Ohlson’s (1995) residual income valuation model that is

extremely popular in capital markets research in accounting (e.g., Frankel and Lee (1998),

Dechow, Hutton, and Sloan (1999), and Kothari (2001)).

The valuation model says that:

Pt

Bt

= 1 +

∑∞
j=1 E[Yt+j − rBt+j−1]/(1 + r)j

Bt

(28)

where Bt is book equity at time t, Yt+j is earnings at t+j, Yt+j −rBt+j−1 is the residual

income, defined as the difference between earnings and the opportunity cost of capital, and r

is the discount rate for the expected residual income or the long-term expected stock return.
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The model has several predictions.11 First, controlling for expected residual earnings and

expected book equity relative to current book equity, a higher book-to-market equity implies

a higher expected return. Second, given book-to-market, firms with higher expected residual

income relative to current book equity have higher expected returns. Third, controlling

for book-to-market and the expected growth in book equity or investment growth, more

profitable firms or firms with higher expected earnings relative to current book equity have

higher expected returns. Finally, given book-to-market and expected profitability, firms with

higher expected growth in book equity have lower expected returns.

These predictions are largely consistent with the predictions of the Q-model, implying

that the Q-model is potentially useful in guiding empirical capital markets research.

But there is one notable difference. The Ohlson model says that high expected investment

growth leads to low expected returns, but the Q-model says otherwise. Liu, Warner, and

Zhang (2003) find that firms with higher expected investment growth earn higher average

returns than firms with lower expected investment growth, but the average-return difference

is only marginally significant. Further tests can sort out these two competing hypotheses.

Several recent papers use valuation models to estimate expected returns (e.g., Claus and

Thomas (2001) and Gebhardt, Lee, and Swaminathan (2001)). They find that the estimated

equity premium is only about 2–3%, much lower than the historical average. Kothari (2001)

argues that their long-term growth forecasts, especially the terminal perpetuity growth rates,

seem too low. In contrast, estimating expected returns from the Q-model only requires inputs

of the one-period-ahead profitability and investment rate, which should be easier to forecast

than their long-term counterparts.

11The discussion on the predictions from the Ohlson model follows that of Fama and French (2004).
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More important, valuation models are accounting models. In contrast, based on the first

principles, the Q-theory can provide a microeconomic foundation that links expected returns

to the real economy in a rather detailed way.

5 Conclusion

A voluminous literature on capital markets anomalies in financial economics has mounted

an enormous challenge to efficient markets with rational expectations. These anomalies are

empirical relations of future stock returns with firm characteristics, corporate policies, and

events, relations not predicted by current rational asset pricing theories.

Using a neoclassical model, I demonstrate analytically that, much like aggregate expected

returns that vary with business cycles (e.g., Campbell and Cochrane (1999)), expected

returns in the cross-section vary with firm characteristics, corporate policies, and events.

Accordingly, the model is qualitatively consistent with many anomalies often interpreted

as over- and under-reaction in inefficient markets. These anomalies include the relations

of future stock returns with market-to-book, investment and disinvestment rates, seasoned

equity offerings, tender offers and stock repurchases, dividend omissions and initiations,

expected profitability, profitability, and more important, earnings announcement. The model

also implies a new empirical asset pricing model that avoids the difficult task of estimating

covariances and long-term growth rates.

The basic point of this paper is reminiscent in spirit of the point made by Kydland and

Prescott (1982). The Kydland-Prescott paper says that the neoclassical framework is a good

start to build an equilibrium theory of business cycles. Monetary misperceptions and sticky

prices from Keynesian economics may be important, but their effects can be better quantified
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and hence understood using the neoclassical benchmark. Similarly, this paper says that the

neoclassical framework is a good start to build an equilibrium theory of the cross-section

of returns. Over- and under-reaction from behavioral finance may be important, but their

effects can be better quantified and hence understood using the neoclassical benchmark.

From this perspective, I view my theoretical work as complementary to behavioral

theories of Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subramanyam

(1998), and Hong and Stein (1999). In explaining anomalies, these models assume constant

expected returns and focus on systematic variations in abnormal returns. By constructing

an economic foundation for time-varying expected returns in the cross section, I provide a

rational benchmark against which the importance of investor sentiment can be gauged.

The equilibrium analysis of the cross section of returns has only started. Much more work

remains to be done. The Q-theory can be extended to model IPO, mergers and acquisitions,

spinoffs, debt-financing, and other corporate decisions. We can then evaluate whether the

theory is consistent with long-term stock price drift associated with these events. Numerically

solved models are also valuable for producing richer economic insights (for example, cyclical

variation of equity financing) than those available analytically. To obtain quantitative

predictions, computational experiments can be implemented in the style of Kydland and

Prescott (1982). Finally, several authors have used the real options framework to explain

anomalies (e.g., Berk, Green, and Naik (1999) and Carlson, Fisher, and Giammarino (2004a,

2004b)). It is interesting to work out the interrelations between the Q-based and the real

options-based explanations. To this end, a framework similar to that of Abel, Dixit, Eberly,

and Pindyck (1996) can be useful.

More important, the Q-representation of expected returns can be implemented empiri-
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cally to see to what extent the economic mechanisms identified in this paper can explain

the anomalies quantitatively. More direct tests are also available. We can measure earnings

momentum after controlling for the pricing effects of expected profitability or profitability.

Further, the Q-theory implies that the investment, value, payout, and SEO anomalies are

basically the same phenomenon driven by optimal investment. It is interesting to measure

how much payout and SEO anomalies subsist after controlling for capital investment.
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A Anomalies

This appendix briefly reviews the empirical literature on the anomalies that are the targets

of my theoretical explanations in this paper.

1. The Investment Anomaly Disinvesting firms earn higher average returns (e.g., Miles

and Rosenfeld (1983), Cusatis, Miles, and Woolridge (1993)), but investing firm earn lower

average returns in the future (e.g., Richardson and Sloan (2003), Titman, Wei, and Xie

(2003), Anderson and Garcia-Feijóo (2004), and Xing (2004)). Titman et al. also shows that

the anomaly is stronger for firms with higher operating income-to-asset ratios. Cusatis et al.

attribute their evidence to market underreaction. Richardson and Sloan and Titman et al.

interpret their evidence as investors underreacting to empire-building implications of capital

investment. Anderson and Garcia-Feijóo interpret their evidence as consistent with the real

options models of Berk, Green, and Naik (1999) and Gomes, Kogan, and Zhang (2003). Xing

interprets her evidence using an optimal investment model similar to that in Zhang (2004).

2. The Value Anomaly Value stocks earn higher average returns than growth stocks

(e.g., Graham and Dodd (1934), Rosenberg, Reid, and Lanstein (1985), Fama and French

(1992), and Lakonishok, Shleifer, and Vishny (1994)). Fama and French (1993) also

document that the value anomaly is stronger in small firms than in big firms where firm

size is measured as the ex-dividend market value.

3. The Payout Anomaly Anomalous long-term positive abnormal returns apply to

firms paying cash-flow out to shareholders, and are often interpreted as underreaction.

Lakonishok and Vermaelen (1990) find positive long-term abnormal returns when firms

tender for their stocks. Ikenberry, Lakonishok, and Vermaelen (1995) find that the average

abnormal four-year return after the announcements of open market share repurchases is

significantly positive. And the average abnormal return is much higher for value firms, but

is negative although insignificant for growth firms. Finally, Michaely, Thaler, and Womack

(1995) find that stock prices underreact to the negative information in dividend omissions

and the positive information in initiations.

4. The SEO-Underperformance Anomaly Anomalous long-term negative abnormal

returns apply to firms raising capital from external markets, and are often interpreted as

overreaction. Loughran and Ritter (1995) and Spiess and Affleck-Graves (1995) document

that firms conducting seasoned equity offerings (SEO) earn much lower returns over the
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next three to five years than nonissuing firms with similar characteristics. Brav, Geczy,

and Gompers (2000) and Eckbo, Masulis, and Norli (2000) find that the underperformance

is more pronounced for small firms. A frequent conclusion in this literature is that firms

time their external financing decisions to exploit the mispricing of their securities in capital

markets because of investor overreaction (e.g., Ritter (2003)).

5. The Expected-Profitability Anomaly Stock prices “underreact” to new information

about future cash flow. Shocks to expected cash flows are positively correlated with shocks

to expected returns (e.g., Frankel and Lee (1998), Dechow, Hutton, and Sloan (1999), Cohen,

Gompers, and Vuolteenaho (2002), Vuolteenaho (2002), and Fama and French (2004)).

Lettau and Ludvigson (2004) find similar evidence at the aggregate level. Cohen et al.

and Vuolteenaho also find that the magnitude of this correlation is higher in small firms.

6. The Profitability Anomaly Given market price relative to cash flows or book

equity, more profitable firms earn higher average returns (e.g., Haugen and Baker (1996)

and Piotroski (2000)). Piotroski also shows that this relation is stronger in small firms.

7. The Post-Earnings-Announcement Drift Ball and Brown (1968) and Bernard and

Thomas (1989, 1990) document that stock price drifts in the direction of earnings surprise,

defined as the scaled change in earnings. Bernard (1993) shows that the magnitude of the

drift is inversely related to the market value. And Chan, Jegadeesh, and Lakonishok (1996)

find similar evidence using time series and cross-sectional regressions. This anomaly is often

interpreted as underreaction to earnings news.

B Proofs

Proof of Lemma 1 By the Principle of Optimality (e.g., Theorem 9.2 of Stokey, Lucas,

and Prescott (1989)), the firm’s value function (6) can be rewritten recursively as:

V (Kt, Xt) = max
Kt+1

Π(Kt, Xt) − Ψ(Kt, Kt+1) + Et[Mt+1V (Kt+1, Xt+1)] (B1)

where

Ψ(Kt, Kt+1) ≡ Φ (Kt+1 − (1 − δ)Kt, Kt) (B2)

The envelope condition is:

V1(Kt, Xt) = Π1(Kt, Xt) − Ψ1(Kt, Kt+1) (B3)
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and the first-order condition is:

−Ψ2(Kt, Kt+1) + Et[Mt+1V1(Kt+1, Xt+1)] = 0 (B4)

Next, from equation (B2),

Ψ1(Kt, Kt+1)Kt + Ψ2(Kt, Kt+1)Kt+1 = G′

(
Kt+1

Kt

− (1 − δ)

)
Kt+1K

α−1
t + αG

(
Kt+1

Kt

− (1 − δ)

)
Kα

t

+ G′

(
Kt+1

Kt

− (1 − δ)

)
Kα−1

t Kt+1 = αΨ(Kt, Kt+1) (B5)

Now plugging equation (B3) into equation (B4) yields the stochastic Euler equation:

−Ψ2(Kt, Kt+1) + Et[Mt+1 (Π1(Kt+1, Xt+1) − Ψ1(Kt+1, Kt+2))] = 0 (B6)

Expanding the value function (B1) recursively and using equations (2) and (B5) to obtain:

αV (Kt, Xt) = Π1(Kt, Xt)Kt − Ψ1(Kt, Kt+1)Kt − Ψ2(Kt, Kt+1)Kt+1

+ Et [Mt+1 [Π1(Kt+1, Xt+1)Kt+1 − Ψ1(Kt+1, Kt+2)Kt+1 − Ψ2(Kt+1, Kt+2)Kt+2

+ Et+1[Mt+1,t+2V (Kt+2, Xt+2)]]] = · · · = Π1(Kt, Xt)Kt − Ψ1(Kt, Kt+1)Kt = V1(Kt, Xt)Kt

where the third equality follows from recursive substitution and from equation (B6). The

last equality follows from the envelope condition (B3).

Proof of Lemma 2 Solving equation (9) forward yields

qt = Et [Mt+1(Π1(Kt+1, Xt+1) − Φ2(It+1, Kt+1))] + Et [Mt+1(1 − δ)qt+1]

= Et [Mt+1(Π1(Kt+1, Xt+1) − Φ2(It+1, Kt+1))] +

Et [Mt+1(1 − δ)Et+1 [Mt+2(Π1(Kt+2, Xt+2) − Φ2(It+2, Kt+2) + (1 − δ)qt+2)]]

= Et [Mt+1(Π1(Kt+1, Xt+1) − Φ2(It+1, Kt+1)) + Mt+2(1 − δ)(Π1(Kt+2, Xt+2) − Φ2(It+2, Kt+2))]

+ Et

[
Mt+2(1 − δ)2qt+2

]
= · · · = Et

[
∞∑

j=1

Mt+j(1 − δ)j−1(Π1(Kt+j, Xt+j) − Φ2(It+j, Kt+j))

]

where the last two equalities follow from recursive substitution.

Proof of Proposition 1 From Proposition 1, V1(Kt, Xt)Kt =αV (Kt, Xt). Both sides can

be rewritten as: Π1(Kt, Xt)Kt−Φ2(It, Kt)Kt + qt(1− δ)Kt = αPt +αΠ(Kt, Xt)−αΦ(It, Kt).
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Simplifying using homogeneity of Π(Kt, Xt) and Φ(It, Kt) yields qt(1 − δ)Kt = αPt −

Φ1(It, Kt)It. Equation (12) now follows because qt =Φ1(It, Kt) from equation (8).

Proof of Lemma 3 The first inequality is shown in the text. Now from Lemma 1 and

equations (8) and (13),

Φ12(It, Kt) =
∂qt

∂Kt

= Et

[
Mt+1

∂V1(Kt+1, Xt+1)

Kt

]
= (1 − δ)Et[Mt+1V11(Kt+1, Xt+1)] (B7)

But differentiating both sides of αV (Kt, Xt)=V1(Kt, Xt)Kt yields:

V11(Kt, Xt) =
(α − 1)

Kt

V1(Kt, Xt) =
(α − 1)

Kt

α
V (Kt, Xt)

Kt

=
(α − 1)

Kt

αQ̂t ≤ 0 (B8)

This says that the value function is weakly concave in capital. Now plugging equation (B8)

into (B7) yields: Φ12(It, Kt) = (1 − δ)(α − 1) 1
Kt+1

Et[Mt+1αQ̂t+1] = (1 − δ)(α − 1) qt

Kt+1
≤ 0.

Differentiating both sides with respect to Kt yields: Φ122(It, Kt) = (α − 1)(1 − δ) 1
Kt+1

∂qt

∂Kt
+

(α − 1)(1 − δ)2qt

(
− 1

K2
t+1

)
≥ 0.

Proof of Proposition 2 First express stock return in equation (16) in terms of cum-

dividend firm value as rS
t+1 = V (Kt+1,Xt+1)

V (Kt,Xt)−Π(Kt,Xt)+Ψ(Kt,Kt+1)
. The recursive value function (B1)

evaluated at the optimum then yields Et[Mt+1r
S
t+1]=1.

Combining equations (B3) and (B4) yields an alternative investment return, rI
t+1:

rI
t+1 =

V1(Kt+1, Xt+1)

Ψ2(Kt, Kt+1)
=

Π1(Kt+1, Xt+1) − Ψ1(Kt+1, Kt+2)

Ψ2(Kt, Kt+1)
(B9)

which is equal to equation (15) since (B2) implies Ψ2 =Φ1 and Ψ1 =Φ2 − Φ1(1 − δ). Now,

rI
t+1 =

V1(Kt+1, Xt+1)

Ψ2(Kt, Kt+1)
=

V1(Kt+1, Xt+1)Kt+1

αΨ(Kt, Kt+1) − Ψ1(Kt, Kt+1)Kt

=
V1(Kt+1, Xt+1)Kt+1

V1(Kt, Xt)Kt − Π1(Kt, Xt)Kt + αΨ(Kt, Kt+1)

=
αV (Kt+1, Xt+1)

αV (Kt, Xt) − αΠ(Kt, Xt) + αΨ(Kt, Kt+1)
= rS

t+1

where the first equality follows from equation (B9), the second follows from equation (B5),

the third equality follows from the envelope condition (B3), and the fourth equality follows

from Lemma 1 and equation (2).
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Lemma 4 Define the numerator of investment return:

Ut+1 ≡ Π1(Kt+1, Xt+1) − Φ2(It+1, Kt+1) + (1 − δ)Φ1(It+1, Kt+1) (B10)

Under Assumptions 1–3, Ut+1 >0, and the (gross) returns are positive, rt+1 = Ut+1

Φ1(It,Kt)
>0.

Proof. Π1 >0 and Φ2≤0 follow from Assumptions 1 and 2, respectively. And Φ1 = qt >0

follows from Lemma 3.

Proof of Proposition 3 From equation (2), Π1(Kt, Xt)=α
(

Πt

Kt

)
=α

(
Nt

Kt
+ δ

)
. Equation

(15) then implies that

∂Et[rt+1]

∂Et[Nt+1/Kt+1]
=

α

qt

+
Kα−1

t+1

qt

Et

[(
(1 − α)G′

(
It+1

Kt+1

)
+ G′′

(
It+1

Kt+1

)
Kt+2

Kt+1

)
∂(It+1/Kt+1)

∂qt+1

∂qt+1

∂Et[Nt+1/Kt+1]

]

But equation (8) implies that ∂(It+1/Kt+1)
∂qt+1

=
K1−α

t+1

G′′(It+1/Kt+1)
and equation (10) implies that

∂qt+1

∂Et[Nt+1/Kt+1]
= ρπ

rft+1
. Using these results and noting that qt =αQt =α Pt

Kt+1
yields:

∂Et[rt+1]

∂Et[Nt+1/Kt+1]
=

Kt+1

Pt

(
1 +

1

α
Et

[(
(1 − α)

G′(It+1/Kt+1)

G′′(It+1/Kt+1)
+

Kt+2

Kt+1

)
ρπ

rft+1

])

which is positive and decreasing in the market value, Pt.

Proof of Proposition 4 Proposition 4 follows directly from the proof of Proposition 3 by

noting that ∂Et[rt+1]
∂(Nt/Kt)

= ∂Et[rt+1]
∂Et[Nt+1/Kt+1]

∂Et[Nt+1/Kt+1]
∂(Nt/Kt)

=ρπ
∂Et[rt+1]

∂Et[Nt+1/Kt+1]
.

Proof of Proposition 5 Proposition 5 also follows directly from the proof of Proposition

3 by noting that ∂Et[rt+1]
∂επ

t
= ∂Et[rt+1]

∂Et[Nt+1/Kt+1]
∂Et[Nt+1/Kt+1]

∂(Nt/Kt)
∂Et[Nt/Kt]

∂επ
t

=ρπ
∂Et[rt+1]

∂Et[Nt+1/Kt+1]
.

Proof of Proposition 6 From equations (4) and (15),

rt+1 =
Ut+1

Φ1(It, Kt)
=

Ut+1

G′(It/Kt)K
α−1
t

(B11)

∂Et[rt+1]

∂(It/Kt)
= −

Et[Ut+1]

Kα−1
t [G′(It/Kt)]2

G′′

(
It

Kt

)
+

1

Φ1(It, Kt)

∂Et[Ut+1]

∂(It/Kt)
(B12)

where the first term in equation (B12) is less than zero because Assumption 3 implies

G′′(·) > 0. It then suffices to show that ∂Et[Ut+1]
∂(It/Kt)

< 0. But plugging equation (3) into (B10)
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yields:

Et[Ut+1] = Et

[
Π1

([
It

Kt

+ (1 − δ)

]
Kt, Xt+1

)

− Φ2

(
Kt+2 − (1 − δ)

[
It

Kt

+ (1 − δ)

]
Kt,

[
It

Kt

+ (1 − δ)

]
Kt

)

+ (1 − δ)Φ1

(
Kt+2 − (1 − δ)

[
It

Kt

+ (1 − δ)

]
Kt,

[
It

Kt

+ (1 − δ)

]
Kt

)]
(B13)

Differentiating both sides with respect to (It/Kt) yields:

∂Et[Ut+1]

∂(It/Kt)
= Et[Π11(Kt+1, Xt+1)Kt + 2(1 − δ)Φ12(It+1, Kt+1)Kt − Φ22(It+1, Kt+1)Kt

− (1 − δ)2Φ11(It+1, Kt+1)Kt] < 0 (B14)

where the inequality follows from Assumptions 1 and 2 and Lemma 3. Finally, plugging

equations (2), (B10), (B14), and (21) into (B12) and using Π11(Kt+1, Xt+1) = α(α −

1)Πt+1

Kt+1

1
Kt+1

:

∂

∣∣∣∣
∂Et[rt+1]

∂(It/Kt)

∣∣∣∣/∂
(

Πt

Kt

)
=

αρπG′′(It/Kt)

Φ1(It, Kt)G′(It/Kt)
+ α(1 − α)ρπ

Kt

Kt+1

> 0 (B15)

Proof of Proposition 7 From the investment-return equation (15),

∂Et[rt+1]

∂Qt

= −
Et[Ut+1]

αQ2
t

+
1

αQt

∂Et[Ut+1]

∂Qt

(B16)

By Lemma 4, to show ∂Et[rt+1]
∂Qt

< 0, it suffices to show that ∂Et[Ut+1]
∂Qt

< 0. But

It/Kt = G′−1(qtK
1−α
t ), from equation (8). Writing qt further as αQt, plugging It/Kt

into equation (B13), and using the Inverse Function Theorem yield ∂(It/Kt)/∂Qt =

αK1−α
t /G′′(G′−1(αQtK

1−α
t )), where G′−1(·) is the inverse function of G′. Now by the chain

rule and equation (B14),

∂Et[Ut+1]

∂Qt

=
αK1−αKt

G′′
(
G′−1(αQtK

1−α
t )

)Et[Π11(Kt+1, Xt+1) + 2(1 − δ)Φ12(It+1, Kt+1)

− Φ22(It+1, Kt+1) − (1 − δ)2Φ11(It+1, Kt+1)] < 0 (B17)

where the inequality follows because Π11≤0, Φ12≤0, Φ22≥0, and Φ11 >0.
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To establish the second inequality in the proposition, it suffices to show:

∂2Et[rt+1]

∂Q2
t

> 0 (B18)

because the chain rule of partial derivatives implies that ∂
∣∣∣∂Et[rt+1]

∂Qt

∣∣∣ /∂Pt = −∂2Et[rt+1]
∂Qt∂Pt

=

−∂
(

∂Et[rt+1]
∂Qt

∂Qt

∂Pt

)
/∂Qt = −∂2Et[rt+1]

∂Q2
t

∂Qt

∂Pt
= −∂2Et[rt+1]

∂Q2
t

1
Kt+1

. From equation (B16), ∂2Et[rt+1]

∂Q2
t

=

2Et[Ut+1]

αQ3
t

− 2
αQ2

t

∂Et[Ut+1]
∂Qt

+ 1
αQt

∂2Et[Ut+1]

∂Q2
t

. To show equation (B18), it suffices to show ∂2Et[Ut+1]

∂Q2
t

≥0

because ∂Et[Ut+1]
∂Qt

<0.

For notational convenience, denote the term in the conditional expectation in equation

(B17) as Wt+1 that is negative. Now substituting Kt+1 =
[
G′−1(αQtK

1−α
t ) + (1 − δ)

]
Kt and

It+1 =Kt+2 − (1 − δ)
[
G′−1(αQtK

1−α
t ) + (1 − δ)

]
Kt into equation (B17) and differentiating

the equation with respect to Qt yield:

∂2Et[Ut+1]

∂Q2
t

= −α2K
2(1−α)
t Kt

G′′′(It/Kt)

[G′′(It/Kt)]
3 Et[Wt+1] +

αK1−αKt

G′′(αQtK
1−α
t )

∂Et[Wt+1]

∂Qt

(B19)

To show ∂2Et[Ut+1]

∂Q2
t

≥0, it suffices to show that ∂Et[Wt+1]
∂Qt

≥0 because the first term in equation

(B19) is nonnegative (Lemma 3 and Assumption 5 imply that Wt+1 <0 and G′′′(·)≥0 because

Φ111 ≥ 0). But, ∂Et[Wt+1]
∂Qt

=
αK1−α

t Kt

G′′(It/Kt)
Et[Π111(Kt+1, Xt+1) − 3(1 − δ)2Φ112(It+1, Kt+1)+3(1 −

δ)Φ122(It+1, Kt+1) − Φ222(It+1, Kt+1) + (1 − δ)3Φ111(It+1, Kt+1)] ≥ 0, where the inequality

follows from Assumption 5 and Lemma 3.

Proof of Proposition 8 ∂2Et[rt+1]

∂Q2
t

> 0 follows from equation (B18). Equation (8) and

Proposition 1 imply that Qt =G′(It/Kt)K
α−1
t /α, which in turn implies that

∂Qt

∂(It/Kt)
=

1

α
G′′

(
It

Kt

)
Kα−1

t > 0 (B20)

∂2Qt

∂(It/Kt)∂Pt

=
∂(1/Kt+1)

∂(It/Kt)
= −

Kt

K2
t+1

< 0 (B21)

Now, ∂
∣∣∣∂Et[rt+1]

∂(It/Kt)

∣∣∣ /∂Pt =−∂
(

∂Et[rt+1]
∂(It/Kt)

)
/∂Pt =−∂

(
∂Et[rt+1]

∂Qt

∂Qt

∂(It/Kt)

)
/∂Pt =−∂2Et[rt+1]

∂Qt∂Pt

∂Qt

∂(It/Kt)
−

∂Et[rt+1]
∂Qt

∂2Qt

∂(It/Kt)∂Pt
. From ∂Et[rt+1]

∂Qt
< 0 and equations (B20) and (B21), to show the second
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inequality in the proposition, it suffices to show ∂2Et[rt+1]
∂Qt∂Pt

>0. But,

∂2Et[rt+1]

∂Qt∂Pt

= ∂

(
∂Et[rt+1]

∂Qt

∂Qt

∂Pt

)
/∂Qt =

∂2Et[rt+1]

∂Q2
t

1

Kt+1

+
∂Et[rt+1]

∂Qt

∂2Qt

∂Qt∂Pt

=
∂2Et[rt+1]

∂Q2
t

1

Kt+1

> 0 (B22)

and ∂
∣∣∣∂Et[rt+1]

∂(It/Kt)

∣∣∣ /∂Qt = − ∂2Et[rt+1]
∂(It/Kt)∂Qt

= −∂
(

∂Et[rt+1]
∂Qt

∂Qt

∂(It/Kt)

)
/∂Qt = −∂2Et[rt+1]

∂Q2
t

∂Qt

∂(It/Kt)
+

∂Et[rt+1]
∂Qt

∂2Qt

∂(It/Kt)∂Qt
= −∂2Et[rt+1]

∂Q2
t

∂Qt

∂(It/Kt)
< 0, where the equality follows because ∂2Qt

∂(It/Kt)∂Qt
=

∂
(

∂Qt

∂Qt

)
/∂

(
It

Kt

)
=0.

Finally, taking partial derivative of equation (B12) with respect to It

Kt
yields: ∂2Et[rt+1]

∂(It/Kt)2
=

2[G′′(It/Kt)]2−G′′′(It/Kt)G′(It/Kt)

Kα−1
t [G′(It/Kt)]2

Et[Ut+1] −
2G′′(It/Kt)

Kα−1
t [G′(It/Kt)]2

∂Et[Ut+1]
∂(It/Kt)

+ 1
G′(It/Kt)K

α−1
t

∂2Et[Ut+1]
∂(It/Kt)2

. The

second term is positive because ∂Et[Ut+1]
∂(It/Kt)

< 0 from equation (B14), and the third term is

nonnegative because ∂2Et[Ut+1]
∂(It/Kt)2

= Kt
∂Et[Wt+1]
∂(It/Kt)

= Kt
∂Et[Wt+1]

∂Qt

∂Qt

∂(It/Kt)
≥ 0. And the first term is

nonnegative when 2
[
G′′

(
It

Kt

)]2

≥G′′′
(

It

Kt

)
G′

(
It

Kt

)
.

Proof of Proposition 9 First, when Πt−Φt ≤ 0 or Ct = 0, the two derivatives in the

proposition are exactly zero. Now consider the case when Ct > 0; so I can ignore the

indicator function. Equation (25) implies that

Ct

Kt

=
Πt

Kt

− G

(
It

Kt

)
Kα−1

t or
It

Kt

= G−1

[(
Πt

Kt

−
Ct

Kt

)
K1−α

t

]
(B23)

where G−1(·) is the inverse function of G, and is also an increasing function because G is

around the neighborhood of optimal investment rate.

Now by the chain rule, ∂Et[rt+1]
∂(Ct/Kt)

= ∂Et[rt+1]
∂(It/Kt)

∂(It/Kt)
∂(Ct/Kt)

= −∂Et[rt+1]
∂(It/Kt)

K1−α

G′(It/Kt)
> 0, where the

inequality follows because Proposition 6 says that ∂Et[rt+1]
∂(It/Kt)

< 0. Next, again by the chain

rule, ∂2Et[rt+1]
∂(Ct/Kt)∂Qt

= −∂
(

∂Et[rt+1]
∂Qt

∂Qt

∂(Ct/Kt)

)
/∂Qt = −∂2Et[rt+1]

∂Q2
t

∂Qt

∂(Ct/Kt)
+ ∂Et[rt+1]

∂Qt

∂2Qt

∂(Ct/Kt)∂Qt
=

∂2Et[rt+1]

∂Q2
t

∂Qt

∂(It/Kt)
∂(It/Kt)
∂(Ct/Kt)

< 0, where the inequality follows from the inequality (B18) and

equation (B20).

Proof of Proposition 10 When Ot =0, the two derivatives in the proposition are exactly

zero. Consider the case when Ot >0. Now equation (26) implies that

Ot

Kt

= G

(
It

Kt

)
Kα−1

t −
Πt

Kt

or
It

Kt

= G−1

[(
Ot

Kt

+
Πt

Kt

)
K1−α

t

]
(B24)
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Now by the chain rule and Proposition 6, ∂Et[rt+1]
∂(Ot/Kt)

= ∂Et[rt+1]
∂(It/Kt)

∂(It/Kt)
∂(Ot/Kt)

= ∂Et[rt+1]
∂(It/Kt)

K1−α
t

G′(It/Kt)
< 0.

And again by the chain rule, ∂
∣∣∣ ∂Et[rt+1]
∂(Ot/Kt)

∣∣∣ /∂Pt =− ∂2Et[rt+1]
∂(Ot/Kt)∂Pt

=−∂
(

∂Et[rt+1]
∂Qt

∂Qt

∂(Ot/Kt)

)
/∂Pt =

−∂2Et[rt+1]
∂Qt∂Pt

∂Qt

∂(Ot/Kt)
− ∂Et[rt+1]

∂Qt

∂2Qt

∂(Ot/Kt)∂Pt
. To show the left-hand-side is negative, it suffices

to show that ∂2Qt

∂(Ot/Kt)∂Pt
< 0 because ∂2Et[rt+1]

∂Qt∂Pt
> 0 from equation (B22), ∂Qt

∂(Ot/Kt)
=

∂Qt

∂(It/Kt)
∂(It/Kt)
∂(Ot/Kt)

> 0, and ∂Et[rt+1]
∂Qt

< 0. But, ∂2Qt

∂(Ot/Kt)∂Pt
= ∂(1/Kt+1)

∂(It/Kt)
∂(It/Kt)
∂(Ot/Kt)

< 0, where the

inequality follows from equation (B21) and ∂(It/Kt)
∂(Ot/Kt)

>0.
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