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ABSTRACT

Much of education policy focuses on improving teacher quality, but most policies lack strong

research support. We use student achievement gains to estimate teacher value-added, our measure

of teacher quality. The analysis reveals substantial variation in the quality of instruction, most of

which occurs within rather than between schools. Although teacher quality appears to be unrelated

to advanced degrees or certification, experience does matter  � but only in the first year of teaching.

We also find that good teachers tend to be effective with all student ability levels but that there is a

positive value of matching students and teachers by race. In the second part of the analysis, we show

that teachers staying in our sample of urban schools tend to be as good as or better than those who

exit. Thus, the main cost of large turnover is the introduction of more first year teachers. Finally,

there is little or no evidence that districts that offer higher salaries and have better working

conditions attract the higher quality teachers among those who depart the central city district. The

overall results have a variety of direct policy implications for the design of school accountability and

the compensation of teachers.
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The Market for Teacher Quality  
 

by Eric A. Hanushek, John F. Kain, Daniel M. O’Brien and Steven G. Rivkin 
 

 Given the emphasis parents, students, and educators place on teachers, evidence that 

observable measures of teacher quality explain little of the variation in student performance 

provides a conundrum for researchers.  It may be that parents and students overstate the 

importance of teachers, but an alternative explanation is simply that measurable characteristics 

such as experience, certification, advanced degrees, and even scores on standardized tests explain 

little of the true variation in teacher effectiveness. 

In this paper we use matched panel data on teachers and students for a large district in 

Texas to estimate variations in teacher quality through a semi-parametric approach based on 

value added to student achievement.  These estimates confirm the existence of substantial 

variation in teacher effectiveness, much of it within as opposed to between schools.  This within 

school heterogeneity has direct implications for the design of accountability and teacher incentive 

programs.  Our findings on teacher effectiveness are also consistent with prior evidence showing 

that certification and experience explain little of the quality variation, with the exception of 

sizeable improvement following the initial year of teaching.  The pattern of results supports the 

view that good teachers tend to be superior for students across the achievement distribution, but 

there is strong evidence that students benefit from being matched with teachers of the same race. 

The development of teacher-specific quality measures permits investigation of important 

aspects of the market for teacher quality.  Administrators in large urban districts often bemoan the 

loss of teachers to the suburbs, private schools, and other occupations, and available evidence 

suggests that exit probabilities are higher for teachers with better alternative earning opportunities 

or more education.  However, there is no prior evidence on instructional effectiveness on school 

leavers, a void we can fill by comparing movers and stayers by their performance in the 

classroom. 
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Our analysis brings some commonly held beliefs into question.  First, teachers who 

remain in our urban schools are as good as or better on average than those leaving.  Second, there 

is little evidence that higher salaries and more desirable student characteristics raise the quality of 

new hires among teachers who switch districts in this labor market.  This finding lends itself to 

two alternative though not mutually exclusive interpretations that carry different policy 

ramifications: 1) districts are unable to rank applicants on the basis of actual classroom 

effectiveness; or 2) quality plays a secondary role in the hiring process. 

Empirical Model 

A student’s performance at any point in time reflects not only current educational inputs 

but also the history of family, neighborhood, and school factors.  Even as databases begin to 

follow students over time, it is generally not possible to parse the separate current and historical 

influences that combine to determine the level of student performance.  This leads many to focus 

on achievement gains rather than levels, an approach we adopt in this paper.1  

The basic model relates achievement growth to the flow of current inputs such as: 

(1) 
1 1g gisg is g is g ig ig i isgA A A f ( X ,S , , )γ ε
− −∆ = − =  

where isgA  is achievement of student i, in school s and grade g, and ∆A is the gain in 

achievement across grades;  X is a vector of nonschool factors including family, peers, and 

neighborhoods; S is a vector of school and teacher factors; γ is individual differences in 

achievement growth; and ε is a random error. 2 

                                                 
1 Random assignment or instrumental variables techniques might be used to purge the estimates of 

confounding influences, although serial correlation in the variables of interest often complicates the 
interpretation of the results. Another alternative is estimation models of test score levels with student fixed 
effects. While this removes fixed unobserved factors that affect the performance level, it does not control 
for time varying influences in the past including variation in the quality of recent teachers. 
 
2 Alternative growth formulations including placing the earlier achievement, 

1 1gis gA
− − , on the right hand 

side have been employed; see Hanushek (1979).  We discuss these alternatives explicitly below when we 
consider measurement issues.   
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 This formulation controls for past individual, family, and school factors and permits 

concentration on the contemporaneous circumstances that are generally measured along with 

student achievement.  Nonetheless, focusing on annual gains does not eliminate the difficulties in 

separating the various inputs from unmeasured confounding factors.  A series of specification and 

measurement issues must be addressed before it is possible to obtain credible estimates of the 

influence of teachers on student achievement. 

General Specification Issues 

 In past analyses, parametric models based on observed school and teacher characteristics 

have not yielded a reliable characterization of important aspects of schools and teachers, even 

when very detailed data on students and teachers are available (Hanushek (2003), Hanushek and 

Rivkin (2004)). The alternative, which we pursue here, is the semi-parametric estimation of 

teacher and school effects.  Consider: 

(2) igisg ig j ijg i isgA f '( X ,S ) t T ( )γ ε∆ = + + +∑  

 

where Tijg=1 if student i has teacher j in grade g and is 0 otherwise.  igS  represents school factors 

other than teachers, and we combine the unmeasured individual and idiosyncratic terms (γ, ε) into 

a single error term.  In this formulation teacher fixed effects, tj, provide a natural measure of 

teacher quality based on value added to student achievement.3   

 Although this approach circumvents problems of identifying the separate components of 

teacher effectiveness, it must address a variety of selection issues related to the matching of 

                                                 
3 For previous analyses of this sort, see among others Hanushek (1971, 1992), Murnane (1975), Armor et 
al. (1976), Murnane and Phillips (1981), Aaronson, Barrow, and Sander (2003), and Rockoff (2004).  
Rivkin, Hanushek, and Kain (2005) address the various selection factors along with providing a lower 
bound on the variations in teacher quality specified in this way.  A different but complementary strand of 
research comes out of the Tennessee value-added work of William Sanders and his co-authors (Sanders and 
Horn (1994); Sanders, Saxton, and Horn (1997)); see also the methodological discussions in Ballou, 
Sanders, and Wright (2004). 
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teachers and students.  Because of the endogeneity of community and school choice by families 

and of administrator decisions about classroom placement, the unmeasured influences on 

achievement are likely not orthogonal to teacher quality.  In particular, students with family 

background and other factors conducive to higher achievement tend to seek out better schools 

with higher quality teachers.  Administrative decisions regarding teacher and student classroom 

assignments may amplify or dampen the correlations introduced by such family choices.  The 

matching of better students with higher quality teachers would tend to increase the positive 

correlations produced by family decisions, while conscious efforts to place more effective 

teachers with struggling students would tend to reduce them.  Importantly, conditioning on prior 

score in the gains formulation does eliminate the first order selection problems because any 

placement by observed achievement will be accounted for by the early test score.  Nonetheless, 

more subtle placement by unobserved characteristics will not be captured by prior achievement. 

Another source of correlation between teacher quality and student performance results 

from the matching of teachers with schools.  Teacher preferences for schools with higher 

achieving, nonpoor students in addition to higher salaries potentially introduce a positive 

correlation between teacher quality and family contribution to learning (Hanushek, Kain, and 

Rivkin (2004)). A desire to work in better managed schools likely amplifies the correlation 

between teacher and school quality.  On the other hand, the failure of schools to hire the best 

available candidates would dampen this relationship (Ballou (1996)). Importantly, district 

assignment practices tend to give the newest teachers the lowest priority in terms of deciding 

where to teach, frequently leading to the pairing of the most inexperienced teachers with the most 

educationally needy children (see, for example, Clotfelter, Ladd, and Vigdor (forthcoming)). 

In each of these cases, the central issue is whether it is reasonable to presume: 

(3) ( | '( , ), ) 0igi isg ig ijgE f X S Tγ ε+ =  
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The requirement that teacher fixed effects are orthogonal to the error highlights the importance of 

accounting for systematic elements of families and schools that explicitly or implicitly affect 

teacher-student matching.  

 The potential failure of observable characteristics such as family income, parental 

education, principal education, certification or experience, peer demographic composition, and 

other readily available variables to capture all school, peer, neighborhood, and family influences 

related to teacher quality leads us to include school fixed effects in many specifications.  In these 

models, the teacher coefficients reflect only within school variation in the quality of instruction.4  

This approach goes too far to the extent that the typical teacher in some schools is better 

than the typical teacher in others, perhaps in part because an important dimension of 

administrator skill is the ability to identify and develop good teachers.  By eliminating all 

between school variation in teacher quality, the estimator implicitly attributes all aggregate school 

variation to factors other than the teachers. 

Although the concentration on within school variation does not guard against all potential 

selection problems, we interpret its as a lower bound estimate of the variation in teacher quality.  

Only the purposeful matching of students and teachers in a very specific manner could conflate 

teacher and student influences in a way that biases upward estimates of the within school 

variation in teacher quality.  Our empirical model focuses on student gains, includes a series of 

student covariates, employs a test metric (described below) that compares teachers on the basis of 

their performance with comparable students, and considers just teacher effects that persist over 

time as reflecting quality differences.  Thus, only persistent sorting of students on the expected 

rate of learning conditional on initial score and the included covariates would introduce any 

upward bias.  We believe strongly that the downward biases introduced by ignoring all between 

                                                 
4 This approach of concentrating on within school variation is related to that in Rivkin, Hanushek, and Kain 
(2005), which develops a lower bound on the variation in teacher quality.  That analysis, however, uses a 
different methodology that systematically guards against a variety of possible dimensions of selection, 
although it does not permit quality estimation for individual teachers. 
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school variation in teachers and year to year differences in a teacher’s performance (see below) 

dwarfs any remaining contamination induced by within school sorting.  Nonetheless, we also 

present estimates based on the variations across the entire district (and including between school 

variation) in order to indicate the range of plausible estimates. 

 An alternative approach that we do not pursue is the simultaneous estimation of student 

and teacher fixed effects in adjusted gains.5 In addition to the computational demands and 

introduction of substantial noise in the estimation of the teacher coefficients, extensive school 

sorting by ethnicity and income raises a serious concern about the interpretation of the teacher 

fixed effect estimates generated by such a model.  In the extreme case of complete school 

segregation by race, for example, the model imposes the assumption that average teacher quality 

for black students equals average teacher quality for white students.  Of course the focus on 

within school differences ignores all average differences among schools, but in that case the 

identifying assumption is transparent and a much more tractable model is estimated. 

Test Measurement Issues 

 Although psychometricians have long been concerned about the properties of cognitive 

tests and the implications for research on teachers and schools, economists have not paid much 

attention to these issues until recently.6  Our analysis relies on the achievement tests used in 

Texas (the TAAS tests) to assess basic student proficiency in a range of subjects.7  These tests, 

designed for the Texas accountability system, focus on minimum competency as defined by 
                                                 
5 In sorting out the effects of teacher-student matching by race, we do introduce student fixed effects.  See 
the discussions below about the specific interpretation of those estimates. 
6 One exception is Kane and Staiger (2002, 2002), who have discussed measurement error and test 
reliability in the context of school accountability systems.  Bishop et al. (2001) considers the structure of 
tests from the perspective on student incentives.  Bacolod and Tobias (2003) and Tobias (2004), as 
discussed below, do put testing into the context of achievement modeling. 
7 The TAAS tests are generally referred to as criterion referenced tests, because they are devised to link 
directly to pre-established curriculum or learning standards.  The common alternative is a norm referenced 
test that covers general material appropriate for a subject and grade but that is not as closely linked to the 
specific state teaching standards.  In principle, all students could achieve the maximum score on a criterion 
referenced test with no variation across students, while norm referenced tests focus on obtaining 
information about the distribution of skills across the tested population.  In practice, scores on the two types 
of tests tend to be highly correlated. 
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subject matter standards for each grade.  This focus dictates that the variation in test score gains 

generated by differences in instructional quality differs across the initial achievement distribution.  

For example, the additional gain in test scores resulting from a substantial improvement in the 

quality of instruction may be quite sizeable for a student who begins at the lower end of the skill 

distribution and for whom the test covers much of the knowledge gained by virtue of any higher 

teacher quality.  On the other hand, a student higher up the initial skill distribution may answer 

most of the questions correctly even if taught by a quite low quality teacher.  Better instructional 

quality may translate into only a few additional correct answers if the test does not concentrate on 

or cover the additional knowledge generated for this student by the superior instruction. 

 Figure 1 provides some insight into the potential magnitude of this problem.  This graph 

plots two elements of the test score distribution.  The test scores for students on the TAAS 

mathematics test are divided into ten equal score intervals.  The solid line (corresponding to 

frequencies on the left axis) shows the distribution of scores across students.  This distribution is 

highly skewed with a significant proportion in the highest two score intervals of correct test 

answers, where improvements would be quite difficult because of the test score ceiling.  The 

dashed line (corresponding to the axis of raw gains measured in standard deviations of the test) 

portrays the distribution of average gains during a school year of students whose initial test scores 

fall into each score interval.  This graph makes it very clear that typical gains at the bottom are 

much higher than in the upper ranges.  Part of this could reflect regression to the mean induced by 

measurement error, but the problem is not simply one of the bounds on the tests as seen by the 

consistent pattern of gains in the middle of the distribution.  The distribution of test questions in 

terms of degree of difficulty also suggests that those who begin at a lower level likely gain more 

knowledge about items examined on these tests. A rank order statistic such as percentile 

mitigates problems introduced by any correlation between initial knowledge and expected gain, 

but this transformation does not eliminate the problem that identical differences in teacher quality 

do not produce identical variations in average student improvement (in this case percentile 



Figure 1.  Relative Frequencies and Achievement Gains 
by Score Interval of Initial Test Scores 
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changes) across the initial skill distribution.  Permitting the pretest score to have a coefficient less 

than one by moving it to the right hand side provides an alternative solution.  However, the 

assumption of linearity between pretest and post-test scores is likely to be inappropriate (e.g., the 

test may focus on the center of the skill distribution), and the inclusion of a noisily measured, 

endogenous variable on the right hand side introduces additional problems.8 

We adopt a direct approach for standardizing gains that permits comparisons of teachers 

in classrooms with very different initial test score distributions.  First, we divide the initial test 

score distribution into ten equal score intervals (cm for m=1,…,10) and for each year compute the 

mean and the standard deviation of the gains for all district students starting in that interval.  

Specifically, suppressing the notation for year and school, for all students with 1igA −  in the 

interval cm defined by [ 1 1
m mc c

g gA ,A− − ] for the given year,  

(4) 1
mc

g ig ig( A A )µ −= − ,  and 

 

(5) ( )2

1
m m

m

c c
g ig ig g c( A A ) nσ µ−= − −∑  

 

 

The standardized gain score for each student in interval cm is then calculated as: 

(6) 1
m mc c

isg isg isg g gG ( A A ) µ σ− = − −   

Consequently, gains are distributed with mean zero and standard deviation one for  each 

score interval in each year, and teachers are judged based on their students’ gains relative to other 

                                                 
8 If the pretest score is measured with error, the usual problems of errors-in-variables occurs, and this will 
be exacerbated by persistent errors for individuals.  Bacolod and Tobias (2003) actually estimate a semi-
parametric nonlinear relationship between pre- and post-test scores and subsequently rely on residuals from 
predicted scores for individuals to assess schools; see also Tobias (2004). Their approach is quite similar to 
our own in spirit, although problems related to the inclusion of the pretest as a regressor remain.  Hanushek 
(1992) does not, however, find that test measurement errors are important in biasing the estimates of 
educational production functions that include pretest scores on the right hand side. 
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students in the same place in the initial test score distribution.9 This normalization also permits us 

to explore the possibility that effectiveness for teachers varies across the distribution, such as 

might occur if teachers tend to specialize in certain types of students.   

This transformation of the dependent variable does not eliminate problems caused by 

errors in measurement and test reliability.  Importantly, in contrast to parametric models for 

which classical measurement error in the dependent variable does not introduce bias, such error 

does contaminate estimates of the variance in teacher quality derived from teacher fixed effects.  

As previously discussed in Aaronson, Barrow, and Sander (2003) and Rockoff (2004), any such 

error inflates estimates of the variance in teacher quality.10 

 Our estimates of teacher quality, jt , are conditional means of student performance and 

necessarily include any aggregate test measurement error for classrooms.  We now rewrite jt  as 

the sum of the true quality index (tj) and an error component ( jν ). 

(7) j j jt t ν= +  

  Assuming classical measurement error, the variance of jt  is the sum of the true variance of 

quality (tj) and the variance of the error. 

We use of multiple years of information for teachers to obtain a direct estimate of the 

variation in teacher quality.  Specifically, we estimate a separate fixed effect for each teacher/year 

combination and use the year-to-year correlation among the estimated fixed effects for each 

teacher to eliminate the contribution of random error.  If we have estimates for teacher effects for 

two years (
1 2( ) ( )
j jt ,t ) and if the measurement error in teacher quality is independent across years, 

then the expected value of the correlation of teacher estimates, E(r12), is: 

                                                 
9 Note that simple gains models that include student fixed effects implicitly compare students at similar 
places in the skill distribution. 
10 Kane and Staiger (2001, 2002) also highlight problems introduced by measurement error in the related 
context of school aggregate scores. 
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(8) 12E( r ) var( t ) / var( t )=  

Multiplication of the estimated variance of t by the year-to-year correlation thus provides an 

estimate of the overall variance in teacher quality corrected for measurement error.  Importantly, 

this approach addresses problems related to both the noisiness of tests as measures of learning 

and any single year shocks (either purposeful or random) in classroom average student quality.11  

The removal of all non-persistent variation also eliminates some portion of the true 

variation in quality resulting from changes in actual effectiveness.  To address one portion of this 

problem, we remove first year teachers from the correlation calculations, because of the sizeable 

gains to experience in the initial year (see Rivkin, Hanushek, and Kain (2005)and below). 

Yet the estimate of a teacher’s quality based on within school variation may also change 

over time even in the absence of any true difference in performance, because the within school 

estimates of quality are defined relative to other teachers.  Any turnover can alter a teacher’s 

place in the quality distribution in her school.  Therefore, by considering just the persistent 

quality differences (equation 8), some true systematic differences in teachers are masked by a 

varying comparison group and are treated as random noise – amplifying the downward bias in the 

estimation of the variation in teacher quality. 

Texas Schools Project Data 

The cornerstone of the analysis of teacher quality is a subset of the unique stacked panel 

data set constructed by the Texas Schools Project of the University of Texas at Dallas.  The data 

on students, teachers, schools and other personnel in the Texas Schools Microdata Panel (TSMP) 

                                                 
11 This differs significantly from corrections based on the sampling error of estimated fixed effects.  Those 
approaches are directly related to the equation error variance in the sample, so that anything that reduces 
that error – including sample selection, the classroom sorting of students on the basis of unobservables, and 
simply adding more regressors to the model – tends to reduce the estimated error and thus the measurement 
error correction. See Aaronson, Barrow, and Sander (2003) and Rockoff (2004).  Simply splitting the 
sample and using the correlations among the samples to correct the variance would also fail to remove the 
influences of annual shocks, implying that the split samples would have correlated errors. 
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have been augmented to include the details of classroom assignment of students and teachers for 

one large urban district – the “Lone Star” district.  

TSMP contains administrative records on students and teachers collected by the Texas 

Education Agency (TEA) from the 1989-90 school year through 2001-2002.  Student and teacher 

records are linked over time using identifiers that have been encrypted to preserve data 

confidentiality.  These identifiers enable us to follow both teachers and students who switch 

schools within the Lone Star district and who move to another public school in Texas. 

The student background data contain a number of student, family, and program 

characteristics including race, ethnicity, gender, and eligibility for a free or reduced price lunch 

(the measure of economic disadvantage).  Students are annually tested in a number of subjects 

using the Texas Assessment of Academic Skills (TAAS), which was administered each spring to 

eligible students enrolled in grades three through eight.  These criterion referenced tests evaluate 

student mastery of grade-specific subject matter, and this paper presents results for mathematics.  

The results are qualitatively quite similar for reading, although, consistent with the findings of our 

previous work on Texas, schools appear to exert a larger impact on math than reading in grades 4 

through 8 (see Hanushek, Kain, and Rivkin (2002) and Rivkin, Hanushek, and Kain (2005)).12  

Teacher and administrative personnel information in the TSMP include characteristics 

such as race/ethnicity, degrees earned, years of experience, certification test results, tenure with 

the current district, specific job assignment, and campus. 

Importantly, for this paper we employ a significant extension to the basic TSMP database 

that permits the linkage of students and teachers for a subset of classrooms.  TEA does not collect 

information linking individual students and teachers, but for this study we use additional 

information obtained from the Lone Star district to match a student with her mathematics teacher 

in each year.  This is typically a general classroom teacher for elementary school and a specialist 

                                                 
12 Part of the difference between math and reading might relate specifically to the TAAS instruments, 
which appear (as seen in Figure 1) to involve some truncation at the top end.  For math, the outcomes are 
less bunched around the highest passing scores than they are for reading. 
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mathematics teacher for junior high. 

In this paper we study students and teachers in grades 4 through 8 for the school years 

1995/1996 to 2000/2001.  We eliminate any student without a valid test score and teachers with 

fewer than ten students having valid test score gains. 

The Distribution of Teacher Quality 

 A fundamental issue is how much variation in teacher quality exists.  If small, policies to 

improve student performance should concentrate on issues other than the hiring and retention of 

teachers.  This section describes the distribution of teacher quality in Lone Star district and 

examines the sensitivity of the estimates to controls for student, peer, and other differences across 

schools and years.  By using the persistence of teacher effects over time, we account for the 

contribution of measurement error to estimated differences among teachers.  A complementary 

analysis considers the roles experience, certification examination scores, and educational 

attainment play in explaining differences in teacher quality.  Finally, we extend the basic 

modeling to consider the role of match quality that potentially leads teachers to be differentially 

effective with students of varying ability or backgrounds.  

Performance Variations Across Teachers 

 We begin with a basic description of the contributions of teachers, principals, and other 

institutional features of district schools in shaping student achievement.  Table 1 reports the 

between classroom (teacher by year) variance, the adjacent year correlation of estimated teacher 

value added, and the measurement error adjusted estimate of the variance in teacher quality for 

different specifications.  The first and second columns use both within and between school 

variation, while the third and fourth use only within school variation.  In addition, the second and 

fourth specifications regression-adjust for differences in observable characteristics.  Differences 



 

Table 1.  Classroom and Teacher Differences in Student Achievement 
Gains 

 

  Within district Within school and year 

  
Unadjusted Demographic 

controlsb Unadjusted Demographic 
controlsb 

Teacher-year variationa 0.210 0.179 0.109 0.104 

Adjacent year correlation 0.500 0.419 0.458 0.442 

         

Teacher quality variance / 
(s.d.) 

0.105 
(0.32) 

0.075 
(0.27) 

0.050 
(0.22) 

0.047 
(0.22) 

 
Notes:    a.  The columns provide the variance in student achievement gains explained by fixed effects for 

teachers by year.  
 b.  Student characteristics are eligibility for free or reduced lunch, gender, race/ethnicity, grade, 

limited English proficiency, special education, student mobility status, and year dummy variables.  
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among the specifications provide information on the extent of student sorting and on the 

magnitude of within relative to between school and year variation in classroom average gains. 

A comparison of the estimated variance across columns indicates the potential 

importance of factors correlated with classroom differences in achievement.  Controlling for 

observable student characteristics and using only within school and year variation noticeably 

reduces the between teacher variance in standardized gain.  As expected given that most sorting 

occurs among schools, controls for measured student heterogeneity have a much larger effect in 

specifications not restricted to within school and year variation.13  

 The second row reports the adjacent year correlations in estimated teacher value added.  

The magnitudes range from 0.50 to 0.42, suggesting that roughly half of the variance is persistent.  

These correlations show considerable stability in the impact of individual teachers, particularly 

when just compared to other teachers in the same school.  Again the controls for student 

heterogeneity reduce the correlations much less in the within school and year specifications.  

(Since some of the year to year variation in estimated teacher value added relative to others in the 

school comes from random differences in students, these controls could potentially increase the 

estimated persistence). 

The most conservative estimate of the variance in teacher quality in Column 4 is based 

entirely on within-school variations in student achievement gains controlling for measured 

student heterogeneity and measurement error.  Although this specification eliminates any between 

school variation in teacher quality and changes over time in the quality of instruction for a given 

teacher, it protects against variations in the effectiveness of principals, school average student 

characteristics, random measurement error, year to year differences in student ability and the like. 

Despite the fact that it almost certainly understates the true variations in the quality of 

instruction, the variance estimate of 0.047 indicates the presence of substantial differences in 

                                                 
13 Student characteristics are eligibility for free or reduced lunch, gender, race/ethnicity, grade, limited 
English proficiency, special education, student mobility status, and year dummy variables.   
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teacher quality when put in the context of student achievement growth.  This implies that a one 

standard deviation increase in teacher quality raises standardized gain by 0.22 standard 

deviations.  In other words, a student who has a teacher at the 85th percentile can expect annual 

achievement gains of at least 0.22 s.d. above those of a student who has the median teacher.  

Since these quality variations relate to single years of achievement gains for students, they 

underscore the fact that the particular draw of teachers for an individual student can accumulate 

to huge impacts on ultimate achievement. 

The range of ambiguity about the causal impact of teacher quality differences is also 

relatively small.  The best bounds on the standard deviation of teacher quality are 0.22 to 0.27.  

The higher estimate controls for measured differences among students (race, subsidized lunch 

status, LEP, and special education status), but allows between school teacher quality differences.    

 These estimates can be compared to the bound on teacher quality differences reported in 

Rivkin, Hanushek, and Kain (2005).  That lower bound of 0.11 standard deviations estimate is 

based entirely on within school differences over time for the same students, subject to 

measurement error that almost certainly attenuates the estimate, and based on specifications that 

control comprehensively for possible sources of upward bias.  Importantly, however, that 

estimate is not directly comparable to the estimates here, because it is based on the distribution of 

raw gains, which have a standard deviation of approximately two-thirds of the standard deviation 

of the standardized gain used here.  Putting our current estimates on the same scale, two-thirds of 

our within-school estimate of 0.22 equals slightly less than 0.15. 

 The finding of significant quality variation within school and years coupled with the large 

annual turnover of teachers (below) enters directly in discussions of teacher performance 

incentives and teacher personnel practices more generally.  First, the regression adjusted teacher 

average test score gains in a given year capture important variation among teachers within and 

almost certainly between schools, even if they are noisy measures of teacher quality.  In contrast, 
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an incentive program having just the test score level provides far less information on teacher 

value added. 

Second, any incentive program (such as incorporated in many state accountability 

systems) that focuses just on between school performance ignores the primary source of quality 

variation that occurs within schools.  The importance of within school variations also highlights 

problems with the suggestion in Kane and Staiger (2002) that accountability systems should 

aggregate test scores over time in a way that produces the least noisy estimate of school average 

performance.14  The changing cadre of teachers in a school certainly contributes to the year-to-

year variation in school average performance, and turnover is likely to lead to larger year to year 

differences in small schools in which the school annual average variation in teacher quality will 

generally be larger.  Not only does such intertemporal averaging miss the majority of real 

variation in teacher quality, but, more importantly, it also confuses the performance of current 

teachers with that of their predecessors and thus provides a weaker incentive for improvement. 

Measurable Teacher Characteristics 

Prior studies suggest that most observable characteristics other than experience explain 

little of the variation in teacher quality (Hanushek (2003)). This section adopts the common 

education production function framework but extends it to circumvent analytic problems that 

have plagued prior work.  The basic formulation is:  

(9) isg ig TC ijg i isgG f ( X ) TC ( )α γ ε= + + +  
 
where TC is a vector of measurable teacher characteristics with associated impact parameters, 

αTC.  Although the adjusted gain specification deals directly with fixed factors that enter into 

achievement differences, the inclusion of time varying family effects and, at times, individual 

                                                 
14 Kane and Staiger (2002) consider a variety of dimensions of measurement error and appropriately 
highlight the error introduced by separately evaluating small subgroups of the students.  The text discussion 
refers to aggregate school measures. 
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student fixed effects addresses issues of nonschool factors that systematically affect the growth in 

student performance. 

We concentrate on the effects of a master’s degree, a passing score on certification 

examinations, and teacher experience on standardized math score gains.  These are particularly 

important characteristics because they are directly linked to teacher compensation.  The initial 

estimates concentrate on the sample of teachers with information on certification tests.  While we 

do not know the precise scores on the relevant certification tests, we do know whether they 

passed the first time they took the test and whether they have ever passed the test.15  

The hypotheses of no significant differences in teacher value added on the basis of 

teacher education or certification examination performance cannot be rejected at conventional 

levels regardless of whether student fixed effects are included.  These findings shown in Table 2 

reinforce prior studies and raise serious questions both about the desirability of requiring or 

rewarding with higher pay those with a post-graduate degree and about  the efficacy of the 

existing certification procedures in Texas and similar systems in other states. 

To describe the impact of teacher experience, we return to the more complete sample of 

teachers (which does not exclude teachers without certification data).16  Existing evidence 

suggests that most improvement occurs very early in the career (see Hanushek and Rivkin (2004), 

Rivkin, Hanushek, and Kain (2005)), but experience may affect student achievement gains 

through a number of channels.  The first is learning by doing.  The second is nonrandom 

selection: If less talented teachers are either more or less likely to quit than more talented peers on 

                                                 
15 Note that there are many different certificates, and thus many different tests, for which teachers can 
qualify.  We make no attempt to distinguish among alternative certificates.  The testing information is not 
available for all teachers, thus reducing the sample to those with valid test information.  In general, this 
information is more commonly available for younger teachers, reflecting the history of the certification 
program. The sample used in the certification regressions is roughly 60 percent as large as the sample used 
in the experience regressions. 
16 Note that the estimation in Table 2 also includes teacher experience, and the results for experience are 
qualitatively similar to those reported below.  Our measure of experience is total years of teaching in any 
Texas public school, not just in the Lone Star district.  Experience in private schools or in schools outside 
of Texas is not observed. Note also that the multiple observations on experience are used to correct 
inconsistencies in the raw data; see Rivkin, Hanushek, and Kain (2005). 



 

Table 2. Estimated Impacts of Advanced Degree and Passing score 
on the Certification Examination (absolute value of t-statistics in parentheses) 
 
 
 

 No fixed effects With student fixed 
effects 

   
Master’s degree 0.015 0.004 
 (1.17) (0.27) 
   
Pass certification exam 0.002 -0.002 
 (0.08) (0.07) 
   

0.015 -0.039 Pass certification exam  
on first attempt (0.91) (1.85) 

 
Note: Each coefficient comes from a separate regression.  All specifications include full sets of experience, 
year, and grade dummy variables and indictors for special education classification, eligibility for a 
subsidized lunch, limited English proficient classification, a structural move from elementary to junior high 
school prior to the academic year, and a non-structural school change prior to or during the academic year. 
Specifications without student fixed effects also include gender and race/ethnicity dummy variables. 
Sample sizes are 230,000 for the Master’s degree regressions and 141,744 for the certification examination 
regressions.
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average, estimates of the return to experience capture the change in the average quality of the 

teaching pool.  Finally, teachers may vary effort systematically with experience in response to 

tenure decisions or other institutional and contractual issues.  Each of these causal links raises the 

possibility of a highly nonlinear relationship between the quality of instruction and experience.  

Therefore we include a series of dummy variables indicating first, second, third, fourth and fifth 

year teachers.  (Teachers with more than five years experience are the omitted category.  

Preliminary analysis, not shown, found no experience effects beyond five years of experience). 

The results in Table 3 highlight the much lower average performance of first year 

teachers.  Notice that the inclusion of student fixed effects does not alter significantly the return 

to experience, but the addition of teacher fixed effects reduces the penalty for first year teachers 

by roughly 25 percent and also eliminates any quality deficit for second year teachers.17 This 

pattern indicates some selection effects in that inexperienced teachers who exit following the 

school year are systematically less effective than other teachers.  We will return to this issue in 

the transition section below.  Finally, it appears that fourth year teachers perform systematically 

better than others, suggesting the possibility that average incentives are quite strong in the fourth 

year.  While Texas schools do not have formal collective bargaining, the character of contracts 

and teacher reviews may influence the incentives at this career point. 

These experience effects indicate that the high turnover among U.S. teachers, and 

particularly urban teachers, has detrimental effects on student achievement.  For Texas, some ten 

percent of teachers with 0-2 years of experience and 7 percent of all teachers leave teaching each 

year, requiring replacements who generally arrive with no experience.18  For the Lone Star 

                                                 
17 A different pattern appears if raw gains are used instead of the standardized gains.  The first 

year effect is smaller in raw gains with no fixed effects than in Table 3, but increases by almost 40 percent 
with the introduction of student fixed effects.  We interpret this pattern as confirming the standardization of 
gains for the TAAS test.  The fixed effects serve the same function as the test score transformation by 
restricting the estimation to comparisons of students with others (in this case oneself) at the same part of 
the test score distribution.  
 
18 These figures refer to 1994-96 in Texas (Hanushek, Kain, and Rivkin (2004)).  The rate of new hires 



 

 
Table 3.  Estimated Impact of Experience Level 

(comparisons to teachers with 6 or more years experience) 
 
 

Year teaching 

No fixed 
effects 

With student 
fixed effects 

With student 
and teacher 
fixed effects 

    
1st year -0.16 -0.16 -0.12 
 (8.36) (9.60) (8.01) 
2nd year -0.03 -0.03 0.00 
 (1.55) (1.82) (0.29) 
3rd year 0.03 0.02 0.02 
 (1.43) (1.28) (1.26) 
4th year 0.05 0.08 0.06 
 (2.38) (3.42) (3.14) 
5th year 0.04 0.03 0.01 
 (1.76) (1.51) (0.55) 

 
Note: All specifications include full sets of year and grade dummy variables and indictors for special 
education classification, eligibility for a subsidized lunch, limited English proficient classification, a 
structural move from elementary to junior high school prior to the academic year, a non-structural school 
change prior to or during the academic year, and that the teacher has an M.A.  Specifications without 
student fixed effects also include gender and race/ethnicity dummy variables.  The sample size is 230,000. 
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district, similar to other large urban districts, the annual exit rates from the district for teachers 

with 0-3 years experience are close to 20 percent (see Appendix A, below).  The first year effects 

estimated here show that having a first year teacher on average is roughly equivalent to having a 

teacher a half standard deviation down in the quality distribution. 

Teacher-Student Matching  

 The analysis presumes that each teacher can be ranked according to a single underlying 

dimension of quality and that we can infer this from information about student progress.  This 

may, however, not be a satisfactory characterization.  Teachers may specialize with particular 

skill groups or merely decide to target a particular skill range.  Student and teacher demographic 

characteristics may also influence the quality of student/teacher interactions.  Each of these cases 

alters the concept of teacher quality by raising the possibility that it is not constant for all 

students.  Importantly, the distribution of quality that we trace out may also be influenced by 

differences in the nature of classroom matching across schools and principals. 

 To investigate specialization by student achievement, we divide students into three 

academic preparation classifications (based on initial scores) and compute the correlation 

between the teacher average gain for students in one category with the teacher average 

standardized gain for students in the other categories.19 The positive correlations of 0.45 between 

the low and middle categories, 0.57 between the high and middle categories, and 0.31 between 

the low and high categories refute the notion that the effects of any curricular targeting or 

matching are large relative to the impact of overall teacher quality.  These correlations are in the 

same general range as those across years (Table 1).  The strong positive correlation between the 

average standardized gains in the top and bottom categories is particularly striking given the 

                                                                                                                                                 
varies some over time, depending on student demographics, the extent of teacher retirement, and the 
numbers of returning teachers who have prior experience. 
19The ten categories used to produce the standardized gain measure are aggregated into three using the 
district average distribution of students over all years as the fixed weights for all teachers. 
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relatively small number of students in the bottom category in schools with large numbers of 

students in the top category and the large error variance described above. 

 The possibility of differential effects by the matching of teacher and student race also 

exists, if for example students respond better to teachers in the same ethnic group.  The re-

analysis of the Coleman Report data by Ehrenberg and Brewer (1995) suggested a positive race 

matching effect but raised questions about how quality differentials of black teachers might work 

against race matching with students.  Dee (2004), using the random assignment data from the 

Tennessee STAR, finds strong evidence for beneficial effects from matching the race of teacher 

and students.  

 Table 4 provides descriptive information about the matching of teachers and students in 

the Lone Star district.  (The table identifies teachers and students who are black, Hispanic, and 

white and omits separate tabulations of the small numbers of both teachers and students of other 

ethnic backgrounds).  Few teachers are Hispanic, making the black and white comparisons the 

interesting part.   

 Black teachers are disproportionately matched with black or Hispanic students.  In 

contrast, white teachers, who make up approximately 40 percent of the teaching force, end up 

teaching two-thirds of the white students.  These patterns are consistent with the race differences 

in teacher mobility patterns found by Hanushek, Kain, and Rivkin (2004) . In an analysis of the 

entire state of Texas, they found that white teachers typically moved to schools with fewer 

minority students and with higher achieving students.  In contrast, black teachers moved to 

schools with more minority students, although they still sought higher achieving students. 

 Table 5 turns to the achievement implications of this sorting.  The table reports results for 

regressions that include those covariates used in the experience regressions as well as indicators 

for black and Hispanic teachers and interactions between teacher and student race and ethnicity.  

(Asian and Native American students and teachers are excluded because of their small numbers).  



 

Table 4. Joint Distribution of Black, Hispanic, and non-Hispanic White 
Students and Teachers by Race/Ethnicity 

 
 

  Students   

Teachers Black Hispanic White All 
     
Black 27.7 21.0 4.2 54.1 
     
Hispanic 0.5 3.2 0.3 4.0 
     
White 10.0 18.2 9.4 39.5 
     
All 38.6 43.9 14.1  

 
Note: Neither the joint nor marginal probabilities sum to 100 because of the omission of Asian and Native 
American Teachers and Students. 
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Experience dummy variables are excluded to capture the full effect of race differences, but the 

results from specifications with experience controls are almost identical. 

 The clearest finding is that, regardless of whether the specification includes student fixed 

effects, black teachers tend to be more effective with minority students.  Estimates range in size 

from 0.05 to 0.10 standard deviations, or somewhere between 30 percent and 70 percent of the 

cost of having a first year teacher.  The final column of Table 5 suggests that the benefit of a 

same race teacher is higher for girls than boys, but the difference is small and not statistically 

significant.   

 On the other hand, the table reveals contradictory findings on the question of ethnic 

differences in average teacher quality.  Without student fixed effects black teachers appear to be 

significantly less effective than white teachers (the omitted category), but with student fixed 

effects the average effectiveness of black teachers appears to exceed that of white teachers.  

Moreover, the first specification (without fixed effects) suggests that despite the benefits derived 

from being matched with a same race teacher, average quality of instruction received by black 

students with white teachers exceeds the average quality received by black students with black 

teachers.  In contrast, the fixed effect specifications show just the opposite. 

 Which specification is more informative?  Two factors enter the interpretation of the 

models with student fixed effects.  First, and most straightforward, the change in the apparent 

impact of black teachers partially reflects assignment of black teachers to schools with more 

difficult to educate students.  Table 4 shows that in the Lone Star district white teachers tend to 

teach fewer minority students but the matching is even more skewed than that suggests.  Only 56 

percent of black students taught by white teachers are disadvantaged (as measured by free and 

reduced price lunch status), while 71 percent of black students taught by black teachers are 

disadvantaged; further, black teachers teach twice the proportion of disadvantaged white students 

as the white teachers do.  In short, the measured, and likely the unmeasured, characteristics of the 



 

Table 5. Effects of teacher and student race matching on standardized achievement gains 
 

 No fixed effects With student fixed 
effects 

With student and teacher 
fixed effects 

       
Teacher black -0.057 -0.082 0.025 -0.015   
 (5.12) (5.13) (2.34) (1.02)   
Teacher Hispanic -0.034 -0.087 -0.011 -0.068   
 (1.34) (2.11) (0.48) (1.65)   
Teacher black*student black  0.047  0.102 0.105 .119 
  (2.40)  (5.31) (7.89) (7.74) 
Teacher black*student male      0.001 
      (0.06) 
Teacher black*student black*student male      -0.031 
      (1.54) 
Teacher black*student Hispanic  0.040  0.036 0.030 0.030 
  (2.30)  (2.10) (2.72) (2.61) 
Teacher Hispanic*student black  0.049  0.076 0.019 0.020 
  (0.83)  (1.30) (0.47) (0.48) 
Teacher Hispanic*student Hispanic  0.079  0.084 0.020 0.020 
  (1.85)  (1.94) (0.82) (0.82) 

 
Note: All specifications include full sets of year, and grade dummy variables and indictors for special education classification, eligibility for a subsidized lunch, 
limited English proficient classification, a structural move from elementary to junior high school prior to the academic year, and a non-structural school change 
prior to or during the academic year. Specifications without student fixed effects also include gender and race/ethnicity dummy variables. Asian and Native 
American teachers and students are excluded. The sample size is 216,958.
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student bodies tend to be correlated with teacher race.  The introduction of student fixed effects is 

designed to control for systematic but unobserved student heterogeneity. 

 The inclusion of student fixed effects, however, does more than simply control for 

unobserved student heterogeneity.  With student fixed effects, the estimates of the average impact 

of a black teacher come entirely from variations in average achievement patterns of students who 

have both a black and a white teacher over the observation period.  Consequently, if the extensive 

sorting of students and teachers among schools described in Table 4 and the distribution of 

subsidized lunch students is accompanied by systematic differences in teacher effectiveness, the 

estimated racial gaps in teacher effectiveness could differ across specifications even in the 

absence of unobserved student differences.  (This discussion is an extension of the earlier 

discussion about identification of teacher fixed effects when school fixed effects are also 

included).   

 To see the complications, consider the following case that is consistent with the aggregate 

move patterns of teachers: 1) The average effectiveness of white teachers weighted by the share 

of students who also have a black teacher is below the overall average effectiveness of white 

teachers; and 2) the average effectiveness of black teachers weighted by the share of students who 

also have a white teacher is roughly equal to the overall average for black teachers.  Assuming no 

unobserved student or school differences, these patterns imply that the addition of student fixed 

effects would raise the estimate of the average effectiveness of black teachers relative to white 

teachers.  Thus, the estimates in Column 3 indicate that the typical black teacher is better than the 

typical white teacher in the same school setting, but it is not possible to provide a precise 

comparison to the average white teacher found across the district. 

 Notice that these same ambiguities from the inclusion of student fixed effects potentially 

complicate the interpretation of the differences between the estimated benefits of having a teacher 

with the same ethnicity.  Nevertheless, the fixed effect specification shows clearly that black 
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students who have had both a black and white teacher perform better relative to classmates during 

the year in which they had the teacher of their own race.  

 The underlying mechanism behind the matching gains (to both white and black students) 

from having a same race teacher cannot be identified from this analysis.  It is not possible, for 

example, to distinguish between positive mentoring effects that raise the performance of a black 

student with a black teacher and negative learning effects that lower the performance of a white 

student with black teachers. 

Teacher Transitions 

The finding of significant variations in teacher quality that are not captured by simple 

observed characteristics is interesting from a research perspective but does not necessarily have 

any direct policy implications.  Even if researchers do not fully understand teacher quality 

differences, policy makers, educators, and parents may understand these differences and may act 

effectively on them.  To investigate implications for policy, we turn to the operation of the 

teacher labor market. 

The high rate of teacher turnover in large urban districts engenders considerable concern 

among educators, but the absence of evidence on the link between actual performance in the 

classroom and transitions makes it difficult to judge the importance of this concern.  One aspect 

of this – the effect of initial teacher experience – has already been noted.  Here we complement 

that with a comparison of the overall effectiveness of teachers who exit the Lone Star District 

with those who remain.  

We divide teachers into four mobility categories for each year that they teach: remaining 

in the same school, moving to a new school in the Lone Star District, moving to a new school 
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outside of Lone Star, or exiting the Texas public schools entirely.20 These categories correspond 

to those common to policy discussions about teacher turnover. 

Three features of teacher mobility rates are important.  First, consistent with a number of 

prior studies, teacher turnover is large (see, for example, Boyd et al. (2002), Hanushek, Kain, and 

Rivkin (2004), and Podgursky, Monroe, and Watson (2004)).  As described in detail in Appendix 

A, the turnover of inexperienced teachers is especially high.  Only 70 percent of teachers with 

less than three years of experience remain in the same school from year to year.  Second, teacher 

turnover is systematically related to characteristics of the student body, most importantly the 

achievement level of students in a school.  Third, and relevant for the subsequent estimation of 

mobility patterns, teachers who change districts on average see lower salary increases in the year 

of transition than those who remain in the Lone Star district.  

 Our direct estimates of quality differences permit tracing the achievement implications of 

the observed transitions.  Table 6 reports estimates of differences in teacher quality by transition 

type for a series of regressions that differ according to whether or not they control for student 

fixed effects, school-by-year fixed effects, and the status of women teachers who return following 

a one year hiatus (which may have been a maternity leave).  The first three columns ignore any 

subsequent return, while for the final specification women returnees are reclassified based on 

where they teach in the year following their return.  Note that the school-by-year fixed effect 

specifications generate coefficients based on achievement differences within schools.  All 

estimates compare those who leave a school with those who remain.   

  The estimates in Table 6 provide little or no evidence that more effective teachers have 

higher exit probabilities.  On the contrary, those who exit are significantly less effective on 

average than stayers regardless of whether they are compared to all stayers in the district or only 

those in the same school and year.  Moreover, those who switch campuses within the same 

                                                 
20 There is no distinction between involuntary and voluntary separations, because such information is not 
available, but past analysis suggests that virtually all transitions out of teaching are teacher initiated. 



 

Table 6. Estimates of Mean Differences in Teacher Quality by Transition Status 
(Standardized Gains compared to teachers remaining in same school; absolute value of t statistics in parentheses) 

 
  With student fixed effects 

   

With school by 
year fixed effects 

With 
reclassification of 
women returnees 

     
Change campus -0.089 -0.061 -0.054 -0.060 
 (3.96) (2.69) (2.59) (2.65) 
Change district -0.011 -0.031 -0.023 -0.028 
 (0.36) (1.05) (0.78) (1.02) 
exit public schools -0.044 -0.089 -0.072 -0.095 
 (1.90) (3.83) (3.53) (3.77) 

 
Note: All specifications include full sets of experience, year, and grade dummy variables. The sample size is 230,000. 
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district are also significantly less effective, while teachers who switch districts do not appear to 

differ significantly from the stayers. 

 These mean differences are certainly informative, but they do not paint a comprehensive 

picture of the distributions of stayers and movers.  It is important to know if movers come 

disproportionately from the tails of the distribution.  Are inner city schools actually losing a large 

number of the most promising teachers to other districts?  Do those who really struggle in the 

classroom have a very high rate of attrition?  

 In order to learn more about quality differences by transition status, Figures 2 plots kernel 

density estimates of the distributions of teacher fixed effects by move status based on regressions 

of adjusted student gain on a full set of teacher-by-year fixed effects, teacher experience dummies 

included above, and student characteristics.  Because of the aforementioned sorting of teachers 

among schools, we also plot estimated teacher fixed effects produced by specifications that 

include school fixed effects (Figure 3).  Regardless of the specification, however, the distributions 

of those who either change campuses or exit public schools fall distinctly below those who stay, 

while quality distributions for those who change districts are quite similar to those of the stayers. 

 Although the specifications control for experience effects, the differences across 

transition categories may differ systematically by experience.  Therefore, Table 7 reports separate 

estimates of differences by transition type for teachers with one, two, and three years of 

experience.  Unfortunately most of these coefficients are not precisely estimated, but two distinct 

experience patterns do emerge.  In the case of within district campus changes and exits out of the 

Texas public schools, the largest quality gaps arise for teachers who transition out following their 

second and third years.  In the case of district switchers on the other hand, the younger movers 

tend to be slightly above average in performance, although this difference is not statistically 

significant and any quality premium appears to decline (and even reverse) with experience.  

 Interestingly, plots of the full distribution of teachers in the lower experience categories 

(not shown) give some idea of the source of the mean differences that were identified.  The 



 

 

Figure 2.  Kernal Density Estimates of Teacher Quality Distribution: Standardized Average Gains by Teacher 
Move Status
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Figure 3.  Kernal Density Estimates of Teacher Quality Distribution: Standardized Average Gains Compared to 
Other Teachers at the Same Campus by Teacher Move Status
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Table 7. Estimates of Differences in Teacher Quality by Transition and Experience 

(Standardized Gains compared to teachers remaining in same school including student fixed effects; 
absolute value of t statistics in parentheses) 

 

Teacher experience Change campuses Change districts 
Exit Texas public 

schools 
    
First year experience -0.031 0.107 -0.071 
 (0.45) (1.51) (1.40) 
Second year experience -0.130 0.062 -0.159 
 (1.27) (0.07) (2.31) 
Third year experience -0.089 0.021 -0.173 
 (1.46) (0.28) (2.73) 
More than three years 
experience -0.057 -0.082 -0.059 
 (2.14) (2.21) (1.91) 

  
Note: All specifications include full sets of experience, year, and grade dummy variables. The sample size is 230,000. 
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numbers of teachers in the transition groups by experience get rather small, but the positive mean 

for the inexperienced district changers appears to be driven by a small number of very good 

teachers who leave, and the distribution for the bulk of district switchers falls slightly to the left 

of those who do not move.  For those who exit teaching, the right hand tail of quality is very 

similar to that for the stayers, but there is a noticeably thicker left hand half of the quality 

distribution for exiters. 

 A final issue is the interpretation of the finding that teachers who exit the Texas public 

schools are systematically less effective than those who remain.  While these teachers may have 

been less effective in the classroom throughout their careers, it is also possible that the exit year 

was anomalous and not indicative of typical performance.  For example, the exiting teacher might 

have had a particularly unruly class or might have reacted to some other bad situation in the 

school such as conflict with a new principal.  An alternative possibility is that effort is reduced 

once the decision is made not to return and that at least a portion of the transition quality gap 

arises from the feedback effect of the decision to exit. 

 To investigate these possibilities, we measure teacher quality by student gains in the year 

prior to each transition.  For example, we describe the distribution of quality for transitions 

following the 1999 school year with average student gains during the 1998 school year, meaning 

that any change in circumstances or effort following the decision not to return for the subsequent 

year does not affect the quality calculations.  Note that this reduces sample size by eliminating 

student performance information on the final year taught for each teacher and all who teach only 

a single year in Lone Star district. 

 Table 8 reports two sets of coefficients, one based on lagged achievement gains and the 

second based on current achievement gains for the same sample of transitions.  The table also 

compares movers both to all teachers and to just those in the same school through the inclusion of 

school fixed effects.  Note that, although the point estimates for the current scores without school 



 

Table 8. Differences in Teacher Quality by Transition and Year Quality Measured 
(Standardized Gains compared to teachers remaining in same school; absolute value of t statistics in parentheses) 

  
 Current year quality estimates Lagged year quality estimates 

 
Within district 
comparisons 

Within school 
comparisons 

Within district 
comparisons 

Within school 
comparisons 

change campus -0.067 -0.033 -0.032 0.002 
 (2.29) (1.32) (1.12) (0.08) 
change district -0.021 -0.038 -0.024 -0.023 
 (0.54) (1.01) (0.54) (0.60) 
exit public schools -0.060 -0.067 0.004 0.001 
 (1.90) (2.46) (0.12) (0.05) 
     

 
Note: All specifications include full sets of experience, year, and grade dummy variables. The sample size is 149,420. 
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fixed effects differ some from the comparable estimates in Table 6 that use the entire sample, the 

patterns are qualitatively the same. 

 Two findings stand out in the examination of exit year effects.  First, those who leave a 

school within the Lone Star District tend to be below average in both the district and the specific 

school they are leaving during their final year.  Second, and more important, the performance 

during the exit year is noticeably worse than in the previous year.  This strongly suggests that 

those who exit are not systematically worse in a longer term sense but only in the year in 

question.  Whether this reflects a reduction in effort or particular difficulties in that year (that 

might contribute to an exit decision) cannot be fully ascertained at this time.  Nonetheless, the 

fact that the differences holds for the within school comparisons suggest that it is not simply a 

new principal or any school wide problem that is driving the results. 

Who Hires More Effective Teachers? 

The large changes in student characteristics observed for teachers who leave Lone Star 

district for another Texas public school are similar to those described in other work and strongly 

suggest that teachers consider these factors in making decisions about where to work.21  

Moreover, even though salary declines on average following a transfer out of Lone Star District, 

research indicates that current salary and alternative opportunities each affect transition 

probabilities once compensating differentials have been adequately accounted for, although the 

majority of teachers who exit the profession, at least in Georgia, do not procure jobs with higher 

salaries.22  The crucial, unanswered question is whether schools take advantage of the 

attractiveness of their student body (or, more likely, amenities correlated with student 

characteristics) or higher pay to procure a higher quality teacher.  
                                                 
21 See Boyd et al. (2002) for evidence on New York State teachers, Hanushek, Kain, and Rivkin (2004) for 
evidence on Texas teachers, and Scafidi, Sjoquist, and Stinebrickner (2002) for evidence on Georgia 
teachers. 
22 See Boyd et al (2002) and Hanushek, Kain, and Rivkin (2004) for discussions of compensating 
differentials.  Scafidi, Sjoquist, and Stinebrickner (2002) follow teachers when they leave teaching in 
Georgia to ascertain the change in income for those exiting. 
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Ballou (1996) presents evidence that districts do not hire the best candidates based on 

measurable characteristics and that administrators may trade off quality for lower expected 

turnover.  Since experience appears to have substantial impacts early in the career, such a tradeoff 

could be justified if the quality differential is not too large – but prior analyses are mute on this.. 

 To learn more about the value of quality in the teacher labor market, we examine the 

linkage between salary and school demographic characteristics on the one hand and teacher 

quality on the other for the 245 teachers who move to a new district.  Previous work with flows of 

teachers suggests that salary and the composition of students are each, on net, an attraction to 

teachers.  On the other hand, such districts might squander these advantages either because they 

pursue other objectives or because they are not able to measure quality. 

 Table 9 reports salary and student demographic coefficients for a series of teacher 

characteristic regressions that differ according to the “quality” measure that is the dependent 

variable.  The first is our outcome based measure (the teacher value added coefficients from 

earlier regressions on standardized gain with an adjustment for experience), while the latter two 

are common observable teacher characteristics – advanced degrees and certification test results. 

 It is important to recognize that we do not offer direct evidence on district choices.  That 

is, we do not observe which teachers applied to which schools or even which teachers looked to 

change schools or districts.  Nonetheless, the apparent preferences of teachers for certain types of 

school environments and higher salaries strongly suggests that schools able to offer better 

compensation packages (including non-pecuniary amenities) can choose from a deeper applicant 

pool and thus can have a better chance of hiring high quality teachers.  Consequently, if schools 

are able to determine teacher effectiveness and they choose to hire the most effective teachers, we 

should observe a systematic relationship between teacher quality and all aspects of compensation. 

 The results in Table 9 provide evidence that higher salaries and fewer black students may 

raise the probability of hiring a teacher with an advanced degree.  There is, however, little 

systematic evidence that districts use higher salaries to procure better quality teachers defined in 



 

Table 9. Estimated Effects of Salary and Student Demographic Characteristics on 
the Quality of Newly Arrived Teachers (absolute value of t statistics in parentheses) 

 
 

 Direct quality 
measure Teacher quality proxies 

Destination 
campus 

characteristics 

teacher 
standardized 

gains 

passed 
certification 
examination 

advanced 
degree 

    
log salary 0.12 -0.15 0.22 
 (0.63) (1.72) (1.88) 
    
% Black 0.0000 -0.0009 -0.0024 
 (0.01) (1.18) (2.67) 
    
% Limited English 0.0016 -0.0017 -0.0017 
Proficient (0.89) (1.86) (1.49) 

 
Note: All specifications include experience, year, teacher gender, and teacher race/ethnicity 
dummy variables. The sample size is 245.   Teacher fixed effects are obtained from the 
regression of adjusted gain on a full set of teacher dummy variables, student characteristics, 
and a full set of teacher experience dummy variables.
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terms of student outcomes.  The salary coefficient in the specification with our measure of quality 

as the dependent variable does not approach statistical significance.  Although the small sample 

size certainly contributes to the imprecise estimates in the quality specifications, the consistency 

with the evidence that shows that an advanced degree has little systematic relationship with the 

quality of instruction reinforces the result. 

 Conclusions 

 Much policy debate revolves around the importance of teacher quality, but little 

consistent evidence has been available about the importance or character of quality variations.  

This paper investigates a number of dimensions of the distribution of teacher quality: the 

magnitude of the variation in quality; the contributions of experience and teacher education to 

that variation; and the importance of student teacher matching.  This description expands 

considerably what we know about the importance of teacher quality. 

 This analysis of teacher quality is, however, largely an input into understandings how 

market forces play out in the teacher labor market.  We employ our direct quality measures to 

ascertain differences between those who remain in the large, urban district and those who leave 

for other districts or professions.  Further, we consider the extent to which suburban districts use 

salary and student characteristics to attract better teachers.   

 Three methodological issues are important.  First, because of the psychometric 

characteristics of the Texas tests, it is crucial to standardize the test for the initial level of 

achievement in order to compare teachers across the entire distribution.  Second, we control for 

potential nonteacher factors through both direct measurement of student body characteristics and, 

at times, by restricting attention just to within-school variations in quality.  Third, we use repeated 

measures of teacher performance to obtain estimates of measurement error versus systematic 

quality differences. 
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 The analysis of the determinants of quality reveals some very important insights.  First, 

there is significant learning about the craft of teaching in the first few years of teaching.  The 

largest impact is the first year of experience, and experience effects disappear quickly after the 

first year.  Second, teachers who do well with students in one part of the achievement distribution 

also do well with students in other parts of the distribution, suggesting that teacher-student 

matching by initial preparation is not a particularly important policy issue.  Third, students benefit 

from having a same race teacher, quality held constant, and that benefit is sizeable. 

 The impact of these factors differs systematically by student ethnicity.  Because of the 

pattern of changing schools by teachers, 12 percent of the black and Hispanic students are taught 

by teachers in their first year as compared to 7 percent of white students.23  A new teacher lowers 

achievement growth by 0.12-0.16 standard deviations, holding overall teacher quality constant.  If 

we cumulate these effects across six years of primary schooling, the experience differential could 

account for 0.04 s.d. average difference between whites and either blacks or Hispanics. 

 A commonly voiced policy concern is that large urban districts lose their better teachers 

to other occupations or to suburban schools.  We find little if any support for the notion that the 

better teachers are the most likely to exit the public schools entirely.  To the contrary, teachers 

exiting Texas public schools are significantly less effective on average in the year prior to leaving 

than those who remain, and those changing districts are quite similar in terms of effectiveness. 

 Similarly, there is little systematic evidence in support of the view that the urban district 

loses its better teachers to the suburbs.  Much has been made of the fact that salary differentials in 

metropolitan areas exist and that these may frequently lead to a drain of high quality teachers 

from urban centers.  This view is reinforced by analyses that show urban areas to be net suppliers 

of teachers to other districts and that show urban districts to lose teachers disproportionately from 

schools with low achievement and high minority populations.  Although high turnover hurts 

                                                 
23 The difference for teachers in their second year of experience is much smaller:  7 percent for black 
students, 8 percent for Hispanic students, and 6 percent for white students. 
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students because of the lower performance of inexperienced (replacement) teachers, the evidence 

does not support the related concern that the best teachers are those most likely to leave. 

 At the same time, looking at hiring patterns for districts employing teachers from the 

Lone Star district fails to find a strong relationship between quality and salary, suggesting that it 

may be quite difficult to discern quality from a teacher’s past performance in another district.  

(The small sample size does, however, limit the precision of the estimates).  

 The identification of large variation in the quality of instruction within schools has at 

least two additional implications related to school accountability.  Current state accountability 

systems typically aggregate the level of student scores for an entire school, in part on arguments 

about averaging out any measurement error.  First, even if the average level of test scores has a 

larger signal to noise ratio, the appropriately constructed achievement gain is a much more 

appropriate measure of value added and school effectiveness.  It is more closely related to current 

teacher performance and controls for important family and community differences that tend to 

confound estimates of teacher value added based on achievement levels.  And second, any formal 

or informal school  evaluation program that aggregates performance to the school level or across 

years misses the majority of the variation in the quality of instruction.  This weakens the 

incentives for good teachers to enter and remain in teaching, for ineffective teachers to leave, and 

for all teachers to put forth greater effort.  These costs should be compared with the superiority of 

measuring performance at the school level in terms of fostering greater teacher cooperation 

within the school, a concept frequently advanced in policy discussions. 

 Separating the elements of teacher quality from other possible influences on achievement 

is difficult, and some ambiguity will necessarily remain.  Moreover, this analysis is further 

limited in important ways:  It is clearly conditional upon both the test instruments and the 

institutional structure of Lone Star schools and their hiring patterns.  Nonetheless, it provides both 

a methodology and a set of initial investigations of the market of teacher quality – something that 

has defied past analysis.



 

Appendix A.  Description of Teacher Mobility in the Lone Star District 

Appendix Table A1 shows the substantial teacher mobility in the Lone Star District, 
particularly among inexperienced teachers.  Only 70 percent of teachers with fewer than three 
years of experience remain in the same school from one year to the next.  New teachers have the 
highest transition rates: 12 percent switch schools within Lone Star District, 4 percent switch 
districts, and 14 percent exit the Texas public schools entirely following their first year as 
teachers.  As teachers acquire experience, the probability of exiting declines steadily prior to 
rising again near retirement. On the other hand, experience does not substantially reduce 
movement within Lone Star District, and a substantial fraction of teachers with fewer than 10 
years of experience move to a different Texas public school outside of Lone Star District. 

Consistent with prior studies, the probability of moving differs by a number of classroom 
characteristics. Appendix Table A2 provides school average student demographic characteristics 
by annual teacher move status.  This shows vividly that average math score is much lower for 
teachers who switch schools within Lone Star District (-0.38 standard deviations) and lower for 
those who exit the public schools entirely (-0.33 s.d.) or switch districts (-0.29 s.d.) than for 
teachers who remain in the same school.24 Somewhat surprisingly based on our prior work for the 
state as a whole (Hanushek, Kain, and Rivkin (2004)), the differences in racial and ethnic 
composition and income are smaller and less systematic. 

 Because transition rates are higher for less experienced teachers, the two  panels report 
these classroom  characteristics for teachers in their first year and in their second or third years of 
experience, i.e., for the groups with the highest exit rates from their current school.  While 
anecdotal stories of teacher placement suggest that beginning teachers work in classrooms that 
uniformly have the lowest achievement levels and the most disadvantaged students in terms of 
income or the race and ethnicity of the students, within the Lone Star District these patterns do 
not completely hold.  As with all teachers, those switching schools within the district have the 
lowest average achievement in their classes (compared to other categories of move status).  The 
racial composition and income composition, however, do not show much in the way of systematic 
patterns, quite possibly reflecting the very high minority enrollment and the generally low income 
levels of the district. 

 While Appendix Table A2 presents the characteristics of Lone Star District classrooms 
from which teachers exit, an alternative perspective is how campus characteristics change with a 
move. Appendix Table A3 reports the year-to-year changes in salary, average math achievement, 
and student demographic characteristics by experience and transition type for those who switch 
schools within the district and those who leave the district for another Texas public school.  Not 
surprisingly, those who exit Lone Star District for another district see the most dramatic change in 
student characteristics. Average math achievement increases by 0.13 standard deviations and 
percentages Black, Hispanic, and students eligible for a subsidized lunch fall by 8, 15 and 28 
percentage points, respectively. This compares to much smaller changes for those who switch 
schools within Lone Star District (or remain in the same school). 

 In contrast to the dramatic improvements in student achievement and increases in student 
SES, district switchers tend to experience smaller salary increases than those who remain in Lone 
Star District. For all teachers who do not move, the average salary increase is $2,137; first year 

                                                 
24 All test scores, as described previously, are normalized to mean zero and standard deviation one for the 
state as a whole in each grade-test year.  The overall scores for all teachers simply indicate that Lone Star 
District, like most large urban districts, has overall performance that is 0.25 standard deviations below the 
Texas state mean. 



 

teachers who stay in the same school have salary increases averaging $3,204.  But, the average 
salary increase for all district movers is $2,085 and for new teachers it is only $1,807.  This 
pattern is consistent with research on the State of Texas as a whole (Hanushek, Kain, and Rivkin 
(2004)). Given that teachers initiate the vast majority of transitions and undoubtedly prefer higher 
salaries, this pattern indicates the existence of large compensating differentials which complicate 
the identification of the relationship between salary and the supply of teachers. 

 Overall, the changes by experience group are most interesting in their similarities to the 
“all teacher” results.  While there are a few differences such as the decline in campus math scores 
for new teachers that change districts, most of the overall patterns are quite consistent. 

 

 
 



 

Appendix Table A1.  Teacher Transitions by Teacher Experience  
(annual rates in percent) 
 
 

Teacher 
Experience No Move Change 

Campus 
Change 
District 

Exit Public 
Schools 

1 year 70.4 11.5 4.0 14.0 
2-3 years 70.8 11.2 5.0 13.0 
4-6 years 77.0 10.4 5.4  7.2 
7-11 years 79.7 10.6 4.3  5.4 
12-21 years 86.2  8.3 2.0  3.5 
> 21 years 86.5  5.7 0.7  7.2 



 

 

Appendix Table A2.  Average Classroom Characteristics by 
Transition Status and Teacher Experienceb 

 

 No Move Change 
Campus 

Change 
District 

Exit Public 
Schools 

All teachers         
Average Math z Scorea -0.23 -0.38 -0.29 -0.33 
Percent Black 33.4 35.3 33.7 33.5 
Percent Hispanic 52.3 55.5 53.0 52.1 
Percent Lunch Program 73.6 79.3 75.9 73.2 

1 year experience     
Average Math z Scorea -0.47 -0.57 -0.40 -0.56 
Percent Black 31.4 37.8 43.1 40.8 
Percent Hispanic 59.7 57.1 45.7 49.2 
Percent Lunch Program 80.5 85.4 78.8 75.6 

2-3 years experience     
Average Math z Scorea -0.29 -0.39 -0.25 -0.34 
Percent Black 31.1 34.7 32.0 31.3 
Percent Hispanic 57.6 57.9 53.6 57.1 
Percent Lunch Program 77.0 80.6 75.4 76.4 

 
 
Notes:  a.  Scores are normalized in each grade and year such that the entire state has mean zero and 
standard deviation one. 

 b.  Characteristics pertain to classroom characteristics for each year teachers are observed.



 

Appendix Table A3.  Change in Average Campus Characteristics and 
Pay By Transition Status and Experience 
 
 

  No Move Change 
Campus Change District

All teachers       
Average Math z Score 0.00 0.03 0.13
Percent Black -0.57 -2.79 -8.17
Percent Hispanic 1.04 -0.65 -14.85
Percent Lunch Program. 1.17 -4.65 -27.63
Average Salary 2,137 2,435 2,085

1 year experience       
Average Math z Score 0.03 0.07 -0.03
Percent Black -0.65 -6.72 -9.36
Percent Hispanic 1.07 5.22 -8.57
Percent Lunch Program.. 1.25 -1.56 -27.40
Average Salary 3,204 3,580 1,807

2-3 years experience       
Average Math z Score 0.02 0.06 0.17
Percent Black -0.56 -2.10 -6.73
Percent Hispanic 1.00 -5.04 -17.26
Percent Lunch Program. 1.08 -9.24 -27.84
Average Salary 1,631 1,604 1,340
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