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ABSTRACT

Most economic activity occurs in cities. This creates a tension between local increasing returns,

implied by the existence of cities, and aggregate constant returns, implied by balanced growth. To

address this tension, we develop a theory of economic growth in an urban environment. We show

that the urban structure is the margin that eliminates local increasing returns to yield constant returns

to scale in the aggregate, which is sufficient to deliver balanced growth. In a multi-sector economy

with specific factors and productivity shocks, the same mechanism leads to a city size distribution

that is well described by a power distribution with coefficient one: Zipf's Law. Under certain

assumptions our theory produces Zipf's Law exactly. More generally, it produces the systematic

deviations from Zipf's Law observed in the data, including the under-representation of small cities

and the absence of very large ones. In general, the model identifies the standard deviation of industry

productivity shocks as the key parameter determining dispersion in the city size distribution. We

present evidence that the relationship between the dispersion of city sizes and the variance of

productivity shocks is consistent with the data.
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1. INTRODUCTION

Aggregate economic activity is primarily urban economic activity. For example, in

the United States at the turn of the millennium, 80% of the population lived in urban

agglomerations, and they earned around 85% of income. This fact creates a tension.

On the one hand, the organization of economic activity in cities is evidence for the

presence of scale effects: there are economic rewards to the agglomeration of firms

and individuals in a city. On the other hand, scale does not appear to be rewarded

in the aggregate, as suggested by the evidence on balanced growth. In this paper we

argue that it is the urban structure — the number and size of cities — that resolves

this tension.

In the absence of aggregate constant returns to scale, long run growth rates in

income per capita either explode or tend to zero.1 An endogenous urban structure

is, however, sufficient to generate balanced growth in the presence of local increasing

returns. To see this, note that the size of cities is determined by the trade-off between

agglomeration effects and congestion costs. In our theory, this trade-off is affected by

the stock of factors and the level of productivity. As the economy expands, keeping

factor proportions and productivity levels constant, each city operates at the equilib-

rium size and the economy behaves as if using a constant returns to scale technology

by varying the number of cities. In this way, it is the evolution of the urban struc-

ture that produces linear aggregate production functions in a world with urban scale

effects.

Theories that use this mechanism to generate balanced growth face the challenge

of being consistent with a number of well-established empirical regularities about the

size distribution of cities. To address these facts, we embed this mechanism in a

multi-sector economy with industry specific factors and productivity shocks in which

1Specifically, the production set of the aggregate economy is, asymptotically, a convex cone. In
both exogenous growth models, and endogenous growth models such as Lucas (1988), scale economies
at the industry level are transformed into constant returns at the aggregate by assuming linear factor
accumulation technologies (see also Jones (1999)).
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the size distribution of cities depends on the allocation of industries across cities.

The growth, birth and death of these cities in turn depends upon the evolution of

productivity shocks and the way they are propagated through the accumulation of

industry specific factors. We show that under two polar sets of assumptions this

mechanism delivers the stylized empirical regularity known as Zipf’s Law of cities:

The rank of a city is inversely proportional to its size. Zipf’s Law is, however, only

an approximate description of the data. To address these discrepancies, we analyze

the implications of our theory away from these two polar cases and show that the

mechanism delivers precisely the systematic deviations from Zipf’s Law observed in

the data.

The main step in establishing the implications of our theory for city size distrib-

utions is to demonstrate the ability of this mechanism to produce Gibrat’s Law of

cities: the mean and variance of the growth rate of a city are independent of its

size. In our framework, cities result out of the trade-off between commuting costs

and local production externalities in human capital and labor. Industry specific ex-

ternalities imply that cities specialize in an industry, and so all cities operating in

an industry have the same size. The interaction between commuting costs and the

urban production externality leads to a city size that varies only with changes in the

average product of labor in the city (and hence industry). In response to a positive

productivity shock, cities grow, and the number of cities operating in an industry

falls as long as employment in the industry changes less than proportionately.

To see how the mechanism generates Gibrat’s Law, first consider a simple economy

in which the only factors of production are labor and human capital both growing at

constant rates. In such an economy, the growth rate of the average product of labor,

and hence the size of cities, is driven by the growth rate of total factor productivity.

Therefore, if shocks are permanent, the growth process of cities is scale independent.

Conversely, in an economy in which human capital and labor do not grow and the

production function is linear in capital (anAK model), temporary productivity shocks

imply permanent changes in the capital stock, the average product of labor, and hence
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also in the size of cities. In this case, we also obtain a scale independent growth

process for cities. After establishing Gibrat’s Law for these polar cases, we combine

the growth, entry, and exit processes to show that, in these cases, the invariant

distribution of city sizes satisfies Zipf’s Law.2

Apart from these polar cases, productivity shocks affect the distribution of city

sizes both directly and indirectly through their effect on factor accumulation. This

implies a scale dependent growth process for cities. The bulk of the paper is devoted

to a study of the interaction of these effects and their ability to produce a number of

robust deviations from Zipf’s Law observed in the data. One of the most notable is

that, relative to Zipf’s Law, small cities are under-represented and the largest cities

are not ‘large enough.’ A second is that there is some systematic variation in the

dispersion of city sizes across countries. We show that our theory is able to produce

these robust deviations from Zipf’s Law in between the two polar cases discussed

above. Industries with small stocks of specific capital operate in small cities. For

these industries, diminishing returns to physical capital lead to high rates of return,

high incentives to accumulate industry specific capital, and hence a high growth rate

for cities operating in this industry. This logic implies that growth rates decrease with

size, which we show leads to the under-representation of small cities and the absence

of very large ones. We also show that the model identifies the standard deviation of

industry productivity shocks as the key element determining dispersion in the size

distribution of cities across countries.

This paper draws from four related literatures. The first is the extensive literature

on endogenous growth spawned by Lucas (1988) and Romer (1990). In this literature,

as emphasized by Jones (1999), the treatment of scale effects is crucial, as it is the

imposition of linearity in the aggregate production technology that is necessary for

2The relationship between Gibrat’s Law and Zipf’s Law has been previously studied in both the
physics (for example, Levy and Solomon (1996), Malcai, Biham and Solomon (1999), and Blank and
Solomon (2000)) and economics (for example, Gabaix (1999a) and Cordoba (2003)) literatures. In
contrast to these papers, our proof emphasizes the interaction between Gibrat’s Law and the process
of entry and exit in producing Zipf’s Law.
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the existence of balanced growth. Where our paper differs is in its utilization of the

urban structure as the vehicle for obtaining this linearity.

A second related literature is the small number of papers on urban growth. Black

and Henderson (1999) and Eaton and Eckstein (1997) both present deterministic

urban growth models with two types of cities in which, along the balanced growth

path, both cities grow at the same rate. Unlike both of these papers, ours focuses

on a stochastic environment and introduces a rich industrial structure which allows

us to characterize the evolution of the entire size distribution of cities over time.

In addition, both of these papers obtain the linearity of the aggregate production

process by assuming knife-edge conditions on production and externality parameters.

In contrast, in our theory the urban structure produces this linearity without any

further conditions on parameter values.

Zipf's Law for the US
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Figure One

Following the original paper of Auerbach (1913), a substantial literature has arisen

that investigates the empirical foundations of Zipf’s Law. A number of authors,

including Rosen and Resnick (1980), Dobkins and Ioannides (2000), Ioannides and

Overman (2001), and Soo (2003) have documented the robustness of this phenomenon
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both over time and across countries. This is illustrated in Figure One for the United

States, where Zipf’s Law appears to be as good a description of the size distribution of

cities at the turn of the Twenty-First century as it was at the turn of the Twentieth.

Further, as illustrated in Figures Two A and B, Zipf’s Law also appears to be a good

description of the size distribution of cities across a broad range of countries today.

Developed Countries
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Figure Two B

Much recent empirical work on the size distribution of cities (surveyed in Gabaix

and Ioannides (2003)) has emphasized the fact that there are systematic deviations

from Zipf’s Law. One of the most robust is the under-representation of small cities

and the absence of very large ones, which is illustrated in Figures One and Two as a

broad tendency for the relationship to be slightly concave, at least once one controls

for a country’s capital city (see also Eeckhout (2004)). A second, as shown in Figure

Two, is that some countries have a size distribution that is more or less dispersed than

that predicted by Zipf’s Law, which is reflected in flatter or steeper plots of log-rank

against log-size. These deviations from Zipf’s Law are precisely the ones emphasized

in the discussion above.
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Finally, this paper is related to a number of proposed explanations of Zipf’s Law.

A large number of papers, including most notably Champernowne (1953), Kalecki

(1945), Levy and Solomon (1996), Malcai, Biham and Solomon (1999), Gabaix (1999a),

Blank and Solomon (2000) and Cordoba (2003), have studied statistical processes that

generate Zipf’s Law. In economics, Gabaix (1999a,b), Cordoba (2003) and Eeckhout

(2004) have presented models in which cities grow as labor migrates as the direct

response to city amenity, taste or productivity shocks. Neither paper generates the

existence of cities endogenously, and in all three the city growth process directly in-

herits the behavior of the exogenously specified shocks. In a recent study, Duranton

(2002) presents a quality ladder model of growth which, under certain assumptions

on the location and mobility of new firms, produces a size distribution of cities that

matches some aspects of the data. In contrast, our paper focuses upon the relationship

between factor accumulation, productivity shocks and the urban structure. Impor-

tantly, it is endogenous city formation that both eliminates scale effects in growth

and provides an alternative theory of the size distribution of cities.

The rest of the paper is organized as follows. The next section presents the model.

Section 3 derives the main results of the paper on growth, Zipf’s Law, and deviations

from Zipf’s Law. Section 4 illustrates the results of the model numerically and com-

pares them to data from several countries. Section 5 concludes. An appendix contains

the basic elements of the decentralization and proofs of the main propositions.

2. AN URBAN GROWTH MODEL

Consider an economy in which production occurs at specific locations that we call

cities. Firms set up in a city, hiring capital and employing workers. Agglomeration

results from a positive production externality on labor and human capital. Agents

reside in cities and commute to work. Households are made up of workers who con-

sume, accumulate industry specific physical capital to be used in each industry, and

devote their time to working and learning so as to accumulate industry specific human

capital. We assume log-linear preferences and Cobb-Douglas production functions so
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that both the growth path and the city size distribution can be solved in closed form.

Cities

Our approach to modeling cities follows the classic paper of Henderson (1974)

and has been used in the urban growth model of Black and Henderson (1999). We

consider a world in which there are a large number of potential city sites. Cities are

monocentric, with all production occurring at the single exogenously given central

business district (CBD). It is assumed that every agent that works at the CBD must

reside in the area surrounding the city. Locations closer to the CBD are more desirable

because they involve a shorter commute to work. Specifically, we assume that the

cost of commuting is linear in the distance travelled, and we let τ be the cost per mile

of commuting in terms of the output of the city.

All agents consume the services of one unit of land per period. In order for agents to

be indifferent about where to live in the city, rents differ by the amount of commuting

costs, with rents on the city edge equal to zero. Therefore, in a city of radius z̄, rents

at a distance z from the center must be given by

R(z) = τ (z̄ − z) .

Hence, total rents in a city of radius z̄ are given by

TR =

Z z̄

0

2πzR(z)dz =
πτ

3
z̄3.

Since everyone in the city lives in one unit of land, a city of population n has a

radius of z̄ = (n/π)
1
2 and so

TR =
πτ

3

³n
π

´ 3
2
=

b

2
n
3
2 ,

where b ≡ 2π− 1
2 τ/3. Total commuting costs are given by

TCC =

Z z̄

0

2πzτzdz = bn
3
2 ,
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with each resident of the city paying a total of 3bn
1
2/2 in terms of rents and commut-

ing costs. Note that both total and average commuting costs are increasing in city

population.

Firms

Production occurs in firms that face a constant returns to scale technology. The

production of a representative firm in industry j located in an arbitrary city at any

point in time t has the Cobb-Douglas form

Ãtjk
βj
tj h

αj
tj (utjntj)

1−αj−βj ,

where Ãtj is the total factor productivity of an urban firm (given that good j is

produced in that city), ktj is the amount of industry j specific capital used by that

firm, htj is the amount of human capital, and ntj is the number of workers employed

in a firm, each of whom spends a fraction utj of his or her time at work.

There is a local industry specific externality in the labour input, so that the pro-

ductivity of any firm in the city depends upon the number of workers in a city and

the amount of human capital they have

Ãtj = AtjH̃
γj
tj Ñ

εj
tj ,

where Atj is an industry specific productivity shock and H̃tj and Ñtj represent the

total stock of human capital and the total amount of labor in the city. Increasing

returns at the city level cause agglomeration in the model. Firms are assumed to be

small, taking the size of the externality as given. The industry specific productivity

shock is finite order Markov and is distributed according to a density function with

finite moments.

We divide the original set of J industries into groups. Within a group, firms in each

industry produce using exactly the same technology, but use industry specific human

and physical capital, and receive industry specific productivity shocks. Across groups,

all aspects of the technology may differ. In line with much of the literature, we see
9



this as a natural way of organizing the set of products observed in the economy. Some

products are distinguished because they are produced with fundamentally different

technologies, while others embody different designs or fulfill different purposes, but are

produced with the same ex-ante technology. We use the homogeneity of technology

within a group to establish the conditions under which Zipf’s Law holds for each of

these groups. We then aggregate across groups to obtain Zipf’s Law for the entire

economy.

Households

The economy is populated by a unit measure of identical small households. The

initial number of people per household is N0, and we assume that the population of

each household grows exogenously at rate gN . Each household starts with the same

strictly positive endowments of industry j specific physical (Kj0) and human (Hj0)

capital.

Households order preferences over stochastic sequences of the consumption good

according to

(1− δ)E0

" ∞X
t=0

δtNt

Ã
JX
j=1

θj ln

µ
Ctj

Nt

¶!#
,

where δ is a discount factor that lies strictly between zero and 1/ (1 + gN) , and Ctj

denotes a sequence of state contingent consumption of each good j. Here E0 is an

expectation operator conditional on all information available to the household at

time zero.

Capital services in industry j are proportional to the stock of industry j-specific

capital, which is accumulated according to the log-linear equation

Kt+1j = K
ωj
tj X

1−ωj
tj .

Investment in industry j,Xj, is assumed to be denominated in terms of that industry’s

consumption good.

Each member of the household is endowed with one unit of time in each period,
10



which can be devoted to either the accumulation of human capital or the provision

of labor services in each of the j industries. In order to work in industry j, a member

of the household must be physically present (at the start of the period) at a location

that produces good j. Hence we can think of the household distributing Nj of its

members to each industry j subject toX
j

Ntj ≤ Nt,

in each period.

Workers spend time producing new human capital according to

Ht+1j = Htj

£
B0
j + (1− utj)B

1
j

¤
,

where B0
j and B1

j are positive constants. This specification allows us to nest both

endogenous and exogenous growth within the same framework. IfB1
j = 0, then human

capital evolves exogenously at a constant rate B0
j and we have an exogenous growth

model. If B1
j is positive, then the time allocation of a worker affects the growth rate

of the economy, which results in an endogenous growth model. The assumption of

linearity is made for simplicity, but is not necessary to generate balanced growth in

this model since, as we will show below, the economy exhibits constant returns to

scale in the aggregate.

Efficient allocations

All Pareto efficient allocations are the solution of the following Social Planning

Problem: Choose state contingent sequences
©
Ctj,Xtj, Ntj, µtj, utj, Ktj,Htj

ª∞,J

t=0,j=1
so

as to maximize

(1− δ)E0

" ∞X
t=0

δtNt

Ã
JX
i=1

θi lnCti/Nt

!#
(1)

subject to, for all t and j,

Ctj +Xtj + bÑ
3
2
tjµtj ≤ AtjK̃

βj
tj H̃

αj+γj
tj Ñ

1−αj−βj+εj
tj u

1−αj−βj
tj µtj, (2)
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Nt =
JX

j=1

Ntj =
JX

j=1

µtjÑtj, (3)

Ktj = µtjK̃tj, (4)

Htj = µtjH̃tj, (5)

Kt+1j = K
ωj
tj X

1−ωj
tj , (6)

Ht+1j = Htj

£
B0
j + (1− utj)B

1
j

¤
. (7)

The first constraint states that consumption plus investment plus commuting costs

has to be less than or equal to production in all cities in the industry, where µtj

denotes the number of cities in industry j at time t.

The original problem is not a convex dynamic optimization problem. However,

since the city size problem is static, we can solve it separately and transform the

problem into a convex dynamic optimization problem. This allows us to prove the

existence of a unique Pareto efficient allocation below.

Decentralization

In order to explain the observed city size distributions, it is necessary to consider

also competitive equilibrium allocations. It is easy to introduce a competitive equi-

librium framework for which the unique equilibrium allocation attains the solution of

the Social Planning Problem. As is standard in the previous literature, we use city

developers that internalize the urban production externality.

We follow Henderson (1974) and postulate the existence of a class of competitive

property developers that own each potential city site and compete to attract workers

and firms. Property developers aim to maximize total rents from their land. In order

to attract firms and workers to the city, developers may subsidize the employment of

all factors of production (although they never choose to subsidize physical capital as

there is no externality in physical capital). Agents derive utility out of consumption

of goods that are costlessly tradable, and so they live in the city if their income, net

of commuting costs, is larger than what they could obtain elsewhere. Firms produce
12



in the city as long as profits are nonnegative. Free entry implies that developers earn

zero profits in equilibrium. Solving this problem results in city sizes that are optimal.

Given the size of the industry, this means that we must allow for the possibility of

a non-integer number of cities, all of which are identical in size within an industry.

Since developers are fully internalizing the external effect, the equilibrium allocation

is efficient.

It is important to stress that in this formulation developers choose to subsidize

human capital independently of the subsidy to labor, and that this subsidy is on

the employment, but not the accumulation, of human capital. This distinction is

important, since free mobility restricts the ability of developers to extract the benefits

of subsidies to human capital accumulation. Some examples of policies that may

achieve this goal in practice are subsidies to firms that employ high skilled workers,

or the provision of local public goods preferred by highly educated agents (e.g. fine

arts)3.

The next two propositions establish uniqueness of the Pareto efficient allocation,

and the analogs of both Welfare Theorems. Apart from the developers problem, the

proofs of these propositions are standard. The details of the developers problem are

presented in the appendix. The full decentralization and a detailed proof of these

propositions can be found in Rossi-Hansberg and Wright (2003).

Proposition 1 Every competitive equilibrium in this economy is Pareto efficient.

Proposition 2 There exists a competitive equilibrium that attains the unique Pareto

efficient allocation.

3. CHARACTERIZATION

With these results in hand, we are free to make use of the solution to the social

planning problem in order to characterize the competitive equilibrium of the model.

3See Black and Henderson (1999) for a discussion of the difficulties in implementing this type of
subsidy.
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We now proceed to derive several properties of the equilibrium allocation. Due to our

functional form assumptions, we are able to solve for the entire equilibrium growth

path and size distribution of cities in closed form.

Aggregate Constant Returns

The problem of choosing the optimal sizes of cities is static: The planner sets the

city size to maximize output net of commuting costs. We solve this problem first and

then, imposing the solution, we solve for the dynamics. Toward this, we can rewrite

the resource constraint in an industry j at time t as a function of industry-wide

variables and the number of cities in an industry,

Ctj +Xtj + bN
3
2
tjµ

−1
2

tj ≤ AtjK
βj
tj H

αj+γj
tj N

1−αj−βj+εj
tj u

1−αj−βj
tj µ

−γj−εj
tj ≡ Ytj.

The first order condition with respect to µtj yields the optimal number of cities in

industry j, as a function of output and employment in that industry,

µtj =

"
2
¡
γj + εj

¢
b

Ytj
Ntj

#−2
Ntj, (8)

and so total commuting costs satisfy

TCCtj = 2
¡
γj + εj

¢
Ytj. (9)

Notice that we need to impose

γj + εj <
1

2
,

since otherwise total commuting costs would be larger than total output in the indus-

try (this assumption also guarantees that the first order condition is necessary and

sufficient). To interpret this restriction, write industry output minus total commuting

cost as

AtjK
βj
tj H

αj+γj
tj N

1−αj−βj+εj
tj u

1−αj−βj
tj µ

−γj−εj
tj − bN

3
2
tjµ

− 1
2

tj ,

and notice that if the above condition is not satisfied, as the number of cities decreases,

given industry aggregates, the value of the expression increases unboundedly. This
14



implies that the above problem has no internal solution: The planner would like to

make cities as large as possible.

Substituting the results for the optimal number of cities and total commuting costs

in the resource constraint implies that

Ctj +Xtj ≤ FjÂtjH
α̂j
tj K

β̂j
tj N

1−α̂j−β̂j
tj u

φ̂j
tj ≡ Ŷtj, (10)

where

Fj = (1− 2 ¡γj + εj
¢
)

"
2
¡
γj + εj

¢
b

# 2(γj+εj)
1−2(γj+εj)

,

Âtj = A

1

1−2(γj+εj)
tj , α̂j =

αj + γj
1− 2 ¡γj + εj

¢ ,
β̂j =

βj
1− 2 ¡γj + εj

¢ , and φ̂j =
1− αj − βj
1− 2 ¡γj + εj

¢ .
Since, under our assumptions utj ≤ 1 is constant in equilibrium, output net of

commuting costs for the optimal city structure (Ŷtj) is constant returns to scale in

industry aggregates. Notice that by equation (9) output in the industry is also a

constant returns to scale function of inputs in the industry.

The constraint in (10) contains the first main result of our paper: introducing the

margin of the creation of new cities eliminates increasing returns at the urban level

from the aggregate problem. We summarize this result in the following Proposition.

Proposition 3 (Aggregate Constant Returns to Scale) Output in industry j, Ytj, and

industry output net of commuting costs, Ŷtj, are constant returns to scale functions

of industry specific capital Ktj, industry specific human capital Htj, and labor Ntj.

The result in this Proposition has implications for the way in which we view the

growth process. First, it allows us to reconcile the coexistence of cities, which implies

the existence of scale economies, with balanced growth. Second, it shows that it is

inappropriate to test for the existence of increasing returns with aggregate data even
15



though increasing returns are, in fact, present in the production technology. Third,

the observed level of aggregate productivity (the magnitude of Fj in equation (10))

is determined by the way production is organized in cities, as well as the parame-

ters governing externalities and commuting costs. This suggests the possibility that

differences in the pattern of urbanization are the source of differences in total factor

productivity across countries4. As productivity shocks are likely to be more frequent

than changes in these patterns, one could in principle decompose their effect on total

factor productivity empirically. To clarify this last point, suppose that cities are or-

ganized at a suboptimal size, either too large or too small, captured by a parameter

κj 6= 1, such that
Ntj

µtj
= κj

"
2
¡
γj + εj

¢
b

Ytj
Ntj

#2
.

Then, output net of commuting costs would be given by equation (10) with a modified

Fj given by

Fj = (1−√κj2
¡
γj + εj

¢
)

"
√
κj
2
¡
γj + εj

¢
b

# 2(γj+εj)
1−2(γj+εj)

which, as can be easily checked, has a global optimum at κj = 1. Hence, by organizing

cities inefficiently (too small or too large), the economy would produce with lower

total factor productivity. In what follows we set κj = 1, since it does not affect any

of the urban or growth implications of the model.

City Sizes

To understand the process of city size determination, rewrite the first order condi-

tion for the number of cities, µtj, as

b

2

µ
Ntj

µtj

¶− 1
2

=
¡
γj + εj

¢ Ytj/Ntj

Ntj/µtj
.

4Au and Henderson (2002) examines this possibility for the particular case of China.
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That is, the planner increases the number of people in the city until the change in

commuting costs per person for current residents (left hand side) is equal to the

change in earnings per person for current residents (right hand side).

From this equation it is easy to see that anything that increases the level of the

average product of labor increases the average size of the city. For example, consider

the effect of an increase in productivity. Everything else equal, output per worker

increases and the planner finds it optimal to attract more workers to the city. If the

productivity increase is permanent, the city will be permanently larger. The growth

model presented above is, in essence, a mechanism for producing persistence in the

average product of labor in a city, while at the same time remaining consistent with

aggregate growth facts.

Our mechanism relies on city sizes that respond to factor accumulation and pro-

ductivity shocks. This is the case as long as average commuting costs do not rise

by exactly the same amount as the average product of labor. If commuting costs

were to rise by less, or even more, than the average product of labor, the basic result

that productivity shocks are translated into fluctuations in city size remains. How-

ever, one combination of assumptions that does not work is if commuting costs are

denominated purely in units of time, and workers supply labor inelastically, and the

production function is Cobb-Douglas. In this knife-edge case, marginal and average

products are proportional and hence commuting costs measured as forgone wages

rise at exactly the same rate as the average product of labor. More generally, any

combination of time and material cost of commuting yields the necessary response of

city sizes to productivity shocks. In the model above we focus on a simple case in

which commuting costs within a city are denominated in terms of the output of that

city. The results are analogous if we include time costs of commuting as well.

Growth Rates

To solve for the dynamics of factor accumulation, note that after substituting for

the optimal number of cities we obtain a standard dynamic problem with constant
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returns to scale production technology. In particular, our problem becomes one of

choosing {Ctj, Xtj, Ntj, utj, Ktj, Htj}∞,J
t=0,j=1 so as to maximize (1) subject to (10),

(3), (6), and (7). The value function of the planner has the form

V ({Htj, Ktj, Atj}Jj=1) = D0 +
JX

j=1

£
DH

j ln(Htj) +DK
j ln(Ktj) +DA

j ln (Atj)
¤
,

which is the result of the particular log-linear specification we have assumed. We

could set up a more general model at the cost of losing the ability to solve the model

analytically. The details of the solution are entirely standard and are suppressed.5

Three basic results are immediate. The share of population working in each industry

is constant. Investment is a constant share of output net of commuting costs

Xtj = xjŶtj,

for some constant xj, and the fraction of time used for production is constant at u∗j .

Note that the model is capable of producing growth, either exogenously or endoge-

nously. More importantly, the model delivers two properties not present in most other

urban growth models: a balanced growth path exists without knife-edge assumptions

on the size of externalities, and growth is positive even in the absence of population

growth. On the balanced growth path (with no uncertainty) we know that the growth

rates of capital (gKj), human capital (gHj), and output net of commuting costs (gŶj)

are constant, so

gKt+1j ≡ lnKt+1j − lnKtj = (1− ωj)
h
lnxj + ln Ŷtj

i
− (1− ωj) lnKtj.

Hence, on the balanced growth path ln Ŷtj − lnKtj is constant. The growth rate of

human capital is given by

gHj = B0
j + (1− u∗j)B

1
j .

For income, when β̂j < 1, on the balanced growth path
6 (with no uncertainty),

gŶj =
α̂jgHj +

³
1− α̂j − β̂j

´
gN

1− β̂j
.

5The details are contained in Rossi-Hansberg and Wright (2003).
6For the case when β̂j = 1, gN = gH = 0, and ω = 0 (the AK model), gŶt+1j = lnxj+ln (FjAtj) .
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That is, in the long run, growth is driven by endogenous human capital accumulation

(if B1
j > 0) and exogenous population growth.

Notice that in this model linearity in human capital accumulation implies that

growth rates are constant in the long run, even with increasing returns in the aggregate

production function. In general, this type of linearity plays two different roles in

growth models: It is a source of endogenous growth, and it prevents growth rates

from diverging to infinity. In this paper, this linearity serves the first and not the

second purpose. We use it to show that our results do not depend on the source of

growth and, in particular, whether it is exogenous or endogenous. To illustrate this

point, suppose we set 1 < αj+βj+γj for all j, and we let human capital accumulate

exactly as physical capital. Then, without cities, due to the presence of aggregate

increasing returns, growth rates would diverge to infinity. However, with this type of

increasing returns at the city level, the mechanism we have introduced in this paper

would yield constant returns in the aggregate and therefore a balanced growth path

in which gŶj = gN .

Gibrat’s and Zipf’s Laws

Given the evolution of output in each industry, we can study the evolution of the

size distribution of cities. In particular, the growth rate of a city in industry j is given

by

ln

µ
Nt+1j

µt+1j

¶
− ln

µ
Ntj

µtj

¶
= 2 [ln (At+1j)− ln (Atj)]− 2

³
α̂j + β̂j

´
[ln(Nt+1)− ln(Nt)]

+2α̂j ln
¡
B0
j + (1− u∗j)B

1
j

¢
+ 2β̂j [ln (Kt+1j)− ln (Ktj)] .

Recursively substituting for capital growth, we get an expression for the long run

growth rate of cities:
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ln

µ
Nt+1j

µt+1j

¶
− ln

µ
Ntj

µtj

¶
=

2α̂j

1− β̂j
[gHj − gN ] + 2 [ln (At+1j)− ln (Atj)]

+2 (1− ωj) β̂j

ln(Atj)−
∞X
s=1

³
ωj + (1− ωj) β̂j

´s−1
³
1−

³
ωj + (1− ωj) β̂j

´´−1 ln(At−sj)

 . (11)
Equation (11) is the key equation for characterizing city dynamics. From this

equation we can deduce conditions under which Gibrat’s Law is guaranteed for each

group of industries. We can then show that Gibrat’s Law implies Zipf’s Law in our

framework once we modify the results on the convergence of the growth process in

Levy and Solomon (1996) and Malcai, Biham and Solomon (1999) to allow for the

entry and exit of cities.

In order to generate Gibrat’s Law, and Zipf’s Law as an invariant distribution, we

need the growth processes at the city level to be independent of scale. As labor is

perfectly mobile across cities and industries, this in turn requires that the marginal

product of labor be independent of scale. The proposition below outlines two scenarios

in which this is exactly the case: the first is one in which current productivity shocks

are the only stochastic force in growth and are permanent, thus producing permanent

increases in the level of the marginal product of labor, so that the growth rate of the

marginal product is independent of scale7. These assumptions eliminate the third

term in equation (11) and therefore all scale dependence. This result is invariant

to whether the engine of growth is endogenous or exogenous. The second case is

one in which productivity shocks are temporary, but have a permanent effect on the

marginal product of labor through the linear accumulation of physical capital. This

7This is essentially the mechanism at work in Gabaix (1999a,b), Cordoba (2003) and Eeckhout
(2004) for an exogenous number of cities. Gabaix (1999a) and Cordoba (2003) impose lower bounds
on city sizes and a particular structure on the shocks that leads to an urban structure described by
a Pareto distribution with coefficient one. Eeckhout (2004) has permanent productivity shocks that
lead, without a lower bound via the Central Limit Theorem, to a log-normal distribution for city
sizes. The economic interpretation of the shocks differ in all three cases.
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amounts to transforming the model into an AK model with no human capital and

100% depreciation. In this context, both last period output and capital react linearly

to last period shocks. These two effects cancel out, and the only remaining source of

uncertainty is the contemporaneous productivity shock.8

The next proposition formalizes these arguments and proves the link between

Gibrat’s Law and Zipf’s Law in the model. In the proof of the proposition, we use the

assumption that our industries can be divided into groups with similar technologies

to first prove that Zipf’s Law holds for each group. We then aggregate across groups

to show Zipf’s Law for the entire economy. The proof of this result requires us to

impose an arbitrarily small lower bound on the size of a city (as in Gabaix 1999a).

All proofs are relegated to the appendix.

Proposition 4 (Exact Gibrat’s Law and Zipf’s Law) The growth process of city sizes

satisfies Gibrat’s Law, and the invariant distribution for city sizes satisfies Zipf’s Law,

if and only if one of the following two conditions is satisfied:

1. (No physical capital) There is no physical capital
³
β̂j = 0 or ωj = 1

´
, and pro-

ductivity shocks are permanent.

2. (AK model) City production is linear in physical capital and there is no human

capital
³
α̂j = 0, β̂j = 1

´
, depreciation is 100% (ωj = 0) , and productivity shocks

are temporary.

Scale Dependence

Obviously, the conditions outlined in Proposition 4 are restrictive. Reality surely

lies between these two extremes: capital is a factor of production, but not the only

one. The question that arises is: Between these two extremes, how close are the

8Note that if we were to allow infinite order Markov processes for Aj , we could fine tune the
specification of the process so as to yield Zipf’s Law exactly for any parameter set.
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predictions of the model to observed urban structures? As mentioned in the intro-

duction, an extensive empirical literature (surveyed in Gabaix and Ioannides (2003))

has uncovered two systematic departures from Zipf’s Law. First, plots of log-rank

against log-size are concave, reflecting the fact that small cities are underrepresented

and that big cities are not ‘big enough.’ Second, there is some variation in cross coun-

try estimates of Zipf’s coefficients, with this variation positively correlated with per

capita income: richer countries have a more even city size distribution (Soo (2003)).

In the next two Propositions we argue that, in general, the model produces these

same deviations from Zipf’s Law. First we show that if a city is relatively large because

it operates in an industry that experienced a history of above average productivity

shocks, it can be expected to grow slower than average in the future, while the opposite

is true of small cities. Intuitively, since β̂ < 1, diminishing returns to capital imply

that industries with high capital stocks have a lower return to capital than industries

with low capital stocks, and so cities in industries with relatively low stocks of physical

capital grow faster. This effect is emphasized by the fact that when ωj > 0 for all

j, in order to keep physical capital constant, industry investments have to be higher

in industries with large capital stocks and lower in industries with low capital stocks.

Urban growth rates exhibit reversion to the mean. This implies that the log rank-

size relationship will in general (apart from particular realizations of the shocks) be

concave or, in other words, that the invariant distribution for city sizes has thinner

tails than a Pareto distribution with coefficient one. Eeckhout (2004) emphasizes

exactly this feature of the data.

Proposition 5 (Concavity) If conditions 1 and 2 in Proposition 4 are not satisfied,

the growth rate of cities exhibits reversion to the mean. If productivity levels are

bounded for all industries (so that there exist uniform bounds such that Atj ∈
£
Aj, Aj

¤
for all t, j), then there exists a unique invariant distribution of city sizes with thinner

tails than a Pareto distribution with coefficient one.

Unless the conditions of Proposition 4 are satisfied, variation in the standard de-
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viation of productivity shocks affects the distribution of city sizes. Intuitively, given

capital stocks, a larger standard deviation of shocks implies a larger standard devia-

tion of city sizes and a larger standard deviation of investments, which in turn implies

a more dispersed distribution of capital stocks. This would explain the positive cor-

relation between Zipf’s coefficients and income, documented in Soo (2003), if high

income countries experience less volatile shocks. We formalize this intuition in the

following proposition.

Proposition 6 If conditions 1 and 2 in Proposition 4 are not satisfied, the standard

deviation of city sizes increases with the standard deviation of industry shocks.

Proposition 6 points to the standard deviation of productivity shocks as the key

parameter linking our model with the observed urban structure. In the next section

we explore whether the international evidence on Zipf’s coefficients is consistent with

the evidence on the volatility of industry productivity shocks.

4. NUMERICAL EXERCISES

This section illustrates the characterization of the urban structure presented in the

previous section. Summarizing, we obtain Zipf’s Law exactly if we either eliminate

capital or make capital accumulation linear; in all other cases the log rank-size re-

lationship is concave and the absolute value of the slope is negatively related to the

variance of industry shocks. All the results we have presented are asymptotic; for any

particular realization of the stochastic process there may be random deviations from

Zipf’s Law. This is illustrated in Figure Three, where we simulate the model for 100

identical industries for the case of ωj = 1 for all j = 1, ..., J and permanent shocks

(Case 1 of Proposition 4). Along a given sample path, Zipf’s Law holds exactly, apart

from stochastic deviations.

The next step is to illustrate the deviations of Zipf’s Law obtained in our model

when we move away from the assumptions in Proposition 4. Figure Four presents

U.S. data in 2002 for MSAs, together with a numerical simulation of the model with
23



transitory shocks. We let the model run for 10,000 periods so that the distribution

of city sizes is not changing significantly through time.

As one can see in Figure Four, the model does very well — arguably better than Zipf’s

Law — in matching the U.S. data. In particular, and as expected given Proposition 5,

the curve is slightly concave, as in the data. That is, large cities are too small, and

there are not enough small cities. Both simulations above have been computed for

the particular set of parameter values collected in the following table:

α = β = φ B γ = ε ω δ τ gN m sd

1/3 0.2 0.01 .9 .95 10 1.02 0 0.5
,

where m and sd are the mean and standard deviation of the normal distribution from

which the logarithms of the transitory shocks are drawn.
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Figure Four

Empirical studies have found that Zipf’s Law fits the data well across a wide variety

of countries and over long periods of time. Therefore, fitting the distribution for one

24



particular country at a single point in time is not helpful in explaining this general

phenomenon. Instead, we want to focus on the robustness of the model’s predictions

to variations in the underlying key parameters. Proposition 6 tells us that one key

parameter is the standard deviation of industry shocks. Otherwise, the model seems

to be robust (not invariant) to all other parameter values9. This justifies our focus on

the standard deviations: the model has identified this parameter as the main source

of variation in Zipf’s Law coefficients. We illustrate the urban distributions resulting

from different assumptions on the standard deviation of temporary shocks in Figure

Five.
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The figure starts with a standard deviation of 0.5, which implies a Zipf’s coefficient

close to 1. If we increase sd to 0.9, the absolute value of the slope of the curve

decreases. That is, the dispersion of the city size distribution increases. The opposite

happens if we reduce sd substantially, say to 0.1. Soo (2003) finds that the coefficients

9Except the discount factor, δ, that is related to the standard deviation, sd, via the period length,
which is calibrated to one year.
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in absolute value tend to be smaller (more unequal distribution of cities) in Africa,

South America and Asia than in Europe, North America and Oceania. Since most

of the developed economies are in the last group of continents, and presumably these

are the countries that experience less volatility of income (that is, smaller industry

shocks), we view the response of the model to changes in sd as identifying the source

of the differences in Zipf’s coefficients observed in the data.
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International evidence on urban structures implies bounds on observed Zipf’s Law

coefficients. These bounds, in turn, imply bounds on admissible industry productivity

shocks. In the rest of this section we compare available evidence on this relationship.

Toward this, we first select two countries that exhibit city size distributions that are

either extremely concentrated or extremely dispersed. The rank size relationship in

Belgium is very steep with a Zipf’s coefficient of 1.59. The standard deviation of

transitory shocks that yields a city size distribution consistent with the Belgian data

is 0.31. The data and the simulation are presented in Figure Six.
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We perform the same exercise for a country that exhibits a very flat rank size

relationship. Saudi Arabia’s cities are very distinct in terms of population sizes, with

a Zipf’s coefficient of 0.78. Figure Seven shows the simulation and Saudi Arabia’s

data10. The standard deviation used in the numerical simulation is sd = 0.73.

These two extreme cases give us a range of standard deviations that would imply

city size distributions consistent with what we observe in the data. The next question

is whether this range is in line with measures of productivity shocks by industry. The

model gives us a method to map observed Zipf’s coefficients into standard deviations

of productivity shocks, given industry heterogeneity. As we have done so far, we

want to gauge the performance of the model without relying on particular forms of

industry heterogeneity that would help our theory, but obscure the main mechanisms

in play. Hence, we assume identical industries and solve for the standard deviation

that produces Zipf’s coefficients consistent with the ones in the data. This produces

bounds on standard deviations that we compare with the evidence on productivity

shocks in the data. Horvath (2000) measures the standard deviation and persistence

of industry shocks in the United States for 36 industries11.

It is important to stress that this comparison puts a heavy burden on our theory.

To clarify, consider a situation where all of the standard deviations of productivity

shocks are inside the intervals implied by the range of Zipf’s coefficients. That would

mean that if a country were to have industries that faced only the least variable

productivity shocks, it would still exhibit a Zipf’s coefficient within the range of

international evidence. However, we know that all countries produce in a variety of

industries that face shocks that differ in their standard deviations. That is, there is no

10There are a few countries that exhibit Zipf’s coefficients that are higher or lower than Belgium
and Saudi Arabia. The reason we do not use them is that typically they have only very few cities.
For example, Guatemala, with 13 cities, has a Zipf’s coeficient of 0.728, while Kuwait, with 28 cities,
has a Zipf’s coefficent of 1.720. Using these countries would only improve the performance of the
model in the comparisons that follow.
11As the United States is the world’s largest economy, we will take this data to represent the

universe of possible productivity shock processes. In order to compare Horvath’s estimates with our
range of standard deviations, we first need to map the standard deviations of persistent shocks into
standard deviations of transitory shocks.
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country that produces only in the most volatile industry. Therefore, it is impossible

for all industries’ volatilities to be inside the implied range. Conversely, if none of

the standard deviations were inside the implied range, it would be evidence against

our theory.

Table One presents these estimates and the percentage of industries in Horvath’s

study that lie inside the interval of standard deviations implied by the international

city size data. Perhaps surprisingly, given the nature of the exercise, half of the

industries have standard deviations that lie within these bounds.

Table One

Distribution of Zipf’s

coefficients
Min Max

[Min,Max] 0.7287 1.7190

[10%, 90%] 0.8590 1.3820

[20%, 80%] 0.9207 1.2704

Implied bounds on the

sd of industry shocks
Min Max

% of Horvath’s industries

inside the sd range

[Min,Max] 0.3080 0.7300 50

[10%, 90%] 0.3850 0.6200 25

[20%, 80%] 0.4200 0.5750 19

Similarly, we can use the evidence on the standard deviations of industry shocks

to construct bounds on Zipf’s coefficients. In contrast with the previous exercise, the

fact that countries have diversified industrial structures implies that this exercise will

produce only loose bounds on the range of Zipf’s coefficients that we should observe

in the data. Not surprisingly, as shown in Table Two, the Zipf’s coefficient of every

country in our data set is inside the interval implied by the industry data. This
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remains true even if we focus only on those industries at the center of the distribution

of standard deviations.

Countries produce in a variety of industries and so the ability of the model to

explain the relationship between the urban structure and the variance of productivity

shocks lies between the bounds implied by these two exercises. This allows us to

conclude that the theory is performing well for most industries and countries. It is

also clear that in order to derive tighter bounds we would need to take a stand on

industry heterogeneity. This would require disaggregated data on industrial structure

for a wide set of countries. To the best of our knowledge, these data are not available

beyond a small sample of developed economies, and so we leave this empirical exercise

for future research.

Table Two

Distribution of sd of

industry shocks in the US
Min Max

[Min,Max] 0.0844 3.6816

[10%, 90%] 0.1423 1.1727

[20%, 80%] 0.2421 0.6936

Implied bounds on

Zipf’s coefficients
Min Max

% of countries inside the

Zipf’s coefficient range

[Min,Max] 0.1444 6.2389 100

[10%, 90%] 0.4535 3.6862 100

[20%, 80%] 0.7675 2.1933 97

5. CONCLUSIONS

We have proposed an urban growth theory that emphasizes the role of the accu-

mulation of specific factor across industries in determining the evolution of the urban
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structure. In this theory, cities arise endogenously out of a trade-off between agglom-

eration forces and congestion costs. It is the size distribution of cities itself, and it’s

evolution through the birth, growth and death of cities, that leads to a reconciliation

between increasing returns at the local level and constant returns at the aggregate

level. The urban structure of the economy prevents growth rates from diverging.

Moreover, this same urban structure displays many of the features observed in actual

city size distributions across countries and over time.

One of the advantages of the simple specification we adopted above is that it

allowed us to identify analytically the standard deviation of industry productivity

shocks as the crucial factor determining cross-country differences in urban structure.

An empirical analysis of this parameter is, we believe, an important part of any

systematic empirical evaluation of cross-country differences in the size distribution of

cities.

Our theory also points to differences in the efficiency at which cities are organized as

a potential explanation of the observed differences in total factor productivity across

countries. In our theory, we justified focusing on cities that are organized efficiently

by postulating the existence of city developers with access to a sophisticated range

of policy instruments. Restricting the range of policy instruments available to these

developers, for example by eliminating subsidies on human capital, would not affect

the main results of our theory, but would translate into lower observed levels of total

factor productivity. The varying ability of local governments in different countries to

use these policies is, potentially, an important determinant of income levels. These

policies are particularly important for cities, given that urban scale economies are

unlikely to have been fully internalized. We hope that future research will exam-

ine the empirical relationship between local government policy, urban structure, and

aggregate total factor productivity levels across countries.
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APPENDIX

Competitive Equilibrium: Developers Problem

City developers aim to maximize rents net of subsidies paid to firms in order to
attract them, as well as factors of production, to the city. In order for workers to live
in the city, they must receive large enough wagesWtj/Ptj, such that, net of commuting
costs, their income Itj is at least as large as what they could obtain in any other city
producing in this industry. In order to attract firms, the returns to all factors have to
be at least as large as the rental rates of these factors after subsidies. Let Ptj,Wtj, Rtj,
and Stj be the price of output j and the rental rates of labor, physical capital, and
human capital respectively written in terms of some numeraire commodity. Then the
problem of a city developer is to choose factor inputs in the city Ntj/µtj,Ktj/µtj and
Htj/µtj, and subsidies to factors of production, Ttj, τ

k
tj, τ

h
tj, to maximize

Π = max

"
b

2

µ
Ntj

µtj

¶ 3
2

− Ttj
Ntj

µtj
− τktj

Rtj

Ptj

Ktj

µtj
− τhtj

Stj
Ptj

Htj

µtj

#
,

subject to ¡
1− τktj

¢
Rtj/Ptj = βjYtj/Ktj,¡

1− τhtj
¢
Stj/Ptj = αjYtj/Htj,

Wtj

Ptj
− Ttj =

¡
1− αj − βj

¢ Ytj
Ntj

Itj =
Wtj

Ptj
− 3b
2

µ
Ntj

µtj

¶ 1
2

.

Competition from other developers ensures that in equilibrium profits are zero, so

Ttj =
b

2

µ
Ntj

µtj

¶ 1
2

− τktj
Rtj

Ptj

Ktj

Ntj
− τhtj

Stj
Ptj

Htj

Ntj
.

Proofs of Propositions

Proposition 4 (Exact Gibrat’s Law and Zipf’s Law) The growth process of city sizes
satisfies Gibrat’s Law, and the invariant distribution for city sizes satisfies Zipf’s Law,
if and only if one of the following two conditions is satisfied:
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1. (No physical capital) There is no physical capital
³
β̂j = 0 or ωj = 1

´
, and pro-

ductivity shocks are permanent.

2. (AK model) City production is linear in physical capital and there is no human

capital
³
α̂j = 0, β̂j = 1

´
, depreciation is 100% (ωj = 0) , and productivity shocks

are temporary.

Proof. To show that the growth process of city sizes satisfies Gibrat’s Law, note that
in the first case, we have that

ln

µ
Nt+1j

µt+1j

¶
− ln

µ
Ntj

µtj

¶
= 2 [ln (At+1j)− ln (Atj)]− 2α̂j [ln(Nt+1)− ln(Nt)]

+2α̂j ln
¡
B0
j + (1− u∗j)B

1
j

¢
,

which varies with j but is independent of city size, as E [ln (At+1j) | ln (Atj)] is inde-
pendent of ln (Atj) .
In the second case, we have

ln

µ
Nt+1j

µt+1j

¶
− ln

µ
Ntj

µtj

¶
= 2 [ln (At+1j)− ln (Atj)] + 2 [ln (Kt+1j)− ln (Ktj)] ,

but under these conditions

Kt+1j = Xtj = xjYtj = xjFjAtjKtju
φ̂j
tj ,

which implies, as Ntj is constant, that

ln

µ
Nt+1j

µt+1j

¶
− ln

µ
Ntj

µtj

¶
= 2 ln (At+1j) + 2 ln

µ
xjFju

φ̂j
tj

¶
.

This process is independent of city size. Hence, if the conditions in either case one or
two are satisfied, city growth satisfies Gibrat’s Law.
To show that this implies an invariant distribution that satisfies Zipf’s Law, start

with the process

ln

µ
Nt+1j

µt+1j

¶
− ln

µ
Ntj

µtj

¶
= ξj.

This summarizes the growth processes derived for both cases above when ξj is i.i.d.
In order to prove convergence to a unique invariant distribution, we impose a lower
bound, fj, on the normalized process of city growth, sj (as in Gabaix (1999a) among
others). We study the invariant distribution that results as the lower bound tends to
zero. Specifically, let

st+1j = max

½
Nt+1j

µt+1j
/s̄tj, fj

¾
,
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where

s̄tj =
1

Gj

GjX
i=1

Ntj

µtj
,

and Gj is the number of industries with the same ex-ante technology as industry j.
Since this argument holds for all industries in this group we suppress j in the notation
whenever it is clear by the context. Then

st+1 = stξ,

and letting ŝ = ln s, this implies

ŝt+1 = ŝt + ln ξ.

Hence if q(s) is the stationary probability of a representative city in the industry
having size s, the stationary probability of a representative city having log size ŝ is
given by

q̂ (ŝ) = eŝq
¡
eŝ
¢
.

The master equation for this probability distribution, above the lower bound, is of
the form

q̂ (ŝ, t+ 1)− q̂ (ŝ, t) =

Z
ξ

qξ (ξ) q̂ (ŝ− ln ξ, t) dξ − q̂ (ŝ, t) ,

where qξ (ξ) denotes the probability of the growth rate taking the value ξ, and q̂ (ŝ, t)
denotes the distribution of ŝ at time t. Standard results (see for example Levy and
Solomon (1996) and Malcai, Biham and Solomon (1999)) then imply that the only
asymptotic stationary solution of the master equation is of the form

q̂ (ŝ) =Me−ηŝ,

for some M and η to be determined. This implies that

q (s) =M
1

s1+η
.

Using the normalization Z G

f

sq (s) ds = 1,

and the fact that q (s) is a probability distribution,Z G

f

q (s) ds = 1,
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we can derive an implicit equation that determines η given by

G =
η − 1
η

" ¡
f
G

¢η − 1¡
f
G

¢η − ¡ f
G

¢# .
For finite G, and sufficiently small values of f, the above expression is well approxi-
mated by

G ' 1− η

η

µ
f

G

¶−η
.

Taking natural logarithms and rearranging we obtain

η '
lnG− ln

³
1−η
η

´
ln
³
G
f

´ ,

and so as the barrier f goes to zero, η converges to zero, and we get

q (s) =M
1

s
.

So far we have only considered the size distribution of representative cities within a
group. To get the size distribution of cities within a group, we need to consider that
each industry may have many cities. In particular, given s̄j and Nj for a group, an
industry with representative city size normalized to sj has Nj s̄j/sj cities. The term
Nj s̄j is constant across industries within a group, and hence the size distribution of
cities, not representative cities, is given by

qCity (ς) = M̂
1

ς2
,

for some M̂ finite. The cumulative distribution function is then given by

QCity (ς > ς̄) =

Z ς̄

0

M̂
1

ς2
dς =

M̂

ς̄
,

which is a statement of Zipf’s Law for that group.
To obtain the size distribution of cities for the economy as a whole, notice first that

the argument above implies that the cumulative distribution of cities in that group
is given by QCity

i (ς > ς̄) = M̂i/ς̄, where i indexes industry groups (assume the total
number of groups is given by Ḡ). Using this, and if λi is the proportion of cities in
group i, the cumulative distribution function for the economy is

QCity (ς > ς̄) =
ḠX
i=1

λi
M̂i

ς̄
=

"
ḠX
i=1

λiM̂i

#
1

ς̄
,
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which is a statement of Zipf’s Law for the economy.

Proposition 5 (Concavity) If conditions 1 and 2 in Proposition 4 are not satisfied,
the growth rate of cities exhibits reversion to the mean. If productivity levels are
bounded for all industries (so that there exist uniform bounds such that Atj ∈

£
Aj, Aj

¤
for all t, j), then there exists a unique invariant distribution of city sizes with thinner
tails than a Pareto distribution with coefficient one.

Proof. We have that city growth rates are given by

ln

µ
Nt+1j

µt+1j

¶
− ln

µ
Ntj

µtj

¶
= 2 [ln (At+1j)− ln (Atj)]− 2

³
α̂j + β̂j

´
[ln(Nt+1)− ln(Nt)]

+2α̂j ln
¡
B0
j + (1− u∗j)B

1
j

¢
+ 2β̂j [ln (Kt+1j)− ln (Ktj)] .

The only places that productivity shocks enter this equation is through their con-
temporaneous effects on output and through the accumulation of past capital. If
we examine the equation for capital accumulation, recursively substituting, we find,
ignoring all other terms, that the effect of productivity shocks is given by

2
h
ln (At+1j) +

³
β̂j (1− ωj)− 1

´
ln (Atj)

−β̂j
tX

T=1

³
ωj + (1− ωj) β̂j

´t−T
³
1−

³
ωj + (1− ωj) β̂j

´´−1 (1− ωj) ln(AT−1j)


= 2

h
ln (At+1j) +

³
β̂j (1− ωj)− 1

´
ln (Atj)

−β̂j
³
1−

³
ωj + (1− ωj) β̂j

´´
(1− ωj)

tX
T=1

³
ωj + (1− ωj) β̂j

´t−T
ln(AT−1j)

#
.

Now if we examine only the weights on the lagged productivity shocks, we find that

β̂j

³
1−

³
ωj + (1− ωj) β̂j

´´
(1− ωj)

tX
T=1

³
ωj + (1− ωj) β̂j

´t−T
= β̂j

µ
1−

³
ωj + (1− ωj) β̂j

´t−1¶
(1− ωj) .

If we take limits into the infinite past, so as to remove the effect of initial conditions,
this expression reduces to β̂j (1− ωj) , so that the weights on past productivity shocks
sum to minus one.
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From this we can conclude that if the city type is of average size, defined as having
experienced a sequence of past shocks whose weighted average is E (lnA) , then the
expected growth rate of the city is zero. By contrast, if the past shocks have a
weighted average greater than (less than) E (lnA) , then the expected growth rates
are negative (positive).
To prove existence of a unique invariant distribution with thinner tails than a

Pareto distribution with coefficient one, we rely on the results in Propositions 4 and
5 of Rossi-Hansberg and Wright (2004).

Proposition 6 If conditions 1 and 2 in Proposition 4 are not satisfied, the standard
deviation of city sizes increases with the standard deviation of industry shocks.

Proof. If conditions 1 and 2 in Proposition 4 are not satisfied, the variance of the
log of city sizes is given by

V0

·
ln

µ
Ntj

µtj

¶¸
= 4V0 [ln (Atj)] + 4β̂

2

jV0 [ln (Ktj)]

and

V0 [lnKtj] = V0

"
tX

T=1

³
ωj + (1− ωj) β̂j

´t−T
(1− ωj) ln(AT−1j)

#
.

If shocks are i.i.d. with variance v, we obtain

V0 [lnKtj] = v

"
tX

T=1

³
ωj + (1− ωj) β̂j

´t−T
(1− ωj)

#2
or as t→∞,

V0 [lnKtj] =
v³

1 + β̂j

´2 ,
so that the variance of the long run city size distribution is given by

V0

·
ln

µ
Ntj

µtj

¶¸
= 4v

1 + β̂
2

j³
1 + β̂j

´2
 ,

which is increasing in v, thereby proving the result.
If shocks are not i.i.d., a higher unconditional variance implies that V0 [lnKtj] is

larger, since
³
ωj + (1− ωj) β̂j

´t−T
is positive for every 1 > ωj > 0 and 1 > β̂j > 0.

Higher unconditional variance implies that V0 [ln (Atj)] is larger for every t, and so
the variance of city sizes increases.
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