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ABSTRACT

In an influential paper, Hoxby (2000) studies the relationship between the degree of so-called

"Tiebout choice" among local school districts within a metropolitan area and average test scores. She

argues that choice is endogenous to school quality, and instruments with the number of larger and

smaller streams. She finds a large positive effect of choice on test scores, which she interprets as

evidence that school choice induces greater school productivity. This paper revisits Hoxby's analysis.

I document several important errors in Hoxby's data and code. I also demonstrate that the estimated

choice effect is extremely sensitive to the way that "larger streams" are coded. When Hoxby's hand

count of larger streams is replaced with any of several alternative, easily replicable measures, there

is no significant difference between IV and OLS, each of which indicates a choice effect near zero.

There is thus little evidence that schools respond to Tiebout competition by raising productivity.
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Does Competition Among Public Schools Benefit Students and Taxpayers?   
A Comment on Hoxby (2000) 

 
I. Introduction 

School choice policies promise to align the incentives of school administrators with the 

demands of parents, and may therefore lead to more efficient educational production (Friedman, 

1962; Brennan and Buchanan, 1980; Chubb and Moe, 1990).  Absent a large-scale school voucher 

program in the United States, however, this prediction has been difficult to test.  Several authors 

(e.g. Borland and Howsen, 1992; Belfield and Levin, 2002) have suggested studying the effects of 

“Tiebout choice,” the use of the residential location decision to select among local monopoly 

education providers.  The idea here is that fragmented governance induces competition among 

school districts analogous to that which would occur among schools with non-residential choice.   

In an influential paper, Hoxby (2000) points out that current governance structures are 

potentially endogenous to school productivity, and proposes that variation in topography, which 

may have influenced optimal jurisdiction size before modern transportation technologies, provides a 

source of exogenous variation.  She estimates instrumental variables regressions of individual test 

scores and school spending on a metropolitan-level Tiebout choice index, defined as one minus a 

Herfindahl concentration index with districts’ enrollments as their “market shares,” using as 

excluded instruments the number of larger and smaller streams in the area.  She reports substantial 

positive effects of district fragmentation on student test scores and negative effects on spending.   

This comment presents a reanalysis of Hoxby’s test score results, which form the core of her 

empirical analysis.  These results turn out to be quite sensitive to plausible alterations to Hoxby’s 

specification.  In particular, the large, significant effect of choice on achievement obtains only with 

Hoxby’s particular streams variables.  When I substitute alternative and arguably better constructions 

of the same variables, I obtain smaller estimates that are never significant.  There is also some 
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evidence of sample selection bias, deriving from Hoxby’s decision to exclude private school students 

from the analysis.  I conclude that Hoxby’s positive estimated effect of interdistrict competition on 

student achievement is not robust, and that a fair reading of the evidence does not support claims of 

a large or significant effect.  Similarly, I find little compelling evidence of endogeneity of the choice 

index to school quality, suggesting that the more precise OLS estimate of zero choice effect on test 

scores should be preferred to less precise IV estimates.  The evidence that competition among 

schools will improve academic outcomes is thus substantially weaker than it might have appeared. 

Section II focuses on replication.  Despite several requests, Hoxby has not provided the 

precise data set from which her published results were derived.  She has, however, made available a 

corrected data set (Hoxby, 2004a).  The new data generate results that deviate in important ways 

from those that were published.  In particular, the first stage coefficients, and even basic summary 

statistics for the streams variables, are substantially different.  Moreover, there appear to be errors 

remaining in Hoxby’s data and computer programs, causing some students to be assigned to the 

wrong metropolitan statistical areas (MSAs) and some others to be randomly assigned to districts 

and MSAs.  When I correct these errors, I obtain somewhat weaker results.  In what I consider the 

best replication sample, Hoxby’s specification and instruments indicate an insignificant or marginally 

significant effect of choice (i.e., district fragmentation) on student achievement.  

In Section III, I consider the sensitivity of the results to the particular instrumental variables 

used.  Hoxby’s discussion does not make clear precisely how her larger and smaller streams counts 

are defined.  In particular, though Hoxby writes that the source of her smaller streams variable 

provides “the longitude and latitude of [each stream’s] origin and destination” (2000, p. 1222), she 

actually uses only streams’ destinations to assign them to MSAs.  A stream that flows through an 

MSA but ends elsewhere is not included in the MSA’s count.  I present results using an alternate 

variable that counts all streams flowing through each MSA, regardless of where they end.  I also 
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demonstrate that Hoxby’s larger streams variable is key to the results, and that it plays a substantially 

different role in the first stage to the individual-level IV model than in the MSA-level model that 

Hoxby presents as “the implied first-stage regression” (2000, p. 1224-5).1  The choice coefficient 

shrinks by 45 to 85% and ceases to be significant when the larger streams variable is excluded.  I 

obtain similarly small and insignificant coefficients when I substitute alternative larger streams 

counts that, unlike Hoxby’s subjectively coded variable, are readily replicable using public-use data.   

Finally, Section IV explores the implications of Hoxby’s exclusion of private school students 

from her sample.  Hoxby documents a negative relationship between the Tiebout choice index and 

the metropolitan private enrollment rate.  This may produce selection bias in specifications, like 

Hoxby’s, that are estimated only on public sector students (Hsieh and Urquiola, 2003).  Estimates 

from samples that include both public and private school students are free of this potential sample 

selection bias, and are notably smaller than those from public-sector samples.  None are significantly 

different from zero, even with Hoxby’s instruments. 

II. Replication 
Table 1 presents IV estimates of the district fragmentation effect on each of two test scores, 

using Hoxby’s streams variables as instruments.2  The first column reproduces the estimates from 

Hoxby’s Tables 3 and 4.  Hoxby’s preferred specification is that for 12th grade reading scores in 

Panel A, although I analyze 8th grade scores as well (in Panel B) because the sample sizes are so 

much larger.3  Hoxby assumes that the student-level error term is composed of three homoskedastic 

                                                 
1 The IV model could be estimated at the MSA level as well, as both the endogenous variable (choice) and instruments 
(streams) vary only across MSAs.  Hoxby (2000, p. 1219) claims that her specification “is most efficiently estimated at 
the individual level.”  I follow this decision throughout, though I present MSA-level estimates in the appendix. 
2 The student test score data are drawn from the National Educational Longitudinal Study (NELS).  Details of the data 
set construction, along with summary statistics, control variable coefficients, and alternative specifications, are in an 
appendix available from the author.   
3 I prefer the 8th grade sample, as its design is much more straightforward than in later waves.  Students were randomly 
sampled from within their schools in the 8th grade, then followed across schools in successive waves.  As a result, the 
follow-up samples are not representative of the schools their students attend, nor of their districts or metropolitan areas, 
though they remain nationally representative.  Also, as with any panel data, sample attrition is a potential problem in later 
survey waves. 
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components, one common to all students in the same metropolitan area, another common within 

the district, and the last specific to the student.  She computes standard errors using an FGLS 

estimator, due to Moulton (1986), that accounts for the implied student-level serial correlation.  The 

estimated choice effect is positive and significant in each panel. 

An earlier version of this comment discussed several alternative algorithms for assigning 

students in the NELS data to school districts and metropolitan areas (MSAs), as Hoxby’s (2000) 

discussion did not specify her approach.  In response to that draft, Hoxby re-evaluated her 

assignment algorithm and discovered some errors (Hoxby, 2004c).  She has made available, via the 

National Center for Education Statistics (NCES), a corrected data set that uses a new crosswalk.4  

Column 2 reports estimates from the Hoxby/NCES data, which provide substantially smaller 

samples than were used in the published results.  Hoxby’s computer program, also provided (Hoxby, 

2004b), does not compute the “Moulton” standard errors that were used in the published paper, but 

instead uses Stata’s “cluster” option to generate standard errors which are consistent in the presence 

of arbitrary heteroskedasticity and within-MSA serial correlation.  I have implemented the Moulton 

estimator, and I report both Moulton and clustered standard errors for each specification in Table 

1.5  Estimates from Hoxby’s corrected data (hereafter, the “Hoxby/NCES” data) have somewhat 

larger standard errors than did those in the published paper, and the 12th grade coefficient ceases to 

be significant (at the 5% level) when clustered standard errors are used. 

In examining the Hoxby/NCES data and code, I have found several remaining glitches.  

First, some errors remain in the new district-MSA crosswalk:  Several Ohio school districts are 

                                                 
4 The corrected data set and the programs used to construct it are available from NCES to researchers who are licensed 
for access to the restricted-use NELS data.  
5 Hoxby writes that “Robust [clustered] standard errors are larger than standard errors calculated using the Moulton 
method” (Hoxby 2004b).  Both estimators are consistent (with asymptotics in the number of MSAs) under the error 
components model, and there is no model in which the Moulton estimator is consistent but the cluster estimator is not.  
A difference between the two estimators may indicate that the error components assumption is incorrect; in that case, 
cluster is consistent but the Moulton estimator is not.  Further discussion of the two estimators, and of my 
implementation of the Moulton estimator, is in the appendix. 
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assigned to the Raleigh-Durham MSA; several additional districts have incorrect, invalid or obsolete 

MSA codes; and over one quarter of metropolitan districts are missing MSA codes.  Second, though 

the clear intent is to use all three waves of the NELS survey to assign students to districts, due to an 

apparent coding error information about students’ second- and third-wave schools is ignored.6   

Finally, students with missing school IDs from the first wave of the NELS survey—the 

sample was freshened in later waves—are randomly assigned to schools that entered the survey in 

later waves.  This occurs because Hoxby’s program fails to exclude observations with missing IDs 

when merging the student and school files.  Stata’s sort algorithm breaks ties randomly when, as 

here, a unique sort order is not specified.  Stata’s merge procedure then assigns the first observation 

with a missing ID from the “master” data set to the first similar observation from the “using” data 

set, the second to the second, and so on.  Because ties among students and schools with missing IDs 

are broken differently every time the sort command is run, each execution of Hoxby’s program 

produces a different data set, and different estimated choice effects.7  To gauge the severity of this 

unintended stochasticity, I executed Hoxby’s data construction program 10,000 times, tabulating the 

estimated choice effect from each resulting data set.  The histogram is available as Appendix Figure 

A1.  The mean choice effect for 12th grade scores is 5.39, quite close to the 5.30 computed from the 

Hoxby/NCES data.  The standard deviation across iterations (0.47) is not particularly large, but the 

range is quite wide:  I obtained estimates as small as 2.17 and as large as 8.15.   

After discovering these anomalies, I re-wrote Hoxby’s data assembly program, fixing errors 

in the district-MSA crosswalk and taking care to correctly match students, schools, districts, and 

                                                 
6 Hoxby merges the NELS student file to the NELS school file three times in succession, using school ID variables from 
each of the three survey waves.  By the second merge, all variables from the school file exist on the student file.  Without 
specific instruction (which is not provided), the merge command in Stata does not overwrite variables that already exist 
on the “master” file, so nothing on the student file is altered by the second and third merges. 
7 Hoxby’s program also fails to account for Stata’s tie-breaking procedure when creating the MSA-level data set used for 
her first stage model, and her program thus assigns the Raleigh MSA to the East North Central division (which contains 
Ohio; see above) 36% of the times it is executed; the Hoxby/NCES data set is one such draw from the distribution. 
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metropolitan areas.  I attempted to follow Hoxby’s algorithm as closely as possible.8  I did not at this 

point attempt to reproduce the “larger streams” variable, but simply relied on the MSA-level count 

that Hoxby provided and discarded MSAs that were excluded from her tabulation.9  Results are 

presented in column 3 of Table 1.  Sample sizes are somewhat larger—correctly assigning districts 

that were previously classified as non-metropolitan more than offsets the loss of students who are 

reclassified to an MSA with a missing larger streams value—and approach those seen in Hoxby’s 

Table 4.  Coefficients resemble those found in the Hoxby/NCES data, somewhat smaller for 12th 

grade scores and somewhat larger for 8th grade scores, with similar patterns of significance. 

Column 4 represents a somewhat more expansive interpretation of replication.  I retain 

Hoxby’s specification, but I follow my own judgment in sample and covariate construction rather 

than directly following her algorithm.  Where Hoxby assigns each student to a single district for all 

three waves even if the student moved between waves, for this sample I use only contemporaneous 

information to construct distinct assignments for each wave.  There are also minor differences in 

variable definitions.10  Choice effect estimates are smaller with this sample.  For 12th grade scores, 

the choice effect is insignificant regardless of the standard error computation; for 8th grade scores, it 

is insignificant with the random effects standard errors but significant when the errors are clustered.   

                                                 
8 There were some ambiguities.  In particular, each student has nine potential district codes, as each student may have a 
school code in each of three waves and each school may have different district codes in each wave.  Hoxby attempts to 
assign a single district code for each student, to be used with data from all three waves, but the aforementioned coding 
errors mean that only the three district codes from the first-wave school are considered.  It is not clear how she would 
resolve discrepancies among the larger set.  I assign each student to a separate district for each wave, using only 
contemporaneous information from the student and school files, then use Hoxby’s majority rule algorithm to select 
among the three resulting assignments. 
9 Hoxby uses 1990 MSA definitions.  Puzzlingly, she does not provide counts of larger streams for all of the MSAs 
included in these definitions, but does provide counts for some obsolete MSA codes—from the 1983 or 1981 MSA 
definitions—that appear in her faulty crosswalk.  For example, 19 larger streams are reported for MSA number 3755, 
which corresponded to the Kansas City, KS PMSA in 1983 but was included in the Kansas City MO-KS MSA (number 
3760) in 1990; there is also an entry of 37 larger streams in MSA 3760.  It is not clear what algorithm might have 
produced this redundancy, nor whether the latter count includes the streams attributed to the former. 
10 The largest difference is in what Hoxby calls the “mean of log(income) of metropolitan area” variable.  She uses an 
arithmetic weighted average of the log of each district’s mean income; I use instead the log of the MSA mean income.  
There are also minor differences in the Gini coefficient and the racial composition variables.  Finally, I compute the 
choice index over 8th grade enrollment, where Hoxby uses total enrollment, reasoning that parents cannot be said to 
choose between overlapping elementary and secondary districts (Urquiola, 1999).  Further details are in the appendix. 
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Panel A of Table 2 reports mean values of the streams variables.  Column 1 is from Hoxby’s 

Table 2, while columns 2 and 3 are computed from the Hoxby/NCES data set and from my 

replication sample, respectively.  There are substantial differences between columns 1 and 2.  For 

some reason, the mean of the larger streams variable is more than five times larger than that 

reported in the published paper, while the average MSA has only two thirds as many total—larger 

plus smaller—streams as is indicated by Hoxby’s (2000) Table 2.   

Both the streams variables and the potentially endogenous choice measure vary only at the 

MSA level.  Though Hoxby’s IV estimates are computed at the student level, Hoxby reports only an 

MSA-level “implied first-stage regression.”  I reproduce this specification in Panel B, with the 

published estimates in column 1, those from the Hoxby/NCES data in Column 2, and those from 

the replication samples in 3 and 4.11  All of the replication estimates are substantially different from 

those in the published paper.  Comparing the Hoxby/NCES estimates to the published results, the 

larger streams coefficient has fallen by more than 80% and is no longer remotely significant, while 

the smaller streams coefficient has tripled.  Though both of these findings are somewhat attenuated 

in the replication data sets, they remain worrisome:  The logic of the argument for Hoxby’s 

instruments is that streams once represented impediments to travel, and one would expect this to be 

far more true for larger than for smaller streams, particularly when the threshold for being a “larger” 

stream is set low enough to include over 40 streams from the average MSA (rather than the 8 

indicated in the published paper).   

As noted above, the MSA-level estimates are not the actual first stages for the individual-

level models in Table 1.  The actual first stages are reported in Panel C (for the 12th grade samples) 

and D (for the 8th grade samples).  The streams coefficients are dramatically different:  Larger 

                                                 
11 The replication data sample sizes are somewhat smaller, as several invalid MSA codes that were on the Common Core 
of Data file from which Hoxby took her district-MSA assignments are no longer present and some newly added MSA 
codes must be excluded for lack of the larger streams variable. 
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streams are now negatively related to choice in five of the six samples, once significantly and once 

nearly so.12  Again, this is difficult to reconcile with the story behind the identification strategy.   

III. Counting Streams 
There are several reasons to worry about the validity of Hoxby’s larger streams variable:  It 

derives from Hoxby’s subjective count from printed maps—she describes counting streams “of a 

certain width on the map,” (2000, p. 1222), but does not elaborate; it is missing for several MSAs 

that were inadvertently excluded from Hoxby’s sample;13 and, as Hoxby writes, “one has more a 

priori confidence in the exogeneity of the smaller streams variable because smaller streams are too 

small to affect modern life,” (2000, p. 1230).  Given the evident differences between the larger 

streams variable described in the published paper and the one included in the Hoxby/NCES data, it 

is unclear whether the discussion in Hoxby’s text even applies to the latter variable.   

These concerns cannot be addressed by using the smaller streams variable as the sole 

instrument, however.  Hoxby uses the U.S. Geologic Survey’s Geographic Names Information 

System (GNIS) to count total streams, and defines smaller streams as the number of total streams 

less the count of larger streams.  As a result, any errors in the larger streams variable appear as errors 

of the opposite sign in the smaller streams count.  To avoid reliance on Hoxby’s larger streams 

count, I present estimates that use the total streams count—which can be produced using Hoxby’s 

code from the public-use GNIS data set—as the single instrument.   

                                                 
12 The divergence between the MSA-level results in Panel B and the individual-level results in Panels C and D appears to 
derive from differences in the set of MSAs included.  Hoxby’s first stage estimates and those that I report in Panel B 
include all MSAs, regardless of whether they contain NELS sample students.  When I restrict the sample to those in the 
NELS data (Appendix Table D5), coefficients are similar to those in Panels C and D.  Efficiency can be improved with 
two-sample IV, using the full sample of MSAs to estimate the first stage.  In the Hoxby/NCES data, this yields choice 
coefficients of 3.68 for 8th grade scores and 2.14 for 12th grade scores, both substantially shrunken from the estimates in 
Table 1 and neither significant (Appendix Table D6). 
13 One indication that there may be problems with Hoxby’s larger streams count is that when I correct Hoxby’s code to 
correctly assign total streams to MSAs—her incorrect district-MSA crosswalk is used here as well—there are several 
MSAs with fewer total streams than larger streams.  Hoxby writes that the hand counts were “checked against” the 
GNIS data (2000, p. 1222), but appears not to have caught all discrepancies.  Though I argue below that Hoxby 
systematically undercounts total streams, my correction of this problem reduces but does not eliminate the discrepancies. 
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I also explore an alternative specification for the “total streams” variable.  Despite her 

reference to GNIS variables describing the longitude and latitude of streams’ origins and 

destinations, Hoxby’s code uses only a variable indicating the county where a stream’s destination 

(mouth) is located to assign streams to MSAs.  To illustrate the consequences of this, the Mississippi 

River is attributed only to the non-metropolitan Plaquemines Parish, Louisiana, and not to any of 

the eight metropolitan areas along its banks.14  There is little reason to think that a stream’s 

destination is the key to either its past effects on travel costs or to its current effects on district 

structure.  The USGS distributes an alternative version of the GNIS data that codes each county 

through which each stream flows, from origin to destination.  Using this data file, I construct a 

“total streams” measure that counts toward an MSA’s total any stream flowing through it.15   

Finally, I explore alternative classifications of streams into “larger” and “smaller” groups.  

First, following Hoxby (1994b), I compute separate counts of inter-county and intra-county streams 

and enter them as separate instruments.  I also categorize streams based on their lengths, computed 

as the distance between their sources and mouths, following Hoxby (2000) in requiring a larger 

stream to exceed 3.5 miles.  Each is a crude measure for the variation of interest, but it is difficult to 

see how either might be endogenous; as a result, either should provide consistent IV estimates of the 

choice effect.16  These estimates provide a check on the robustness of the earlier estimates, and have 

the virtue of being easily replicable using the public-use GNIS data. 

                                                 
14 This is not documented in the published paper.  It does not automatically mean that inland cities lack streams, as a 
smaller stream’s mouth might be located where it feeds into a larger river.  Note that the Mississippi may be included in 
the larger streams counts for the relevant MSA’s, though it is not counted toward the total streams.  This appears to 
account for some but not all of the negative smaller streams counts discussed in footnote 13.  
15 In most of the country, MSAs are composed of whole counties.  In New England, however, towns are the basic unit, 
and some counties are split among several MSAs.  Hoxby assigns all of each county’s streams to the MSA containing the 
plurality of its population.  When I reproduce her stream mouths variable, I follow her all-or-nothing rule; my total 
streams count instead assigns streams fractionally to MSAs in proportion to the MSAs’ shares of the county population.   
16 Measurement error in instruments, so long as it is uncorrelated with the endogenous variable, reduces the precision of 
IV estimates but does not affect consistency as long as the measures are sufficiently reliable to avoid so-called “weak 
instruments” problems.  As I show below, the first stages are quite strong. 
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Table 3 presents instrument means (Panel A) and first-stage estimates (Panels B-D, using the 

close replication sample) for several instrument sets.  As before, the first stage is computed at both 

the MSA and individual levels; corresponding estimates using my alternative sample and covariate 

definitions are similar and are reported in the appendix.  For a benchmark, Column 1 reproduces the 

estimate from Column 3 of Table 2, using Hoxby’s streams variables.  Column 2 uses only total 

streams (by Hoxby’s definition, counting only stream mouths), which have positive coefficients at 

both the MSA and individual levels.  Columns 3 and 4 repeat these specifications, using the count of 

all streams flowing through each MSA in place of the count of stream mouths.  This change has 

little effect on the estimates, with the negative larger streams coefficient still evident in the 

individual-level model.  Columns 5 and 6 use alternative definitions for “larger” streams, first as 

inter-county streams and second as streams exceeding 3.5 miles in length.  Using either definition 

and in both the MSA and individual samples, the larger streams variable accounts for the full effect 

of streams on choice, a result that is consistent with the idea that the role of streams derives from 

their importance as natural barriers to travel. 

For each set of instruments, Table 4 reports IV estimates of the choice effect on 12th and 8th 

grade reading scores, Moulton and clustered standard errors, and p-values for tests of the exogeneity 

of the choice variable (using the cluster estimator).17  I also report OLS estimates, each of which 

indicates a negligible choice effect. 

The choice effects are consistently positive and exogeneity of the choice variable is 

consistently rejected when Hoxby’s larger streams count is included as an instrument.  Neither of 

these results holds in any of the specifications that exclude Hoxby’s larger streams variable, however.  

This is partly because the latter estimates are less precise, but this is not the whole story:  The 

                                                 
17 I obtain similar results with Moulton standard errors or when I use the preferred replication sample and covariates.  
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coefficient estimates are also uniformly smaller, generally less than half as large, when Hoxby’s larger 

streams variable is excluded. 

Taking the estimates in Table 4 together, it is clear that Hoxby’s conclusions depend 

critically on her count of larger streams.  I attempted my own count for several MSAs that 

contribute most to the large choice effect estimates, using the same 1/24,000 quadrangle maps that 

Hoxby reported using.  It quickly became apparent that counting streams involves many subjective 

judgments.18  Hoxby describes larger streams as those that “were at least 3.5 miles long and of a 

certain width on the map” (2000, p. 1222), but does not specify what constitutes “a certain width” 

nor where in a stream’s course the width is to be measured.  I began with Fort Lauderdale, which 

may be a particularly difficult case as much of the MSA is swampland and much of the remainder 

was recovered from swampland by a system of man-made canals.  (Even today, airboat trails are 

more common through much of the MSA than is dry land; it seems unlikely to have been settled by 

people who viewed water as an obstacle to travel.)  I decided not to count canals which ran perfectly 

straight, generally exactly West to East, but I did count canals which took irregular paths, reasoning 

that the latter were more likely to correspond to pre-existing rivers.  I also counted branches of 

streams as separate from their parents when they had distinct names (such as the North and South 

Forks of the Middle River), and counted the intracoastal waterway, which separates the easternmost 

portion of the Florida coast from the mainland, as a stream for its similar effect on the ease of travel.  

Where Hoxby reports 5 larger streams in Fort Lauderdale, I counted 12, and a research assistant—

working independently—counted 15.  

I had a similarly difficult experience with other MSAs, finding that many rivers divide and 

recombine multiple times, become wider and narrower, and are interrupted by man-made structures 

                                                 
18 I worked without reference to Hoxby’s counts, to prevent being influenced by these.  Hoxby’s text is confusing about 
whether linear bodies of water other than streams are included in her count.  Her footnote 24 seems to suggest that they 
are not, but her footnote 16 indicates that she counts “inlets, lakes, ponds, marshes, and swamps” “if they are roughly 
curvilinear in form” (emphasis in original).  I followed the latter rule. 
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throughout their courses.  My counts were correlated with Hoxby’s, but generally not identical.  The 

exercise makes clear that Hoxby’s larger streams variable is subjective and unverifiable without a list 

of the particular rivers coded as large.  In the absence of such a list, which Hoxby has not provided, 

no two researchers would come up with identical counts.  As I have only counted streams for a few 

MSAs, however, I cannot be certain of the sensitivity of Hoxby’s results to the differences that 

would inevitably arise.   

IV. Private Enrollment and Selection Bias 
I have concerned myself thus far with replication of Hoxby’s primary specification, and with 

its robustness to plausible alternative decisions about sample and variable construction.  In this 

section, I turn to another issue:  Hoxby’s specification may not provide consistent estimates of the 

effect of interest, that of choice on public school productivity, because her sample excludes private 

school students.  In her Table 6, she documents that choice has a significant negative effect on the 

metropolitan private enrollment share.19  As a result, Hoxby’s specification may be subject to 

selection bias even with valid instruments (Hsieh and Urquiola, 2003).  The reasoning is simple:  

Suppose that the distribution of student test scores is identical across MSAs when both public and 

private school students are included, but that MSAs vary in private enrollment patterns.  In 

particular, suppose that some relatively high-scoring students would choose private schools in a low-

choice market but would remain in the public sector when Tiebout choice is sufficient to provide 

public schools with desired characteristics (Rothstein, 2004).  Then the average test score among 

public school students will tend to be higher in high-choice markets purely as a result of differential 

sample selection.   

                                                 
19 Using both of her streams instruments in a district-level regression, Hoxby (2000, Table 6) estimates that a one-unit 
increase in choice leads to a 4.2% (s.e. 1.2%) reduction in private enrollment.  Hoxby’s SDDB data set double-counts 
students in areas served by separate elementary and secondary districts.  When I instead estimate the relationship at the 
MSA level, I estimate a choice effect of -4.8% (s.e. 2.4%), though this result is somewhat sensitive to the sample and 
covariate construction. 
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Any resulting bias is present in both OLS and IV estimates, though its sign and magnitude 

depend on whether the marginal private school student is positively or negatively selected.  If the 

average score is higher among students drawn into the public sector by expansions of choice than 

among inframarginal public school students, estimates from public school students are 

(asymptotically) upward-biased; if the average score is lower among marginal students than among 

the inframarginal, these estimates are downward-biased.20  Hoxby seems to make the former claim 

when she discusses the consequences of “families with a strong taste for education leav[ing] the 

public sector by shifting their children into private schools” (2000, p. 1233). 

As the NELS survey includes both public and private school students, this potential bias can 

be easily avoided by simply including both groups in the sample. 21  The only hurdle is that the CCD 

cannot be used to assign private schools to school districts and MSAs.  As an alternative, I use 

NELS variables characterizing the demographic composition of the school’s zip code to uniquely 

assign the vast majority of schools to zip codes, and via these to MSAs. 22  As many zip codes span 

school districts, I cannot use this strategy to assign school districts, and I therefore must exclude 

district-level covariates from the specification.23   

Panel A of Table 5 reports estimates from public school students who have been matched to 

MSAs via their schools’ zip codes, using both the “close” and “preferred” covariate definitions.  

                                                 
20 NELS private school students score nearly half a standard deviation higher on the 8th grade reading test than do public 
school students.  This is not particularly informative, however, as the students whose sectoral decision is sensitive to 
Tiebout choice are likely atypical of the inframarginal private school population.  
21 Under fairly strong assumptions—including that private schools are not systematically better or worse than public 
schools; that competition has similar effects on the productivity of public and private schools; and that any peer effects 
are linear and additive, so that stratification does not have an independent effect on average scores— an unbiased 
estimate of the choice effect on average school productivity can be obtained by estimating Hoxby’s specification on a 
pooled sample of public and private school students (Hsieh and Urquiola, 2003).  Hoxby (1994a) uses exactly this 
strategy to test for selection bias from private school enrollment.   
22 In the rare cases where a zip code spans multiple MSAs, I assign each student attending school in that zip code to each 
MSA, with weights proportional to the fraction of the zip code population in each MSA. 
23 Hoxby (2000, Section 7) argues at great length that the inclusion of district-level variables improves the precision but 
does not affect the coefficients on MSA-level variables as long as MSA-level means are included in the specification.  
Strictly, this is only true in the limit, as it relies on the assumption that the district-level variables aggregate exactly within 
the sample to the MSA-level means.  In small samples this is not likely to hold, and the choice coefficient is somewhat 
smaller (more negative) when district-level covariates are excluded from Hoxby’s specification (Appendix Table D3). 
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Estimates are substantially smaller than those presented earlier, with the divergence due more to the 

different methods of assigning MSAs than to the exclusion of district-level covariates. 24  Panel B 

adds the private school students to the sample.  The choice effect estimates fall notably farther here, 

and t-statistics are uniformly less than one. 

I read the estimates in Table 5 as suggesting, but not conclusively demonstrating, that the 

students drawn into the public sector by expansions of choice are somewhat positively selected.25  

While much of the difference from earlier estimates appears to derive from sensitivity of the results 

to the exclusion of district-level covariates and to the method by which schools are assigned to 

MSAs, point estimates do fall even farther when private school students are added to the sample.   

V. Discussion 
Hoxby’s analysis has been very influential, providing what many (e.g. Howell and Peterson, 

2002; Maranto, 2001; Bast and Walberg, 2004) have seen as some of the most compelling extant 

evidence in favor of the proposition that school choice will lead to improvements in the efficiency 

of educational production.  Unfortunately, Hoxby’s key results do not seem to be robust to small, 

reasonable alterations to the sample or to the instrumental variables used.  Interested readers are 

invited to explore alternative specifications beyond those considered here; code to construct both of 

my replication samples and to perform all analyses is available from my web page, as are all data 

components that I am at liberty to distribute. 

As I document above, there are several problems with the Hoxby/NCES data set.  When 

these are remedied, I estimate somewhat weaker effects of choice on student performance than 

                                                 
24 The declines are largest in the close replication sample, as my zip code matching algorithm, which uses only the 
contemporaneous school, is more similar to that used in the preferred sample.  Students in the close replication sample 
who were assigned to MSAs based on their 8th or 10th grade school’s district code in Panel B are assigned using the 12th 
grade school’s zip code in Panel C. 
25 As an alternative test for selection bias, I have estimated a version of Hoxby’s specification (using only public school 
students) that includes a control for an inverse Mill’s ratio computed from the MSA private enrollment rate, in the spirit 
of normal-distribution selection corrections (Gronau, 1974; Heckman, 1979; Card and Payne, 2002).  Estimates of the 
selectivity parameter were extremely imprecisely estimated, and the selection correction had little effect on the estimated 
choice coefficients. 
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those that Hoxby reports.26  When I consider slight adjustments to her specification of the streams 

variables—such as replacing them with plausible, replicable alternative measures—or when I alter 

the sample to avoid potential selection bias from private enrollment, the significant effect of Tiebout 

competition on student scores is greatly attenuated and not statistically distinguishable from zero.  In 

my specification including private school students, using my preferred sample, and instrumenting 

with inter- and intra-county streams (Table 5, Panel B, Column 6), I estimate that a one standard 

deviation increase in choice raises test scores by just under 0.05 standard deviations, with a standard 

error somewhat larger than that.  This compares unfavorably to, for example, the 0.22 standard 

deviations that Krueger (1999) estimates as the effect of reducing elementary school class sizes from 

22 to 15 students in the Tennessee STAR experiment.   

I do not find support, in any of the alternative specifications that I consider, for Hoxby’s 

claim that “naïve estimates (like OLS) that do not account for the endogeneity of school districts are 

biased toward finding no effects” (2000, p. 1236), nor for her conclusion that “Tiebout choice raises 

productivity by simultaneously raising achievement and lowering spending” (p. 1236-7).  Any 

relationship between choice and student test scores is too imprecisely estimated to be robustly 

distinguishable from zero.  Hoxby’s results for the effect of district fragmentation on school 

spending, which I examine in the appendix, are only slightly more robust.27 

There are only a few hundred metropolitan areas in the United States, and this is evidently 

too few to precisely estimate any relationship that may exist between jurisdictional fragmentation 

and either student performance or school spending.  One cannot reject large effects of competition, 

but neither is there strong evidence against a hypothesis of zero effect.  It would be premature to 

                                                 
26 The current analysis has not considered Hoxby’s analysis of the NLSY, which echoes her NELS analysis in indicating 
a salutary effect of interdistrict competition on attainment.  Hoxby seems to find her NELS estimates the most 
compelling, however, and focuses her discussion on these.   
27  Hoxby (2000, Table 5) reports a choice effect on the log of per pupil spending of -0.076 (Moulton standard error 
0.034).  The Hoxby/NCES data yield an estimate of -0.074 (0.141); IV estimates in the replication samples similarly fail 
to reject zero, although OLS estimates are significantly negative.   
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conclude that schools respond to Tiebout competition by raising productivity, nor to use such a 

conclusion as justification for policies that expand non-residential forms of school choice. 
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Published Hoxby/ 
NCES data

Close 
replication 

sample

Preferred 
sample and 
covariates

(1) (2) (3) (4)
Panel A:  12th grade reading scores

# of students 6,119 5,475 5,934 6,688
# of MSAs 209 184 194 199
Choice index coefficient 5.77 5.30 4.74 3.29
  S.E. (Moulton) (2.21) (2.36) (1.98) (1.83)
  S.E. (Cluster) (2.94) (2.42) (2.56)
P-values, exogeneity test (clustered) 0.02 0.02 0.20

Panel B:  8th grade reading scores
# of students 10,790 10,175 10,429 11,719
# of MSAs 211 185 186 184
Choice index coefficient 3.82 4.45 5.93 2.93
  S.E. (Moulton) (1.59) (1.87) (2.10) (1.58)
  S.E. (Cluster) (1.99) (2.32) (1.40)
P-values, exogeneity test (clustered) 0.00 0.00 0.00

Table 1:  IV estimates of choice effect on NELS 8th and 12th grade reading scores in several 
samples, Hoxby specification

Notes:  See Hoxby (2000) and data appendix for description of data, samples, and covariates.  Column 1 is from Hoxby 
(2000), Table 4.  Standard error estimators and exogeneity tests are described in the appendix.  Following Hoxby, all 
analyses use NELS sampling weights, adjusted to sum to one within each MSA (though this does not hold exactly in 
Column 2; see appendix for details).  Bold S.E.s indicate that with that S.E., the coefficient is significant at the 5% level.



Published Hoxby/ 
NCES data

Close 
replication 

sample

Preferred sample 
and covariates

(1) (2) (3) (4)
Panel A:  MSA-level sample means

Larger streams 8 44 45
Smaller streams 183 84 80

Panel B:  MSA-level first stage estimates
Larger streams (100s) 0.080 0.012 0.040 0.043

(0.040) (0.021) (0.021) (0.021)
Smaller streams (100s) 0.034 0.096 0.093 0.091

(0.007) (0.019) (0.018) (0.018)
N 316 310 304 304
F statistic (instruments) 24.4 14.8 16.2 16.3

Panel C:  Individual-level first stage estimates (12th grade reading sample)
Larger streams (100s) nr -0.043 -0.024 0.015

(0.023) (0.020) (0.020)
Smaller streams (100s) nr 0.133 0.133 0.114

(0.021) (0.017) (0.018)
N nr 5,475 5,934 6,688
F statistic (instruments) nr 20.5 31.3 28.4

Panel D:  Individual-level first stage estimates (8th grade reading sample)
Larger streams (100s) nr -0.045 -0.033 -0.012

(0.021) (0.018) (0.018)
Smaller streams (100s) nr 0.131 0.130 0.132

(0.022) (0.017) (0.017)
N nr 10,175 10,429 11,719
F statistic (instruments) nr 17.6 30.7 32.1

Table 2:  Overview of first stage estimates, different samples

Notes:  "nr"=not reported.  Column 1 is from Hoxby (2000), Table 2.  Sample sizes in Panels C and D are identical to those in 
the corresponding columns of Table 1, Panels A and B respectively.  Standard errors are clustered in Panels C and D, but are 
conventionally calculated (under homoskedasticity assumptions) in Panel B.

Dependent variable is MSA-level choice index (1- index of concentration across districts)



(1) (2) (3) (4) (5) (6)
Total stream definition:
Larger stream definition: Hoxby n/a Hoxby n/a Inter-county >3.5 miles

Panel A:  MSA-level sample means
Larger streams 45 45 41 70
Smaller streams 80 108 107 75
Total streams 124 148

Panel B:  MSA-level first stage estimates
Larger streams (100s) 0.040 0.037 0.260 0.177

(0.021) (0.021) (0.055) (0.036)
Smaller streams (100s) 0.093 0.069 0.014 0.013

(0.018) (0.013) (0.016) (0.017)
Total streams (100s) 0.071 0.061

(0.013) (0.010)
F statistic (instruments) 16.2 30.9 17.5 36.5 25.8 23.9

Panel C:  Individual-level first stage estimates (12th grade reading sample)
Larger streams (100s) -0.024 -0.030 0.240 0.190

(0.020) (0.019) (0.047) (0.029)
Smaller streams (100s) 0.133 0.104 0.015 0.001

(0.017) (0.013) (0.013) (0.013)
Total streams (100s) 0.064 0.058

(0.011) (0.009)
F statistic (instruments) 31.3 32.0 35.0 37.0 27.5 33.7

Panel D:  Individual-level first stage estimates (8th grade reading sample)
Larger streams (100s) -0.033 -0.036 0.243 0.177

(0.018) (0.017) (0.046) (0.029)
Smaller streams (100s) 0.130 0.101 0.011 0.001

(0.017) (0.012) (0.012) (0.014)
Total streams (100s) 0.059 0.054

(0.011) (0.009)
F statistic (instruments) 30.7 28.9 34.8 34.7 26.5 30.1

Stream mouths All streams

Table 3:  First-stage estimates for alternative instruments, using "close replication" sample and 
covariates

Notes:  Base samples are those from Column 3 of Tables 1 (individual level) and 2 (Panel B; MSA level), though some 
observations that were excluded from those samples for missing data on larger streams are included here in Columns 2, 4, 5, 
and 6.  Alternative specifications that use the preferred covariates and sample are in the appendix.  In individual-level 
specifications, standard errors are clustered at the MSA level.  "n/a" indicates not applicable:  No larger streams instrument is 
used in this specification, and the only instrument is the "total streams" count.



(1) (2) (3) (4) (5) (6) (7)
OLS

Total stream definition n/a
Larger stream definition n/a Hoxby none Hoxby none Inter-county >3.5 miles
Panel A:  12th grade reading scores

Choice index coefficient -0.25 4.74 0.68 4.38 0.87 2.04 1.35
  S.E. (Moulton) (0.79) (1.98) (2.79) (1.98) (2.59) (2.36) (2.30)
  S.E. (Cluster) (0.94) (2.42) (3.12) (2.15) (2.81) (2.94) (2.04)
p-value, exog. test -- 0.02 0.70 0.02 0.66 0.37 0.38

Panel B:  8th grade reading scores
Choice index coefficient -0.06 5.93 2.76 5.17 2.78 1.67 0.91
  S.E. (Moulton) (0.70) (2.10) (2.54) (2.01) (2.33) (2.09) (1.93)
  S.E. (Cluster) (0.82) (2.32) (3.19) (2.02) (2.84) (1.77) (1.81)
p-value, exog. test -- 0.00 0.30 0.00 0.24 0.21 0.51

Notes:  Base samples are those from Column 3 of Table 1, though some observations that were excluded from that sample for 
missing data on larger streams are included here in Columns 3 and 5-7.  Alternative specifications that use the preferred 
covariates and sample are in the appendix.  Exogeneity tests are based on clustered specification.  Bold S.E.s indicate that with 
that S.E., the coefficient is significant at the 5% level.  "n/a" indicates not applicable:  No excluded instruments are used in this 
specification.

Table 4:  IV estimates of choice effect, using alternative instruments and "close replication" 
sample

Stream mouths All streams
IV



Covariate specification
Streams instruments OLS Hoxby Inter- and 

intra-cnty
OLS Hoxby Inter- and 

intra-cnty
(1) (2) (3) (4) (5) (6)

Panel A:  Public school students in zip-code matched sample (no district covariates)
Choice index coefficient -0.93 1.40 1.10 -0.76 1.97 2.25
  S.E. (Cluster) (1.05) (2.44) (2.66) (0.97) (2.20) (2.30)
N 5,631 5,445 5,631 6,976 6,729 6,976
p-value, exog. test 0.35 0.36 0.22 0.12

Panel B:  Public and private school students in zip code-matched sample
Choice index coefficient -0.71 0.68 0.84 -0.41 1.35 1.81
  S.E. (Cluster) (0.98) (2.59) (2.35) (0.92) (2.32) (2.14)
N 6,900 6,670 6,900 8,553 8,259 8,553
p-value, exog. test 0.63 0.43 0.45 0.22

Table 5.  Exploration of potential bias from exclusion of private school students, 12th grade 
reading scores

Notes:  Clustered standard errors and test statistics are reported.  

Close replication Preferred replication
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Appendix A: Data 

1. The Hoxby/NCES data  
Each issue of the American Economic Review includes a paragraph describing the 

“Policy on Data Availability:”  “…to publish papers only if the data used in the analysis are 

clearly and precisely documented and are readily available to any researcher for purposes of 

replication.”  Despite repeated requests over several years, Hoxby has not provided the data 

used to generate the results in her published paper (Hoxby, 2000).  She has, however, 

provided a corrected data set (Hoxby, 2004a) to the National Center of Educational 

Statistics, which will distribute it to researchers with licenses for the confidential version of 

the National Educational Longitudinal Survey.  I refer to these data throughout as the 

“Hoxby/NCES data.”  Hoxby (2004c) notes several differences between the data used in her 

paper and the corrected Hoxby/NCES data.  First, where she originally used MSA codes 

from the School District Data Book (SDDB) to assign school districts to metropolitan areas, 

she now uses the Common Core of Data (CCD), with a few manual corrections, for this 

purpose.  Second, “[t]he published version of the paper showed a version of the first stage 

regression that was outdated.  The paper went through multiple revisions and Table 2 

evidently was not updated so that it corresponded exactly with Tables 3+.”  As I document 

in the main text, the actual first stage regression is substantially different than that indicated 

in the published paper. 

Hoxby constructs her new district-MSA crosswalk from the Common Core of Data 

agency files, using a field on these files that indicates the MSA in which each district is 

located.  Unfortunately, there are substantial errors in this field.  Many of these come from a 

small number of MSAs whose boundaries have changed over time; the CCD often contains 
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obsolete MSA codes for districts in these areas.1  One example is the “Kansas City, MO-KS 

MSA,” which was coded 3760 in 1990 but had been divided into separate Missouri (code 

3760) and Kansas (code 3755) components in 1983.  Even the 1991-92 CCD, the most 

recent used for Hoxby’s crosswalk, reports the obsolete 3755 code for 19 districts.  Hoxby 

corrects six of these in Johnson County, Kansas, but retains the incorrect code for 13 

districts in other counties.2  Another common occurrence is a metropolitan district for which 

the CCD is simply missing an MSA code.  One such district is the Collier County School 

District, which serves the entire Naples, Florida MSA (5345); as a result of this miscoding, 

the Naples MSA does not show up in Hoxby’s analyses.  A final sort of error involves MSA 

codes that are flatly incorrect:  The CCD contains MSA codes of 6640, corresponding to the 

Raleigh-Durham MSA, for several non-metropolitan school districts in Ohio.  As a result, 

four of the 11 districts in the Hoxby/NCES district-level data set that appear to be in 

Raleigh are actually in Ohio. 

In addition to her data, Hoxby provided the Stata program that she wrote to 

assemble it.  This program, entitled “construct.do,” is included on the Hoxby/NCES CD.  

In examining this program, I discovered several glitches.  A few of the most important are 

enumerated here: 

1. Hoxby merges the NELS student-level file to the NELS school-level file, first 
merging on the base year school ID (sch_id), next the first follow-up school ID 
(f1sch_id), and finally the second follow-up ID (f2sch_id).  The relevant section of her 
code (lines 25-663) is reproduced in Table A1.  Note that Hoxby does not rename 
any variables from the school-level data set between merges, nor does she specify the 
“update” option on her second and third merges (lines 52 and 62).  As a result, 
nothing is changed by these latter two merges:  All variables from the “using” data 
set (the school-level data) already exist on the “master” (student-level) data, and Stata 
does not alter pre-existing variables on the master data without explicit instruction.4 

                                                 
1 Hoxby writes that “the Common Core files use the 1990 MSA and PMSA codes, even though some files have 
names that include years that predate 1990.  This conclusion is based on inspection of the counties that were 
not included in the 1980 MSAs and were included in the 1990 MSAs” (Hoxby, 2004b, lines 506-8).  In fact, the 
documentation to the 1987-88 file, from which Hoxby takes many of her MSA codes, includes several pages 
titled “Alphabetical Listing of Metropolitan Statistical Areas, October 1984…” 
(http://www.nces.ed.gov/ccd/pdf/pau87gen.pdf), suggesting that the compilers of that file did not intend to 
be using up-to-date 1990 codes.  Inspection of the CCD files indicates that the MSA codes used do not derive 
from any single set of MSA definitions, but are drawn from several different generations of those definitions. 
2 Hoxby also reports a “larger streams” count for the 3755 MSA, though the erroneous CCD crosswalk should 
not have been necessary for the construction of this variable. 
3 All line numbers refer to lines in the “construct.do” program distributed with the September 2, 2004 
generation of the Hoxby data. 
4 “[U]pdate varies the action merge takes when an observation is matched.  By default, the master dataset is 
held inviolate—values from the master dataset are retained when variables are found in both datasets.  If 
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2. Another problem appears in the same segment of code.  Students and schools that 
entered the NELS sample in one of the follow-up surveys (11.5% of student 
observations and 57% of schools) have sch_id set to missing.  Observations with 
missing sch_id are not excluded from either the master or the using data sets before 
the first merge is performed on line 42.  Stata’s merge command does not make an 
exception for missing values, so student and school observations with missing sch_id 
are assumed to correspond.  Because there are many such observations on either side 
of the merge, Stata handles them in order, assigning the first such student to the first 
such school, the second to the second, and so on.5  Thus, the resulting data set is 
incorrect—students with missing sch_id should not be assigned to any school on this 
merge—and its precise form depends on the order in which observations with 
missing sch_id appear in the two data sets.  As it happens, each data set arrives at this 
point having been sorted on sch_id (lines 29 and 34), without explicit indication of 
how to sort observations within sch_id groups.  Stata breaks ties randomly in sorts, so 
the order of the relevant observations is random, and indeed is different each time 
the program is run.6  

3. A third, related glitch only affects the MSA-level data set, which Hoxby uses to 
estimate the MSA-level version of the first-stage.  Hoxby’s student-level models 
include dummy variables for the nine Census divisions, assigned on the basis of the 
school’s location.  The MSA-level analogue of this would use division variables that 
were not dummies, but which represented the fraction of enrollment in the MSA in 
each division (for those MSAs which span two or more divisions).  Hoxby’s 
computer program does not do this.  Rather, it assigns a single division to each MSA, 
hand-coded for MSAs spanning divisions using the division in which the plurality of 
the MSA’s enrollment is located.  There are some MSAs, however, which are wholly 
contained within a single division but which are incorrectly assigned districts in other 
divisions by the erroneous CCD district-MSA crosswalk.  For example, as noted 
earlier, four Ohio districts are assigned to the Raleigh-Durham metropolitan area.  
For MSAs that do not span divisions, division codes are assigned based on the first 
district in each MSA (line 2370), using a district data set sorted by the MSA code 
(fipsmsa, line 2369).  Again, Stata breaks ties randomly in sorts, so which district 
happens to come up first within the Raleigh MSA is different each time the program 
is run, and on 36% (4/11) of iterations Raleigh is assigned to the East North Central 
division (containing Ohio).7   

                                                                                                                                                 
update is specified, however, the values from the using dataset are retained in cases where the master dataset 
contains missing,” (StataCorp, 2003, "Reference G-M," p. 435).  Hoxby apparently also intended update-
style merges in lines 527-543. 
5 “When one is performing a match merge, the master and/or using datasets may have multiple observations 
with the same varlist value.  These multiple observations are joined sequentially, as in a one-to-one merge.  
If the datasets have an unequal number of observations with the same varlist value, the last such 
observation in the shorter dataset is replicated until the number of observations is equal,” (StataCorp, 2003, 
"Reference G-M," p. 446).  Had Hoxby specified the unique or uniqusing options on her line 46, Stata 
would have refused to perform the match. 
6 “[S]table” specifies that observations with the same values of the variables in varlist are to keep their 
same relative order in the sorted data as they had previously….Without the stable option, the ordering of 
observations with equal values of varlist is randomized” (StataCorp, 2003, "Reference S-Z," p. 88). 
7 The Hoxby/NCES dataset happens to be one in which Raleigh is assigned to the wrong division. 
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4. MSA demographic characteristics are computed by summing observations on each 
district (from the SDDB) within the MSA.  This creates two problems.  First, any 
errors or omissions in the district-MSA crosswalk are reflected in measured MSA 
characteristics.  Second, many people are double-counted:  Any person living in an 
area served by separate elementary and secondary school districts will be counted 
twice toward the MSA totals. 

To gauge the extent of the randomness introduced by errors 2 and 3, I executed Hoxby’s 

program 10,000 times without alteration, tabulating the estimated choice effects (on the 12th 

grade reading sample) from each iteration.  The distribution of estimates is displayed in 

Figure A1.  The distribution is reasonably concentrated around its median (5.41), with a 

standard deviation of 0.47.  However, the range is quite broad:  The smallest estimated effect 

is 2.18, and the largest is 8.15. 

2. Replication data sets 
 Given the above concerns, a complete replication required re-creating the analysis 

data set.  My first step was to create a correct district-MSA crosswalk.  Outside of New 

England, MSAs consist of whole counties.  I used the CCD’s county codes, which appear to 

be more reliable than its MSA codes, to assign districts to MSAs.  In New England, town 

boundaries define MSAs and a district’s county location is not sufficient to assign it to an 

MSA.  I built the New England portion of the crosswalk by hand, examining each district’s 

name and mailing address and using these to assign each to a town (and therefore an MSA).  

I have made available the code needed to produce this crosswalk from the public-use CCD 

data.  While I cannot guarantee that the New England portion is completely free of errors 

and misjudgments, I believe that it is generally accurate. 

 I created two replication samples, using my repaired district-MSA crosswalk for each.  

My first replication sample follows Hoxby’s algorithm (as expressed in her code) as closely as 

possible, but for the substitution of the improved crosswalk and the repair of the errors 

noted above.  Repairing #4 required an alternate source of metropolitan demographic 

characteristics.  I used the Summary Tape File 3A from the 1990 census8 for this purpose, 

with one exception that is noted below. 

 Repairing #1 was also not straightforward.  Each school in the NELS school file has 

up to six codes identifying its district (an “NCES” code and a “QED” code in each of three 

survey waves).  Moreover, each student is assigned to up to three schools, one in each wave.  
                                                 
8 This is based on the same raw 1990 long form census data as the SDDB, but avoids double-counting. 



 v 

As a result, there are potentially 18 distinct district assignments for each student.  By virtue 

of glitch #1, however, Hoxby observes only the six first-wave codes for each student.  I used 

the following algorithm to assign students to schools: 

1. For each school in each wave, use the NCES code in place of the QED code if both 

are valid district codes; otherwise, use the valid one.  (Lines 369-374 of 

“construct.do” advocate resolving discrepancies between NCES and QED codes in 

favor of the NCES codes.)  This narrows the 18 codes to 9. 

2. Match each student to his/her school in each wave, and keep only that wave’s 

district code from that school.  This leaves a maximum of 3 district codes for each 

student:  The BY code from the BY school, the F1 code from the F1 school, and the 

F2 code from the F2 school. 

3. Follow the “majority rule” algorithm implemented in lines 416-491 of “construct.do” 

to resolve discrepancies among these three district codes, preferring districts 

appearing in two waves to one and districts appearing earlier to later.  The 

“construct.do” algorithm neglects a few possibilities—e.g. students who attend 

different districts in two of the waves and are missing a district assignment in the 

third wave—but I applied the same rule for these. 

4. Following lines 432-446 of “construct.do,” assign students who are as yet unassigned 

to the modal district among successfully-assigned students who attend the same 

school as them in the BY, F1, or F2 waves.  This has the effect of assigning some 

students who attended private schools in all waves to the public school that some of 

their private school classmates in, say, the BY wave transferred to in F1.  (I omitted 

private school students from all analyses of this replication sample, however.  As a 

result, this step is not particularly consequential.) 

In constructing my second replication, I deviated from Hoxby’s algorithm when 

what seemed to me more sensible options were available.  I refer to this sample as the 

“preferred replication” sample.  The most important difference is in the way that students 

are assigned to districts.  In an effort to prioritize accuracy over maximizing the sample size, 

I used only contemporaneous information for this purpose, allowing individual respondents’ 

district assignments to vary between waves.  Thus, a student whose F2 school is missing a 

district code in the F2 wave was omitted from my analysis sample for F2 scores.  (Hoxby’s 

algorithm would use information about the 8th grade school if it were available, and indeed 
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for all students would use the same district assignment in each wave.)  In practice, this meant 

following steps 1 and 2 of the above algorithm, then constructing distinct student-district 

matches for each survey wave using only the district code for the school attended in that 

wave.  There are also important differences in the construction of individual variables, as 

detailed below. 

In Section IV, I also extend the preferred replication sample to include private 

school students.  An alternative algorithm is required for these students, as district codes are 

unavailable for NELS private schools.  I make use of information about the demographic 

characteristics of the zip codes in which schools are located.  These variables are drawn from 

the zip code tabulation of the 1990 Census, so these data (the “STF-3B” file) can be used to 

assign zip codes to each NELS school.  The vast majority of zip codes are contained entirely 

within a single county; for those that are not, I assign the zip code to the county containing 

the plurality of its population.  The resulting crosswalk from NELS schools to counties is 

sufficient to assign schools to MSAs outside of New England.  In New England, however, 

counties do not map to unique MSAs.  Using mapping software, cartographic boundary files 

from the 1990 Census, and a third-party vendor’s zip code boundary files (ESRI, 2002), I 

compute the fraction of each zip code’s land area contained within each MSA, and assign 

each zip code to the MSA containing the plurality of its area.  (Once again, for the vast 

majority of zip codes there are no ambiguities.)  There are a very small number of zip codes 

containing NELS schools that cannot be assigned in this way, which I code by hand.   

Note that this algorithm assigns each NELS school, public and private, to an MSA, 

but not to a district.  For analyses of these data, I exclude the district-level covariates from 

Hoxby’s specification.  For consistency, I use the zip-code based assignments for both 

public and private schools, even though alternative district-based assignments (which agree 

in every case where both are defined) are available for the public schools. 

All code for the assembly of my replication samples and for estimation of the models 

presented has been made available in my “makedata_msadist.do” and “makedata_nels.do” 

program files.  Unfortunately, I cannot make the individual-level data available in the same 

manner, as they derive from a restricted-access version of the NELS data and are available 

only from NCES and only to licensed researchers.  However, researchers with the 

appropriate licenses should be able to run my computer programs to extract my samples 

from the restricted-access NELS data.  There are a very few lines of code which have been 
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redacted from my computer programs, to avoid compromising the confidentiality of the 

NELS data.  I have asked NCES to distribute this code—in a file, 

“confidential.include.zipcode.do,” that is called from the programs that I do distribute—to 

licensed researchers who request it.  In addition, I describe here the covariates included in 

Hoxby’s specification and how they are constructed in each replication sample. 

3. Comparisons of individual covariates 

a. Covariate construction, individual level 

 I begin with the construction of individual-level variables in the NELS data, as these 

are the most straightforward.  For each item, I describe any discrepancies between the 

Hoxby/NCES construction and my preferred construction.  In each case, I followed the 

Hoxby/NCES algorithm for the “close replication” sample (variable names are prefixed 

“ch_”) and my preferred algorithm for the “preferred replication” sample (prefix “jr_”). 

- Indicators for attending a public school in each of the three waves (pubschby, pubschf1, 

pubschf2):  Unless otherwise noted, all analyses include only students enrolled in 

public school in the wave from which the test score data are taken.  There are several 

NELS variables describing the school sector in each wave.  In 40 cases, these are not 

mutually consistent for the base year.  Hoxby does not resolve these inconsistencies; 

I drop these observations from both replication samples for analyses of base year 

scores. 

- The log of family income (ch_lnfaminc and jr_lnfaminc):  The NELS data report family 

income in bins.  Hoxby assigns each family the log of the midpoint of the relevant 

bin (in thousands).  She assigns a “midpoint” of $800 for the $1-$1,000 bin and one 

of $220,000 for the $200,000+ bin.  Observations for which the family income is 

reported as zero are set to missing.  ch_lnfaminc follows this algorithm.  I use a slightly 

different construction for jr_lnfaminc:  I assign each family the log of the geometric 

average of the endpoints of their bin.  (That is, a family in the $1,000-$3,000 bin is 

assigned ln(2) by Hoxby’s algorithm, and (ln(1000)+ln(3000))/2 in mine.)  I assign 

ln(500) to families in the $1-$1,000 bin, ln(250,000) for families with incomes above 

$200,000, and ln(1) to families with zero income.  Finally, I use the 2nd follow-up 

survey’s income variable (f2faminc) to assign values for students with missing incomes 

in the base survey variable (byfaminc); Hoxby uses only the latter variable. 
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- Student race (ch_asian, ch_hispanic, ch_black, jr_asian, jr_hispanic, and jr_black):  Hoxby 

uses only the base-year race variable to assign these, and sets each to zero for students 

with race=8 (race missing or more than one race reported).  Each dummy is set to 

missing if there is no value for the race variable.  I supplement this variable with 

analogues from the follow-up surveys (f1race, f2race1, f2rrace1) when it does not 

resolve the student’s race, and I set the indicators to missing if none of the four 

survey variables indicate a specific race. 

- Student gender (ch_female, jr_female):  Again, Hoxby uses only the base wave sex 

variable, and sets female to missing if this variable is missing; I supplement the base 

wave with analogous variables from the follow-ups (f1sex, f2sex, f2rsex).9 

- Parental education (ch_parscol, ch_parcolg, jr_parscol, jr_parcolg):  Hoxby uses the bys34a 

and bys34b variables to assign each parent’s education, then uses the highest of these 

to assign her variable.  bys34a and bys34b are student reports of their parents’ 

education in the base year survey.  I use instead bypared, f1pared, and f2pared.  These 

use parent reports where they are available, and student reports only when they are 

not.  There are many discrepancies between these variables and the student reports; 

it seems likely that the parent reports are more accurate. 

- Test scores:  Hoxby’s preferred specification takes the 12th grade reading score, 

f22xrstd, as the dependent variable, though she also reports results for 8th grade 

reading (by2xrstd) and 10th grade mathematics (f12xmstd).  Each score is normalized to 

have a mean around 50 and standard deviation around 10.  In the main text, I 

analyze f22xrstd and by2xrstd, the 12th and 8th grade reading scores.  I also present 

estimates in this appendix for four additional scores:  Mathematics in all three waves, 

and reading in 10th grade (by2xmstd, f12xmstd, f22xmstd, and f12xrstd). 

Summary statistics for each of these variables are reported in Table A2, for Hoxby’s data set 

and for each of the two replication samples.  The rightmost columns of the Table report 

correlation coefficients between the different samples, computed pairwise over observations 

that have values in each of two samples.  Note that most of these correlations are almost 

                                                 
9 One might not expect many missing values for such a basic demographic characteristic.  In fact, it is missing 
for over 10% of observations.  These are students who were brought into the NELS sample via “freshenings” 
in the first and second follow-up surveys.  By using only base-year variables, Hoxby excludes freshened 
observations.  Her 12th grade sample is thus not representative of 12th graders in 1992, but only of 1988 8th 
graders who were in 12th grade in 1992. 
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exactly one (with the notable exception of the parental education variables).  The primary 

differences between samples are in the number of observations with missing values—note, 

for example, that the standard deviation of ln(family income) is higher in the preferred 

replication sample than in either of the other samples, where it is defined for 3,000 fewer 

observations. 

b. Covariate construction, district level 

 District covariates are taken from the School District Data Book (SDDB), a 

tabulation of 1990 Decennial Census data along school district boundaries.  There are several 

extant versions of the SDDB, not all of which are complete.10  The Hoxby/NCES CD 

includes a copy of the “Top 100” file (containing most of the variables that are used).  There 

are some necessary variables which are not included in the “Top 100” file.  The 

Hoxby/NCES CD provides extracts of these variables in two separate files.  It is not clear 

what version of the SDDB was used for these, nor does is the code provided that was used 

to perform the extraction.  The supplementary files have somewhat fewer records than does 

the (presumably complete) “Top 100” file.   

 In constructing my replication samples, I rely on a version of the SDDB data 

obtained from the contractor who produced the file for NCES.11  The full data set is too 

large (1.4 GB zipped) to easily distribute, but I have made available my extraction program 

and can work with interested readers to help them obtain the data.  There do not appear to 

be major differences between the two versions of the data.12 

- Racial composition of the district (ch_d_pop_fas, ch_d_pop_fbl, and ch_d_pop_fhi; 

jr_d_pop_fas, jr_d_pop_fbl, and jr_d_pop_fhi):  Hoxby excludes people of “other” race 

in her computations (so the denominator is the sum of the Hispanic and non-

Hispanic black, white, Asian, and American Indian populations).  I include the 

“other race” group in the denominator. 

                                                 
10 The NBER, for example, has a version acquired from the National Archives at http://www.nber.org/sddb/.  
Documentation on that page reads “Currently we have and have online 156 files, which NARA says is the 
whole file, or least all they have. They believe there may be records, or parts of records missing from California 
and Minnesota. We have observed that Minnesota contains 603 undecipherable records.” 
11 I am grateful to Cecilia Rouse and Lisa Barrow for providing me with these data. 
12 There are 357 districts that appear in Hoxby’s SDDB extract but not in mine.  Hoxby codes only two of 
these as metropolitan (one apparently incorrectly).  Only 11 of the districts in question (and neither of the 
apparently metropolitan districts) have non-missing enrollment. 
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- Index of racial homogeneity (ch_d_herfrace and jr_d_herfrace):  This is computed as the 

sum of each race’s squared population share.  As noted above, Hoxby’s population 

shares exclude “other” race from the denominator, where mine include them.  I also 

include “other” as one of the races over which the sum is taken. 

- Educational distribution (d_ed_scol, d_ed_ba, and d_herfed):  We use identical 

algorithms.  d_herfed is the sum of the squared population shares of the less than high 

school, high school graduate, some college, and BA+ groups. 

- Household income (d_lnmeanincA):  Hoxby (2000) describes this variable as the 

“mean of log(household income) in the district.”  In fact, she constructs it as the log 

of the mean household income in the district.  I follow this definition.13 

- Gini coefficient of household income (ch_d_gini and jr_d_gini):  These are constructed 

from the distribution of district households across 25 income bins.  All households 

in each bin are assumed to have income equal to the midpoint of the bin.  Hoxby 

assigns the bottom bin ($0-$5,000) a “midpoint” of $4,000 and the top bin 

($150,000+) a value of $175,000.  I use $2500 for the bottom bin.  For the top bin, I 

use a variable describing the total income among families with incomes above 

$150,000 (P81_2) to construct the actual mean income among families in this bin in 

the district.  Not surprisingly, this has important consequences for the Gini 

coefficient. 

- Index of ethnic homogeneity (ch_d_herfethn, jr_d_herfethn):  This is a modified version 

of the index of racial homogeneity, mentioned above.  Hoxby (2000) does not 

provide the formula, but cites another paper (Alesina et al., 1999) for its 

construction.  That paper describes homogeneity indices for the Hispanic and white 

populations, but does not describe how these are to be aggregated into a single 

ethnic homogeneity index.  The formula, as used in the Hoxby/NCES code, is: 

                                                 
13 Given the identical construction, one would expect this variable to be perfectly correlated between the 
Hoxby/NCES data set and the replication data sets (the fact that Hoxby divides average income by $1,000 
before logging notwithstanding).  While the correlation is quite high, it is not exactly one.  There are two 
sources of income information on the SDDB:  Variables tabulating the number of households in each of 25 
income bins (named P80), and variables recording the aggregate income among families with incomes above 
and below 150,000 (named P81).  I use the latter variables to construct mean household income, but when I 
use the former (and Hoxby’s rules, used elsewhere in her code, for assigning households to midpoints of each 
bin) I replicate her variable to within four decimal places for all but 39 districts.  Assuming that the census 
tabulates each variable correctly, the “aggregate income” approach is almost certainly more accurate than the 
“bin midpoints” approach. 
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Index=(FrBl)2 + (FrAs)2 + (FrIn)2 + (FrWh)3-WhIndex + (FrHi)3-HiIndex + (FrOt)2, 

where FrBl, FrAs, FrIn, FrWh, FrHi, and FrOt are the population shares black, 

Asian, American Indian, white, Hispanic, and other race.  (As noted above, Hoxby 

omits the final group).  WhIndex and HiIndex are indices of the source-country 

heterogeneity of the white and Hispanic populations, respectively.  The white index 

is the sum of the squared shares of the white population that are British, 

Scandinavian, Russian, other Eastern European, Belgian/Dutch, Swiss/Austrian, 

French, Arab, German, Greek, Hungarian, Irish, Italian, Polish, Portuguese, or 

Other.  Hoxby counts Canadians as British (but French Canadians as French), and 

includes sub-Saharan African, “USA,” West Indian, and unclassified ancestry in 

“Other.”  I assign both Canadians and French Canadians to the “Other” category, 

and exclude sub-Saharan Africa, “USA,” West India, and unclassified from the 

computation on the grounds that these groups are unlikely to be of white race.  

Hoxby’s Hispanic index is the sum of the squared shares of the Hispanic population 

with Mexican, Puerto Rican, Cuban, other Central American, or South American 

ancestry.  I add a sixth category, “Other Hispanic;” Hoxby folds this category into 

the South American group. 

Summary statistics for each of these variables are reported in Table A3.  All correlate highly 

across samples, with the only visible deviations appearing in the income variables. 

c. Covariate construction, metropolitan level 

 Hoxby uses the Office of Management and Budget’s June 30, 1990 definitions of 

Metropolitan Statistical Areas (http://www.census.gov/population/estimates/metro-

city/90mfips.txt).  In larger agglomerations, she uses PMSAs as the metropolitan construct 

in place of the larger CMSAs.   

Hoxby writes, “I derive demographic measures at the metropolitan-area level from 

the City and County Data Book” (2000, p. 1221-2).  In fact, her code derives MSA-level 

demographic characteristics by summing the SDDB observations for all districts attributed 

to the MSA.  As noted previously, this introduces two problems.  First, some areas are 

served by overlapping elementary and secondary school districts; Hoxby’s approach double-

counts residents of these areas toward metropolitan averages.  Second, there are errors in the 

crosswalk file that Hoxby uses to assign districts to metropolitan areas.  This can lead to 
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serious misstatement of MSA totals.  To take one extreme example, the SDDB contains 

records for many subdistricts within the single school district serving the state of Hawaii, 

while the CCD contains only a single record.  As a result, only the administrative 

headquarters for the Hawaii district is assigned to Honolulu, and the Honolulu MSA is 

recorded as having only 13,700 residents in 0.77 square miles and.  (The true values are 

836,000 residents and 600 square miles.) 

In place of the aggregated SDDB data, I use the Summary Tape File 3A of the 1990 

Census to construct MSA demographics for both replication samples.  I use county-level 

records for non-New England MSAs and town-level (“county subdivision”) records for 

MSAs in New England.  The source data for the STF-3A file are the same Census long form 

data as those from which the SDDB is constructed, but my approach avoids the imperfect 

match to MSAs and the double-counting problems that arise with the SDDB data. 

- Metropolitan population and land area (m_pop_n and m_arealand):  These are 

straightforward, but for the errors introduced when they are computed by summing 

school districts.  The Hoxby/NELS data overstate the population by at least 10% in 

71 MSAs, largely due to double-counting the populations of overlapping districts. 

- Mean income (ch_m_avglnmeaninc and m_lnmeanincA):  Though Hoxby’s paper 

describes one of her control variables as “Mean of log(income) of metropolitan 

area,” she does not make clear that this mean is taken over school districts rather 

than over individuals.  That is, she computes the mean income (in levels) for each 

district, computes the log of this mean, then averages the district log(mean income) 

across districts in the MSA (weighting by the number of households) to form her 

MSA variable.  This construction cannot be performed using the STF-3A data, and 

for this one MSA-level variable I follow Hoxby (for the close replication sample) in 

deriving it from the SDDB, after correctly assigning districts to MSAs.  My preferred 

replication sample uses the more straightforward log of the MSA mean income. 

- Gini coefficient (ch_m_gini, jr_m_gini):  These are constructed identically to the 

district-level variables, as described above, using the STF-3A data in place of the 

SDDB. 

- Racial composition of the MSA (ch_m_pop_fas, ch_m_pop_fbl, and ch_m_pop_fhi; 

jr_m_pop_fas, jr_m_pop_fbl, and jr_m_pop_fhi).  Again, the MSA-level construction is 

the same as the district-level. 
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- Educational distribution (m_ed_scol, m_ed_ba, and m_herfed):  Once more, the same as 

at the district level. 

- Census division (ch_d_div1-ch_d_div9, jr_m_divis1-jr_m_divis9):  Hoxby treats division 

as a district-level characteristic, computing dummy variables based on the division in 

which the district is located.  She uses a somewhat different construction for her 

MSA-level first stage analysis, hand-coding each MSA that straddles divisions to the 

division in which the plurality of its population resides.  My close replication sample 

follows Hoxby in each construction.  Note, however, that my use of a repaired 

district-MSA crosswalk avoids the problems (discussed above) that appear in 

Hoxby’s implementation.  For my preferred sample, I treat division as an exclusively 

metropolitan-level characteristic, and I assign multi-division MSAs fractional values 

of the division indicators corresponding to the fraction of the MSA population in 

each division. 

Summary statistics for each of these variables are reported in Table A4.  They diverge more 

across samples than did individual or district-level variables, largely because of the 

differences between what is obtained from aggregated, overlapping SDDB data and from 

aggregated Census STF records that do not overlap. 

4. Choice index 
 Hoxby’s choice index is ( )∑−=

jm mjmm Nnc 2/1 , where njm is the enrollment of 

district j in MSA m and Nm is the total enrollment in the MSA.  Enrollment is drawn from 

the SDDB “Top 100” file, which in turn draws the variable from the CCD.  For my 

replication samples, I use the 1989-90 CCD enrollment data directly.   

 Although I follow Hoxby’s construction exactly for the close replication sample, I 

make a slight alteration for the preferred replication sample.  Where Hoxby constructs her 

index using enrollment in all grades, I compute it considering only grade-8 enrollment.  This 

makes little difference in MSAs with unified school districts.  Where there are separate 

elementary and secondary districts—which cannot be said to compete against each other—

Hoxby’s formula will indicate more competition than actually exists (Urquiola, 1999). 
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5. Instruments 
As instruments for the degree of choice in the MSA, Hoxby uses the number of 

larger and smaller rivers flowing through the MSA.  She describes their construction as 

follows: 

The streams variables are derived from the U.S. Geological Survey’s (USGS) 

1/24,000 quadrangle maps.  It was by using these extremely detailed maps—

which allow the viewer to identify even very small streams, buildings, and 

boundaries—that I initially recognized the relationship between natural 

barriers and school district boundaries.  The measurement of the streams 

variable was in two stages.  Using the physical maps, I first counted all 

streams that were at least 3.5 miles long and of a certain width on the map.  

These data were checked against the Geological Survey’s Geographic Names 

Information System (GNIS) for accuracy.  I derived smaller streams directly 

from the GNIS.  I employ two stream variables:  the number of larger 

streams (measured by hand and often traversing multiple districts, sometimes 

multiple counties) and the number of smaller streams (from GNIS). (Hoxby, 

2000, p. 1222). 

Given the vagueness of Hoxby’s description of “larger streams” and the subjectivity of the 

hand measurement, I opted not to try to reproduce Hoxby’s counts.  This has one 

unfortunate consequence:  Hoxby does not provide counts for all MSAs, and as a result 

some MSAs must be excluded from analyses that include her larger streams instrument. 

 Hoxby’s description of the genesis of the smaller streams measure is incomplete.  

She in fact measures total streams in the GNIS, and constructs smaller streams as total minus 

larger streams.  As a result, any inaccuracies in the larger streams measure appear (with the 

opposite sign) in the smaller streams variable.  Note, however, that the instrument set can be 

equivalently formulated as total and larger streams, as these span the same space as do 

Hoxby’s measures. 

 The Hoxby/NCES program (2004b, lines 2811-2) cites the USGS web site as the 

source of her GNIS data, with a date of 2004.  The GNIS is continually updated as better 

maps and surveys are completed.  It is not clear what might be the impact of changes made 

between Hoxby’s original analysis and her later extraction of the current GNIS data.   
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 In the published paper, Hoxby writes that the GNIS “provides the longitude and 

latitude of [smaller streams’] origin and destination” (2000, note 24, p. 1222).  Her code, 

however, does not make use of these variables, except to construct the streams’ lengths.  

(She discards streams shorter than one mile.)  Another variable, describing the county in 

which the stream’s “destination” (i.e. mouth) is located, is used instead.  The CCD is used to 

associate counties with MSAs, which means that some areas are mis-assigned.14  Figure A2 

indicates the implications of Hoxby’s assignment algorithm for the Mississippi River.  The 

Mississippi’s mouth is in Plaquemines Parish, Louisiana, which is non-metropolitan.  As a 

result, Hoxby’s algorithm does not include the Mississippi in the total streams count of any 

of the eight MSAs through which it flows.  Of course, the Mississippi is almost certainly 

included as a “larger” stream, but its exclusion from the total streams count means that 

smaller streams are necessarily undercounted. 

When I reproduce the total streams variable for the replication sample, I use the 

same GNIS data as Hoxby, continuing to assign streams to counties on the basis of their 

destinations.  I use an accurate county-MSA crosswalk, however, and compute population 

shares from Census STF data on non-overlapping towns (“county subdivisions”).  Following 

Hoxby, I compute smaller streams by subtracting the number of larger streams that Hoxby 

counted from the number of total streams that I obtain.  This produces a negative number in 

five MSAs (two in New England), where Hoxby evidently counted more larger streams than 

the number of total streams (stream mouths) than the GNIS destination variable indicates.15 

The alternative instruments discussed in Section III use a more expansive definition 

of “total streams,” in which a stream is counted toward any MSA through which it flows, 

regardless of where it terminates.  For this purpose, I use an alternative version of the GNIS 

database (Geographic Names Office, 1999), which contains a field listing all counties 

through which each stream flows.  (For the Mississippi, this list contains 117 counties, which 

are shown on Appendix Figure A2.)  In New England, where some counties are split into 

non-metropolitan and metropolitan components, I compute weights for each county 

                                                 
14 When counties are not wholly contained within a single MSA (in New England, and elsewhere when districts 
are mis-assigned), all streams in each county are assigned to the MSA in which the plurality of the county’s 
population resides.  The population shares for this computation are taken from the SDDB, so double-count 
some areas served by multiple districts. 
15 Note that there are no negative “smaller streams” counts in the Hoxby/NCES data; the problem arises only 
when I re-create Hoxby’s total streams variable with a corrected county-MSA crosswalk in place of Hoxby’s 
imperfect district-MSA crosswalk. 
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corresponding to the share of the population in the county residing in each MSA.  Using the 

county population weights, streams are partially assigned to each MSA with which a county 

intersects.16  Outside of New England, I need not approximate MSA boundaries, and each 

stream gets a weight of one toward each MSA through which it flows.  My “total streams” 

count is the sum of the weights of all streams flowing through each MSA. 

I consider three categorizations of the resulting total streams count into larger and 

smaller streams.  First, I use Hoxby’s larger streams variable, defining smaller streams as my 

total streams count minus Hoxby’s larger streams for those MSAs for which Hoxby’s 

variable is available.  There are six MSAs, five in New England, for which this indicates a 

negative number of smaller streams.17  Second, I compute separate counts of inter-county 

and intra-county streams, where an inter-county stream is one that flows through more than 

one county.  Finally, using the latitude and longitude variables (which exist on both versions 

of the GNIS data), I compute the distance between the source and mouth of each stream, 

and compute separate counts of streams that are longer than and shorter than 3.5 miles.18 

Table A5 presents summary statistics for the various streams variables 

6. Weights 
Hoxby writes that her student-level regressions are “weighted so that each 

metropolitan area receives equal weight,” (2000, p. 1226).  This is operationalized by 

summing the NELS sample weights for all students in each MSA, then dividing each 

individual’s weight by the MSA’s total.  In the Hoxby/NCES data, however, this 

normalization is carried out once for each survey wave, without regard to missing values.  

Many observations that are excluded from the regression analyses because they are missing a 

test score or one of the covariates are nevertheless included in the weight normalization.  As 

a result, the weights sum to substantially less than one in each MSA when the sum is taken 

only over observations that appear in the regressions.  In the replication samples, I re-

                                                 
16 For streams flowing through multiple counties in the same MSA, the maximum population weight is used.  
(This is analogous to assigning a weight of one to any stream flowing through any metropolitan county in the 
remainder of the country.)   
17 The non-New England MSA is Topeka, Kansas.  Hoxby reports 82 larger streams, but I count only 36 
stream mouths and 41 total streams.  Hoxby’s count of 109 total streams appears to derive from the CCD’s 
assignment of Jefferson County and Osage County school districts to the Topeka MSA.  These counties were 
part of the MSA in 1981, but have been excluded since the release of the 1983 definitions. 
18 There are a small number of streams missing latitude and longitude information, for which length cannot be 
computed.  These are included in earlier counts, but are excluded from the categorization by length. 
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normalize for each specification, including only observations used in that specification.  

Note (Table A2) that the average weight is substantially smaller in the Hoxby/NCES sample 

than in the replication samples, and that the product of the average weight and the number 

of observations in the analysis samples equals the number of MSAs for the replication 

samples but not in the Hoxby/NCES sample. 

Appendix B: Econometric Specification and Standard Error 
Computation 

Simplifying notation slightly, Hoxby specifies her model for student achievement as  

(B1)  ,4321 ikmmkmikmmikm eβXβXβXβCA ++++=  

where Aikm is the test score of student i in district k in MSA m; Cm is the choice index for 

MSA m; and Xikm, kmX , and mX  are individual, district mean, and MSA mean covariates.19  

As there are likely omitted variables at all three levels, it is unreasonable to assume that eikm is 

independent across individuals within the same district or MSA.  Hoxby specifies an error 

components model, 

(B2)  ikmkmmikm εεεe ++= , 

assuming that each component is independent and identically distributed across observations 

at that level.  That is,  
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where ( )mm εσ var2 = , ( )kmk εσ var2 = , and ( )ikmi εσ var2 = . 

                                                 
19 Hoxby (2000) devotes considerable discussion to the complication that the district heterogeneity variables do 
not average to their MSA-level analogues.  I neglect this complication; one may simply think that kmX  and 

mX  are arbitrary vectors of district- and MSA-level covariates.  One related point is worth mentioning, 
however.  In her footnote 21, Hoxby claims that when the district heterogeneity variables are excluded, the 
individual-level first stage model (analogous to the outcome equation indicated above) is identical to an MSA-
level analogue that excludes Xikm and kmX , as there can be no correlation between these two vectors and the 

MSA-level choice variable conditional on mX .  This is correct only so long as the sample average of the 
individual and district-level variables is identical to the MSA means.  When, as in this case, the individual 
variables are observed only for a sample, this will not be true, and there is no guarantee that coefficients on 
MSA-level covariates are invariant to the level at which the model is estimated. 
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 It is useful to work with matrix notation.  Let [ ]ikmkmikmm XXXCW =  be the 

matrix of right-hand-side variables from (B1), and [ ]′= '
4

'
3

'
2

'
1 βββββ .  (B1) then becomes 

eβWA += .  If Cm is endogenous, [ ] 0' ≠eWE .  Let Rm be the streams instrumental 

variables, and let [ ]ikmkmikmm XXXRZ = .  If the instruments are valid, [ ] 0' =eZE , and  

(B4)  ( ) ( ) ePWWPWβAPWWPWβ ZZZZIV ''''ˆ 11 −− +== , 

where PZ=Z(Z’Z)-1Z’. 

Inference proceeds by noting that  

(B5)  ( ) ( ) ( ) 11 ''''ˆvar −− Γ= WPWWPPWWPWβ ZZZZIV , 

where [ ]'eeE=Γ  is the variance-covariance matrix with elements specified in (B3).  Under 

conventional assumptions of i.i.d. observations (i.e. with 022 == km σσ ), Iσ i
2=Γ , and we 

obtain the conventional variance expression, ( ) ( ) 12 'ˆvar −= WPWσβ ZiIV .  This expression 

does not apply, however, with non-zero district- and MSA-level error components. 

 Hoxby’s so-called “Moulton” formula for ( )IVβ̂var  (developed by Moulton, 1986, 

for the OLS case) simply forms a consistent estimate of Γ  from estimates of the error 

component variances, 2
mσ , 2

kσ , and 2
iσ .  The resulting Γ̂  is then plugged in for Γ  in (B5) to 

estimate ( )IVβ̂var .  This approach requires only that the three error component variances be 

estimated consistently.  Several consistent estimators are available, and it is not clear that any 

one should be preferred to another.  The options multiply in the “unbalanced panel” case 

that is relevant here, where districts and MSAs contain unequal numbers of observations.  

Hoxby has not provided code for her implementation, and does not specify how she 

estimates the variance parameters.   

My implementation of the Moulton approach estimates the error component 

variances from contrasts between individual, district-mean, and MSA-mean residual 

variances, extending Greene’s (2000, p. 570-2) discussion of random effects in unbalanced 

panels to the three-component hierarchy considered here.  Let ikm
km

km e
N

e 1=  and 

ikm
m

m e
N

e 1=  be the district- and MSA-level means of eikm, where Nkm is the number of 
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individual observations at district k in MSA m and ∑= k kmm NN  is the number of 

individuals in the MSA.  Ignoring degrees of freedom corrections, which only complicate the 

notation,  

(B6a)  ( ) ( ) 2varvar iikmkmikm σεee ==− ;  

(B6b)  ( ) 22 11varvar i
km

kikm
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kmmkm σ
N
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where Pm is the number of districts in MSA m.  Note that with unbalanced data, Nkm can vary 

across districts, as can Pm and Nm across MSAs.  Solving the sample analogues of (B6a), 

(B6b), and (B6c) for the variance components thus involves the sample averages of 1−
kmN , 

1−
mN , and 1−

mP , but these are readily estimated from the data.  Code for my implementation 

may be downloaded from my web site. 

 I also present so-called “clustered” standard error estimates.  These proceed from 

the observation that we do not require a consistent estimate of Γ , but only of ZZ Γ' .  This 

can be consistently estimated under substantially weaker assumptions than (B3).  In 

particular, we can allow for arbitrary heteroskedasticity and within-MSA correlation patterns.  

Let Zm
  be the sub-matrix of Z corresponding to MSA m, and let em be the analogous 

subvector of e.  So long as ( ) 0,cov =jdnikm ee  whenever nm ≠ , ∑= m
mmmm ZeeZG ''  is 

consistent for ZZ Γ' .  The cluster variance estimator, then, is  

(B7)  ( ) ( ) ( ) ( ) ( ) 1111 ''''''ˆvar −−−−= WPWWZZZGZZZWWPWβ ZZIV . 

As with the Moulton estimator, asymptotic consistency is achieved as the number of MSAs 

goes to infinity.  An important reason to prefer the “cluster” estimator is that it is fully 

automated, where the Moulton estimator requires the researcher to choose among several 

estimators of the error component variances and is therefore more difficult to replicate.   

1. Exogeneity and overidentification tests 
It is useful to test for the endogeneity of the choice index, Cm.  With i.i.d. errors, one 

might use a Hausman test:  Under the null hypothesis that Cm is exogenous, the OLS 

estimator of β is efficient but the IV estimator is consistent; under the alternative of 
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endogeneity, OLS is inconsistent but IV remains consistent.  With the serial correlation 

implied by the error components model, however, OLS is no longer efficient even under the 

null hypothesis.  Thus, the exogeneity tests reported in the text use an alternative, “artificial 

regression” test that can be made consistent to clustering (Davidson and MacKinnon, 1993, 

p. 237-42).  I form mĈ , the fitted values of Cm from the first stage regression—using the 

same sample used for IV—and estimate the regression Aikm on Cm, mĈ , Xikm, kmX , and mX .  

Under the null hypothesis of exogeneity, the coefficient on mĈ  should be zero; under the 

alternative, it should be non-zero.  I report tests of the significance of this coefficient that 

use clustered standard errors, although one might equally well use the Moulton standard 

errors for this purpose (and indeed they give similar results). 

In specifications involving multiple instruments, one might also like to report 

overidentification tests of the mutual consistency of the different instruments.  Again, 

conventional Hausman test-based approaches do not work with serially correlated errors, as 

the regular two-stage least squares estimator is not efficient.  Hoxby and Paserman (1998) 

propose a Hausman test for the error components model that is based on the GMM 

estimate of the overidentified specification.  Following Hoxby (2000), I present only 2SLS 

coefficient estimates and not the more efficient GMM estimates.  Accordingly, I choose not 

to present GMM-based overidentification tests, but instead simply report specifications that 

omit the suspect instruments.20 

Appendix C: Full coefficient vectors 
Tables C1 through C5 present the full coefficient vectors from the models in Tables 

1 through 5 of the main text.   

Appendix D: Additional Specifications 
The remaining appendix tables present extensions and alternative specifications.  

Table D1 presents estimates of the first-stage regression (analogous to those in Table 3) 

using the “preferred” replication sample.  As before, Hoxby’s larger streams variable plays a 

substantially different role in the MSA-level “implied first stage” than in the actual first 

stages to the individual-level models.  Table D2 presents the corresponding IV estimates 
                                                 
20 A second reason to avoid overidentification tests in this context is that they are likely to have little power 
when, as here, only one of the instruments plays an important role in the first stage. 
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from the preferred replication sample.  As in the “close” sample (Table 4), only 

specifications that include Hoxby’s larger streams variable as an instrument show any 

indication that choice is endogenous or that it has a significant positive effect on outcomes.  

OLS estimates are negative (though far from significant) for both 8th and 12th grade reading 

scores. 

Table D3 extends the sample selection analysis from Table 5 to 8th grade reading 

scores.  Choice coefficients fall somewhat when district-level covariates are dropped from 

Hoxby’s basic specification, and fall substantially farther when public schools are assigned to 

MSAs on the basis of their zip codes.  There is an additional downward effect of adding 

private schools to the sample, and t-statistics are uniformly below one in this specification.   

Table D4 extends the analysis to the four NELS test scores that have not yet been 

considered.  There is no indication that choice has a different effect on mathematics scores 

or on 10th grade reading scores than it does on the 8th and 12th grade reading scores 

considered thus far. 

Table D5 presents a version of the MSA-level first stage estimated only on MSAs in 

the NELS sample.  Comparing this to Table 3, it is clear that the divergence between 

Hoxby’s MSA-level first stage (including all MSAs) and the individual-level MSAs derives 

from the sample of MSAs included rather than from the level at which the model is 

estimated. 

Table D6 presents “two sample” IV estimates of the basic model, in which the first 

stage is estimated at the MSA level, predicted values are formed, and these predicted values 

are used in the individual-level second stage regression.  In each panel, the first row presents 

estimates that use only NELS MSAs for the first stage, while the second row presents 

estimates in which the full set of MSAs are used to estimate the first stage model.  This 

approach introduces two complications.  First, the individual- and district-level covariates 

must be excluded from the MSA-level first stages.  This does not affect the IV estimates of 

the choice coefficient, so long as all first-stage controls are included in the second stage as 

well, but changes the interpretation of the second-stage coefficients on the control variables 

(which are not shown in any case).  Second, special formulas are needed to compute correct 

standard errors.  I do not compute these, but merely present clustered S.E.s from the second 

stage regression; these will tend to understate the true variability of the indicated coefficients. 
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As with conventional IV, the two-sample estimates indicate significant choice effects 

when Hoxby’s instruments are used and when only the NELS MSAs are included in the first 

stage.  When the first stage sample is broadened to include all MSAs, the choice coefficient 

falls in the specifications using Hoxby’s instruments but not in those using inter- and intra-

county streams as instruments.  Even with the incorrect standard errors, none of the 

specifications indicates a significant choice effect when all MSAs are used to compute the 

first stage. 

Table D7 presents estimates of the reduced form relationship between streams and 

student test scores.  These are quite noisy, and the streams coefficients are never significantly 

different from zero in models that exclude Hoxby’s larger streams variable.  In models 

including this variable, it always has a negative coefficient, while smaller streams have a 

significantly positive coefficient.  When these variables are added together, however, the 

“total streams” coefficient is statistically and substantively indistinguishable from zero. 

Finally, Table D8 presents IV estimates for MSA average test scores, computed 

entirely at the MSA level.  Very few of these are significant, even when averages of 

individual- and district-level covariates are included in the specification (in which case the 

specification is essentially identical to Hoxby’s, but is more conservative about the standard 

error computation).  The two models that are significant both use Hoxby’s streams variables. 

Appendix E: Estimates of  the choice effect on spending 
Much of Hoxby’s discussion, and all of my analysis thus far, focuses on the 

relationship between district fragmentation and student achievement.  However, her 

conclusions relate to the choice effect on school productivity, and she presents analyses of 

the relationship between choice and school spending in her Tables 5 and 6.  The relevant 

coefficients from her preferred specification are reproduced in Panel A of Table E1.  Panel 

B reproduces this specification in the Hoxby/NCES data.  Standard errors are much larger 

here, and indeed the published standard error from the IV specification much more closely 

resembles the Hoxby/NCES classical standard error—which assumes that observations are 

i.i.d.—than it does either the Moulton or clustered errors from that sample.  There is no 

indication in the Hoxby/NCES sample of a significant IV effect of choice on per-pupil 

spending, though the OLS estimate is weakly significant.  Panels C and D repeat the same 

specification in the replication samples, and also present estimates that use inter- and intra-
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county streams as instruments.  Again, there is no indication of a significant effect in IV, but 

OLS estimates are significantly negative. 

Hoxby’s model, however, may be misspecified.  She estimates it at the school district 

level, and takes as her dependent variable the log of per pupil spending in the district.  The 

convexity of the log transformation is the source of the problem.  Consider an MSA with 

two equally-sized schools, A and B, with different levels of per-pupil spending, yA and yB.  If 

these schools are in the same district, Hoxby’s dependent variable will be ln(0.5*(yA + yB)).  

If the schools are divided into two districts, however, the average of Hoxby’s dependent 

variable in the MSA will be 0.5*(ln(yA) + ln(yB)), which is smaller.  Thus, without any 

behavioral effect of choice at all, one would estimate a negative coefficient in Hoxby’s 

regression. 

One way to avoid any bias that this mechanical relationship might introduce is to 

estimate the specification at the MSA level, taking as the dependent variable the log of 

average per pupil spending in the MSA.  This is done in columns 4-6 of Table E1.  

Evidently, the mechanical bias is not an issue—estimates are nearly identical (with very 

similar standard errors) to those obtained at the district level). 
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Appendix Table A1.  Segment of Hoxby’s construct.do program (Hoxby, 2004b) that 
merges NELS student file to NELS school file. 
 
 
25 *Infix data from stmeg.pri and scmeg.pri.; 
26  
27 cd nels; 
28 infix using nels.fromstmeg.infix.dct, using(d:\nels92\stmeg.pri); 
29 sort sch_id; 
30 compress; 
31 save nels.fromstmeg.dta, replace; 
32 clear; 
33 infix using nels.fromscmeg.infix.dct, using(d:\nels92\scmeg.pri); 
34 sort sch_id; 
35 compress; 
36 save nels.fromscmeg.dta, replace; 
37 clear; 
38  
39 *Merge the variables from the two datasets above.; 
40  
41 use nels.fromstmeg.dta; 
42 merge sch_id using nels.fromscmeg.dta; 
43 tab _merge; 
44 drop if _merge==2; 
45 drop _merge; 
46 save nels.dta, replace; 
47 use nels.fromscmeg.dta; 
48 sort f1sch_id; 
49 save nels.fromscmeg.dta, replace; 
50 use nels.dta; 
51 sort f1sch_id; 
52 merge f1sch_id using nels.fromscmeg.dta; 
53 tab _merge; 
54 drop if _merge==2; 
55 drop _merge; 
56 save nels.dta, replace; 
57 use nels.fromscmeg.dta; 
58 sort f2sch_id; 
59 save nels.fromscmeg.dta, replace; 
60 use nels.dta; 
61 sort f2sch_id; 
62 merge f2sch_id using nels.fromscmeg.dta; 
63 tab _merge; 
64 drop if _merge==2; 
65 drop _merge; 
66 save nels.dta, replace; 



Appendix Table A2:  Summary statistics for individual-level covariates, NELS

(1) & (2) (1) & (3) (2) & (3)
Mean S.D. Mean S.D. Mean S.D.

Public school (BY) 0.80 (0.40) 0.80 (0.40) 1.000
Public school (F2) 0.87 (0.33) 0.87 (0.33) 1.000
ln(fam. Income) 3.36 (0.94) 3.36 (0.94) 10.19 (1.21) 1.000 0.999 0.999
Asian 0.06 (0.24) 0.06 (0.24) 0.07 (0.25) 1.000 0.996 0.996
Hispanic 0.13 (0.34) 0.13 (0.34) 0.14 (0.35) 1.000 0.999 0.999
Black 0.12 (0.33) 0.12 (0.33) 0.13 (0.33) 1.000 0.996 0.996
Female 0.50 (0.50) 0.50 (0.50) 0.49 (0.50) 1.000 1.000 1.000
Parents some college 0.23 (0.42) 0.23 (0.42) 0.38 (0.49) 1.000 0.453 0.453
Parents BA+ 0.37 (0.48) 0.37 (0.48) 0.30 (0.46) 1.000 0.759 0.759
8th grade reading score 50.5 (10.2)
12th grade reading score 50.7 (10.0)
8th gr. weight (*100) 0.74 (1.26) 1.78 (2.04) 1.57 (1.48) 0.743 0.963 0.794
12th gr. weight (*100) 0.79 (3.01) 3.27 (4.97) 2.98 (5.31) 0.640 0.413 0.825
Fr. in MSA
  8th grade 0.56 0.70 0.55
  12th grade 0.53 0.66 0.52
Analysis sample size
  8th grade reading 10,175 10,429 11,719
  12th grade reading 5,475 5,934 6,688
Fraction of district assignments that agree
  8th grade 0.65 0.73 0.75
  12th grade 0.65 0.41 0.59
Fraction of MSA assignments that agree
  8th grade 0.77 0.94 0.81
  12th grade 0.77 0.68 0.66

same as close

(1) (2) (3)

Notes:  All statistics are unweighted.  See text for details.  N=27,805, though many variables are missing for many 
observations.

Hoxby/NELS 
data

Close 
replication

Preferred 
replication

Correlations

same as Hoxby/NELS
same as Hoxby/NELS

same as close



Appendix Table A3:  Summary statistics for district-level covariates, SDDB

(1) & (2) (1) & (3) (2) & (3)
Mean S.D. Mean S.D. Mean S.D.

Fr. Asian 0.02 (0.08) 0.01 (0.02) 0.01 (0.02) 1.000 1.000 1.000
Fr. Hispanic 0.05 (0.12) 0.05 (0.12) 0.05 (0.12) 1.000 1.000 1.000
Fr. Black 0.04 (0.11) 0.04 (0.11) 0.04 (0.11) 1.000 1.000 1.000
Racial homog. index 0.84 (0.17) 0.85 (0.17) 0.85 (0.17) 1.000 1.000 1.000
Fr. some college 0.25 (0.08)
Fr. BA+ 0.15 (0.10)
Educ. homog. index 0.31 (0.05)
log(mean HH inc.) 10.37 (0.32) 10.37 (0.34) 0.986
Gini coeff. 0.38 (0.05) 0.38 (0.05) 0.40 (0.06) 0.993 0.928 0.934
Ethnic homog. index 0.78 (0.21) 0.79 (0.21) 0.81 (0.21) 1.000 1.000 1.000
Fr. in MSAs 0.39 0.40
Fraction of MSA assignments that agree 0.97 0.97 1.00

Notes:  All statistics are unweighted.  See text for details.  N=14,947 in replication samples, 15,304 in Hoxby data.

(1) (2) (3)

Hoxby/NELS 
data   

Close 
replication

Preferred 
replication

Correlations

same as close

same as close

same as Hoxby/NELS
same as Hoxby/NELS
same as Hoxby/NELS



Appendix Table A4:  Summary statistics for MSA-level covariates, SDDB

(1) & (2) (1) & (3) (2) & (3)
Mean S.D. Mean S.D. Mean S.D.

Choice 0.67 (0.27) 0.66 (0.27) 0.66 (0.27) 0.971 0.966 0.995
Population (10 millions) 0.063 (0.112) 0.058 (0.098) 0.985
  ln(Population) 12.66 (1.12) 12.63 (1.00) 0.960
Land Area (100,000s of sq. miles) 0.017 (0.019) 0.017 (0.020) 0.958
  ln(Land Area) 7.06 (1.01) 7.07 (0.89) 0.871
Fr. Asian 0.02 (0.05) 0.02 (0.04) 0.02 (0.04) 0.992 0.992 1.000
Fr. Hispanic 0.07 (0.13) 0.07 (0.13) 0.07 (0.13) 0.999 0.999 1.000
Fr. Black 0.09 (0.09) 0.10 (0.09) 0.10 (0.09) 0.988 0.988 1.000
Racial homog. index 0.72 (0.16) 0.72 (0.16) 0.71 (0.16) 0.992 0.991 1.000
Fr. some college 0.28 (0.05) 0.26 (0.05) 0.893
Fr. BA+ 0.19 (0.06) 0.20 (0.07) 0.980
Educ. homog. index 0.27 (0.02) 0.27 (0.02) 0.954
log(mean HH inc.) 3.56 (0.17) 10.48 (0.18) 10.50 (0.19) 0.987 0.976 0.992
Gini coeff. 0.40 (0.02) 0.40 (0.02) 0.43 (0.03) 0.963 0.906 0.937
Ethnic homog. index 0.64 (0.19) 0.63 (0.19) 0.63 (0.19) 0.991 0.991 1.000
# of invalid MSA codes 5

Notes:  N=327 MSAs in Hoxby data, 335 in replication samples.  All analyses are unweighted

same as close
same as close
same as close

Hoxby/NELS Close Preferred 

same as close

(1) (2) (3)
Correlations

same as close
same as close

same as close



Table A5:  Summary statistics and correlations for streams variables

Mean S.D. (1) (2) (3) (4) (5)
Larger streams

Published 7.9 (14.8)
(1) Hoxby/NCES data (N=314) 44.3 (64.1) 1.00
(2) Inter-county streams 41.2 (33.7) 0.50 1.00
(3) Long streams (>3.5 miles) 69.9 (57.8) 0.55 0.84 1.00

Total streams
(1) Hoxby/NCES data (N=314) 128.3 (119.8) 1.00
(2) Replication stream mouths (N=319) 124.4 (119.2) 0.97 1.00
(3) Replication total streams 147.8 (149.2) 0.89 0.92 1.00

Smaller streams
Published 182.7 (208.8)

(1) Hoxby/NCES data (N=314) 84.0 (78.0) 1.00
(2) Replic. total mouths - Hoxby larger (N=304) 80.3 (82.6) 0.94 1.00
(3) Replic. total streams - Hoxby larger (N=311) 108.1 (118.1) 0.82 0.86 1.00
(4) Intra-county streams 106.6 (122.4) 0.78 0.78 0.90 1.00
(5) Short streams (<3.5 miles) 75.3 (102.6) 0.73 0.73 0.86 0.96 1.00

Notes:  N=335 except where otherwise indicated.  All statistics are unweighted.

Correlation matrix



Choice index 

Individual covariates
ln(Family income)

Asian

Hispanic

Black

Female

District/MSA covariates Dist. MSA Dist. MSA Dist. MSA Dist. MSA Dist. MSA Dist. MSA Dist. MSA
nr -1.59 -2.85 -0.10 -0.11 -1.08 0.00

(1.09) (1.38) (1.29) (0.84) (1.35) (1.03)
nr -13.13 -8.40 2.15 -14.68 -16.55 -6.35

(7.66) (5.85) (6.25) (6.12) (6.02) (4.63)
ln(mean HH income) nr -5.42 3.45 -3.66 1.83 -0.52 2.19 -1.84 5.08 -7.41 4.11 -4.73 3.87 -3.10

(5.53) (2.86) (3.95) (1.99) (3.15) (1.56) (2.61) (2.06) (3.02) (1.68) (3.00) (1.28) (2.23)
nr -12.77 8.55 -19.12 5.38 8.27 -6.32 5.79 6.85 -15.70 3.41 -4.05 0.63 -3.21

(12.02) (10.67) (21.10) (8.60) (19.34) (5.51) (13.44) (7.54) (17.17) (7.25) (19.81) (4.29) (11.85)
Pct. Asian nr -5.62 6.42 -3.94 30.26 -39.41 8.52 -7.49 10.72 -16.60 16.07 -25.76 5.31 -12.85

(13.07) (6.73) (8.18) (6.77) (10.72) (5.47) (8.96) (4.73) (6.01) (4.89) (8.67) (4.34) (7.52)
Pct. Black nr -0.73 14.38 -9.84 16.08 -14.61 6.46 1.98 -0.59 -3.39 4.24 -6.35 0.17 -3.65

(6.06) (3.39) (7.25) (3.40) (7.23) (2.93) (6.31) (2.13) (5.28) (2.36) (6.57) (2.00) (4.99)
Pct. Hispanic nr 0.25 10.84 -7.93 11.62 -8.88 7.18 1.09 -2.21 2.52 1.05 0.70 0.20 0.52

(3.52) (3.75) (4.87) (3.56) (5.14) (3.02) (4.60) (2.68) (3.67) (2.83) (4.70) (2.46) (3.85)
nr -9.60 87.42 -42.61 90.55 -51.73 52.72 -0.12 8.13 -8.13 30.07 -35.03 6.27 -13.43

(7.84) (17.46) (20.51) (17.99) (28.31) (15.99) (26.77) (11.72) (15.71) (13.67) (28.20) (11.87) (22.17)
nr 16.31 -63.75 30.27 -66.22 35.65 -43.63 6.12 -6.87 6.81 -21.48 27.03 -3.65 11.38

(10.70) (13.36) (15.88) (13.64) (21.53) (12.17) (20.34) (9.10) (12.22) (10.59) (21.54) (9.17) (16.95)
Pct. Some college nr 5.27 1.42 -2.47 -4.04 16.72 4.19 2.39 -3.57 2.75 -9.25 18.75 -4.37 3.01

(7.14) (7.34) (10.34) (7.01) (11.12) (6.24) (10.11) (5.27) (8.16) (5.81) (10.73) (4.91) (8.57)
Pct. College graduates nr 3.16 1.39 2.53 1.11 3.58 1.62 4.59 -1.96 7.96 -0.48 6.59 -0.96 3.83

(5.93) (5.68) (8.50) (4.83) (6.44) (4.06) (5.48) (4.17) (6.47) (4.17) (6.40) (3.21) (4.78)
nr -5.45 -11.50 -8.59 -15.34 12.53 -15.67 -9.45 -9.18 -1.65 -17.01 11.38 -14.41 2.88

(12.95) (8.98) (21.75) (8.25) (20.62) (7.18) (19.04) (6.55) (17.53) (7.03) (20.85) (5.70) (16.36)

N
R2

3.25 2.49
(0.23) (0.20)

5.13 6.98
(0.24) (0.26)

2.27 2.25
(0.18) (0.17)

-4.46 -4.03
(0.34) (0.30)

-2.58 -2.41
(0.32) (0.29)

3.09
(0.23)

1.67 1.03
(0.12) (0.08)
0.17 -0.67
(0.38) (0.34)

2.25
(0.18)
5.42
(0.24)

-2.23
(0.32)
-4.14
(0.34)

1.60
(0.12)
0.25
(0.38)

Published
Hoxby/ 
NCES

Close 
replication 

Preferred 
replication

Hoxby/ 
NCES

Close 
replication 

Preferred 
replication

2.93
(1.58)

(1) (2) (3) (4) (2) (3) (4)
5.30

nr 0.161 0.181

(2.36)

1.54
(0.16)
0.28
(0.59)
-2.87
(0.52)

5.93
(2.10)

5.77
(2.21)

4.74
(1.98)

3.29 4.45
(1.87)(1.83)

-5.49
(0.50)
1.96
(0.23)
5.45
(0.30)
2.31
(0.30)

1.62
(0.18)
0.95
(0.51)
-1.71
(0.47)
-4.07
(0.52)
2.31
(0.25)
5.07
(0.33)

-2.44
(0.45)
-4.58
(0.50)

1.75
(0.17)
0.35
(0.49)

5.14
(0.31)

2.98
(0.33)

-3.49
(0.41)
-5.82
(0.45)

0.85
(0.12)
-1.47
(0.43)

Ethnic homogeneity index

Educational homogeneity 
index

2.00
(0.22)
6.51
(0.34)

2.90
(0.32)

2.18
(0.24)

Parents' highest ed is BA+

Parents' highest ed is some 
college

Gini coefficient, HH income

Racial homogeneity index 
(0=homog., 1=heterog.)

Population (tens of millions)

5,934 6,688 10,175 10,429 11,719
0.1800.173 0.197

Notes:  All models include census division fixed effects.  Moulton S.E.s are reported.  "nr"=not reported.

12th grade reading score 8th grade reading score

Appendix Table C1:  Full coefficient vectors for models in Table 1

0.200

Land area (hundreds of 
thousands of sq. mi.)

6,119 5,475

2.52
(0.28)



Published
Hoxby/ 
NCES

Close 
replication 

Preferred 
replication

(1) (2) (3) (4)
Larger streams (100s) 0.080 0.012 0.040 0.043

(0.040) (0.021) (0.021) (0.021)
Smaller streams (100s) 0.034 0.096 0.093 0.091

(0.007) (0.019) (0.018) (0.018)
District/MSA covariates MSA MSA MSA MSA Dist. MSA Dist. MSA Dist. MSA

150.00 0.09 0.07 0.06 0.11 0.03 -0.04
(130.00) (0.14) (0.16) (0.16) (0.14) (0.16) (0.16)

0.50 1.43 0.90 1.00 0.53 0.65 0.60
(0.50) (0.79) (0.73) (0.72) (0.55) (0.54) (0.58)

ln(mean HH income) -0.25 -0.13 -0.95 -0.91 -0.37 0.13 -0.30 0.21 -0.25 0.36
(0.16) (0.17) (0.44) (0.44) (0.14) (0.27) (0.12) (0.24) (0.10) (0.21)
-3.58 -3.11 0.35 0.22 -1.43 -2.20 -1.18 -2.58 -0.70 -2.23
(0.81) (0.90) (0.28) (0.27) (0.46) (1.30) (0.46) (1.23) (0.36) (0.86)

Pct. Asian 1.88 -0.84 -0.66 -0.65 -0.63 -0.51 -1.59 0.77 -1.55 0.30
(1.00) (0.34) (1.08) (1.07) (0.48) (0.54) (0.64) (1.07) (0.59) (1.07)

Pct. Black 0.83 0.63 -0.01 0.16 -0.23 0.46 -0.52 1.00 -0.54 0.77
(0.41) (0.31) (0.15) (0.13) (0.19) (0.42) (0.22) (0.52) (0.19) (0.47)

Pct. Hispanic 0.09 0.29 -3.32 -2.62 -0.27 0.60 -0.31 0.94 -0.42 0.86
(0.18) (0.18) (0.95) (0.72) (0.26) (0.39) (0.28) (0.46) (0.28) (0.47)
-0.18 0.61 -1.06 -1.09 -3.52 2.83 -5.49 5.33 -5.84 3.36
(0.49) (1.47) (0.50) (0.50) (1.18) (1.97) (1.24) (2.52) (1.28) (2.73)
0.70 -0.27 0.64 0.60 2.84 -2.08 4.25 -3.82 4.57 -2.43
(0.70) (1.12) (0.35) (0.33) (0.90) (1.49) (0.93) (1.86) (0.97) (2.00)

Pct. Some college -1.00 -0.92 0.34 0.35 0.45 -0.94 0.64 -1.37 0.67 -1.03
(0.41) (0.38) (0.21) (0.21) (0.40) (0.60) (0.34) (0.63) (0.33) (0.64)

Pct. College graduates 0.95 0.67 0.89 0.64 0.68 0.03 0.69 -0.29 0.51 -0.34
(0.42) (0.38) (1.80) (1.85) (0.28) (0.47) (0.30) (0.39) (0.25) (0.33)
-2.95 -0.82 -0.54 -0.33 0.67 -1.36 0.90 -2.33 1.26 -2.24
(1.03) (0.98) (1.36) (1.39) (0.46) (1.36) (0.53) (1.74) (0.47) (1.77)

Individual covariates
ln(Family income)

Asian

Hispanic

Black

Female

N 316 310 304 304
R2 nr 0.516 0.506 0.517

Population (tens of millions)

-0.003
(0.018)
0.007
(0.009)
-0.009

Land area (hundreds of 
thousands of sq. mi.)

Appendix Table C2:  Full coefficient vectors for first stage models in Table 2

(0.013)
-0.016
(0.011)

0.004
(0.006)
0.008
(0.023)
0.010
(0.022)

Gini coefficient, HH 
income

Racial homogeneity index 
(0=homog., 1=heterog.)
Ethnic homogeneity 
index

Educational homogeneity 
index

Parents' highest ed is 
BA+
Parents' highest ed is 
some college

-0.007
(0.011)

6,688
0.583

(0.008)
-0.015
(0.009)

0.568

-0.012
(0.019)
-0.011

0.015
(0.020)
0.114
(0.018)

(0.008)
0.003

-0.011

(0.020)
-0.012
(0.020)

(0.019)
-0.019
(0.022)

(0.009)
0.015

(0.010)

(0.021)
-0.006

0.133
(0.021) (0.017)

0.003

0.133

0.000

-0.024
(0.020)

Hoxby/ 
NCES

Close 
replication 

-0.043
(0.023)

Preferred 
replication

(4)(2) (3)

Indiv. level (12th gr. reading samp.)MSA level

Notes:  All models include census division fixed effects.  Cluster S.E.s are reported for indiv.-level models.  "nr"=not reported.  
Published specification (col. 1) also includes controls for the shares of the MSA population that are 0-19 and 65+ years old.

-0.011
(0.015)

5,934

-0.012
(0.009)

5,475
0.575



Total stream defn.
Larger stream defn.
Level MSA MSA MSA MSA MSA

(2A) (3A) (4A) (5A) (6A)
Larger streams (100s) 0.037 0.260 0.177

(0.021) (0.055) (0.036)
Smaller streams (100s) 0.069 0.014 0.013

(0.013) (0.016) (0.017)
Total streams (100s) 0.071 0.061

(0.013) (0.010)
District/MSA covariates MSA Dist MSA MSA Dist MSA MSA Dist MSA MSA Dist MSA MSA Dist MSA

0.07 0.00 0.07 0.01 0.09 0.02 0.01 -0.04 0.05 -0.01
(0.16) (0.17) (0.16) (0.16) (0.15) (0.16) (0.15) (0.18) (0.15) (0.16)
0.88 0.86 0.82 0.64 0.72 0.71 0.70 0.71 -0.53 -0.59
(0.72) (0.72) (0.73) (0.54) (0.71) (0.67) (0.69) (0.60) (0.79) (0.52)
-0.03 -0.27 0.26 0.01 -0.29 0.22 -0.07 -0.30 0.22 -0.03 -0.32 0.28 -0.02 -0.33 0.33
(0.14) (0.13) (0.24) (0.15) (0.12) (0.24) (0.13) (0.12) (0.22) (0.12) (0.12) (0.22) (0.13) (0.12) (0.22)
-3.46 -0.90 -2.80 -3.30 -1.05 -2.54 -3.43 -0.92 -2.89 -3.03 -0.83 -2.53 -2.95 -0.85 -2.22
(0.89) (0.48) (1.32) (0.93) (0.47) (1.20) (0.84) (0.47) (1.19) (0.83) (0.48) (1.18) (0.84) (0.46) (1.17)
-1.14 -1.51 0.51 -0.92 -1.54 0.79 -1.01 -1.51 0.62 -0.96 -1.47 0.71 -0.94 -1.55 0.87
(0.48) (0.62) (1.04) (0.49) (0.64) (1.07) (0.47) (0.60) (1.01) (0.46) (0.60) (1.00) (0.46) (0.61) (0.99)
0.58 -0.49 0.89 0.70 -0.51 1.04 0.61 -0.48 0.93 0.56 -0.45 0.91 0.49 -0.53 0.93
(0.33) (0.22) (0.52) (0.34) (0.21) (0.50) (0.32) (0.21) (0.51) (0.32) (0.21) (0.49) (0.32) (0.21) (0.48)
0.30 -0.04 0.49 0.37 -0.30 0.92 0.33 -0.07 0.55 0.34 -0.02 0.53 0.34 -0.01 0.55
(0.20) (0.30) (0.45) (0.20) (0.27) (0.44) (0.19) (0.28) (0.41) (0.19) (0.27) (0.39) (0.19) (0.25) (0.38)
0.27 -4.89 3.43 1.06 -5.29 5.26 0.42 -4.84 3.84 0.24 -4.53 3.72 0.42 -4.87 4.30
(1.71) (1.19) (2.47) (1.74) (1.21) (2.45) (1.63) (1.13) (2.35) (1.60) (1.13) (2.30) (1.61) (1.13) (2.16)
-0.10 3.86 -2.44 -0.69 4.10 -3.77 -0.24 3.82 -2.76 -0.10 3.60 -2.67 -0.23 3.83 -3.04
(1.30) (0.89) (1.82) (1.31) (0.91) (1.80) (1.23) (0.84) (1.72) (1.21) (0.84) (1.70) (1.21) (0.84) (1.60)
-1.04 0.68 -1.43 -0.90 0.63 -1.33 -0.93 0.66 -1.40 -0.77 0.66 -1.16 -0.94 0.75 -1.40
(0.43) (0.33) (0.67) (0.44) (0.33) (0.64) (0.42) (0.32) (0.67) (0.41) (0.33) (0.67) (0.41) (0.32) (0.64)
0.34 0.59 -0.22 0.28 0.68 -0.30 0.30 0.60 -0.25 0.23 0.63 -0.35 0.18 0.61 -0.43
(0.27) (0.30) (0.38) (0.28) (0.30) (0.38) (0.26) (0.29) (0.37) (0.26) (0.29) (0.35) (0.26) (0.29) (0.36)
-0.64 0.81 -2.12 -0.37 0.85 -2.13 -0.62 0.48 -2.13 -0.27 0.48 -1.53 -0.49 0.56 -1.81
(1.04) (0.51) (1.69) (1.06) (0.46) (1.63) (0.96) (0.44) (1.46) (0.95) (0.45) (1.47) (0.95) (0.44) (1.40)

Individual covariates
ln(Family income)

Asian

Hispanic

Black

Female

N 319 311 335 335 335
R2 0.506 0.508 0.505 0.525 0.520

(0.013)
0.058
(0.009)

0.064
(0.011)

Parents' highest ed 
is BA+
Parents' highest ed 
is some college

(0.01)
0.01
(0.02)
-0.01
(0.02)
0.00
(0.02)
0.00

Gini coefficient, 
HH income

Racial homogeneity 
index
Ethnic homogeneity 
index

Educational 
homogeneity index

n/a
Stream mouths All streams

Land area (100,000s 
of sq. mi.)

Indiv
(2B)

Indiv

-0.030
(0.019)
0.104 0.001

(0.013)

0.240
(0.047)
0.015
(0.013)

>3.5 milesInter-countyn/aHoxby
Indiv Indiv Indiv

0.00

(6B)(5B)(4B)(3B)
0.190
(0.029)

(0.01)
-0.01
(0.01)
-0.01
(0.01)

5,987
0.531

0.00
(0.01)
0.02
(0.02)
-0.02
(0.02)
-0.01
(0.02)
-0.01
(0.01)
-0.01
(0.01)
-0.01
(0.01)

6,014
0.569

0.00
(0.01)
0.02
(0.02)
-0.02
(0.02)
0.00
(0.02)
0.00
(0.01)
-0.01
(0.01)
-0.01
(0.01)

6,139
0.535

0.00
(0.01)
0.02
(0.02)
-0.01
(0.02)
0.00

(0.01)

6,139

(0.02)
0.00
(0.01)
-0.01

(0.02)
0.00

(0.01)
-0.01

(0.02)
-0.01
(0.02)
-0.01

Appendix Table C3:  Full coefficient vectors for alternative first stage models in Table 3

0.560

(0.01)
-0.01
(0.01)
-0.01

0.557

0.00
(0.01)
0.01

Notes:  All models include census division fixed effects.  Cluster S.E.s are reported for indiv.-level models, which use the 12th grade reading 
score samples.

Population (tens of 
millions)

ln(mean HH 
income)

Pct. Asian

Pct. Black

Pct. Hispanic

Pct. Some college

Pct. College 
graduates

(0.01)

6,139



Model
Total stream defn.
Larger stream defn.

Choice index

District/MSA covariates Dist MSA Dist MSA Dist MSA Dist MSA Dist MSA Dist MSA
-0.83 -1.98 -2.65 -1.15 -1.48 -1.28
(2.01) (1.42) (1.36) (1.40) (1.37) (1.38)
1.38 0.29 -7.72 -1.18 -3.84 -2.25
(7.90) (6.44) (5.85) (6.25) (6.08) (5.99)

-0.76 -1.02 0.18 -0.17 1.62 -0.51 -0.41 -1.12 -0.04 -1.21 -0.26 -1.15
(2.03) (2.51) (2.00) (3.10) (1.98) (3.13) (1.96) (3.03) (1.95) (3.04) (1.95) (3.03)
-6.99 -5.20 -2.72 -1.11 3.64 9.07 -5.92 -1.62 -4.82 2.10 -5.48 -0.12
(8.57) (15.23) (8.53) (21.58) (8.56) (19.19) (8.38) (20.54) (8.33) (19.79) (8.29) (19.72)
20.31 -32.23 22.77 -34.96 29.64 -38.98 22.23 -33.34 24.22 -34.50 23.03 -33.81
(11.22) (15.98) (6.90) (10.60) (6.72) (10.69) (6.75) (10.48) (6.70) (10.50) (6.69) (10.49)
13.29 -8.03 13.34 -9.23 16.10 -14.40 13.82 -9.38 14.37 -10.78 14.04 -9.95
(3.62) (6.66) (3.41) (7.72) (3.37) (7.10) (3.35) (7.38) (3.34) (7.23) (3.34) (7.23)
7.65 -2.31 7.84 -3.72 11.59 -8.70 7.85 -3.05 8.07 -3.82 7.94 -3.36
(4.17) (5.42) (3.47) (5.20) (3.53) (5.01) (3.41) (4.98) (3.41) (4.92) (3.40) (4.91)
61.54 -16.69 65.47 -25.04 88.45 -49.35 67.11 -22.81 72.90 -29.16 69.45 -25.38
(19.22) (28.84) (18.38) (29.72) (17.79) (28.17) (17.82) (29.08) (17.60) (28.42) (17.58) (28.51)
-44.64 11.16 -47.62 17.02 -64.51 33.82 -49.03 15.42 -53.58 19.85 -50.87 17.21
(14.35) (21.30) (13.99) (22.26) (13.49) (21.35) (13.53) (21.75) (13.35) (21.33) (13.33) (21.39)
-4.61 7.60 -4.38 9.35 -4.28 16.36 -5.35 9.91 -6.12 12.29 -5.66 10.87
(6.92) (8.96) (6.94) (11.27) (7.00) (11.12) (6.85) (11.09) (6.86) (11.03) (6.85) (11.00)
7.50 4.42 6.30 4.30 1.59 3.25 6.80 4.26 6.08 4.09 6.51 4.19
(4.86) (5.46) (4.80) (6.37) (4.82) (6.42) (4.72) (6.25) (4.71) (6.24) (4.70) (6.23)
-13.89 0.07 -7.76 4.83 -17.81 14.05 -14.58 3.66 -15.30 7.38 -14.87 5.16
(8.93) (16.05) (8.32) (20.97) (8.18) (19.70) (8.09) (19.65) (8.07) (19.57) (8.05) (19.58)

Individual covariates
ln(Family income)

Asian

Hispanic

Black

Female

N
R2

Appendix Table C4:  Full coefficient vectors for alternative-instruments IV models in Table 4, 12th grade reading scores

0.185

Notes:  All models include census division fixed effects.  Moulton S.E.s are reported.

Population (tens of 
millions)

ln(mean HH income)

Pct. Asian

Pct. Black

Pct. Hispanic

Pct. Some college

Pct. College graduates

(0.31)
2.83
(0.31)

6,139

(0.50)
2.17
(0.23)
5.05

(0.31)

6,139
0.184

1.75
(0.17)
0.43
(0.49)
-2.76
(0.44)
-4.62

(0.23)
5.06
(0.31)
2.84

0.185

1.75
(0.17)
0.42
(0.49)
-2.75
(0.44)
-4.61
(0.50)
2.17

(0.31)
2.82
(0.31)

6,139

(0.50)
2.16
(0.23)
5.04

(0.32)

6,014
0.175

1.75
(0.17)
0.43
(0.49)
-2.77
(0.44)
-4.62

(0.24)
5.10
(0.31)
2.88

0.186

1.77
(0.17)
0.34
(0.49)
-2.51
(0.44)
-4.60
(0.50)
2.18

(0.31)
2.82
(0.32)

5,987

(0.50)
2.15
(0.24)
5.05

2.04
(2.36)

1.77

(7)(6)(5)(4)
1.35
(2.30)

Land area (100,000s of sq. 
mi.)

(3)
4.38
(1.98)(0.79)

Parents' highest ed is BA+

Parents' highest ed is some 
college

Gini coefficient, HH 
income

Racial homogeneity index

Ethnic homogeneity index

Educational homogeneity 
index

n/a n/a Hoxby
Stream mouths

IVOLS

(1)
-0.25 0.87

n/a Inter-county >3.5 miles
All streamsn/a

(0.46)

1.75
(0.17)
0.44
(0.69)

(0.31)

6,139

(2.59)

2.16
(0.23)
5.02
(0.31)

-2.80
(0.53)
-4.62

0.186

0.68
(2.79)

(0.17)
0.44
(0.49)
-2.61
(0.45)
-4.48

2.81



Sample/covariates
Instruments

Specification

Base samp., no 
district-lvl 
covariates

Zip-code 
matched pub. 

schls
Pub. & pvt. 

schools

Base samp., no 
district-lvl 
covariates

Zip-code 
matched pub. 

schls
Pub. & pvt. 

schools

(1) (2) (3) (4) (5) (6)
Choice index 4.61 1.40 0.68 1.76 1.10 0.84

(2.49) (2.44) (2.59) (2.86) (2.66) (2.35)
MSA-level covariates

-3.55 -0.97 -1.22 -2.02 -1.02 -1.82
(2.46) (1.78) (1.68) (2.09) (1.72) (1.61)
-9.44 1.20 0.80 -4.11 0.28 -0.32
(9.74) (7.15) (7.28) (8.89) (7.09) (6.47)
0.99 -1.50 -0.88 -0.97 -2.22 -0.57
(2.69) (2.37) (2.20) (2.27) (2.34) (2.17)
7.31 -4.28 -0.87 -6.86 -7.00 2.17

(18.32) (17.35) (17.75) (18.15) (18.57) (16.99)
-5.35 -5.99 -2.48 -8.13 -7.62 -4.53
(7.60) (7.10) (6.65) (6.56) (6.93) (6.14)
-1.62 6.20 7.26 0.54 5.31 6.18
(7.14) (7.47) (6.95) (7.68) (7.89) (7.14)
3.05 7.42 6.84 3.98 7.10 6.35
(3.67) (4.09) (3.81) (3.71) (4.20) (3.87)
6.46 19.17 14.58 16.62 18.57 4.35

(33.64) (29.51) (28.27) (29.60) (28.49) (27.39)
-5.13 -11.20 -7.08 -12.58 -11.88 0.60
(25.47) (22.65) (21.87) (21.83) (21.59) (20.74)
11.91 11.48 7.07 4.87 8.26 6.31
(10.20) (9.37) (9.00) (9.24) (9.09) (8.82)
1.63 9.78 8.39 6.48 12.00 9.80
(6.66) (6.12) (5.90) (6.13) (5.83) (5.46)
-8.72 -19.84 -17.92 -10.07 -12.45 -14.18
(21.92) (19.44) (18.08) (20.26) (18.51) (17.01)

Individual covariates
ln(Family income) 1.76 1.07 1.43 1.75 1.12 1.42

(0.24) (0.28) (0.27) (0.23) (0.27) (0.25)
Asian 0.67 0.41 0.42 0.75 0.45 0.34

(0.68) (0.79) (0.74) (0.65) (0.77) (0.71)
Hispanic -2.37 -2.93 -2.69 -2.68 -3.01 -2.67

(0.84) (0.91) (0.83) (0.82) (0.87) (0.79)
Black -4.15 -4.85 -5.07 -4.17 -4.88 -5.15

(0.87) (0.93) (0.82) (0.83) (0.91) (0.80)
Female 2.18 2.43 2.63 2.15 2.47 2.59

(0.39) (0.43) (0.40) (0.37) (0.41) (0.38)
5.48 5.87 6.14 5.39 5.81 6.15
(0.48) (0.54) (0.50) (0.47) (0.53) (0.48)
3.10 3.05 3.08 3.01 3.16 3.21
(0.52) (0.57) (0.53) (0.49) (0.55) (0.51)

N 5,939 5,445 6,670 6,144 5,631 6,900
R2 0.164 0.170 0.191 0.178 0.174 0.199

Notes:  All models include census division fixed effects.  Clustered S.E.s are reported.

Inter- & intra-cnty. streamsHoxby sm. & lg. streams
Close replication

Pct. Asian

Pct. Black

Pct. Hispanic

Pct. Some college

Pct. College graduates

Appendix Table C5:  Full coefficient vectors for selected models from Table 5

Parents' highest ed is BA+

Parents' highest ed is some 
college

Gini coefficient, HH 
income

Racial homogeneity index

Ethnic homogeneity index

Educational homogeneity 
index

Land area (100,000s of sq. 
mi.)

Population (tens of 
millions)

ln(mean HH income)



(1) (2) (3) (4) (5) (6)
Total stream definition
Larger stream definition Hoxby n/a Hoxby n/a Inter-county >3.5 miles
MSA level

Larger streams (100s) 0.043 0.040 0.250 0.178
(0.021) (0.021) (0.054) (0.035)

Smaller streams (100s) 0.091 0.068 0.017 0.012
(0.018) (0.012) (0.016) (0.017)

Total streams (100s) 0.071 0.061
(0.013) (0.010)

F statistic, instruments 16.3 31.7 17.8 37.9 26.1 25.0
Individual level (12th grade reading sample)

Larger streams (100s) 0.015 0.001 0.236 0.171
(0.020) (0.018) (0.044) (0.029)

Smaller streams (100s) 0.114 0.099 0.025 0.018
(0.018) (0.012) (0.014) (0.017)

Total streams (100s) 0.072 0.066
(0.011) (0.009)

F statistic, instruments 28.4 44.2 38.8 53.3 34.3 36.7
Individual level (8th grade reading sample)

Larger streams (100s) -0.012 -0.017 0.227 0.151
(0.018) (0.017) (0.044) (0.029)

Smaller streams (100s) 0.132 0.102 0.021 0.018
(0.017) (0.012) (0.014) (0.017)

Total streams (100s) 0.067 0.060
(0.012) (0.009)

F statistic, instruments 32.1 33.2 34.7 40.7 28.2 28.1

Stream mouths All streams

Appendix Table D1:  First-stage estimates for alternative instruments, using "preferred" 
replication sample and covariates

Notes:  Base samples are those from Column 4 of Tables 1 (individual level) and 2 (Panel B; MSA level), though some 
observations that were excluded from those samples for missing data on larger streams are included here in Columns 2, 4, 5, 
and 6.  In individual-level specifications, standard errors are clustered at the MSA level.



(1) (2) (3) (4) (5) (6) (7)
OLS

Total stream definition n/a
Larger stream definition n/a Hoxby n/a Hoxby n/a Inter-county >3.5 miles
Panel :  12th grade reading scores

Choice effect -0.17 3.29 2.79 4.05 3.41 3.36 2.64
  S.E. (Moulton) (0.62) (1.83) (2.44) (1.79) (2.13) (1.96) (1.92)
  S.E. (Cluster) (0.97) (2.56) (2.69) (2.06) (2.45) (2.60) (1.98)
p-value, exog. test -- 0.20 0.25 0.04 0.10 0.12 0.10

Panel A:  8th grade reading scores
Choice index -0.55 2.93 0.58 2.79 1.03 0.95 0.51
  S.E. (Moulton) (0.62) (1.58) (1.95) (1.55) (1.83) (1.72) (1.65)
  S.E. (Cluster) (0.61) (1.40) (1.99) (1.29) (1.82) (1.39) (1.53)
p-value, exog. test -- 0.00 0.55 0.00 0.34 0.20 0.44

Notes:  Base samples are those from Column 4 of Table 1, though some observations that were excluded from that sample for 
missing data on larger streams are included here in Columns 3 and 5-7.  Exogeneity tests are based on clustered specification.  
Bold S.E.s indicate that with that S.E., the coefficient is significant at the 5% level.

All streams

Appendix Table D2:  IV estimates of choice effect, using alternative instruments and "preferred"  
replication sample

Stream mouths
IV



Covariate specification
Streams instruments OLS Hoxby Inter- and 

intra-cnty
OLS Hoxby Inter- and 

intra-cnty
(1) (2) (3) (4) (5) (6)

Panel A:  Base specification, replication sample of public school students
Choice index coefficient -0.06 5.93 1.67 -0.55 2.93 0.95

(0.82) (2.32) (1.77) (0.61) (1.40) (1.39)
N 10,709 10,429 10,709 12,049 11,719 12,049
p-value, exog. test 0.00 0.21 0.00 0.20

Panel B:  Without district-level covariates
Choice index coefficient -0.13 5.03 1.98 -0.60 2.06 0.97

(0.80) (2.33) (1.82) (0.60) (1.28) (1.40)
N 10,729 10,449 10,729 12,049 11,719 12,049
p-value, exog. test 0.01 0.15 0.03 0.19

Panel C:  Public school students in zip-code matched sample (no district covariates)
Choice index coefficient -0.87 1.93 0.19 -0.59 1.57 0.20

(0.70) (1.55) (1.50) (0.60) (1.30) (1.35)
N 10,394 10,117 10,394 11,992 11,662 11,992
p-value, exog. test 0.04 0.39 0.08 0.50

Panel D:  Public and private school students in zip code-matched sample
Choice index coefficient -0.37 1.07 0.65 -0.13 0.78 0.45

(0.65) (1.56) (1.57) (0.59) (1.40) (1.48)
N 13,879 13,482 13,879 16,026 15,558 16,026
p-value, exog. test 0.30 0.44 0.48 0.66

Appendix Table D3.  Exploration of potential bias from exclusion of private school students, 
8th grade reading scores

Close replication Preferred replication

Notes:  Clustered standard errors and test statistics are reported.  Bold coefficients are significant at 
the 5% level.



Sample
Model IV

Hoxby 
streams

Hoxby 
streams

Inter- and 
intra-county 

streams

Hoxby 
streams

Inter- and 
intra-county 

streams

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A:  8th grade

Reading -0.65 4.45 -0.06 5.93 1.67 -0.55 2.93 0.95
(0.71) (1.99) (0.82) (2.32) (1.77) (0.61) (1.40) (1.39)

Mathematics -0.61 4.23 -0.55 4.52 -0.64 -0.80 3.22 -0.60
(0.73) (1.79) (0.71) (1.77) (1.57) (0.63) (1.59) (1.41)

Panel B:  10th grade
Reading -0.85 6.73 -0.88 6.19 5.34 0.19 3.94 4.39

(1.01) (2.51) (1.06) (2.64) (2.90) (0.95) (2.43) (2.43)
Mathematics -0.89 7.91 -1.10 4.95 1.32 0.10 2.67 0.00

(0.93) (2.21) (0.86) (2.14) (2.32) (0.75) (1.99) (2.08)
Panel C:  12th grade

Reading -1.24 5.30 -0.25 4.74 2.04 -0.17 3.29 3.36
(1.15) (2.94) (0.94) (2.42) (2.94) (0.97) (2.56) (2.60)

Mathematics -1.21 3.49 -0.34 2.48 1.56 0.60 2.15 2.69
(0.93) (2.29) (0.80) (2.08) (2.29) (1.01) (2.06) (2.30)

Notes:  Cluster S.E.s in parentheses.  Bold coefficients are significant at the 5% level.

Preferred replication

Instruments

Appendix Table D4:  Choice effect estimates for all six NELS test scores

IV IV
Hoxby/NELS Close replication

OLS OLS OLS



(1) (2) (3) (4) (5) (6)
Total stream definition
Larger stream definition Hoxby n/a Hoxby n/a Inter-county >3.5 miles
Panel A:  Hoxby/NELS sample

Larger streams (100s) -0.044
(0.028)

Smaller streams (100s) 0.143
(0.025)

Total streams (100s) 0.057
(0.016)

F statistic (instruments) 16.0 13.0
Panel B:  Close replication sample

Larger streams (100s) -0.013 -0.018 0.242 0.166
(0.028) (0.028) (0.064) (0.043)

Smaller streams (100s) 0.143 0.113 0.024 0.021
(0.024) (0.018) (0.020) (0.023)

Total streams (100s) 0.073 0.066
(0.016) (0.013)

F statistic (instruments) 18.3 21.7 20.2 26.8 17.8 16.4
Panel C:  Preferred replication sample

Larger streams (100s) 0.019 0.005 0.245 0.164
(0.026) (0.026) (0.062) (0.042)

Smaller streams (100s) 0.121 0.106 0.029 0.029
(0.022) (0.017) (0.019) (0.022)

Total streams (100s) 0.078 0.071
(0.015) (0.012)

F statistic (instruments) 16.9 26.6 20.8 33.4 21.4 19.3

Stream mouths All streams

Appendix Table D5:  MSA-level first stage estimates, using only MSAs in the NELS 12th grade 
sample



Sample Hoxby/NELS
Streams instruments Hoxby Hoxby Inter- and 

intra-cnty
Hoxby Inter- and 

intra-cnty
(1) (2) (3) (4) (5)

Panel A:  8th grade reading scores
First stage uses only NELS MSAs

Choice index coefficient 3.99 4.22 0.76 2.70 0.90
(1.60) (1.75) (1.51) (1.23) (1.30)

First stage uses all MSAs
Choice index coefficient 3.68 3.46 0.80 2.15 0.90

(2.27) (2.15) (1.51) (1.68) (1.28)
Panel B:  12th grade reading scores

First stage uses only NELS MSAs
Choice index coefficient 4.58 4.64 2.31 3.09 3.15

(2.61) (2.20) (2.24) (2.51) (2.36)
First stage uses all MSAs

Choice index coefficient 2.14 4.15 2.71 3.69 3.41
(2.98) (2.57) (2.27) (2.75) (2.64)

Notes:  First stage is estimated at MSA level, on the indicated sample of MSAs.  Reported 
coefficients are those on the first stage fitted value from the second stage regression.  Reported 
standard errors are clustered S.E.s from the second stage regression.  These are unadjusted for 
the presence of a generated regressor, so are not correct, and are likely downward-biased 
estimates of the true standard errors.  Bold coefficients are significant at the 5% level with 
these S.E.s.

Appendix Table D6:  Two-sample IV estimates of choice effects on 12th grade reading 
scores

Preferred replicationClose replication



Total stream definition
Larger stream definition Hoxby n/a Hoxby n/a Inter-

county
>3.5 
miles

Hoxby n/a Hoxby n/a Inter-
county

>3.5 
miles

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel A:  Hoxby/NELS sample

Larger streams (100s) -0.50 -1.39
(0.26) (0.55)

Smaller streams (100s) 0.60 0.77
(0.23) (0.38)

Total streams (100s) 0.09 -0.18
(0.16) (0.23)

Panel B:  Close replication sample
Larger streams (100s) -0.36 -0.37 0.50 -0.21 -1.00 -1.02 0.57 0.52

(0.20) (0.20) (0.41) (0.28) (0.41) (0.40) (1.18) (0.49)
Smaller streams (100s) 0.36 0.26 -0.10 0.13 0.58 0.44 -0.25 -0.42

(0.16) (0.12) (0.15) (0.18) (0.28) (0.20) (0.28) (0.32)
Total streams (100s) 0.00 0.01 -0.17 -0.09

(0.11) (0.09) (0.16) (0.14)
Panel C:  Preferred replication sample

Larger streams (100s) -0.30 -0.30 0.53 -0.15 -0.54 -0.55 0.97 0.47
(0.19) (0.18) (0.38) (0.27) (0.34) (0.33) (1.10) (0.53)

Smaller streams (100s) 0.34 0.25 -0.08 0.14 0.60 0.52 -0.08 -0.07
(0.14) (0.10) (0.13) (0.16) (0.27) (0.19) (0.24) (0.32)

Total streams (100s) 0.02 0.03 0.06 0.12
(0.10) (0.08) (0.15) (0.14)

Note:  Regressions are estimated by OLS, at individual level, with clustered standard errors.  Bold coefficients are significantly different from zero at the 5% level.

12th grade reading scores
Stream mouths All streams

Appendix Table D7:  Reduced-form estimates, effect of streams on test scores

Stream mouths All streams
8th grade reading scores



Appendix Table D8:  MSA-level estimates of the choice effect

OLS OLS
Total stream n/a n/a

Larger strea n/a Hoxby n/a Hoxby n/a Inter-
county

>3.5 
miles n/a Hoxby n/a Hoxby n/a Inter-

county
>3.5 
miles

CD Sample
All controls -0.48 4.30 -3.77 4.26 -2.60 -0.92 -0.74 -0.79 3.57 0.42 3.42 0.87 -0.41 -2.08

(1.20) (3.15) (5.13) (3.39) (4.82) (3.71) (3.88) (0.75) (2.18) (3.54) (2.31) (3.28) (2.28) (2.52)
MSA controls -1.33 3.89 -2.56 3.83 -1.84 0.37 0.09 -0.56 3.93 1.43 4.29 2.12 3.37 2.95

(1.29) (3.25) (4.62) (3.46) (4.45) (3.60) (3.82) (0.99) (2.62) (3.74) (2.82) (3.60) (2.94) (3.09)
Close replication sample
All controls 0.45 5.08 0.57 4.72 0.94 2.21 1.81 -0.17 5.50 1.98 4.98 2.53 1.10 -0.43

(1.14) (3.03) (3.79) (2.87) (3.45) (2.96) (2.86) (0.86) (2.60) (3.48) (2.43) (3.14) (2.39) (2.36)
MSA controls -1.26 3.74 1.50 2.58 0.88 2.39 1.64 0.04 5.23 3.62 3.69 2.90 3.22 3.20

(1.26) (3.30) (4.28) (3.11) (3.86) (3.32) (3.29) (1.07) (2.75) (3.68) (2.58) (3.29) (2.77) (2.80)
Preferred replication sample
All controls 0.17 3.38 3.19 4.39 3.89 3.24 3.22 -0.38 2.68 0.46 3.01 1.21 1.04 -0.04

(1.19) (3.38) (3.82) (3.08) (3.42) (2.94) (2.92) (0.74) (2.06) (2.71) (1.98) (2.47) (2.01) (2.10)
MSA controls -0.81 2.73 3.53 2.49 3.20 3.24 2.66 -0.57 2.75 2.05 1.82 1.74 2.54 2.47

(1.32) (3.42) (3.89) (3.13) (3.52) (3.17) (3.28) (1.00) (2.42) (3.05) (2.33) (2.81) (2.53) (2.63)

Notes:  "All controls" specifications include MSA-level averages of individual- and district-level covariates, computed within the NELS sample.  
"MSA controls" specifications exclude the individual- and district-level covariates.  Bold coefficients are significant at the 5% level.

Mouths All streams
IV

12th grade reading scores 8th grade reading scores
IV

Mouths All streams



OLS IV, 
Hoxby 
streams

IV, Inter- and 
intra-county 

streams

OLS IV, 
Hoxby 
streams

IV, Inter- and 
intra-cnty 
streams

(1) (2) (3) (4) (5) (6)
Panel A:  Published estimates

Choice index coefficient -0.072 -0.076
  S.E. (Moulton) (0.022) (0.034)

Panel B:  Hoxby/NCES data
Choice index coefficient -0.070 -0.074
  S.E. (Classical) (0.012) (0.037)
  S.E. (Moulton) (0.024) (0.141)
  S.E. (Cluster) (0.037) (0.111)

Panel C:  Replication, "close" covariates
Choice index coefficient -0.121 -0.201 -0.139 -0.124 -0.187 -0.135
  S.E. (Classical) (0.035) (0.111) (0.092)
  S.E. (Moulton) (0.023) (0.154) (0.084)
  S.E. (Cluster) (0.034) (0.111) (0.137)

Panel D:  Replication, "preferred" covariates
Choice index coefficient -0.120 -0.211 -0.142 -0.119 -0.194 -0.120
  S.E. (Classical) (0.035) (0.111) (0.092)
  S.E. (Moulton) (0.023) (0.153) (0.084)
  S.E. (Cluster) (0.034) (0.112) (0.131)

MSA-level analysis

Notes:  Dependent variable is log of average per pupil spending in the district (columns 1-3, N=5,336-5,804) or MSA (columns 
4-6, N=302-333).  "Hoxby streams" instruments are Hoxby's larger and smaller streams variables.  All specifications include 
usual list of MSA-level covariates and division fixed effects; those in columns 1-3 also include usual district-level covariates.

Appendix Table E1:  Estimates of choice effect on ln(per pupil spending)

District-level analysis




