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1 Introduction

We reanalyze data from a well known observational study by Connors et al. (1996) on the

impact of Swan-Ganz catherization on mortality outcomes. The Swan-Ganz catheter is a

device placed in patients in the intensive care unit (ICU) to guide therapy. Connors et al.

(1996) examine data on mortality outcomes among a population of patients admitted

to the ICU and reach the controversial conclusion that patients who receive Swan-Ganz

catheterization during their first day in the ICU are 1.27 times more likely to die within

180 days of their admission. Even at 7 days after ICU admission, Connors et al. (1996)

find that catheterization increases mortality. This conclusion was very surprising to ICU

doctors, many of whom continue to use the Swan-Ganz catheter to guide therapy in the

ICU.

The statistical strategy used by Connors et al. (1996) – the propensity score matching

method – assumes away the possibility of unobserved differences between catheterized

and non-catheterized patients. Our analysis, by comparison, permits the possibility of

unobserved differences. We rely on an instrument for Swan-Ganz catheterization to

bound the average effect of catheterization on mortality. We consider the bounds of

Shaikh and Vytlacil (2004), which exploit not only the instrumental variable, but also

threshold crossing properties for both the treatment and the outcome variables. The

assumptions underlying these bounds are therefore stronger than those underlying the

bounds of Manski (1990). We also extend the analysis of Shaikh and Vytlacil (2004) to

exploit the assumption that doctors are catheterizing those patients who have the worst

latent health.

We use the day of the week that the patient was admitted to the ICU as an instrument

for Swan-Ganz catheterization. This same variable has been used as an instrument for

treatment by Hamilton et al. (2000) in their study of the effect of queuing time on

mortality in a Canadian population undergoing hip-fracture surgery. We argue that

this variable meets the two crucial requirements for an instrument’s validity. First, it

is strongly correlated with the application of the treatment: on weekends, patients are

less likely to be catheterized. Second, within observable risk classes, it is uncorrelated

with outcomes; that is, mortality rates have little to do with the particular day of the

week that a patient is admitted to the ICU and more to do with the arc of the patient’s
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medical condition.

We find that the bounds of Manski (1990) do not permit us to say whether catheter-

ization increases or decreases mortality–stronger assumptions are needed. In contrast,

our application of the bounds of Shaikh and Vytlacil (2004), which imposes mild struc-

tural assumptions in addition to those required by Manski (1990), shows that Swan-Ganz

catheterization increases mortality at 30 days after catheterization and beyond. Impos-

ing the additional assumption that doctors catheterize individuals with the worst latent

health further narrows these bounds.

2 Background on Swan-Ganz Catheterization

The placement of Swan-Ganz catheters is common among ICU patients – over 2 million

patients in North America are catheterized each year. A Swan-Ganz catheter is a slender

tube with sensors that measures hemodynamic pressures in the right side of the heart

and in the pulmonary artery. Once in place, the catheter is often left in place for days,

so it can continuously provide information to ICU doctors. This information is often

used to make decisions about treatment, such as whether to give the patient medications

that affect the functioning of the heart. While there are some risks associated with the

placement of the catheter itself, such complications are rare. Rather, the greater risk may

come from successful catheter placement. Information from Swan-Ganz catheterization

may, for example, lead to false diagnoses of heart failure, which in turn may lead doctors

to administer inappropriate treatments.

Before Connors et al. (1996), Gore et al. (1985) and Zion et al. (1990) also found

found that catheterization increases mortality. Dalen (2001) criticized both studies

because they did not control for clinically important differences between the patients

who had catheters placed and those who did not. The Connors et al. (1996) study was

conceived in part as a response to this criticism. They included a dizzying array of

clinical variables designed to control as exhaustively as possible for observed differences

between catheterized and non-catheterized patients. In addition, Connors et al. (1996)

expanded the set of ICU patients beyond just heart attack patients to all ICU patients.

Ironically, Weil (1998) argued that because Connors et al. (1996) expanded the set of
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patients considered, they failed to take account of important unobserved clinical variables

in their statistical work.

Despite substantial criticism, the publication of the Connors et al. (1996) study was

seminal in the Swan-Ganz catheterization literature. Subsequent studies have focused

on expanding the set of ICU patients considered in the analysis and on minimizing the

possibility of selection bias. There has been one reanalysis of the Connors et al. (1996)

study. Hirano and Imbens (2001) modify the propensity score matching method by

using a model selection procedure to determine which regressors to include in propen-

sity score model. Their main finding is that the Connors et al. (1996) conclusion that

catheterization increases mortality risk is robust to their model selection exercise.

Prior to Connors et al. (1996), attempts to organize a randomized trial failed because

doctors refused to recruit patients into the control group. The belief in the efficacy of

catheterization was so strong that doctors believed it unethical to deny this procedure to

patients on the basis of chance—see Fowler and Cook (2003) and Guyatt (1991). Since

Connors et al. (1996), there have been at least two randomized trials on specialized ICU

populations: Sandham et al. (2003) and Richard et al. (2003). Neither finds statistically

significant differences in mortality between catheterized and non-catheterized patients.

While it would be appealing to compare our results with these trials, substantial dif-

ferences between the populations studied in the trials and this study preclude a direct

comparison.

3 Notation and Assumptions

In this section, we define the notation and assumptions. Let Y be an indicator for patient

death within the given number of days after admission into the ICU unit, and let D be an

indicator for catheterization. Let X be observed individual characteristics determining

mortality and let Z be observed individual characteristics determining catheterization.

We assume that both Y and D are determined by threshold crossing models; that is,

Y ∗ = r(X,D) − ǫ

Y = 1{Y ∗ ≥ 0}
(1)
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D∗ = s(Z) − ν

D = 1{D∗ ≥ 0} ,
(2)

where 1{A} is the indicator function of the event A and ǫ and ν are unobserved random

variables. The latent index Y ∗ may be interpreted as an unobserved measure of health

status, and the latent index D∗ may be interpreted as an unobserved measure of the

desire by hospital staff to conduct the catheterization.

Let Y1 denote the outcome that would be observed if the individual receives treat-

ment, and let Y0 denote the outcome that would be observed if the individual does not

receive treatment. In our framework, these potential outcomes are given by

Y1 = 1{r(X, 1) − ǫ ≥ 0}
Y0 = 1{r(X, 0) − ǫ ≥ 0} .

The effect of catheterization on mortality is Y1−Y0, and the average effect of the catheter-

ization on mortality is E[Y1 − Y0] = Pr{Y1 = 1} − Pr{Y0 = 1} . Only Y1 is observed for

individuals who receive catheterization, and only Y0 is observed for individuals who did

not receive catheterization.

We assume further that (X,Z) ⊥⊥ (ǫ, ν). We thus allow catheterization to be en-

dogenous, reflecting the possible dependence between ǫ and ν, but we assume that all

other regressors are exogenous. We also assume that (ǫ, ν) has a strictly positive density

with respect to Lebesgue measure on R2. This assumption eases the exposition but is

not essential. We also require that there is at least one variable in Z that is not in X;

that is, there is some variable that affects the decision to perform catheterization, but

does not directly affect mortality. Such a variable is often referred to as an instrumental

variable. In our application, we will use an indicator variable for whether the patient

was admitted into the ICU on a weekend (rather than a weekday) for this purpose.

Remark 3.1 Vytlacil (2002) establishes the equivalence between the threshold crossing

model on D defined in (2) and the monotonicity assumption of Imbens and Angrist

(1994). We impose the threshold crossing structure on the equations for both Y and D.

Equivalently, we impose the monotonicity assumption of Imbens and Angrist (1994) on

both Y and D.
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Remark 3.2 An important special case of our model is the bivariate probit model

with structural shift of Heckman (1978), which imposes the further assumptions that

r(X,D) = Xβ + Dα, s(Z) = Zγ, and (ǫ, ν) is distributed bivariate normal with zero

means and unit variances. Our model nests this model as a special case, but does not

require any of its parametric assumptions.

4 Bounds on the Average Treatment Effect

In this section, we develop several different bounds on the average treatment effect. For

ease of exposition, suppose that there are no X covariates and that Z is a binary random

variable. See Remark 4.5 for a discussion of how the results below would change if these

assumptions were relaxed. We assume further that Z is ordered so that Pr{D = 1|Z =

1} > Pr{D = 1|Z = 0}. In our application, Z = 1 therefore corresponds to a admission

into an ICU on a weekday while Z = 0 corresponds to admission on a weekend.

4.1 Bounds of Manski (1990)

Manski (1990) only assumes that Y1 and Y0 are mean independent of Z; that is, Pr{Y0 =

1 | Z} = Pr{Y0 = 1} and Pr{Y1 = 1 | Z} = Pr{Y1 = 1}. Note that

Pr{Y1 = 1 | Z = z} = Pr{D = 1, Y1 = 1 | Z = z} + Pr{D = 0, Y1 = 1 | Z = z}.

Since Y = Y1 when D = 1, Pr{D = 1, Y1 = 1 | Z = z} = Pr{D = 1, Y = 1 | Z = z}
is immediately identified from the distribution of the observed data. Pr{D = 0, Y1 =

1 | Z = z} = Pr{D = 0 | Z = z}Pr{Y1 = 1 | D = 0, Z = z}, on the other hand, is

not identified from the distribution of the observed data since we never observe Y1 for

individuals with D = 0. But 0 ≤ Pr{Y1 = 1 | D = 0, Z = z} ≤ 1, so

Pr{D = 1, Y = 1|Z = z} ≤ Pr{Y1 = 1|Z = z}
≤ Pr{D = 1, Y = 1|Z = z} + Pr{D = 0|Z = z} .

The same argument mutatis mutandis can be used to derive similar bounds on Pr{Y0 =

1|Z = z}. Since Y0 and Y1 are independent of Z by assumption, we have

BL
M ≤ E[Y1 − Y0] ≤ BU

M
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where

BL
M = max

z
{Pr{D = 1, Y = 1|Z = z}}

−min
z
{Pr{D = 0, Y = 1|Z = z} + Pr{D = 1|Z = z}}

BU
M = min

z
{Pr{D = 1, Y = 1|Z = z} + Pr{D = 0|Z = z}}

−max
z

{Pr{D = 0, Y = 1|Z = z}} .

4.2 Bounds of Shaikh and Vytlacil (2004)

Shaikh and Vytlacil (2004) impose the assumptions described in Section 3. Their as-

sumptions, while remaining nonparametric in nature, are stronger than those imposed

by Manski (1990). Under these assumptions,

Pr{Y = 1 | Z = z} = Pr{D = 1, Y = 1 | Z = z} + Pr{D = 0, Y = 1 | Z = z}
= Pr{D = 1, Y1 = 1 | Z = z} + Pr{D = 0, Y0 = 1 | Z = z}
= Pr{ν ≤ s(z), ǫ ≤ r(1)} + Pr{ν > s(z), ǫ ≤ r(0)} .

Recall that we have ordered Z so that Pr{D = 1 | Z = 1} > Pr{D = 1 | Z = 0}, which,

under our assumptions, implies s(1) > s(0). Thus, if r(1) > r(0),

Pr{Y = 1 | Z = 1} − Pr{Y = 1 | Z = 0} = Pr{s(0) < ν ≤ s(1), r(0) < ǫ ≤ r(1)} ,

and if r(1) < r(0) then

Pr{Y = 1 | Z = 1} − Pr{Y = 1 | Z = 0} = −Pr{s(0) < ν ≤ s(1), r(1) < ǫ ≤ r(0)} .

It follows that

Pr{Y = 1 | Z = 1} > Pr{Y = 1 | Z = 0} ⇐⇒ r(1) > r(0)

Pr{Y = 1 | Z = 1} < Pr{Y = 1 | Z = 0} ⇐⇒ r(1) < r(0) .

Note that r(1) ≥ r(0) implies that Y1 ≥ Y0 and r(1) ≤ r(0) implies that Y1 ≤ Y0. It

follows that if Pr{Y = 1 | Z = 1} ≥ Pr{Y = 1 | Z = 0}, for example, then

Pr{Y = 1 | D = 1, Z = z} ≥ Pr{Y0 = 1 | D = 1, Z = z}
Pr{Y = 1 | D = 0, Z = z} ≤ Pr{Y1 = 1 | D = 0, Z = z}
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The resulting bounds on the average treatment effect are given by

BL
SV ≤ E[Y1 − Y0] ≤ BU

SV ,

where

BL
SV = Pr{Y = 1 | Z = 1} − Pr{Y = 1 | Z = 0}

BU
SV = Pr{D = 1, Y = 1 | Z = 1} + Pr{D = 0 | Z = 1} − Pr{D = 0, Y = 1 | Z = 0}

when Pr{Y = 1 | Z = 1} > Pr{Y = 1 | Z = 0},

BL
SV = Pr{D = 1, Y = 1 | Z = 1} − Pr{D = 0, Y = 1 | Z = 0} − Pr{D = 1 | Z = 0}

BU
SV = Pr{Y = 1 | Z = 1} − Pr{Y = 1 | Z = 0}

when Pr{Y = 1 | Z = 1} < Pr{Y = 1 | Z = 0}, and BL
SV = BU

SV = 0 when

Pr{Y = 1 | Z = 1} = Pr{Y = 1 | Z = 0}.

Remark 4.1 The Shaikh and Vytlacil (2004) bounds always lie on one side of zero,

unless Pr{Y = 1 | Z = 1} = Pr{Y = 1 | Z = 0}, in which case the average treatment

effect is identified to be zero. To see this, note that if Pr{Y = 1 | Z = 1} > Pr{Y =

1 | Z = 0}, then the lower bound on the average treatment effect is Pr{Y = 1 | Z =

1} − Pr{Y = 1 | Z = 0} > 0. Conversely, if Pr{Y = 1 | Z = 1} < Pr{Y = 1 | Z = 0},
then the upper bound on the average treatment effect is Pr{Y = 1 | Z = 1} − Pr{Y =

1 | Z = 0} < 0. The bounds of Shaikh and Vytlacil (2004) therefore always identify the

sign of the average treatment effect.

Remark 4.2 Under the assumptions that D is given by (2) and that the unobservables

are independent of Z, it follows from the Theorem 2 of Heckman and Vytlacil (2001)

that the bounds of Manski (1990) may be written as

BL
M = Pr{D = 1, Y = 1|Z = 1} − Pr{D = 0, Y = 1|Z = 0} − Pr{D = 1 | Z = 0}

BU
M = Pr{D = 1, Y = 1|Z = 1} + Pr{D = 0 | Z = 1} − Pr{D = 0, Y = 1|Z = 0} .

Note that if Pr{Y = 1 | Z = 1} ≥ Pr{Y = 1 | Z = 0}, then BU
SV = BU

M . The upper

bounds on the average treatment effect is therefore the same. On the other hand,

BL
SV −BL

M = Pr{D = 0, Y = 1 | Z = 1} − Pr{D = 1, Y = 1 | Z = 0}
+ Pr{D = 1 | Z = 0}

= Pr{D = 0, Y = 1 | Z = 1} + Pr{D = 1, Y = 0 | Z = 0} ≥ 0 ,

9



so BL
SV ≥ BL

M . Typically, the inequality will in fact be strict. Conversely, if Pr{Y = 1 |
Z = 1} ≤ Pr{Y = 1 | Z = 0}, then BL

SV = BL
M and BU

SV ≤ BU
M . The bounds of Shaikh

and Vytlacil (2004) are therefore smaller than those of Manski (1990).

Remark 4.3 Manski and Pepper (2000) consider a “monotone instrumental variables”

(MIV) assumption and a “monotone treatment response” (MTR) assumption. The MIV

assumption is a weaker form of the instrumental variable assumption found in Manski

(1990). The MTR assumption requires that one knows a priori that Y1 ≥ Y0 for all

individuals or that one knows a priori that Y0 ≥ Y1 for all individuals. In the present

context of the effect of catheterization on mortality, where much of the debate focuses on

whether the average effect of catheterization is positive, negative, or zero, imposing MTR

is unpalatable since it would involve imposing the answer to the question of interest.

In the Appendix, we compare the bounds of Manski and Pepper (2000) that impose

MTR and the same instrumental variable assumption found in Manski (1990) with the

bounds of Shaikh and Vytlacil (2004). We show that if the average treatment effect is

in fact positive, then the bounds of Shaikh and Vytlacil (2004) coincide with those of

Manski and Pepper (2000) that assume a priori that Y1 ≥ Y0. If the treatment effect

is instead negative, then the bounds of Shaikh and Vytlacil (2004) coincide with those

of Manski and Pepper (2000) that assume a priori that Y1 ≤ Y0. Hence, the tradeoff

between the analyses of Shaikh and Vytlacil (2004) and Manski and Pepper (2000) is

that the latter requires one to known a priori whether Y1 ≥ Y0 or Y1 ≤ Y0, while the

former requires one to impose the additional structure described in Section 3 in order

to be able to determine the sign of the average treatment effect from the distribution of

the observed data. We show further that under the assumptions of Manski and Pepper

(2000) it is possible for the sign of Y1 − Y0 to differ from the sign of

Pr{Y = 1|Z = 1} − Pr{Y = 1|Z = 0}
Pr{D = 1|Z = 1} − Pr{D = 1|Z = 0} .

It is therefore not possible to determine the sign of the average treatment effect in the

same way as Shaikh and Vytlacil (2004) under the assumptions of Manski and Pepper

(2000).
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4.3 An Extension of Shaikh and Vytlacil (2004)

In this section, we extend the analysis of Shaikh and Vytlacil (2004) to exploit the

additional assumption that doctors catheterize individuals with the worst latent health.

This restriction is analogous to the Manski and Pepper (2000) “monotone treatment

selection” restriction. Formally, we assume that ǫ and ν are positive quadrant dependent

(PQD); that is,

Pr{ǫ ≤ t0 | ν ≤ t1} ≥ Pr{ǫ ≤ t0} for all t0, t1 .

Positive quadrant dependence is a relatively weak measure of positive dependence be-

tween two random variables. See Joe (1997) for a discussion of the relationship between

positive quadrant dependence and other concepts of positive dependence. Put differ-

ently, this assumption requires that individuals with unobserved characteristics that

make them more likely to be catheterized (have a low value of ν) are individuals with

unobserved characteristics that make them more likely to suffer mortality (have a low

values of ǫ).

The PQD assumption implies that

Pr{ǫ ≤ t0 | ν ≤ t1} ≥ Pr{ǫ ≤ t0 | ν > t1} for all t0, t1 .

It follows that

Pr{Y = 1|D = 1, Z = z} = Pr{ǫ ≤ r(1)|ν ≤ s(z)}
≥ Pr{ǫ ≤ r(1)|ν > s(z)}
= Pr{Y1 = 1|D = 0, Z = z} .

Similarly, we have that

Pr{Y0 = 1|D = 1, Z = z} ≥ Pr{Y = 1|D = 0, Z = z} .

It therefore follows from the analysis of the preceding section that if Pr{Y = 1 | Z =

1} ≥ Pr{Y = 1 | Z = 0}, then

Pr{Y = 1 | D = 1, Z = z} ≥ Pr{Y1 = 1 | D = 0, Z = z} ≥ Pr{Y = 1 | D = 0, Z = z}
Pr{Y = 1 | D = 1, Z = z} ≥ Pr{Y0 = 1 | D = 1, Z = z} ≥ Pr{Y = 1 | D = 0, Z = z} ;
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if, on the other hand, Pr{Y = 1 | Z = 1} ≤ Pr{Y = 1 | Z = 0}, then

min{Pr{Y = 1 | D = 1, Z = z},Pr{Y = 1 | D = 0, Z = z}}
≥ Pr{Y1 = 1 | D = 0, Z = z} ≥ 0

max{Pr{Y = 1 | D = 1, Z = z},Pr{Y = 1 | D = 0, Z = z}}
≤ Pr{Y0 = 1 | D = 1, Z = z} ≤ 1 .

These results bound Pr{Y0 = 1} and Pr{Y1 = 1}. If, for example, Pr{Y = 1 | Z = 1} >
Pr{Y = 1 | Z = 0}, then

Pr{Y1 = 1} = Pr{Y1 = 1 | Z = z}
= Pr{D = 1 | Z = z}Pr{Y1 = 1 | D = 1, Z = z}

+ Pr{D = 0 | Z = z}Pr{Y1 = 1 | D = 0, Z = z}
≤ Pr{Y = 1 | D = 1, Z = z} ,

which implies that

Pr{Y1 = 1} ≤ min
z
{Pr{Y = 1 | D = 1, Z = z}} .

Using arguments given in Shaikh and Vytlacil (2004), it is possible show that

min
z
{Pr{Y = 1 | D = 1, Z = z}} = Pr{Y = 1 | D = 1, Z = 1} .

The bounds resulting from this line of reasoning are given by

BL
PQD ≤ E[Y1 − Y0] ≤ BU

PQD ,

where

BL
PQD = Pr{Y = 1 | Z = 1} − Pr{Y = 1 | Z = 0}

BU
PQD = Pr{Y = 1 | D = 1, Z = 1} − Pr{Y = 1 | D = 0, Z = 0},
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when Pr{Y = 1 | Z = 1} > Pr{Y = 1 | Z = 0},

BL
PQD = Pr{D = 1, Y = 1 | Z = 1} − Pr{D = 0, Y = 1 | Z = 0}

−Pr{D = 1 | Z = 0}
BU

PQD = Pr{D = 1, Y = 1 | Z = 1} + Pr{D = 0 | Z = 1}
×min{Pr{Y = 1 | D = 1, Z = 1},Pr{Y = 1 | D = 0, Z = 1}}
−Pr{D = 0, Y = 1 | Z = 0} − Pr{D = 1 | Z = 0}
×max{Pr{Y = 1 | D = 1, Z = 0},Pr{Y = 1 | D = 0, Z = 0}} ,

when Pr{Y = 1 | Z = 1} < Pr{Y = 1 | Z = 0}, and BL
PQD = BU

PQD = 0 when

Pr{Y = 1 | Z = 1} = Pr{Y = 1 | Z = 0}.

Remark 4.4 The PQD bounds are (weakly) narrower than the SV bounds. To see this,

first suppose that Pr{Y = 1 | Z = 1} > Pr{Y = 1 | Z = 0}. In this case, BL
SV = BL

PQD,

but

BU
SV −BU

PQD = Pr{D = 0|Z = 1} × Pr{Y = 0|D = 1, Z = 1}
+ Pr{D = 1|Z = 0} × Pr{Y = 1|D = 0, Z = 0} ≥ 0 ,

so BU
SV ≥ BU

PQD. Similarly, if Pr{Y = 1 | Z = 1} < Pr{Y = 1 | Z = 0}, then it is

possible to show that BU
SV = BU

PQD, but BL
SV ≤ BL

PQD. Typically, these inequalities

will in fact be strict. If Pr{Y = 1 | Z = 1} = Pr{Y = 1 | Z = 0}, then the average

treatment effect is identifed to be zero and the two sets of bounds coincide.

Remark 4.5 Throughout Section 4, we have assumed that there are no X covariates

and that Z is binary. Relaxing these assumptions is straightforward. If X is contained

in Z, then all of the analysis can simply be carried out conditional on X. If, on the other

hand, there exists a component of X that is not contained in Z, then it is possible to

further narrow the bounds on the average treatment effect. If there is a continuous com-

ponent of X that is not contained in Z, than it is possible to obtain point identification.

If Z is not binary, then all of the analysis can be carried out with z1 in place of 1 and z0

in place of 0, where z1 maximizes Pr{D = 1|Z = z} and z0 minimizes Pr{D = 1|Z = z}.
For further details, see Shaikh and Vytlacil (2004) and Vytlacil and Yildiz (2007).
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5 Estimation and Inference

In this section, we discuss estimation and inference for each of the bounds described in

the preceding section. We also briefly discuss a means of testing for the threshold crossing

structure on the treatment equation. For ease of exposition, we assume again that there

are no X covariates. We also assume, as in the preceding section, that Z is ordered so

that Pr{D = 1|Z = 1} > Pr{D = 1|Z = 0}. Let P denote the distribution of (Y,D,Z)

and let (Yi, Di, Zi), i = 1, . . . , n be an i.i.d. sample of random variables with distribution

P . We assume throughout that P is such that 0 < Pr{D = d, Y = y, Z = z} < 1 for all

values of (d, y, z) ∈ {0, 1}3.

5.1 Estimation

5.1.1 Bounds of Manski (1990)

Let

nz = |{1 ≤ i ≤ n : Zi = z}| (3)

and define

B̂L
M,n = max

z

{

1

nz

∑

1≤i≤n:Zi=z

DiYi

}

− min
z

{

1

nz

∑

1≤i≤n:Zi=z

((1 −Di)Yi +Di)

}

B̂U
M,n = min

z

{

1

nz

∑

1≤i≤n:Zi=z

(DiYi + (1 −Di))

}

− max
z

{

1

nz

∑

1≤i≤n:Zi=z

(1 −Di)Yi

}

.

Clearly, B̂L
M,n

P→ BL
M and B̂U

M,n

P→ BU
M , where BL

M and BU
M are as defined in Section (4.1).

It follows that [B̂L
M,n, B̂

U
M,n] converges in probability to [BL

M , B
U
M ] under the Hausdorff

metric on subsets of R.

5.1.2 Bounds of Shaikh and Vytlacil (2004)

Let nz be given by (3) and define

∆n =

{

1

n1

∑

1≤i≤n:Zi=1

Yi −
1

n0

∑

1≤i≤n:Zi=0

Yi

}

. (4)
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Let ǫn > 0 be a sequence of numbers tending to 0, but satisfying
√
nǫn → ∞. Define

B̂L
SV,n = ∆n

B̂U
SV,n =

{

1

n1

∑

1≤i≤n:Zi=1

(DiYi + (1 −Di)) −
1

n0

∑

1≤i≤n:Zi=0

(1 −Di)Yi

}

when ∆n > ǫn,

B̂L
SV,n =

{

1

n1

∑

1≤i≤n:Zi=1

DiYi −
1

n0

∑

1≤i≤n:Zi=0

((1 −Di)Yi +Di)

}

B̂U
SV,n = −∆n

when ∆n < −ǫn, and B̂L
SV,n = B̂U

SV,n = 0 when |∆n| ≤ ǫn. Clearly, B̂L
SV,n

P→ BL
SV

and B̂U
SV,n

P→ BU
SV , where BL

SV and BU
SV are as defined in Section 4.2. It follows that

[B̂L
SV,n, B̂

U
SV,n] converges in probability to [BL

SV , B
U
SV ] under the Hausdorff metric on sub-

sets of R.

5.1.3 PQD Bounds

Let nz be given by (3) and define

nz,d = |{1 ≤ i ≤ n : Zi = z,Di = d}| . (5)

Let ∆n be given by (4), and let ǫn > 0 be a sequence of numbers tending to 0, but

satisfying
√
nǫn → ∞. Define

B̂L
PQD,n = ∆n

B̂U
PQD,n =

{

1

n1,1

∑

1≤i≤n:Zi=1,Di=1

Yi −
1

n0,0

∑

1≤i≤n:Zi=0,Di=0

Yi

}
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when ∆n > ǫn,

B̂L
PQD,n =

{

1

n1

∑

1≤i≤n:Zi=1

DiYi −
1

n0

∑

1≤i≤n:Zi=0

((1 −Di)Yi +Di)

}

B̂U
PQD,n =

1

n1

∑

1≤i≤n:Zi=1

DiYi +
1

n1

∑

1≤i≤n:Zi=1

(1 −Di)

×min

{(

1

n1,1

∑

1≤i≤n:Zi=1,Di=1

Yi

)

,

(

1

n1,0

∑

1≤i≤n:Zi=1,Di=0

Yi

)}

− 1

n0

∑

1≤i≤n:Zi=0

(1 −Di)Yi −
1

n0

∑

1≤i≤n:Zi=0

Di

×max

{(

1

n0,1

∑

1≤i≤n:Zi=0,Di=1

Yi

)

,

(

1

n0,0

∑

1≤i≤n:Zi=0,Di=0

Yi

)}

when ∆n < −ǫn, and B̂L
PQD,n = B̂U

PQD,n = 0 when |∆n| ≤ ǫn. Again, B̂L
PQD,n

P→ BL
PQD

and B̂U
PQD,n

P→ BU
PQD. It follows that [B̂L

PQD,n, B̂
U
PQD,n] converges in probability to

[BL
PQD, B

U
PQD] under the Hausdorff metric on subsets of R.

Remark 5.1 The above estimators for the Shaikh and Vytlacil (2004) bounds and the

PQD bounds have some obvious drawbacks. Both are superefficient when the average

treatment effect is in fact equal to zero, which suggests that they would behave poorly

in a neighborhood of zero. Moreover, for a given sample of size n, there is no restriction

on the level of ǫn. As a result, in the next section, we focus instead on constructing

confidence sets for the average treatment effect, which do not suffer from such undesirable

features.

Remark 5.2 Unlike the Manski (1990) bounds, the Shaikh and Vytlacil (2004) bounds

and the PQD bounds in general cannot be estimated consistently simply by replacing

conditional population means with conditional sample means. This is because these

bounds are both discontinuous as a function of Pr{Y = 1|Z = 1} − Pr{Y = 1|Z = 0}.
In particular, it is not possible to set ǫn = 0 and maintain consistency of the estimators.

To see this, simply note that when Pr{Y = 1|Z = 1} − Pr{Y = 1|Z = 0} = 0, the

events ∆n > 0 and ∆n < 0 each have probability 1/2 asymptotically.
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5.2 Inference

In this section, we construct random sets Cn such that for each θ between the upper and

lower bounds

lim inf
n→∞

Pr{θ ∈ Cn} ≥ 1 − α . (6)

Such confidence sets have been termed by Romano and Shaikh (2006) as confidence

regions for identifiable parameters.

Following Romano and Shaikh (2006), our construction will be based upon test

inversion. For each −1 ≤ θ ≤ 1, we will construct a test of the null hypothesis that θ

lies between the upper and lower bounds. The confidence region Cn will then simply be

defined to the set of values for θ for which we fail to reject the corresponding test of the

null hypothesis. Concretely, define

Cn = {−1 ≤ θ ≤ 1 : Tn(θ) ≤ ĉn(θ, 1 − α)} , (7)

where Tn(θ) is a test statistic for which large values provide evidence against the null

hypothesis and ĉn(θ, 1−α) is an appropriate critical value. The critical value ĉn(θ, 1−α)

will be constructed using subsampling. In order to describe the construction, we require

some further notation. Let b = bn < n be a sequence of positive integers tending to

infinity, but satisfying bn/n → 0. Index by i = 1, . . . , Nn =
(

n

b

)

the different subsets of

{1, . . . , n} of size b. Denote by Tn,b,i(θ) the test statistic Tn(θ) computed using only the

ith subset of data of size b. Let ĉn(θ, 1 − α) denote the (smallest) 1 − α quantile of the

distribution

Ln(x, θ) =
1

Nn

∑

1≤i≤Nn

I{Tn,b,i(θ) ≤ x} . (8)

Romano and Shaikh (2006) show that Cn defined by (7) satisfies the coverage property

(6) under weak conditions on the distribution of Tn(θ) under P . In each of the appli-

cations below, it is straightfoward to show that these conditions hold using arguments

similar to those given in Section 3.2 of Romano and Shaikh (2006).
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5.2.1 Bounds of Manski (1990)

Let nz be given by (3) and let z̄ = (z1, z2, z3, z4). Define

δ1,n(z1, z2) =
1

nz1

∑

1≤i≤n:Zi=z1

DiYi −
1

nz2

∑

1≤i≤n:Zi=z2

((1 −Di)Yi +Di)

δ2,n(z1, z2) =
1

nz3

∑

1≤i≤n:Zi=z1

(DiYi + (1 −Di)) −
1

nz4

∑

1≤i≤n:Zi=z2

(1 −Di)Yi

Denote by σ̂({Wi : 1 ≤ i ≤ n}) the usual estimate of the standard deviation of the

random variables Wi, i = 1, . . . , n. If z1 6= z2, then define

s1,n(z1, z2) =

√

γ1,n(z1)

nz1

+
γ2,n(z2)

nz2

s2,n(z1, z2) =

√

γ3,n(z1)

nz1

+
γ4,n(z2)

nz2

,

where

γ1,n(z1) = σ̂({DiYi : Zi = z1, 1 ≤ i ≤ n})
γ2,n(z1) = σ̂({(1 −Di)Yi +Di : Zi = z1, 1 ≤ i ≤ n})
γ3,n(z1) = σ̂({DiYi + (1 −Di) : Zi = z1, 1 ≤ i ≤ n})
γ4,n(z1) = σ̂({(1 −Di)Yi : Zi = z1, 1 ≤ i ≤ n}) ;

if z1 = z2, then define

s1,n(z1, z2) =
σ̂({DiYi − (1 −Di)Yi −Di : Zi = z1, 1 ≤ i ≤ n})

√
nz1

s2,n(z1, z2) =
σ̂({DiYi + (1 −Di) − (1 −Di)Yi : Zi = z1, 1 ≤ i ≤ n})

√
nz1

.

For −1 ≤ θ ≤ 1, define

Tn(θ) =
∑

z̄∈{0,1}4

{

(

δ1,n(z1, z2) − θ

s1,n(z1, z2)

)2

+

+

(

θ − δ2,n(z3, z4)

s2,n(z3, z4)

)2

+

}

,

where (x)+ = max{x, 0}.
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Remark 5.3 Imbens and Manski (2004) provide confidence regions with the coverage

property (6) for partially identified models where the identified set is an interval whose

upper and lower endpoints are means or at least behave like means asymptotically.

Although the identified set here is also an interval, the upper and lower endpoints do

not have this property, so their analysis is not applicable here.

5.2.2 Bounds of Shaikh and Vytlacil (2004)

Let ∆n be given by (4) and define

sn =

√

σ̂({Yi : Zi = 1, 1 ≤ i ≤ n})
n1

+
σ̂({Yi : Zi = 0, 1 ≤ i ≤ n})

n0

. (9)

For 0 < θ ≤ 1, define

Tn(θ) =

(−∆n

sn

)2

+

+

(

∆n − θ

sn

)2

+

+

(

θ − δ2,n(1, 0)

s2,n(1, 0)

)2

+

;

for −1 ≤ θ < 0, define

Tn(θ) =

(

∆n

sn

)2

+

+

(

θ − ∆n

sn

)2

+

+

(

δ1,n(1, 0) − θ

s1,n(1, 0)

)2

+

;

and for θ = 0, define

Tn(θ) =

(

∆n

sn

)2

.

5.2.3 PQD Bounds

Let nz,d be given by (5), let ∆n be given by (4), and let sn be given by (9). Define

δ3,n =
1

n1,1

∑

1≤i≤n:Zi=1,Di=1

Yi −
1

n0

∑

1≤i≤n:Zi=0

Yi

δ4,n =
1

n1,1

∑

1≤i≤n:Zi=1,Di=1

Yi −
1

n0,0

∑

1≤i≤n:Zi=0,Di=0

Yi

δ5,n =
1

n1

∑

1≤i≤n:Zi=1

Yi −
1

n0,0

∑

1≤i≤n:Zi=0,Di=0

Yi ,
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and

s3,n =

√

σ̂({Yi : Zi = 1, Di = 1, 1 ≤ i ≤ n})
n1,1

+
σ̂({Yi : Zi = 0, 1 ≤ i ≤ n})

n0

s4,n =

√

σ̂({Yi : Zi = 1, Di = 1, 1 ≤ i ≤ n})
n1,1

+
σ̂({Yi : Zi = 0, Di = 0, 1 ≤ i ≤ n})

n0,0

s5,n =

√

σ̂({Yi : Zi = 1, 1 ≤ i ≤ n})
n1

+
σ̂({Yi : Zi = 0, Di = 0, 1 ≤ i ≤ n})

n0,0

.

For 0 < θ ≤ 1, define

Tn(θ) = (
−∆n

sn

)2
+ + (

∆n − θ

sn

)2
+ +

(

θ − δ4,n

s4,n

)2

+

;

for −1 ≤ θ < 0, define

Tn(θ) =

(

∆n

sn

)2

+

+

(

δ1,n(1, 0) − θ

s1,n(1, 0)

)2

+

+

(

θ − δ3,n

s3,n

)2

+

+

(

θ − δ4,n

s4,n

)2

+

+

(

θ − ∆n

sn

)2

+

+

(

θ − δ5,n

s5,n

)2

+

;

and for θ = 0, define

Tn(θ) =

(

∆n

sn

)2

.

5.3 A Test of Threshold Crossing

As discussed in Remark 4.2, Heckman and Vytlacil (2001) show that when D is given

by (2) and that the unobservables are independent of Z the bounds of Manski (1990)

may be written as

BL
M = Pr{D = 1, Y = 1|Z = 1} − Pr{D = 0, Y = 1|Z = 0} − Pr{D = 1 | Z = 0}

BU
M = Pr{D = 1, Y = 1|Z = 1} + Pr{D = 0 | Z = 1} − Pr{D = 0, Y = 1|Z = 0} .

It is therefore possible to test whether D is given by (2) and that the unobservables are

independent of Z by comparing these expressions for the bounds of Manski (1990) with

those stated in equation (4.1). These two expressions will be the same if and only if

Pr{D = 0, Y = 1|Z = 1} − Pr{D = 1 | Z = 1} ≥
Pr{D = 0, Y = 1|Z = 0} − Pr{D = 1 | Z = 0}
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Pr{D = 1, Y = 1|Z = 0} + Pr{D = 0 | Z = 0} ≥
Pr{D = 1, Y = 1|Z = 1} + Pr{D = 0 | Z = 1}

Pr{D = 1, Y = 1|Z = 1} ≥ Pr{D = 1, Y = 1|Z = 0}
Pr{D = 0, Y = 1|Z = 0} ≥ Pr{D = 0, Y = 1|Z = 1} .

We now describe one of several possible ways of testing whether these inequalities hold

jointly. Let nz be given by (3) and define

ψ1,n =
1

n0

∑

1≤i≤n:Zi=0

((1 −Di)Yi −Di) −
1

n1

∑

1≤i≤n:Zi=1

((1 −Di)Yi −Di)

ψ2,n =
1

n1

∑

1≤i≤n:Zi=1

(DiYi + (1 −Di)) −
1

n0

∑

1≤i≤n:Zi=0

(DiYi + (1 −Di))

ψ3,n =
1

n0

∑

1≤i≤n:Zi=0

DiYi −
1

n1

∑

1≤i≤n:Zi=1

DiYi

ψ4,n =
1

n1

∑

1≤i≤n:Zi=1

(1 −Di)Yi −
1

n0

∑

1≤i≤n:Zi=0

(1 −Di)Yi .

Consider the test statistic Tn =
∑

1≤i≤4(ψi,n)2
+ . Large values of this test statistic provide

evidence against the null hypothesis that all four of the above inequalities hold. We may

again construct a critical value for this test statistic using subsampling as described in

the beginning of Section 5.2. The validity of such an approach can be verified as before

using arguments similar to those given in Section 3.2 of Romano and Shaikh (2006).

One may, of course, also divide each of the ψi,n by its standard error, as was done for

the test statistics in the previous sections.

6 Data

The Connors et al. (1996) data come from ICUs at five prominent hospitals – Duke

University Medical Center, Durham, NC; MetroHealth Medical Center, Cleveland, OH;

St. Joseph’s Hospital, Marshfield, WI; and University of California Medical Center, Los

Angeles, CA. The study admitted only severely ill patients with one of nine disease

conditions: acute respiratory failure, chronic obstructive pulmonary disease, congestive
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heart failure, cirrhosis, nontraumatic coma, metastatic colon cancer, late-stage non-small

cell lung cancer, and multiorgan system failure with malignancy or sepsis. 59.2% of the

sample is over the age of 60. Murphy and Cluff (1990) provide a detailed description

of patient recruitment procedures, including a list of exclusion criteria. Connors et al.

(1996) count a patient as catheterized if the procedure was performed within 24 hours

of entering the ICU.

There are 5,735 patients, all of whom were admitted to or transferred to the ICU

within 24 hours of entering the hospital. Connors et al. (1996) collected a large amount

of information about each patient via standardized medical chart abstraction methods

and interviews with patients and patient surrogates. Tables 1 - 3 compare patients who

were catheterized during their first day of admission to the ICU with those who were

not catheterized. These tables present the p-value from a test of the hypothesis that the

means of the variables are equal for catheterized and non-catheterized patients.

Table 1 compares patients on the basis of demographic variables and the primary

diagnosis at admission. Catheterized patients are more likely to be male (by 4.2%),

privately insured (by 6.1%), richer (less likely to have an income of less than $11,000 per

year by 5.5%), and have more schooling (0.2 years more on average). Of the patients

in our sample, 60.9% of non-catheterized patients had a primary diagnosis of acute

respiratory failure, while only 46% of our catheterized patients had the same diagnosis.

Table 2 compares patients on the basis of disease history prior to admission and

functional status. Catheterized patients are more likely to have had a diagnosis of cardiac

disease (by 1.9%), congestive heart failure (by 2.0%), or acute myocardial infarction

(by 1.2%) in their medical history. Catheterized patients also have a 3.3% lower two

month predicted survival rate upon admission than non-catheterized patients – clearly

catheterized patients are observably more ill than non-catheterized patients.

Table 3 compares catheterized and non-catheterized patients’ laboratory values at

admission, as well as any secondary diagnoses these patients may have had at admission.

Among the laboratory values, all the clinically significant and interpretable differences

point toward the conclusion that catheterized patients are observably sicker.

Remark 6.1 Because of the large number of comparisons we are making, it is likely
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that we will reject several hypotheses falsely. We use the multiple testing procedure of

Holm (1979) to make the comparisons while controlling the familywise error rate – the

probability of even one false rejection – at level α. Let p̂(1) ≤ . . . ≤ p̂(s) denote the ordered

values of the p-values and let H(1), . . . , H(s) denote the corresponding null hypotheses.

If p̂(1) ≥ α/s, then the procedure rejects no null hypotheses; otherwise, it rejects null

hypotheses H(1), . . . , H(r), where r is the largest index such that p̂(i) ≤ α/(s−i+1) for all

i ≤ r. This procedure always rejects at least as many null hypotheses as the Bonferroni

procedure, which simply rejects any null hypothesis Hi for which the corresponding

p̂i ≤ α/s.

At level α = .05, we find that patients who are catheterized differ from those who are

not catheterized along 32 of 60 possible variables. The results are qualitatively similar

at level α = .01. Hence, even after accounting for the multiplicity of comparisons, we

maintain our earlier conclusion that catheterized patients are significantly different than

non-catheterized patients.

7 Instrumenting with Admission Day

A direct comparison of outcomes between catheterized and non-catheterized patients

is unlikely to yield the causal effects of catheterization. Even if a full set of controls

were included in the analysis, the results would be unconvincing. If catheterized and

non-catheterized patients differ on so many observed dimensions, it is unlikely that they

do not differ on unobserved dimensions as well. See Altonji et al. (2005) for a formal

justification of this argument. In this section, we develop suggestive evidence that day-

of-the-week of admission is an appropriate instrument to determine the causal effect of

catheterization on patient mortality.

7.1 Admission Day of Week Predicts Catheterization

We first establish that patients who are admitted to the ICU on a Saturday, Sunday,

or Monday are substantially less likely to be catheterized on the day of admission than

patients admitted on other days of the week. The results remain similar if we exclude
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Monday from the definition of the weekend. Figure 1 shows catheterization rates by

day-of-the-week for four important clinical groups, based on primary diagnosis upon

ICU admission. For all four groups, the probability of being catheterized decreases on

weekends. A t-test of the difference in probability of catheterization between weekend

and weekday rejects equality at 0.05 level for all four groups. However, the same is not

true for patients with chronic obstructive pulmonary disease (COPD), cirrhosis, coma,

and lung cancer: there is no statistically significant difference, so we drop patients from

these groups from all subsequent analysis.

7.2 Patient Health and Day of Week of Admission

If patients admitted to the ICU on a weekday differed systematically from patients

admitted on weekends, then day-of-the-week would be a poor instrument since it would

be correlated with unobserved determinants of ICU patient mortality such as health

status. We believe that there should be no such correlation, since the health crises that

precipitate ICU admissions are unlikely to respect distinctions between weekdays and

weekends. We now present suggestive evidence in favor of this view.

Tables 4 - 6 divide patients into two groups on the basis of the instrument: those

who were admitted on a weekday and those who were admitted on a weekend. The

tables present mean values of each variable on which we make comparisons, along with

standard deviations of those variables and the p-value from a test of the hypothesis that

the means of the variables are equal.

Table 4 compares patients based on demographic variables on the primary diagnosis.

We find no statistically significant differences between patients admitted on a weekend

and those admitted on a weekday when testing at the α = 0.01 level. Similarly Ta-

ble 5, which compares patients based on disease history and functional status, shows no

statistically significant differences between weekend and weekday patients. Importantly,

there is little difference between these groups in predicted 2-month mortality, or in acute

physiology score. Finally, Table 6 compares weekend and weekday patients on the basis

of laboratory tests at admission and on secondary diagnoses. There are no statistically

significant differences between the two groups on these bases.
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Remark 7.1 We could apply the multiple testing procedure of Holm (1979) to make

the comparisons while controlling the familywise error rate at level α, but it suffices to

note that the multiple testing procedure will never reject more null hypotheses than the

naive testing procedure above. Therefore, even after accounting for the multiplicity of

comparisons, we find that there are no statistically significant differences between the

two groups.

Remark 7.2 Even though health status at admission does not appear to vary by the day

of week of admission to the ICU, the death rates will vary if catheterization rates depend

on day of week of admission and mortality is effected by catheterization. Figure 2 shows

mean mortality rates at 7, 30, 60, 90, and 180 days after ICU admission for patients

admitted on weekends and weekdays as well as 95% confidence intervals around the

means. At 30, 60, 90, and 180 days post-ICU admission, mortality rates are significantly

higher at level α = 0.05 for patients admitted on weekdays than patients admitted on

weekends.

7.3 Day of Week, Hospital Staffing, and Outcomes

Although non-specialists sometimes find it surprising, it is well known in the health

services literature that medical staffing can have a major effect on treatment decisions,

including the decision to catheterize a patient. Rapoport et al. (2000), for example,

find that patients admitted to ICUs that staff a full time ICU physician are two-thirds

less likely to be catheterized than those admitted to ICUs with no full time physi-

cian. Whether this fact threatens the validity of our instrument depends upon whether

there are unobserved differences in treatment between weekday and weekend admis-

sions, unassociated with catheterization, that help determine patient mortality. If so,

then admission day would not be a valid instrument.

Evaluating the importance of differences in treatment between weekend and weekday

admissions is complicated by the fact that Swan-Ganz catheterization itself is a gateway

to a large number of other treatments. For example, ICU physicians often use the

information from catheterization to titrate the dose of inotropic drugs, such as dopamine

and dobutamine, which are designed to improve cardiac contractility. These drugs have
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a narrow therapeutic range, and thus getting the dose right can be the difference between

killing or inadequately treating a patient. Since catheterization is less likely on weekends,

it would be unsurprising to find decreased use of inotropes on weekends as well. We can

accommodate such differences in treatment between weekend and weekday admissions

by simply reinterpreting the treatment as catheterization and all the other treatments it

enables or encourages on mortality, rather than catheterization by itself.

It is possible that weekend-weekday staffing differences, for reasons having nothing

to do with catheterization or its downstream consequences, may lead to higher patient

mortality. If so, then our instrument would be invalid. Since staffing tends to be sparser

on weekends, one would expect that mortality rates would be higher then. In fact, in our

data mortality rates are higher on weekdays, which is inconsistent with a direct mortality

effect of staffing. Furthermore, several studies have found no evidence that staffing

differences explain weekend-weekday mortality differences in ICUs–see Ensminger et al.

(2004), Wunsch et al. (2004), and Dobkin (2003).

8 Results

In this section, we first follow the traditional approach of estimating parametric models

that allow us to identify the average treatment effect. In particular, we consider linear

models and bivariate probit models. We then report results from the three different

bounds described in Section 4.

We analyze outcomes t days after admission to the ICU separately for different values

of t – 7, 30, 60, 90, and 180 days. For this reason, we write the outcome Y and the

potential outcomes Y0 and Y1 as functions of t throughout the remainder of the paper.

8.1 Parametric Models

The panel on the righthand side of Figure 3 shows estimates of the coefficient on D

and associated 95% confidence intervals obtained from ordinary least squares (OLS)

regression of Y (t) on a constant and D for the different values of t. The panel on the

lefthand side shows estimates of the coefficient on D and associated 95% confidence
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intervals obtained from OLS regression of Y (t) on a constant, D and the full set of

covariates listed in Tables 1 - 3 for the different values of t. For these estimates to

be consistent for the average treatment effect, we require that the treatment D be

independent of the potential outcomes Y0(t) and Y1(t) (conditional on covariates) and

that the linear model underlying the regression is correct. Under these assumptions,

one might conclude from these results that excess mortality due to catheterization 7

days after ICU admission is about two percentage points and it increases to about six

percentage points 30 days after admission.

Even if these assumptions are correct, a possible problem with these results is that

they ignore the possibility that catheterized patients differ in unobserved ways from non-

catheterized patients. For this reason, we may consider maximum likelihood estimation

of the bivariate probit model described in Remark 3.2. The bivariate probit model is a

common approach in the context of a dummy endogenous regressor as a determinant of

a binary outcome; see, for example, Goldman et al. (2001). For the sake of brevity, we

report only the results without X regressors.

Figure 4 shows 95% confidence intervals around the average treatment effect E[Y1(t)−
Y0(t)] from maximum likelihood estimation of the bivariate probit model for the different

values of t. Like the OLS results, the bivariate probit results suggest that catheterization

increases mortality rates at 30, 60, 90, and 180 days after ICU admission. Like the OLS

results without covariates but unlike the OLS results with covariates, the confidence

interval for the average treatment effect crosses zero at 7 days.

Although the bivariate probit model allows catheterized and non-catheterized pa-

tients to differ in unobserved ways, it still requires many strong, parametric assumptions.

We therefore consider the three nonparametric bounds described in Section 4

8.2 Nonparametric Bounds

We consider each of the three bounds described in Section 4. Each of these bounds rely

upon our instrumental variable – an indicator for whether the patient was admitted to the

ICU on a Tuesday - Friday. For each of the bounds, we display 95% confidence intervals

for the average treatment effect computed as described in Section 5. Computational
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details are described below in Remark 8.4. The lefthand side of Figure 5 shows the

bounds of Manski (1990) for the whole sample, whereas the righthand side shows the

bounds of Shaikh and Vytlacil (2004) for the whole sample. The Manski (1990) bounds

have a width of nearly one and thus always fail to exclude zero; see Remark 8.1 below for

further discussion. The Shaikh and Vytlacil (2004) bounds, by contrast, are considerably

more informative: at 7 days after ICU admission, these bounds include zero; but at 30

days after admission to the ICU and beyond, the bounds suggest that catheterization

increases mortality. The width of the these bounds are about half the width of the

Manski (1990) bounds.

Recall that Connors et al. (1996) found that catheterization increases mortality even

at 7 days using this same data set that we use here, but a different statistical method

that assumes that there are no unobserved differences between catheterized and non-

catheterized patients. Their result raises the question of why ICU doctors do not observe

the increased mortality from catheterization and react accordingly. The Shaikh and

Vytlacil (2004) bounds provides a possible answer – ICU doctors do not see rise in

mortality which happens only after many patients have been released from the ICU.

Figure 6 shows the bounds from the extension of Shaikh and Vytlacil (2004) described

in Section 4.3. These bounds impose the restriction that doctors are effective at triaging

patients so that it is those patients with the worst health who are actually catheterized.

These figures show that imposing this plausible restriction decreases the width of the

treatment effect bounds, often dramatically.

By construction, these bounds are always on the same side of zero as the Shaikh

and Vytlacil (2004) bounds. The reduction in the width of the bounds is greatest when

the average treatment effect is positive; that is, when catheterization increases mortality.

This is to be expected, as the PQD restriction rules out the possibility that doctors cause

great harm to large numbers of their patients. On the other hand, the PQD bounds

have a lower upper bound than the Shaikh and Vytlacil (2004) bounds when the average

treatment effect is negative, that is, when catheterization decreases mortality, so it may

permit researchers to conclude, for example, that the inverntion is cost-effective even as

the Shaikh and Vytlacil (2004) bounds permit the possibility that it may not be.
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Remark 8.1 Despite the evidence presented in Section 7, it is interesting to consider

how our inferences would change if we did not rely upon our instrumental variable. One

possible answer is to rely on the bounds of Manski (1990), which may be constructed

without an instrument. In that case, the width of the bounds is always exactly one

and thus always fail to exclude zero. A second possible answer is given by the analysis

of Section 4.3, which may also be constructed without an instrument. In that case,

the PQD assumption reduces to Pr{Y1 = 1 | D = 1} ≥ Pr{Y1 = 1 | D = 0} and

Pr{Y0 = 1 | D = 1} ≥ Pr{Y0 = 1 | D = 0}, which implies the following bounds on the

average treatment effect:

Pr{Y1 = 1 | D = 1}Pr{D = 1} − Pr{Y0 = 1 | D = 0}Pr{D = 0} − Pr{D = 1}
≤ E[Y1 − Y0] ≤ Pr{Y1 = 1 | D = 1} − Pr{Y0 = 1 | D = 0}

Figure 7 shows these bounds and associated 95% confidence intervals. In every case,

the bounds cross zero, though their width is substantially less than one. The PQD

assumption by itself is therefore not enough to identify the direction of the treatment

effect.

Remark 8.2 Heckman and Vytlacil (2001) show that the threshold crossing structure

implies that BU
M −BL

M = 1−Pr{D = 1|Z = 1}+ Pr{D = 1|Z = 0}, where Z is ordered

such that Pr{D = 1|Z = 1} > Pr{D = 1|Z = 0}. If Pr{D = 1|Z = 1} is close to

one and Pr{D = 1|Z = 0} is close to zero, then the bounds will have width close to

zero. In contrast, if Pr{D = 1|Z = 1} is close to Pr[D = 1|Z = 0}, the width of the

bounds will be nearly one, i.e., almost as wide as the naive bounds that do not impose

or exploit an instrument described in Remark 8.1. Our empirical result that the width

of the bounds is close to one is a direct result of the instrument being weak in the sense

that Pr{D = 1|Z = 1} is close to Pr{D = 1|Z = 0}. This is a separate issue from the

question of whether the instrument is highly statistically significant in the propensity

score model. As we discuss in Section 7.1, for the patient groups we analyze, we can

reject that Pr{D = 1|Z = 1} = Pr{D = 1|Z = 0}. Furthermore, in the bivariate probit

model reported above, a test of the significance of the instruments in the catheterization

equation rejects that the coefficient on the instruments are jointly zero at p = 0.0072 for

the model where the main outcome is 30 day mortality.
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Remark 8.3 We also implement the test of the threshold crossing assumption that is

described in Section 5.3. At the α = 0.10 level and for each value of t we fail to reject

the inequalities shown in that section, providing evidence in favor of the assumptions

underlying the bounds described in Sections 4.2 and 4.3.

Remark 8.4 For the results we reported above, we used a subsample size of b = 50. In

results not reported here, we also tried different subsample sizes ranging from 25 to 75

and found that our results are remained similar for these values of b. Finally, because Nn

is large, we used an approximation to (8) in which we randomly chose with replacement

Bn = 1000 of the Nn possible subsamples. It follows from Corollary 2.4.1 of Politis et al.

(1999) that critical values constructed in this way remain valid provided that Bn tends

to infinity.

9 Conclusion

While direct comparisons of the mortality of catheterized and non-catheterized patients

lead to the conclusion that catheterization increases mortality, we show evidence that

this result is due to profound differences between the catheterized and non-catheterized

patients; the former are much more severely ill than the latter.

We provide suggestive evidence that weekday admission can serve as an instrumental

variable for catheterization. Patients admitted on a weekday are about four to eight

percentage points more likely to be catheterized than patients admitted on a weekend.

Yet, weekday and weekend patients appear similar in health status along a large number

of dimensions. Exploiting an instrumental variable permits us to address the unobserved

differences between catheterized and non-catheterized ICU patients.

We turn to bounding approaches that exploit access to our instrument, including

the recent approach introduced by Shaikh and Vytlacil (2004), which we compare with

the approach of Manski (1990). We find that, while the Manski (1990) bounds always

straddle zero, the Shaikh and Vytlacil (2004) bounds typically produces a clearer answer

– catheterization increases mortality at 30 days and beyond, while at 7 days the average

treatment effect may be zero. We extend the analysis of Shaikh and Vytlacil (2004)
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to exploit a further nonparametric structural assumption – that doctors catheterize

individuals with systematically worse latent health – and find that this assumption

further narrows these bounds and strengthens these conclusions.

The main theme of the paper is the trade-off induced by the acceptance of potentially

unverifiable structural assumptions. If one is willing to accept very strong structural

assumptions, such as those underlying the bivariate probit model, one obtains point

identification. At the other extreme, if the only structural assumption one accepts is that

probabilities lie between zero and one (such as in the Manski (1990) bounds without an

instrument), then the width of the bounds on the average treatment effect is exactly one,

so it is not possible to determine the sign of the average treatment effect. In between

these two extremes, one may accept different nonparametric, structural assumptions,

such as the validity of an instrument or threshold crossing models on the outcome or

treatment variables, which may not lead to point identification, but may reduce the

width of the bounds considerably, as in our empirical example, and are more palatable

than the very strong parametric assumptions required for the bivariate probit model.

Our primary substantive finding is that catheterization improves mortality outcomes

only in the short run, if at all, and increases it in the long run. This finding is intuitively

appealing because it suggests a possible explanation for the fact that many ICU doctors

are committed to the use of the Swan-Ganz catheter. Since most ICU patients leave the

ICU well before 30 days after admission have elapsed, ICU doctors may never observe

the increase in mortality. Our results also suggest a second (not mutually exclusive)

possibility: a simple selection story. Catheterization saves the lives, in the short run, of

the most severely ill patients, but the deaths of these patient cannot be staved off for

long. Disentangling these possibilities will require even more detailed data and further

research.
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A Comparison to Manski and Pepper (2000)

We now compare the assumptions and resulting bounds of Shaikh and Vytlacil to the

assumptions and resulting bounds of Manski and Pepper (2000). Manski and Pepper

(2000) consider several restrictions, including the “monotone instrumental variables”

assumption with a “monotone treatment response” (MTR) assumption. The MTR as-

sumption is that one knows a priori that Y1 ≥ Y0 for all individuals or one knows a

priori that Y0 ≥ Y1 for all individuals. In comparison, our analysis identifies the sign

of the average treatment effect from the data and does not impose it a priori. On the

other hand, our analysis imposes the threshold crossing model on D and Y , while no

such assumption is imposed by Manski and Pepper (2000).

For ease of exposition, suppose Z is binary and order Z so that Pr{D = 1|Z = 1] >

Pr{D = 1|Z = 0]. Consider the case of no X regressors and the bounds that would

result from applying the analysis of Manski and Pepper (2000) with MTR with Y1 ≥ Y0

and the instrumental variable (IV) assumption of Manski (1990) that Y1 and Y0 are

independent of Z.

Define

Q1(z) = Pr{Y = 1|Z = z}
Q2(z) = Pr{D = 1, Y = 1|Z = z} + Pr{D = 0|Z = z}
Q3(z) = Pr{D = 0, Y = 1|Z = z} .

It follows from the analysis of Proposition 2 of Manski and Pepper (2000) that MTR

with Y1 ≥ Y0 and IV jointly imply

max{Q1(0), Q1(1)} ≤ E[Y1] ≤ min{Q2(0), Q2(1)}
max{Q3(0), Q3(1)} ≤ E[Y0] ≤ min{Q1(0), Q1(1)} .

In general, these bounds do not simplify without further restrictions than those imposed

by Manski and Pepper (2000); that is, one cannot know which value of z the respective

maximums and minimums are obtained at which value of z even with our ordering that

Pr{D = 1|Z = 1} > Pr{D = 1|Z = 0}. However, under the assumptions of Section

3, it follows from the analysis of Theorem 2 of Heckman and Vytlacil (2001) that their
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bounds simplify to

Q1(1) ≤ E[Y1] ≤ Q2(1)

Q3(0) ≤ E[Y0] ≤ Q1(0) ,

so that

Q1(1) −Q1(0) ≤ E[Y1 − Y0] ≤ Q2(1) −Q3(0) .

The bounds therefore coincide with the Shaikh and Vytlacil (2004) bounds given in

equation (4.2), which hold if Shaikh and Vytlacil (2004) infer that Y1 ≥ Y0 from Pr{Y =

1|Z = 1} − Pr{Y = 1|Z = 0} > 0. Likewise, consider the Manski and Pepper bounds

that impose MTR with Y1 ≤ Y0 and IV. Under the assumptions of Section 3, the form of

the Manski and Pepper (2000) bounds simplify to the Shaikh and Vytlacil (2004) bounds

given in equation (4.2), which hold if Shaikh and Vytlacil (2004) infer that Y1 ≤ Y0 from

Pr{Y = 1|Z = 1} − Pr{Y = 1|Z = 0} < 0.

It might seem natural that one could follow the Manski and Pepper (2000) analysis

without imposing a priori that one knew the sign of the treatment response but instead

inferring it from the data from the sign of Pr{Y = 1|Z = 1} − Pr{Y = 1|Z = 0} in

the same manner as is done by the Shaikh and Vytlacil (2004). Under their conditions,

however, there is no necessary connection between the sign of the treatment response

and the sign of Pr{Y = 1|Z = 1} − Pr{Y = 1|Z = 0}.1 To see this, consider imposing

only their assumptions without imposing the additional structure of Shaikh and Vytlacil

(2004). Let D1 denote the counterfactual choice variable corresponding to Z = 1, and

let D0 denote the counterfactual choice variable corresponding to Z = 0. Suppose

Z ⊥⊥ (Y0, Y1, D0, D1) and that Y1 ≥ Y0. It is possible to show that

Pr{Y = 1|Z = 1} − Pr{Y = 1|Z = 0}
= Pr{Y1 > Y0} (Pr{D1 = 1, D0 = 0|Y1 > Y0} − Pr{D1 = 0, D0 = 1|Y1 > Y0}) ,

while

Pr{D = 1|Z = 1} − Pr{D = 1|Z = 0}
= Pr{Y1 > Y0} (Pr{D1 = 1, D0 = 0|Y1 > Y0} − Pr{D1 = 0, D0 = 1|Y1 > Y0})

+ Pr{Y1 = Y0} (Pr{D1 = 1, D0 = 0|Y1 = Y0} − Pr{D1 = 0, D0 = 1|Y1 = Y0}) .
1Imbens and Angrist (1994) also show that it is possible to have Y1 ≥ Y0 for all individuals and yet

have a negative probability limit for the instrumental variables estimand.
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Thus, if it is the case that

Pr{D1 = 1, D0 = 0|Y1 > Y0} < Pr{D1 = 0, D0 = 1|Y1 > Y0}
Pr{D1 = 1, D0 = 0|Y1 = Y0} < Pr{D1 = 0, D0 = 1|Y1 = Y0} ,

then it is possible to have Pr{D = 1|Z = 1} − Pr{D = 1|Z = 0} > 0 while Pr{Y =

1|Z = 1} − Pr{Y = 1|Z = 0} < 0 even though Y1 ≥ Y0 for all individuals. Parallel

reasoning shows that it is possible to have Pr{D = 1|Z = 1} − Pr{D = 1|Z = 0} > 0

while Pr{Y = 1|Z = 1}−Pr{Y = 1|Z = 0} > 0 even though Y1 ≤ Y0 for all individuals.

Hence, under the assumptions of Manski and Pepper (2000), the sign of the treatment

response must be imposed a priori and cannot be inferred from the sign of Pr{Y =

1|Z = 1} − Pr{Y = 1|Z = 0} as in Shaikh and Vytlacil (2004).

By Vytlacil (2002), the assumptions of Shaikh and Vytlacil (2004) are equivalent

to imposing monotonicity of Y in D and of D in Z. Thus, another way to state this

contrast is that imposing monotonicity of Y in D is not enough to allow one to recover

the direction of the monotonicity from an IV procedure, while imposing monotonicity

of Y in D and of D in Z is sufficient to recover the direction of the monotonicity of Y

in D from an IV procedure.

Note that the this monotonicity of D in Z is different from the “monotone instrumen-

tal variables” (MIV) or “monotone treatment selection” (MTS) restrictions considered

in Manski and Pepper (2000). Their MIV restriction is a weakening of the standard

mean-independence restriction, allowing Z to be endogenous though with the endogene-

ity in a known direction. Their MTS restriction is a restriction on the selection bias

into treatment/treatment intensity – that the endogeneity of selection into treatment

is in a known direction. Neither the MTS nor MIV restrictions are related to D as a

structural/causal function of Z.
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Figure 1: % Catheterized by Day-of-Week of Admission by Diagnosis
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Table 1: Catheterized vs. Not Catheterized; Demographic and Diagnostic Comparisons

Variable Not Catheterized Catheterized p-value

Age 61.2 60.4
[18.1] [15.8] 0.1584

Male 54.3(%) 58.5(%)
[0.498] [0.493] 0.0052

Black 17.1(%) 15.1(%)
[0.376] [0.358] 0.0714

Other Race 6.1(%) 6.7(%)
[0.240] [0.251] 0.4066

Years of Education 11.7 11.9
[ 3.1] [ 3.2] 0.0264

No Insurance 5.2(%) 6.2(%)
[0.222] [0.242] 0.1371

Private Insurance 28.1(%) 34.2(%)
[0.449] [0.474] < 0.0001

Medicare 26.5(%) 23.2(%)
[0.442] [0.422] 0.0094

Medicaid 12.1(%) 8.4(%)
[0.326] [0.277] < 0.0001

Private Insurance & Medicare 21.1(%) 22.4(%)
[0.408] [0.417] 0.2730

Family Income < $11K per year 57.1(%) 51.6(%)
[0.495] [0.500] 0.0002

Family Income $11K-$25K 20.2(%) 20.9(%)
[0.401] [0.407] 0.5526

Family Income $25K-$50K 15.1(%) 18.6(%)
[0.358] [0.389] 0.0017

Weight (kg) 65.6 72.3
[27.9] [27.9] < 0.0001

Dx: Acute Respiratory Failure 60.9(%) 46.0(%)
[0.488] [0.499] < 0.0001

Dx: Congestive Heart Failure 9.5(%) 10.6(%)
[0.293] [0.308] 0.2351

Dx: MOSF with malignancy 9.3(%) 8.0(%)
[0.290] [0.271] 0.1265

Dx: MOSF with sepsis 20.3(%) 35.4(%)
[0.402] [0.478] < 0.0001

N 2,596 (57%) 1,976 (43%)

Note: Each entry shows the mean and standard deviation (in brackets) for each variable.
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Table 2: Catheterized vs. Not Catheterized; Disease History and Functional Status

Variable Not Catheterized Catheterized p-value

Hx: Cardiac Disease 18.5(%) 20.4(%)
[0.388] [0.403] 0.0973

Hx: Congestive Heart Failure 17.8(%) 19.8(%)
[0.382] [0.399] 0.0737

Hx: Dementia 12.4(%) 7.0(%)
[0.329] [0.255] < 0.0001

Hx: Psychiatric Condition 8.5(%) 4.7(%)
[0.279] [0.211] < 0.0001

Hx: Chronic Pulmonary Disease 13.7(%) 12.1(%)
[0.344] [0.326] 0.1072

Hx: Renal Disease 5.1(%) 5.0(%)
[0.220] [0.217] 0.8479

Hx: Liver Disease 3.8(%) 4.6(%)
[0.192] [0.209] 0.2125

Hx: GI Bleed 1.6(%) 1.6(%)
[0.125] [0.126] 0.9147

Hx: Malignant Cancer 26.9(%) 20.9(%)
[0.444] [0.407] < 0.0001

Hx: Immunological Disease 27.6(%) 29.3(%)
[0.447] [0.455] 0.2144

Transferred from another hospital 9.5(%) 14.9(%)
[0.293] [0.356] < 0.0001

Hx: Acute Myocardial Infarction 3.1(%) 4.3(%)
[0.173] [0.202] 0.0352

Hx: Non-metatstatic Cancer 20.2(%) 15.9(%)
[0.402] [0.366] 0.0002

2 Month Predicted Survival 61.6(%) 58.3(%)
[0.181] [0.187] < 0.0001

Duke Activity Scale Index 20.4 20.7
[ 5.5] [ 5.1] 0.0597

Acute Physiology Score 53.2 60.6
[18.5] [20.1] < 0.0001

Glasgow Coma Score 17.8 16.1
[26.4] [24.9] 0.0206

Diastolic Blood Pressure 81.6 68.2
[37.6] [33.4] < 0.0001

Do Not Resuscitate Order 13.0(%) 6.7(%)
[0.336] [0.251] < 0.0001

Note: Each entry shows the mean and standard deviation (in brackets) for each variable.
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Table 3: Catheterized vs. Not Catheterized; Lab Values and Secondary Diagnoses

Variable Not Catheterized Catheterized p-value
WBC Count 15.6 16.1

[12.4] [12.1] 0.1895
Heart Rate 115.2 120.4

[40.2] [39.9] < 0.0001
Respiratory Rate 30.4 27.0

[13.6] [14.0] < 0.0001
Temperature (oC) 37.8 37.7

[ 1.8] [ 1.8] 0.0120
PAO2/(0.01*FiO2) 235.4 189.6

[116.4] [104.3] < 0.0001
Albumin 3.1 3.0

[ 0.7] [ 0.9] < 0.0001
Hematocrit 31.6 30.3

[ 8.2] [ 7.1] < 0.0001
Bilirubin 1.9 2.6

[ 4.3] [ 5.2] < 0.0001
Creatinine 2.1 2.5

[ 2.2] [ 2.1] < 0.0001
Sodium 137.0 136.3

[ 8.1] [ 7.6] 0.0044
Potassium 4.1 4.0

[ 1.1] [ 1.0] 0.2147
PACO2 38.0 36.4

[11.2] [10.0] < 0.0001
Serum Ph 7.4 7.4

[ 0.1] [ 0.1] 0.0002
2nd Dx: Respiratory Dx 42.3(%) 28.5(%)

[0.494] [0.451] < 0.0001
2nd Dx: Orthopedic Dx 0.1(%) 0.2(%)

[0.028] [0.045] 0.2461
2nd Dx: Neurological Dx 12.4(%) 4.6(%)

[0.329] [0.210] < 0.0001
2nd Dx: GI Dx 13.1(%) 18.6(%)

[0.337] [0.389] < 0.0001
2nd Dx: Renal Dx 5.0(%) 7.0(%)

[0.217] [0.255] 0.0040
2nd Dx: Metabolic Dx 5.7(%) 4.2(%)

[0.232] [0.201] 0.0217
2nd Dx: Hematological Dx 8.6(%) 5.4(%)

[0.280] [0.226] < 0.0001
2nd Dx: Sepsis 18.6(%) 24.8(%)

[0.389] [0.432] < 0.0001
2nd Dx: Trauma 0.7(%) 1.7(%)

[0.081] [0.128] 0.0011

Note: Each entry shows the mean and standard deviation (in brackets) for each variable.
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Table 4: Weekend vs. Weekday Admissions; Demographics and Diagnoses

Variable Weekday Weekend p-value

Age 60.7 61.1
[17.2] [17.1] 0.4028

Male 55.9(%) 56.4(%)
[0.497] [0.496] 0.7526

Black 15.7(%) 16.9(%)
[0.364] [0.375] 0.2730

Other Race 6.4(%) 6.4(%)
[0.244] [0.245] 0.9630

Years of Education 11.7 11.8
[ 3.1] [ 3.2] 0.1297

No Insurance 6.1(%) 5.0(%)
[0.239] [0.218] 0.1275

Private Insurance 30.3(%) 31.3(%)
[0.460] [0.464] 0.4804

Medicare 25.0(%) 25.3(%)
[0.433] [0.435] 0.8292

Medicaid 10.7(%) 10.1(%)
[0.310] [0.302] 0.5148

Private Insurance & Medicare 21.5(%) 21.8(%)
[0.411] [0.413] 0.8023

Family Income < $11K per year 55.9(%) 53.0(%)
[0.497] [0.499] 0.0533

Family Income $11K-$25K 20.2(%) 20.9(%)
[0.402] [0.407] 0.5442

Family Income $25K-$50K 16.1(%) 17.5(%)
[0.367] [0.380] 0.2185

Weight (kg) 68.8 68.0
[28.4] [27.6] 0.3994

Dx: Acute Respiratory Failure 53.4(%) 56.1(%)
[0.499] [0.496] 0.0707

Dx: Congestive Heart Failure 10.8(%) 8.8(%)
[0.311] [0.283] 0.0221

Dx: MOSF with malignancy 9.0(%) 8.4(%)
[0.286] [0.277] 0.4915

Dx: MOSF with sepsis 26.9(%) 26.8(%)
[0.443] [0.443] 0.9642

N 2,699 (59%) 1,873 (41%)

Note: Each entry shows the mean and standard deviation (in brackets) for each variable.
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Table 5: Weekend vs. Weekday Admissions; Disease History and Functional Status

Variable Weekday Weekend p-value

Hx: Cardiac Disease 20.8(%) 17.2(%)
[0.406] [0.377] 0.0022

Hx: Congestive Heart Failure 20.0(%) 16.7(%)
[0.400] [0.373] 0.0049

Hx: Dementia 10.7(%) 9.1(%)
[0.309] [0.287] 0.0711

Hx: Psychiatric Condition 7.1(%) 6.4(%)
[0.257] [0.245] 0.3513

Hx: Chronic Pulmonary Disease 12.5(%) 13.8(%)
[0.331] [0.345] 0.2029

Hx: Renal Disease 4.9(%) 5.3(%)
[0.215] [0.224] 0.5112

Hx: Liver Disease 4.6(%) 3.5(%)
[0.209] [0.183] 0.0605

Hx: GI Bleed 1.7(%) 1.4(%)
[0.129] [0.119] 0.4858

Hx: Malignant Cancer 24.0(%) 24.8(%)
[0.427] [0.432] 0.5078

Hx: Immunological Disease 28.4(%) 28.2(%)
[0.451] [0.450] 0.8880

Transferred from another hospital 11.6(%) 12.2(%)
[0.320] [0.327] 0.5277

Hx: Acute Myocardial Infarction 3.9(%) 3.2(%)
[0.193] [0.176] 0.2453

Hx: Non-metatstatic Cancer 18.3(%) 18.4(%)
[0.387] [0.388] 0.9203

2 Month Predicted Survival 60.5(%) 59.7(%)
[0.183] [0.185] 0.1333

Duke Activity Scale Index 20.4 20.8
[ 5.3] [ 5.5] 0.0144

Acute Physiology Score 56.4 56.4
[19.6] [19.5] 0.9938

Glasgow Coma Score 17.1 17.0
[26.1] [25.3] 0.8641

Diastolic Blood Pressure 76.1 75.4
[36.3] [36.6] 0.5686

Do Not Resuscitate Order 10.6(%) 9.8(%)
[0.308] [0.298] 0.3976

Note: Each entry shows the mean and standard deviation (in brackets) for each variable.
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Table 6: Weekend vs. Weekday Admissions; Lab Values and Secondary Diagnoses

Variable Weekday Weekend p-value
WBC Count 15.9 15.7

[11.8] [12.9] 0.6895
Heart Rate 117.4 117.6

[40.4] [39.8] 0.8381
Respiratory Rate 29.0 28.8

[13.9] [13.9] 0.6250
Temperature (oC) 37.7 37.8

[ 1.8] [ 1.8] 0.2379
PAO2/(0.01*FiO2) 215.5 215.8

[113.5] [113.8] 0.9454
Albumin 3.1 3.0

[ 0.9] [ 0.7] 0.3204
Hematocrit 31.0 31.1

[ 7.8] [ 7.8] 0.6135
Bilirubin 2.3 2.1

[ 5.1] [ 4.1] 0.1405
Creatinine 2.3 2.2

[ 2.2] [ 2.1] 0.5349
Sodium 136.7 136.7

[ 7.9] [ 7.9] 0.8792
Potassium 4.1 4.0

[ 1.1] [ 1.0] 0.1329
PACO2 37.1 37.6

[10.6] [10.9] 0.1700
Serum Ph 7.4 7.4

[ 0.1] [ 0.1] 0.9767
2nd Dx: Respiratory Diagnosis 35.2(%) 38.0(%)

[0.478] [0.486] 0.0516
2nd Dx: Orthopedic Dx 0.2(%) 0.0(%)

[0.047] [0.000] 0.0412
2nd Dx: Neurological Dx 8.6(%) 9.7(%)

[0.280] [0.296] 0.1995
2nd Dx: GI Dx 16.0(%) 14.7(%)

[0.367] [0.354] 0.2111
2nd Dx: Renal Dx 6.1(%) 5.4(%)

[0.240] [0.227] 0.3439
2nd Dx: Metabolic Dx 5.2(%) 4.8(%)

[0.223] [0.214] 0.5248
2nd Dx: Hematological Dx 7.0(%) 7.4(%)

[0.256] [0.262] 0.6235
2nd Dx: Sepsis 21.5(%) 21.0(%)

[0.411] [0.407] 0.6805
2nd Dx: Trauma 1.0(%) 1.2(%)

[0.101] [0.108] 0.6611

Note: Each entry shows the mean and standard deviation (in brackets) for each variable.
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Figure 2: Mortality Rates for Weekend vs. Weekday Admissions
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Figure 3: OLS Treatment Effect
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Figure 4: Bivariate Probit Treatment Effect
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Figure 5: Manski (1990) and Shaikh and Vytlacil (2004) Bounds

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

7 30 60 90 180 7 30 60 90 180

Manski SV

Pt. Estimate 95% Conf. Bound

T
x.

 E
ffe

ct
 B

ou
nd

Days After ICU Admission

All Patients

48



Figure 6: PQD Bounds

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

T
x.

 E
ffe

ct
 B

ou
nd

7 30 60 90 180

Days After ICU Admission

Pt. Estimate 95% Conf. Bound

All Patients

49



Figure 7: PQD Bounds Without Instruments
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